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Abstract

The rapid development in quantitatively measuring DNA, RNA, and protein has generated a great
interest in the development of reverse-engineering methods, that is, data-driven approaches to infer
the network structure or dynamical model of the system. Many reverse-engineering methods require
discrete quantitative data as input, while many experimental data are continuous. Some studies have
started to reveal the impact that the choice of data discretization has on the performance of reverse-
engineering methods. However, more comprehensive studies are still greatly needed to systematically
and quantitatively understand the impact that discretization methods have on inference methods.
Furthermore, there is an urgent need for systematic comparative methods that can help select between
discretization methods. In this work, we consider 4 published intracellular networks inferred with their
respective time-series datasets. We discretized the data using different discretization methods. Across all
datasets, changing the data discretization to a more appropriate one improved the reverse-engineering
methods’ performance. We observed no universal best discretization method across different time-series
datasets. Thus, we propose DiscreeTest, a two-step evaluation metric for ranking discretization methods
for time-series data. The underlying assumption of DiscreeTest is that an optimal discretization method
should preserve the dynamic patterns observed in the original data across all variables. We used the
same datasets and networks to show that DiscreeTest is able to identify an appropriate discretization
among several candidate methods. To our knowledge, this is the first time that a method for benchmarking
and selecting an appropriate discretization method for time-series data has been proposed.
Availability: All the datasets, reverse-engineering methods and source code used in this paper are
available in Vera-Licona’s lab Github repository:
https://github.com/VeraLiconaResearchGroup/Benchmarking_TSDiscretizations

1 Introduction
Understanding important aspects in molecular cell biology requires insight
into the structure and dynamics of networks that are made up of thousands
of interacting components such as DNA, RNA, proteins and metabolites.
One of the central goals of systems biology is to unravel the complex
web of interactions among these components (Dasgupta B, 2011). With
the rapid development of high-throughput technologies, the amount of
biological data that either reports different molecules’ concentration in
the form of steady-state or time-series data is constantly increasing. This
unprecedented explosion of data has opened the doors to development
and improvement of methods that infer or “reverse-engineer" intracellular
networks. Several reverse engineering methods infer these networks from

discretized time-series data, using diverse modeling frameworks such as
dynamic Bayesian networks (Perrin et al., 2003), or Boolean (Liang et al.,
1998; Mehra et al., 2004; Martin et al., 2007; Vera-Licona et al., 2014)
and polynomial dynamical systems (Jarrah et al., 2007).
In the most general sense, data discretization is the process of converting
continuous features or variables to discrete or nominal features or variables.
Discretizing continuous data has been a long-standing problem in data
mining and knowledge discovery (see for example, (J, 1967; T, 1989; J,
1991)). Different discretization methods have been developed to address
different needs: supervised vs. unsupervised, dynamic vs. static, global
vs. local, splitting (top-down) vs. merging (bottom-up), and direct
vs. incremental. Examples of unsupervised methods include k-means
clustering (J, 1967), equal width interval (J, 1991; Dougherty J, 1995; K,
1992), equal frequency interval (J, 1991; Dougherty J, 1995; K, 1992), and
graph-theoretic based discretization (Dimitrova et al., 2010). Examples of
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supervised methods include ChiMerge (R, 1992), D-2 (J, 1991), Vector
Quantization (T, 1989), Holte’s 1R Discretizer (RC, 1993) and more
recently, for time-series gene expression data, discretization methods like
those introduced in (Lustgarten JL, 2011; M and SR, 2017). See (Liu et al.,
2002; Kotsiantis S, 2006) for nice surveys on data discretization methods.
In computational systems biology, when inferring intracellular networks
from high through-put data, data discretization is an important pre-
processing step for many inference (or reverse-engineering) methods that
require discrete data as input. Previous studies have reported that by
replacing the data discretization methods, the precision and sensitivity of
reverse-engineering methods can be significantly improved (Vera-Licona
et al., 2014; Li et al., 2010; Velarde et al., 2008).
Our motivation and focus for this work is to systematically examine the
impact of different data discretization methods on the performance of
reverse-engineering algorithms, with a particular interest in time-series
data. We use 4 different sets of published time-series data that have been
used to infer, with different reverse-engineering methods, 4 intracellular
networks: three gene regulatory networks and one cell signaling network.
We firstly reproduce the results reported by authors in the respective papers
by using the same original data, same discretization methods, and same
reverse engineering tools. We then alternate through all the discretization
methods in GED PRO TOOLS: Gene Expression Data prePROcessing
TOOLS (Gallo et al., 2016) to observe the impact of data discretization
choice on the performance of reverse engineering methods.
Consistent with what has been observed in previous studies, there is
not an optimal data discretization method that works better for all the
different datasets. Rather, the problem of data discretization is rather
context and data-dependent (Gallo et al., 2016). To address the problem of
selecting an optimal discretization method for time-series data, we propose
DiscreeTest, a two-step evaluation metric for ranking discretization
methods for time-series data. The main assumption behind DiscreeTest’s
metric is that the optimal discretization method best preserves the observed
dynamic patterns in the original data. We validated the performance of
DiscreeTest using the aforementioned published time-series data.

2 Materials and Methods

2.1 Discretization of time-series data using GED PRO
TOOLS

In our study, we use GED PRO TOOLS (Gallo et al., 2016) to discretize
the data. GED PRO TOOLS provides 16 different types of discretization
methods, 13 of which are unsupervised discretization approaches (Table
1, Table S1). Some of the 16 discretization methods discretize the data
in multiple levels, such as bikmeans discretization, which can discretize
data into 2, 3, 4 or 5 categories. Nine of these discretization methods,
such as target discretization threshold (TDT) (Gallo et al., 2011), can only
discretize continuous data into 2 categories.

Notice that for simplicity, throughout the paper we refer to different
discretization methods in our paper not only when distinguishing between
different discretization approaches but also when using the same approach
but considering different levels of discretization, such as bikmeans2 (2
categories of discretization) and bikmeans3 (3 categories of discretization).

2.2 Intracellular networks, their time-series data and
reverse-engineering algorithms used for this study

We use 4 different published intracellular networks with their respective
time-series datasets: (1) DREAM3 Yeast In Silico, a yeast (Saccharomyces
cerevisiae) in silico gene regulatory network published in (Marbach
et al., 2009, 2010; Prill et al., 2010), (2) Pandapas, an in silico gene
regulatory network published in (Camacho et al., 2007), (3) IRMA, a yeast

synthetic network, published in (Cantone et al., 2009) and, (4) Hepatocytic
Cell Signaling network, an in vivo signaling network of hepatocellular
carcinoma introduced in (Saez-Rodriguez et al., 2009).

Here, we use the same reverse engineering methods to infer the
different network structures as they were analyzed previously.

2.2.1 DREAM3 Yeast In Silico Network
The DREAM3 Yeast In Silico network contains 100 genes and 9900
gene interactions. This network was provided by the DREAM 3 In Silico
Network Challenge (Marbach et al., 2010, 2009; Prill et al., 2010). There
are 46 different time series. Each time series has 21 time points, and there is
a unique perturbation in each time series. The gold standard of this network
is known. We examine how data discretization influences the accuracy of
time-delayed dynamic Bayesian network (TDBN), originally introduced
in (Zou and Conzen, 2005) and later applied in (Li et al., 2014) to infer
the DREAM3 yeast in silico network. Since TDBN requires binary input
data, we select all 11 discretization methods in GED PRO TOOLS capable
of binary discretization (bikmeans2, i2, kmeans2, max25, max50, max75,
mean, q2, TDT, top25, top75) for comparison.

2.2.2 Pandapas Network
The in silico gene regulatory network introduced in (Camacho et al.,
2007) contains 13 nodes and 19 interactions; 10 of the nodes represent
genes while the other 3 nodes (P1, P2, P3 in Figure S1) represent external
perturbations. There are 8 different time series as a result of the different
combinations of the 3 perturbation nodes. In (Camacho et al., 2007),
BANJO 2.2.0 (Yu et al., 2004) was used to infer the Pandapas network.
In addition, we use time-delayed dynamic Bayesian network (Zou and
Conzen, 2005) to reverse engineer this network. We test 23 different data
discretizations with different levels (bikmeans2, bikmeans3, bikmeans4,
bikmeans5, i2, i3, i4, i5, erdals, ji&tan, kmeans2, kmeans3, kmeans4,
kmeans5, mean-sd, q2, q3, q4, q5, soinov, TDT, TSD, max50) on inferring
the Pandapas network using BANJO, but only the binary discretized data
when using TDBN.

2.2.3 IRMA Network
IRMA (in vivo "benchmarking" of reverse-engineering and modeling
approaches) is a synthetic network that consists of 5 genes (CRF1, GAL4,
SWI5, ASH1, and GAL80) and 8 interactions (Figure S3). The network
is constructed in a manner such that it can be fully activated with the
presence of galactose (switch-on), and inactivated by glucose (switch-
off). BANJO 1.0.4, a reverse engineering software (Yu et al., 2004), was
utilized in (Cantone et al., 2009) for network inference within the Bayesian
network modeling framework. Quantile binary discretization was applied
to the data before inputting into BANJO in (Cantone et al., 2009). We use
BANJO 1.0.4 to infer network structure using time series (both switch on
and off) data. We tested 22 different discretizations with different levels
(bikmeans2, bikmeans3, bikmeans4, bikmeans5, i2, i3, i4, i5, erdals,
ji&tan, kmeans2, kmeans3, kmeans4, kmeans5, mean-sd, q2, q3, q4, q5,
soinov, TDT, TSD).

2.2.4 Hepatocytic Cell Signaling Network
The Hepatocytic Cell Signaling network is a network of 81 nodes and 118
interactions (Figure S4). This network was introduced in (Saez-Rodriguez
et al., 2009) to test and validate a reverse engineering method using Cell
Network Optimizer (CNO). There are 128 time series collected from
CSR (cue-signal-response) from HepG2 hepatocellular carcinoma cells
exposed to one of seven cytokines in the presence or absence of seven
small-molecule kinase inhibitors. The authors used a genetic algorithm
to minimize mean squared errors (MSE) between data generated by the
inferred networks and the original experimental data by adding or removing
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Table 1. Discretizations sed in this study

abbreviation full name levels technique category

bikmeansX bidirectional kmeans discretization with X levels 2 ≤ X ≤ 5 clustering
erdals Erdal’s et.al method (Erdal et al., 2004; Madeira and Oliveira, 2005) 2 variation between time points
TDT taget discretization threshold (Gallo et al., 2011) 2 metric cutoffs
iX equal width discretization with X levels(Madeira and Oliveira, 2005) 2 ≤ X ≤ 5 metric cutoffs
qX equal frequency discretization with X levels (Madeira and Oliveira, 2005) 2 ≤ X ≤ 5 metric cutoffs
mean discretization through comparing to mean value (Madeira and Oliveira, 2005) 2 metric cutoffs
kmeansX kmeans discretization with X levels (Li et al., 2010) 2 ≤ X ≤ 5 clustering
ji&tan Ji and Tan’s method (Ji and Tan, 2004) 3 variation between time points
soinov Soinov’s change state method(Soinov et al., 2003) 2 variation between time points
mean-sd mean plus standard (Ponzoni et al., 2007) 3 metric cutoffs
TSD transilational state discretization (Carla et al., 2003) 2 variation between time points
maxY Max - Y% Max (Madeira and Oliveira, 2005) 2 metric cutoffs
topY Top%Y discretization (Madeira and Oliveira, 2005) 2 metric cutoffs

interactions in the prior knowledge network. We notice that size penalty,
a parameter that is embedded in the genetic algorithm of CNO, was a
constant when (Saez-Rodriguez et al., 2009) was published, but now is a
tunable in the current R package (MacNamara A, 2012). We also explore
how size penalty range influences network optimization. We discretize our
hepatocytic cell signaling data with all the 11 different binary discretization
methods in GED PRO TOOLS (bikmeans2, i2, kmeans2, max25, max50,
max75, mean, q2, TDT, top25, top75).

2.3 DiscreeTest: A Two-step Benchmark Metric of Time
Series Data Discretization Methods

We propose a two-step discretization evaluation (DiscreeTest) metric to
benchmark and identify an optimal discretization method for time-series
data. We propose our metric under the assumption that we want the
discretized data to preserve dynamic patterns observed in the original
data. To that end, DiscreeTest benchmarks, filters and ranks different
discretization methods to find the optimal one. Each discretized dataset
is subject to two steps: (1) qualification and (2) evaluation (Algorithm 1).
Qualification is the first step. It uses sign test to measure whether original
data and discretized data have dynamic patterns that are statistically
different. For this step, both original data and discretized data are
normalized to have values between 0 and 1. We obtain the difference
between these two groups of data. Since this difference is from both noise
and discretization, we cannot assume any distribution on the difference,
but we expect them to separate evenly on the left and right of 0. We
then calculate the p-value for running the difference data for a sign test.
We compare this p-value to α, the critical value for rejecting the null
hypothesis in sign test. If the p-value is larger than α, then we fail to reject
the null hypothesis and move towards our evaluation step. Otherwise,
we disqualify the corresponding discretization method by assigning it a
negative evaluation value. This qualification step aims to prevent over-
fitting the original time series data by adding extra levels/categories in
the discretization. For the methods that passed the qualification step,
the second step in DiscreeTest is to quantitatively evaluate the similarity
between dynamic patterns of original data and discretized data. We plot
the time points of the normalized original time series and the normalized
discretized data; then we interpolate the piecewise-linear curve for our two
time series and calculate the mean area between the curves (MABC) of
the original data and discretized data, the evaluation value that we return.
If the original data and discretized data match perfectly, the mean area
between these two curves would be 0. MABC is never negative, so we can
distinguish which discretizations passed the sign test.

In practice, when selecting a discretization method, we would rank all
the methods according to their evaluation values, and identify method(s)

with the smallest evaluation value. In summary, we consider the optimal
data discretization to best keep the intrinsic dynamical trend of the original
time series data without over-fitting.

Data: The original data datao and discretized data datad.
Result: An evaluation of datad.
Calculate the residue between datao and datad
Sign test whether residues of each variable has a median of 0
(α = 0.01)
if sign test fails to reject null hypothesis for each variable then

return -1
end
mabc = mean area between the curves of datao and datad
return mabc;

Algorithm 1: DiscreeTestmetric(datao, datad)

Data: The original data datao and a list several candidate
discretization methods M .

Result: The optimal discretization method.
minV al =∞
minMethod = None

for method in M do
val = DiscreeTestmetric(datao, method(datao))
if val < minV al then
minV al = val

minMethod = method
end

end
return minMethod;

Algorithm 2: DiscreeTestprocedure(datao, M )

3 Results
3.0.1 DREAM3 Yeast In Silico
To begin our experiment, we first find an appropriate value for the
maximum time delay, a parameter in the time-delayed dynamic Bayesian
network (TDBN) method. We show in Table S2 that 4 is adequate, as a
value larger than 4 increases computation complexity without improving
performance.

We then use different data discretization methods from GED PRO
TOOLS. In (Li et al., 2014; Zou and Conzen, 2005) the authors used
the equivalent of the mean discretization method in GED PRO TOOLS
(threshold by the mean of each variable) before inferring the network using
TDBN.

We compute the area under the receiver operating characteristic curves
(AUROC) for each reverse-engineered network inferred from differently
discretized data. As seen in Figure 1 AUROC for mean discretization is
slightly higher than what was reported in (Li et al., 2014) (by 0.0475), but
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our area under the precision-recall curve (0.0118) is almost the same with
the value (0.0155) reported in (Li et al., 2014).
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Fig. 1: AUROC for the Inference of Yeast In Silico Network Using
TDBN Under Different Data Discretizations. Bar plot of the Area Under
the ROC Curves (AUROCs) using TDBN with time-series discretized by
11 different binary data discretizations. On the x-axis the 11 discretizations
are ordered from left to right to show from the most to the least optimal
discretization, according to AUROC. The original publication of TDBN
(Li et al., 2014) used Mean discretization as indicated by bar with black
stripes. Top75 is the data discretization that makes TDBN method perform
best. TDT and max75 also improve TDBN performance, compared to
performance when using Mean discretization

We observed that Top75 is the data discretization that makes TDBN
perform best. TDT and max75 also improve TDBN performance,
compared to when using mean discretization, the discretization utilized
in (Li et al., 2014; Zou and Conzen, 2005). TDBN with input from Top75
discretization shows an increase of 1.6% AUROC compared to TDBN fed
with binary data obtained from mean discretization, which is utilized in (Li
et al., 2014). Further analysis shows that the higher AUROC of top75 is due
to the inference of fewer false positives compared to mean discretization
(Table S3). Using data discretized by top75, TDBN correctly identifies 30
edges that otherwise were missing using mean discretized data and reduces
374 false positive edges that are reported by mean discretization.

3.0.2 Pandapas Network
We use both BANJO (version 2.2.0) and time-delayed dynamic Bayesian
network (TDBN) to infer Pandapas network structure. In (Camacho
et al., 2007), equal frequency with 5 levels (equivalent to quantile 5
discretization, q5) discretization was used for the Pandapas data. We
present ROC curves of both reverse engineering methods in Figure S2
and their area under the ROC curves (AUROCs) in Figure 2. We can see
that i2 is the best discretization for both inference methods.

3.0.3 IRMA network
Our experiments with IRMA network using time series with perturbation
(switch on and switch off, Figure 3) show that properly choosing a
discretization method can largely boost the performance of BANJO,
as previously observed in (Vera-Licona et al., 2014). Compared to q2
discretization, which is the discretization method that authors originally
used in (Cantone et al., 2009) when considering Switch Off time series,
positive predictive value (PPV) can be improved more than 40%, while
sensitivity could improve more than 65% when q2 is replaced by q3. In
fact, several discretization methods outperformed q2. Among them, q3
and bikmeans2 are both the most sensitive (0.63). While erdals, soinov,
and ji&tan give the highest precision (1), they are low in sensitivity (0.13).
Mean discretization gives neither the highest sensitivity (0.5) nor positive
predicted value (0.8), but its sensitivity is 3 times higher than those have
highest positive predicted value, while its positive predicted value is 60%
higher than the discretization that gives the highest sensitivity. In summary,
for Switch Off time-series data, among the discretization methods tested,
there is no best data discretization.

For Switch On time series, TDT, mean, mean-sd and i3 discretizations
present better reverse engineering results than q2 discretization, both
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Fig. 2: AUROC for the Inference of Pandapas Network Using BANJO
2.2.0 and TDBN Under Different Data Discretizations. Bar plots of the
Area Under the ROC Curves (AUROCs) using BANJO 2.2.0 (bar plot in
green) and TDBN (bar plot in blue) with time-series discretized by different
discretization methods. On the x-axis, the different discretizations are
ordered from left to right by most to least optimal, according to AUROC.
The original publication inferring Pandapas network with BANJO 2.2.0
(Camacho et al., 2007) used q5 discretization as indicated by bar with
black stripes. We can see that i2 is the best discretization for both inference
methods.

Fig. 3: PPV and Sensitivity for the Inference of IRMA network using
BANJO 1.0.4 under different data discretizations. Bar plots of Positive
Predictive Value (PPV) and Sensitivity for the Inference of IRMA network
using BANJO 1.0.4 under different data discretizations. First bar plot, in
pink, corresponds to results using Switch On time-series. Second bar plot,
in yellow, corresponds to results using Switch Off time-series. On the x-
axis the different discretizations. The original publication inferring IRMA
network with BANJO 1.0.4 (Cantone et al., 2009) used q2 to discretize
both Switch On and Switch Off time-series as indicated by bar with black
stripes in both plots.
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higher in positive predictive values (PPVs) and sensitivities. TDT
discretization gives the highest PPV (0.71), while mean discretization gives
the highest sensitivity (0.75).

3.0.4 Hepatocytic Cell Signaling Network
We consider the 11 binary data discretizations in GED PRO TOOLS and
input the different discretized sets to CNO with different size penalty
ranges (Table 2). With the default parameters, we were able to produce
the same results reported in (Saez-Rodriguez et al., 2009) (first column of
Table 2). We notice that size penalty has a significant impact on optimizing
cell signaling network scores. As the size penalty increases, the optimized
networks become sparser and eventually, with no edges left. When size
penalty is small enough, the variation across discretization methods starts
to impact MSE score; for example, bikmeans2 gives universally smaller
MSE scores, which is consistent with (Li et al., 2010). However, it is also
worth noticing that the network structures with optimal MSE scores are
not necessarily the same even if their MSE score is the same: consider the
optimized CSR networks with (Lower Bound, Upper Bound) = (0.1, 10)
with data discretized by Bikmeans2, Mean and Max50 as shown in figures
S8, S9, S10.

3.0.5 Validation of DiscreeTest
From our previous subsections, we have prior knowledge about the
structure of the networks that allows us to evaluate the performance
of the corresponding reverse-engineering algorithm of choice. For a
real application, however, how do we select an optimal discretization
method among several methods available? To that end, we propose
DiscreeTest, a two-step discretization evaluation method to benchmark
and identify an optimal discretization method. DiscreeTest aims to identify
the discretization that best retains the dynamic pattern of the original data
without over-fitting. We validate DiscreeTest on all our four networks.

Validation of DiscreeTest with DREAM3 Yeast In Silico network.
In the qualification step, only top75 (p-values > 0.078) and q2 (p-
values > 0.039) do not fail. In the evaluation step, top75 provides
a smaller mean area between the curves (0.3558) than q2 (0.3676).
According to DiscreeTest, top75 is considered to be the best discretization
method, which is supported by our previous computations, in which top75
gives the maximum area under the ROC curve using the time-delayed
dynamic Bayesian network (TDBN). Here, DiscreeTest identifies the best
discretization we found in our reverse engineering experiments.

Validation with Pandapas network. In the qualification step, 4
discretization methods pass: top25 (p-value > 0.507), top75 (p-value >
0.179), i2 (p-value > 0.039), mean (p-value > 0.039). Amongst them, i2
gives the minimal mean area between the curves (0.358). This is consistent
with the observation that both BANJO and TDBN give the maximum
AUROC when using i2 discretized data for network structure inference.
Therefore, we conclude DiscreeTest is adequate in this case.

Validation with IRMA network. For Switch Off time series, only
q2 (p-values>0.99) and q3 (p-values>0.18) pass the qualification step.
Among these two discretization methods, q3 gives the smaller MABC
(0.4623) (Figure S7). It is also observed that q3 gives a high positive
predicted value (0.71) and sensitivity (0.63). Therefore, we conclude
DiscreeTest is adequate in this case.

For Switch On time series, mean (p-values>0.02), q2 (p-values>0.8),
q3 (p-values>0.2), q4 (p-values>0.07), and q5 (p-values>0.02)
discretizations pass the qualification step, with mean discretization
yielding the lowest mean area between the curves (0.374) (Figure S7).
However, for this case, we do not observe a discretization that gives a
universal good result, i.e. both high sensitivity and high positive predicted

value. Mean discretization, nevertheless, gives a high sensitivity (0.75)
and a high positive predicted value (0.8)–the second highest positive
predicted value among all discretization methods. Therefore, we conclude
DiscreeTest is adequate in this case.

Validation with Hepatocytic Cell Signaling network. There are only
3 discretization methods that pass the qualification step: bikmeans2(p-
value = 0.059), kmeans2 (p-value = 0.25), and top75 (p-value = 0.043).
Among them, bikmeans2 gives lowest mean area between the curves value
(0.137), as well as the lowest MSE score (0.135). Therefore, DiscreeTest’s
identified optimal discretization method is the one that makes CNO
perform best.

4 Discussion
In this paper, we show that data discretization can have a strong impact
on the performance of reverse engineering algorithms. We discuss a wide
range of data discretization methods, some of which have multiple levels.
Our experiments on 4 different networks inferred by 3 different reverse
engineering algorithms reveal no universally optimal data discretization,
either in method or in discretization level: For the Hepatocytic Cell
Signaling network inference with cell network optimizer (CNO), we
observe that bikmeans2 is one of the best choices to discretize the input
time-series data, which is consistent with (Li et al., 2010). For the Yeast in
Silico network inference using time-delayed dynamic Bayesian network
(TDBN), top75 is the best choice for data discretization. For the Pandapas
network inference with both BANJO and TDBN, we see that i2 is the data
discretization that makes both inference methods perform the best. This
observation is notable, as DiscreeTest is able to identify one discretization
method that gives two different reverse engineering algorithms best
performance. Finally, for the IRMA network inference with BANJO,
among the methods tested, there is no best data discretization, since
none of them lead BANJO to have both highest positive predicted value
and sensitivity for either Switch On or Switch Off time series. However,
DiscreeTest identified top candidate discretization methods for both Switch
On and Switch Off time-series.

We also notice that for the Hepatocytic Cell Signaling network,
even if two inferred networks with CNO have the same MSE score,
their corresponding network structures can be different. Comparing the
network inferred from bikmeans2 discretized data to the network inferred
from Mean discretized data, we observe some new interactions in the
network with bikmeans2 discretized data (AKT → mTOR, mTOR →
IRS1, mTOR → p70S6, p90RSKn → cfos, ras → map3k1) supported
by more recent scientific publications (Xia et al., 2014; Yin et al., 2015;
Liu et al., 2016; Wan et al., 2016; Gómez-Gómez et al., 2013). There
are also some interactions, such as JNK12 → JNK12n, which stand
for JNK12 translocation from cytosol to nuclear, that show up in the
network inferred using bikmeans2 discretized data. Even though we did not
identify any scientific publication supporting this translocation in HepG2
hepatocellular carcinoma cells, this interaction is supported in (Zanella
et al., 2008) for human bone osteosarcoma epithelial cells (U2OS Line).
These unique interactions suggest that the reverse-engineering network
using the data discretized by bikmeans2 is better, not only in score, but
also in its capacity to infer biologically meaningful and novel network
interactions.

We propose DiscreeTest, a metric with potential to benchmark and
identify optimal discretization method(s) independent of the choice of
reverse engineering method. It is essential to remember that the DiscreeTest
metric is developed under the assumption that it is desirable for the
discretized time series to have a similar dynamic pattern as the original
data. We point out that under this assumption, DiscreeTest may not be
applied to steady state data. It is worth noticing that the qualification
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Table 2. Mean Squared Error (MSE) from Cell Network Optimizer with Different Size Penalty
Range

Lower Bound of Size Penalty 0.1 0.01 0.001 0.01 0.001 1
Upper Bound of Size Penalty 10 10 0.1 0.1 0.01 100.1

bikmeans2 0.184 0.0018 1.010 × 10−5 0.0041 1.837 × 10−5 16.930
mean 0.184 0.0018 1.836 × 10−5 0.0055 1.837 × 10−5 18.375

q2 0.184 0.0018 1.836 × 10−5 0.0058 1.837 × 10−5 14.219
max25 0.184 0.0018 1.836 × 10−5 0.0158 1.978 × 10−5 17.477
top75 0.184 0.0018 1.836 × 10−5 0.0077 1.837 × 10−5 19.450

i2 0.184 0.0018 1.968 × 10−5 0.0018 2.258 × 10−5 13.846
max75 0.184 0.0018 2.258 × 10−5 0.0018 1.837 × 10−5 18.371
TDT 0.189 0.0018 3.938 × 10−5 0.0018 1.837 × 10−5 12.481

kmeans2 0.184 0.0018 3.938 × 10−5 0.0077 1.837 × 10−5 19.259
max50 0.191 0.0099 0.0261 0.216 0.0171 17.848
top25 0.187 0.0018 1.836 × 10−5 0.0058 1.940 × 10−5 18.467

step in DiscreeTest is essential, as it balances between being robust to
noise and trying to satisfy the dynamic patterns observed in the original
data. A quantitative assessment of the similarity between original data
and discretized data is done by calculating the difference between the
original data and discretized data over time. Since this difference is from
both noise and discretization, we cannot assume any distribution on the
difference, but we expect them to separate evenly on the left and right of
0. Thus, we utilize sign test in the qualification step to prevent over-fitting
that can arise from the evaluation step, mean area between curves over
time (MABC). MABC integrates over the difference of the interpolated
curve of the original data and the interpolated curve of the discretized
data. Therefore, increasing the number of discretization levels can reduce
the MABC and in consequence, overfit the data, even if dynamic patterns
are different. This explains why some discretization methods yield small
MABC, but cannot pass the qualification step.

5 Conclusion
The choice of a proper data discretization method can largely improve
accuracy and sensitivity of reverse engineering algorithms when inferring
network structure from discretized time series data. Our experiments
show there is not a universally optimal data discretization method. The
data discretization method that makes the reverse engineering method
perform best depends, at least partially, on the data itself. The two-step
discretization evaluation metric (DiscreeTest) is an adequate benchmark
and assessment for an optimal discretization method for time-series.
The optimality criterion is based on the assumption that an optimal
discretization of the data should preserve the dynamic patterns observed
in the original data.

6 List of abbreviations
MSE: mean squared error; CSR:cue-signal-response; PKN: prior
knowledge network; TDBN: time-delayed dynamic Bayesian network;
ROC curve: receiver operating characteristic curve; AUC: area under the
curve.; AUROC: area under the ROC curve; bikmeansX: bidirectional
kmeans discretization with X levels; erdals: Erdal’s et.al discretization
method (Erdal et al., 2004); TDT: target discretization threshold; iX: equal
width discretization with X levels; qX: equal frequency discretization
with X levels; mean: discretization through comparing to mean value;
kmeansX: kmeans discretization with X levels; ji&tan: Ji and Tan’s
discretization method (Ji and Tan, 2004); soinov: Soinov’s change of state

method (Soinov et al., 2003); mean-sd: mean plus standard discretization
method; TSD: transilational state discretization; maxY: Max - Y%
Max discretization; topY: Top%Y discretization; DiscreeTest: Two-stEp
DIscretization Evaluation.
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Methods and Results

Discretizations from GED PRO TOOLS
Here we show all the discretizations we use in this study and a brief
description of them, including whether they give binary or multi-level
discrete data.

Among the 13 different types of unsupervised discretizations provided
by GED PRO TOOLS Gallo et al. (2016) in Table S1, iX is also known as
"equal width discretization", as this discretization splits the data range into
X equal width intervals, labels them between 0 andX − 1, and assigns to
each observation the label of the interval it falls in. qX is also known as
“equal frequency discretization", as the X intervals are drawn so that they
have equal number of observations. Each observation is assigned a value
equal to the label of its interval (between 0 andX−1). Kmeans clustering
separates observations into several clusters, and discretization is based on
these clusters. It is worth noticing that kmeans discretization in GED PRO
TOOLS does not choose its initial cluster centers randomly. Bi-kmeans
discretization has a procedure that builds upon kmeans discretization.
TopY discretizes data by assigning the bottom (1 − Y%) observations
to 0, and the rest to 1. MaxY discretization assigns 0 to all observations
smaller than Y% of the maximum value.

Table S1. Discretization methods in GED PRO TOOLS utilized in our study

abbreviation full name levels calculation

bikmeansX
bidirectional kmeans discretization

2-5
k-means clustering using both

with X levels Li et al. (2010) gene profiles and column profiles
erdals Erdal’s et.al method Erdal et al. (2004); Madeira and Oliveira (2005) 2 assign 1 if gene expression level is changes; otherwise 0.

TDT target discretization threshold Gallo et al. (2011) 2
min(var(S1) + var(S2)), where Si represents a gene state
var(Si) are variance for Si, i = 1, 2, S1 ∩ S2 = ∅

iX
equal width discretization

2-5
discretize data by splitting the range of data

with X levelsMadeira and Oliveira (2005) into X intervals equally

qX
equal frequency discretization

2-5
split data into strata with each strata

with X levels Madeira and Oliveira (2005) having the same amount of data

mean
discretization through

2
aij = 1 if aij > E(Ai), otherwise aij = 0

comparing to mean value Madeira and Oliveira (2005) where Ai = (ai1, ai1, ...)

kmeansX
kmeans discretization

2-5
assign data into k (k is given ) levels

with X levels Li et al. (2010) through k-means clustering data into k clusters
ji&tan Ji and Tan’s method Ji and Tan (2004) 3 compare ratio between consecutive samples

soinov
Soinov’s change

2
minimize sum of entropy for up-regulating(1) and

state method Soinov et al. (2003); Ponzoni et al. (2007) down-regulating(0) gene states

mean-sd
mean plus standard Ponzoni et al. (2007)

3
aij = −1 if aij < E(Ai)− σ(Ai)

aij = 0 if E(Ai)− σ(Ai) ≤ aij ≤ E(Ai) + σ(Ai)

deviation discretization aij = 1 if aij > E(Ai) + σ(Ai), Ai = (ai1, ai1, ...)

TSD transilational state discretization Carla et al. (2003) 2 difference between consecutive samples
maxY Max - Y% Max Madeira and Oliveira (2005) 2 aij − 1 if aij > max(Ai)× (1− Y%), otherwise 0.

topY Top%Y discretization Madeira and Oliveira (2005) 2
the expression values that are in the Y% of the highest
values are discretized to 1 and the remaining values to 0.
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DREAM3 Yeast In Silico Network
The DREAM3 Yeast In Silico Network is provided by DREAM (Dialogue
for Reverse Engineering Assessments and Methods) 3 In Silico Network
Challenge Marbach et al. (2010, 2009); Prill et al. (2010). We use the time
series from the Yeast Network that contains 100 genes (InSilicoSize100-
Yeast1). There are 46 time series, each of them has 21 time points. The
goal is to infer the internal structure of this one-hundred-gene regulatory
network. The DREAM 3 Challenge provides the gold standard of this
network. This network was studied by Li et al. (2014) using time-delayed
dynamic Bayesian network (TDBN) Zou and Conzen (2005). TDBN
allows time delay when inferring a gene regulatory network. TDBN
requires the input data to be binary. In Li et al. (2014), both area under
the receiver operating characteristic curve (AUROC) and area under the
precision-recall curve (AUPR) were reported.

Table S2. TDBN Area Under the Receive
Operating Characteristic Curve (AUROC)
with Different Discretization Methods and
Maximum Time Delay ,DREAM3 Yeast In
Silico Network

Maximum Delay
AUROC

Mean Top75 i2

1 0.5 0.5 0.5
2 0.5 0.5 0.5
3 0.5 0.5 0.5
4 0.5085 0.5176 0.4583
5 0.5085 0.5176 0.4583
6 0.5085 0.5176 0.4583
6 0.5085 0.5176 0.4583
7 0.5085 0.5176 0.4583
8 0.5085 0.5176 0.4583
9 0.5085 0.5176 0.4583
10 0.5085 0.5176 0.4583

Table S2 shows that a maximum delay of 4 is adequate, as either before
or after that point, the AUROC does not change for any discretization. Table
S3 depicts Sensitivity and Specificity values for TDBN method using data
discretized by Top75 and Mean.

Table S3. Sensitivity and Specificity of Time-
delayed Dynamic Bayesian Network (TDBN),
DREAM3 Yeast In Silico Network

Discretization Method Sensitivity Specificity

Top75 0.2892 0.7478
Mean 0.2831 0.7271

Pandapas Network
The Pandapas network is an in silico network of 13 nodes introduced in
Camacho et al. (2007). In this network, 10 nodes are intrinsic genes (G1
- G10) while other 3 nodes (P1 - P3) represent external perturbations
(Figure S1). This network is perturbed by introducing its wild type
non-function mutations on G1, G2, ..., G10, respectively. Here, we
only focus on the wildtype network. In Camacho et al. (2007), authors
benchmarked different reverse-engineering algorithms to infer the network
under different levels of noise in the data. We start with noiseless data.

P2 G6

G2

G8

P3 G9

G5

G1

G7G3G10 G4

P1

Fig. S1: Pandapas Network from Camacho et al. (2007). This is a gene
network with 10 genes and 3 environmental perturbations (P1, P2, P3).
These perturbations can directly affect the expression rate of gene G1,
G2 and G5. Arrow ends mean activation and blunt ends inhibition of the
transcription rate.

Fig. S2: ROC Curves for Pandapas Network using either BANJO or TDBN
for network inference. A: AUROC of networks inferred by BANJO 2.2.0
using data that is discretized in 23 different ways. Amongst them, i2 gives
the maximum AUROC value (0.89983c). B: AUROC of networks inferred
by TDBN using data that is discretized in 11 different ways. Amongst
them, i2 gives the maximum AUROC value (0.659).
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Together, there are 8 datasets that are generated with different initial
conditions and different perturbations (P1, P2, P3 being either 0, 0.01, 0.05,
0.1, or 0.5). We use both BANJO (version 2.2.0) and time-delayed dynamic
Bayesian network (TDBN) to infer the Pandapas network based on 8
datasets with different perturbations. For BANJO, we tested 23 different
data discretizations, including some multi-level discretization methods
(bikmeans3, bikmeans4, bikmeans5, kmeans3, kmeans4, kmeans5, i3,
i4, i5, q3, q4, q5). For a given discretization method, we inferred the
networks with BANJO on every one of the 8 dataset separately and
considered a consensus network where an edge is considered if it appears
more than twice amongst the 8 inference results. For the network inferred
using TDBN, we test the 11 binary discretizations available in GED PRO
TOOLS.

We present ROC curves of both reverse engineering methods on
noiseless data in Fig S2 and their corresponding ROC plots in Fig 2. We
can see that i2 is the best data discretization for both BANJO and TDBN.

IRMA Network
IRMA network is a synthetic yeast network introduced in Cantone et al.
(2009). This network contains 5 genes, CBF1, GAL4, SWI5, ASH1,
GAL80 (Figure S3). It is achieved by pairing genes with different
promoters and depletion of yeast endogenous transcription factors. Gal80-
Gal4 interaction is inhibited in the presence of the glucose. GAL1-10
promoter, cloned upstream of SWI5 gene in the network, is activated by
galactose, and consequently, activate all the five network genes. Expression
profiles of these genes were analyzed by quantitative real-time RT-PCR
(q-PCR).

GAL4

GAL80 CBF1

SWI5 ASH1

Fig. S3: IRMA Network from Cantone et al. (2009). It is consist of 5
different genes. Amongst them, gene GAL80 can be turned off when
the environment contains galactose. When galactose is removed from the
environment and the yeasts are treated with glucose, the gene expression
of IRMA network is turned on. Dashed lines represent inhibitory protein-
protein interaction, and directed edges with an arrow end represent
activation reactions in the network.

BANJO Yu et al. (2004) was one of the methods utilized to reverse
engineer gene regulatory network from IRMA data. BANJO is a software
application and framework for structure learning of static and dynamic
Bayesian networks. BANJO focuses on score-based structure inference.
In BANJO 1.0.4, there is no effective way to change the cut-off threshold
when reporting network. Thereby, we are unable to obtain ROC curves.
Thus, we use positive predictive value (PPV) and sensitivity to measure
the performance of BANJO when inputting differently discretized time
series (switch on and switch off) data.

Hepatocytic Cell Signaling Network
The time series data from the Hepatocytic Cell Signaling network was
used to infer the network using cell network optimizer (CNO) in Saez-
Rodriguez et al. (2009). Experimental data is collected from HepG2
hepatocellular carcinoma cells. The network is perturbed by exposing one
of seven cytokines in the presence or absence of seven small-molecule
kinase inhibitors Saez-Rodriguez et al. (2009). Before inferring the
network structure, all experimental data were normalized, and a prior
knowledge network (PKN) was assembled from literature Terfve et al.
(2012); Morris et al. (2011, 2013); Gaudet et al. (2005); Klamt et al.
(2006); Saez-Rodriguez et al. (2007, 2008). This prior knowledge network
(PNK) contains edges that are reported in literature in all cell types,
thus not all the edges would necessarily exist in HepG2 hepatocellular
carcinoma cells. Here, we use their R packages, CellNOptR and CNORdt,
released in 2014, for network structure inference Terfve et al. (2012);
Saez-Rodriguez et al. (2009). Cell network optimizer requires binary
discretization, and its default discretization threshold is chosen by the
mean value of experimental data after normalizing data using Hill function
Terfve et al. (2012). The network is optimized through removing edges
or changing logical relationships (AND & OR) from the prior knowledge
network using a genetic algorithm. Optimized networks are scored through
minimizing the mean squared error.

Fig. S4: The prior knowledge network (PKN) of hepatocytic Cell Signaling
network from Saez-Rodriguez et al. (2009). Green boxes represents 6
cytosines that are tested in this study. They could be either present of
absent for each experiment. They influence the function of some proteins
directly. Black lines are positive regulatory relations that are reported in
literature, red lines are inhibitory regulations from literature.

In our study, we use their normalized data, PKN, their default
discretization (mean) for comparison Saez-Rodriguez et al. (2009). We
compare our results of other binary discretizations to mean discretization.
We further test how the range of size penalty of cell network optimizer
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influences the score, which the authors were unable to do but planned
to do when Saez-Rodriguez et al. (2009) was published. Using the same
parameters in CNO as the authors did in Saez-Rodriguez et al. (2009),
bikmeans2 gives a better results than mean; and still does even if some
parameters change. Further analysis shows reverse engineered network
based on bikmeans2 discretization gives 17 unique edges comparing to the
result based on mean discretization. We show detailed networks optimized
using data discretized by bikmeans2, mean, and max50 in Figure S8, S9,
and S10, respectively.

DiscreeTest
For two curves, y1 = f(x) and y2 = g(x), x ∈ [a, b], the area between
the curves (A) is defined asA(f, g) =

∫ b
a |f(x)− g(x)|dx. In Figure S5

we can see a graphical representation.

a b

f

g x

y

f
g

area between f and g

Fig. S5: An example for area between the curve f and g.
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Fig. S6: An area between the curves example. The original data (black
line with blue round dots) is discretized using i2 discretization (blue line
with red squared diamond markers). The area highlighted in green is the
area between the original time series and i2 discretized time series. Mean
area between the curves is an average of total area between the curves over
time.

For time series from normalized experimental data, T =
t11 t12 . . . t1m

...
...

. . .
...

tn1 tn2 . . . tnm

, where each row is an observation at time point

i, 1 ≤ i ≤ n of m different variables, and n is the total value of
observation. Denote the discretized data after normalization (such as in
a discretization with 3 levels, then dij would be either 0, 0.5, or 1) by
D = (dij)n×m, then we defind mean area between the curves (MA) as

MA =

∑m
j=1 A(tj , dj)

mn

where tj = [t1j , . . . , tnj ]
T , dj = [d1j , . . . , dnj ]

T , 1 ≤ j ≤ m

(Figure S6). We also define residue, R, by R = T −D.
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Fig. S7: Mean Area Between the Curves (MABC) of Different
Discretization for IRMA Network switch off (upper panel) and switch
on (lower panel) time series.

Our DiscreeTest procedure contains 2 steps: the first step, qualification
is testing whether residues of each variable reject the null hypothesis
in sign test. We proceed when all variables’ residue fail to reject the
null hypothesis. The second step is to calculate the mean area between
discretized data and original data. We choose the discretization that gives
the minimum area between the curves.

Fig. S8: Optimized CSR Network, (Lower Bound, Upper Bound)
= (0.1, 10), Bikmeans2 Discretization. All the lines shown up are
interactions that are reported in literature. Lines with an arrow end
represent activation interactions, lines that are red with a blunt end are
inhibitory interactions. Grey lines and faded red lines are edges removed
during optimization. Black lines are positive regulatory relations, red lines
are inhibitory regulations. Green boxes are cytosines. Input data is original
data is discretized by bikmeans2 discretization.
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Fig. S9: Optimized CSR Network, (Lower Bound, Upper Bound) =
(0.1, 10), Mean Discretization. All the lines shown up are interactions
that are reported in literature. Lines with an arrow end represent activation
interactions, lines that are red with a blunt end are inhibitory interactions.
Grey lines are edges removed during optimization. Black lines are positive
regulatory relations, red lines are inhibitory regulations. Green boxes are
cytosines. Input data is original data discretized by mean discretization.

Fig. S10: Optimized CSR Network, (Lower Bound, Upper Bound) =
(0.1, 10), Max50 Discretization. All the lines shown up are interactions
that are reported in literature. Lines with an arrow end represent activation
interation, lines that are red with a blunt end are inhbitory interactions.
Grey lines are edges removed during optimization. Black lines are positive
regulatory relations, red lines are inhibitory regulations. Green boxes are
cytosines. Input data is original data discretized by max50 discretization.
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