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Abstract 6

Epistasis is a common feature of genotype-phenotype maps. Understanding the patterns 7

of epistasis is critical for predicting unmeasured phenotypes, explaining evolutionary tra- 8

jectories, and for inferring the biological mechanisms that determine a map. One common 9

approach is to use a linear model to decompose epistasis into specific pairwise and high- 10

order interactions between mutations. Such interactions are then used to identify important 11

biology or to explain how the genotype-phenotype map shapes evolution. Here we show 12

that the coefficients extracted from such analyses are likely uninterpretable. They cannot be 13

extracted reliably from experimental genotype-phenotype maps due to regression bias. Fur- 14

ther, we can generate epistatic “interactions” indistinguishable from those in experimental 15

maps using a completely random process. From this, we conclude that epistasis should be 16

treated as a random, but quantifiable, variation in these maps. This perspective allows us 17

to build predictive models with known error from a small number of measured phenotypes. 18

It also suggests that we need mechanistic, nonlinear models to account for epistasis and 19

decompose genotype-phenotype maps. 20

Introduction 21

Epistasis—that is, non-additivity between mutations—is a ubiquitous feature of genotype- 22

phenotype maps (Fowler et al., 2010; Weinreich, 2011; Weinreich et al., 2013; Yokoyama 23

et al., 2014; Anderson et al., 2015; Palmer et al., 2015; Podgornaia and Laub, 2015; Doud 24

and Bloom, 2016; Boyle et al., 2017; Hopf et al., 2017; Chan et al., 2017; Sailer and Harms, 25

2017a; Starr et al., 2017; Domingo et al., 2018; Weinreich et al., 2018). Epistasis can pro- 26

vide mechanistic insight into the determinants of phenotypes (Schreiber and Fersht, 1995; 27

Horovitz, 1996; Ritchie et al., 2001; Segrè et al., 2005); however, it also complicates predict- 28

ing unmeasured phenotypes (de Visser and Krug, 2014; Miton and Tokuriki, 2016; Sailer and 29
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Harms, 2017b; Nyerges et al., 2018), as the effect of a mutation changes depending on the 30

presence or absence of other mutations. Despite a century of work (Fisher, 1918), epista- 31

sis remains challenging to analyze and interpret (Cordell, 2002; Phillips, 2008; Crow, 2010; 32

Weinreich et al., 2013, 2018). 33

One approach is to decompose epistasis into specific pairwise and high-order interactions 34

between mutations (Heckendorn and Whitley, 1999; Weinreich et al., 2013; Poelwijk et al., 35

2016; Sailer and Harms, 2017a; Poelwijk et al., 2017; Weinreich et al., 2018). This is often 36

done by treating each coefficient as a linear and independent perturbation to the additive 37

phenotype (Heckendorn and Whitley, 1999; Poelwijk et al., 2016). Such an approach is a 38

direct extension of classic approaches in quantitative genetics and biochemistry. In a genetics 39

context, one might measure the effect of a mutation in two genetic backgrounds to dissect 40

metabolic and regulatory pathways (Ritchie et al., 2001; Segrè et al., 2005). Likewise, mutant 41

cycles are a mainstay of biochemistry. Introducing mutations individually and together 42

allows one to infer the nature of physical interactions between residues in macromolecules 43

(Schreiber and Fersht, 1995; Horovitz, 1996). 44

Although linear epistasis models are very commonly used (Weinreich et al., 2013; Yokoyama 45

et al., 2014; Anderson et al., 2015; Palmer et al., 2015; Starr et al., 2017; Domingo et al., 46

2018), two recent observations raise questions about their utility. The first is that regression 47

can lead to biased estimates of linear epistatic coefficients, and thus poor predictive power 48

of epistatic models (Otwinowski and Plotkin, 2014). The second is that one can generate 49

maps with extensive pairwise and high-order epistasis using a toy model of proteins that do 50

not explicitly include such interactions (Sailer and Harms, 2017b). This indicates that there 51

may be no simple way to relate linear epistatic coefficients back to underlying biology, thus 52

undermining their utility as indicators of biological mechanism. 53

Motivated by these concerns, we set out to systematically investigate linear epistatic 54

models constructed from twelve published genotype-phenotype maps. We focused on two 55

criteria for utility: the ability of such models to predict unmeasured phenotypes and the 56
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ability of such coefficients to provide mechanistic insight into the map. We studied maps for 57

which all 2L combinations of L mutations were measured. Because these maps have the same 58

number of observations as coefficients in a high-order epistatic model, they can be readily 59

decomposed into epistatic coefficients from second to Lth-order. Further, the selected maps 60

cover many different classes of genotypes, phenotypes, and total magnitudes of epistasis. 61

We find that the epistatic coefficients we extract by regression from such maps are 62

quite poor at predicting unmeasured phenotypes. This arises from bias in the regressed 63

coefficients—exactly as predicted by Otwinowski and Plotkin (Otwinowski and Plotkin, 64

2014). Further, we find we can generate epistatic coefficients similar to experimental co- 65

efficients by simply using randomly assigned phenotypes. This suggests that the pairwise 66

and high-order interactions we extract are likely decompositions of random noise. We there- 67

fore propose that we should not decompose genotype-phenotype maps into specific interac- 68

tions between mutations using linear models. Rather, in the context of a whole genotype- 69

phenotype map, epistasis is best interpreted as a global metric capturing roughness (Szendro 70

et al., 2013; Ferretti et al., 2018). This translates directly to a measure of uncertainty on 71

predicted phenotypes, as well as an indication that an improved mechanistic model is re- 72

quired. 73

Materials and Methods 74

Linear epistasis models 75

We used a linear epistasis model to decompose genotype-phenotype maps into up to Lth-order 76

epistatic coefficients. The model is linear in that it consists of a collection of independent 77

epistatic coefficients that are summed to describe each phenotype (Fisher, 1918; Poelwijk 78

et al., 2016). (The assumption of linearity contrasts with other models, such as a Potts 79

model, in which mutations sum in a nonlinear fashion (Hopf et al., 2017)). There are two 80
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common formulations a linear epistasis model, the Hadamard model (sometimes called a 81

Walsh or Fourier model) and the biochemical model (Poelwijk et al., 2016). The approaches 82

differ in their choice of coordinate origin. Each model has been described in detail elsewhere 83

(Heckendorn and Whitley, 1999; Weinreich et al., 2013; Poelwijk et al., 2016). The two mod- 84

els are related by a simple set of linear transformations (Poelwijk et al., 2016). Throughout 85

the text, we describe our results using the Hadamard model, but our conclusions are robust 86

to the choice of model (see supplemental figures referenced throughout the text). 87

The Hadamard model uses the geometric center of the map as the coordinate origin 88

(Heckendorn and Whitley, 1999; Weinreich et al., 2013; Poelwijk et al., 2016; Sailer and 89

Harms, 2017a). Each genotype is made up of L sites. In a binary genotype-phenotype map, 90

the sites have two possible states: “wildtype” or “derived”. Both states have equal effects but 91

opposite signs. Each mutation is treated as a linear perturbation away from the origin of 92

the map, 93

P = βorigin +
L∑
i

βixi (1)

where βorigin is the origin of the genotype-phenotype map, βi is the effect of site i, and xi is 94

1 if site i is “wildtype” and −1 if “derived”. We can then add linear coefficients to describe 95

interactions between mutations to Eq. 1. For pairwise interactions, this has the form: 96

P = βorigin +
L∑
i

βixi +
L∑
j<i

βijxixj (2)

where βij is a pairwise epistatic coefficient. For the high-order model, the expansion contin- 97

ues: 98

P = βorigin +
L∑
i

βixi +
L∑
j<i

βijxixj +
L∑

k<j<i

βijkxixjxk + .... (3)

The model can be expanded all the way to Lth-order interactions. 99
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Linearizing experimental genotype-phenotype maps 100

Prior to extracting epistatic coefficients from experimental genotype-phenotype maps, we 101

corrected each map for global epistasis, which arises when mutations combine on some scale 102

other than an additive scale (Chou et al., 2011; Tokuriki et al., 2012; Schenk et al., 2013; 103

Sailer and Harms, 2017a; Otwinowski et al., 2018). This violates the assumption of linearity 104

inherent in the epistasis models (Fisher, 1918; Cordell, 2002; Sailer and Harms, 2017a). 105

Global epistasis manifests as a non-normal distribution of the residuals between the ~Pobs 106

(the vector of observed phenotypes) and ~Padd (the vector phenotypes calculated using an 107

additive model) (Sailer and Harms, 2017a; Otwinowski et al., 2018). Such epistasis can 108

be minimized by identifying a nonlinear function T that captures global curvature in the 109

relationship between ~Pobs and ~Padd, yielding normally distributed fit residuals (Box and Cox, 110

1964; Szendro et al., 2013; Sailer and Harms, 2017a; Otwinowski et al., 2018): 111

~Pobs = T (~Padd) + ~ε. (4)

where ~ε are the fit residuals. We linearized all experimental maps by fitting a second-order 112

spline to the ~Pobs vs. ~Padd curve for each map prior to extracting linear epistatic coefficients 113

(Otwinowski et al., 2018). 114

Epistasis and linear regression 115

We used linear regression to regress epistasis models against experimental and simulated 116

genotype-phenotype maps. We formulated the problem as follows: 117

~Pobs = X~β + ~ε (5)

6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 27, 2018. ; https://doi.org/10.1101/378489doi: bioRxiv preprint 

https://doi.org/10.1101/378489
http://creativecommons.org/licenses/by/4.0/


where ~Pobs is a vector of observed phenotypes (corrected for global epistasis), ~β is a vector of 118

epistatic coefficients, X is a matrix that encodes the sign of each coefficient according to Eq. 119

3, and ~ε is a vector of residuals. The goal was to estimate coefficients in ~β that minimized 120

the magnitudes of the values in ~ε. 121

We used three different regression approaches: ordinary least-squares, lasso, and ridge. 122

The number of coefficients in these maps grows rapidly with the number of sites. For a 123

binary map with L sites, there are 2L possible fit coefficients. Lasso and ridge regression 124

are strategies to identify only those coefficients that contribute significantly to the variation 125

in the data. These strategies have been used previously to dissect linear epistatic models 126

(Otwinowski and Plotkin, 2014; Poelwijk et al., 2017). Throughout the text, we describe 127

results using lasso regression, but our conclusions are robust to the choice of regression 128

strategy (see supplemental figures referenced throughout the text). 129

Simulating epistatic genotype-phenotype maps 130

We constructed genotype-phenotype maps using Equations 1 and 3. First, we set the addi- 131

tive coefficients to random values drawn from a normal distribution. We then added all 2nd- 132

through Lth-order epistatic coefficients. We set the values of the coefficients to random values 133

drawn from a different normal distribution. The widths of the additive and epistatic distri- 134

butions were tuned to match the relative magnitudes of epistatic coefficients extracted from 135

experimental maps. Further, we could tune the fraction of epistasis in a simulated genotype- 136

phenotype map by changing the relative widths of the additive and epistatic distributions 137

with respect to one another. 138

Software 139

We implemented the epistasis models using Python 3 extended with numpy, scipy, and pan- 140

das (van der Walt et al., 2011; McKinney, 2010). We used the Python package scikit-learn to 141

perform ordinary-, lasso-, and ridge- regression (Pedregosa et al., 2011). We used the Python 142
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package lmfit to perform nonlinear-least squares regression (Newville et al., 2018). Plots were 143

generated using matplotlib and Jupyter notebooks (Hunter, 2007; Perez and Granger, 2007). 144

Our full software packages are available in the gpmap (https://harmslab.github.com/gpmap) 145

and epistasis (https://harmslab.github.com/epistasis) packages on Github. 146

Data availability statement 147

All software is available for download from: 148

• https://github.com/harmslab/gpmap 149

• https://github.com/harmslab/epistasis. 150

Data sets are available from: 151

• https://github.com/harmslab/genotype-phenotype-maps. 152

Supplemental figures S1-S4 are available via GSA Figshare. 153

Results 154

Regression yields biased estimates of epistatic coefficients 155

We started with a straightforward question: What fraction of a genotype-phenotype map 156

must we observe to resolve a linear epistatic model that predicts unmeasured phenotypes? 157

We simulated a genotype-phenotype map consisting of all 28 binary combinations of 8 muta- 158

tions. We then assigned random epistatic coefficients using an 8th-order Hadamard matrix, 159

such that epistasis accounted for 20% of the variation in phenotype (see methods). The 160

epistatic coefficients were similar in magnitude and sign to those extracted from experimen- 161

tal genotype-phenotype maps (Fig S1). 162

To test our ability to predict phenotypes, we masked a fraction of the genotypes, fit linear 163

epistatic models to the unmasked genotypes, and attempted to predict the masked genotypes. 164
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Figure 1: Linear epistatic coefficients cannot be estimated from an incomplete,
simulated genotype-phenotype map. A) Fit scores versus the percent of the genotypes
in the map used to train the model, from 10% to 90%. The dashed gray line indicates the
amount of additive variation in the map (80%). Colors indicate model order: additive (red),
pairwise epistasis (green), and high-order epistasis (blue). Dashed lines indicate ρ2train and
solid lines indicate ρ2test. B) Fit scores versus the fraction of map used to train the model.
Blue curve uses regressed coefficients (reproduced from panel A). Gray curve shows ρ2test if
we use the coefficients used to generate the map. C) Value of a pairwise epistatic coefficient
as we add data to the fit. Gray line indicates the value of the coefficient used to generate
the map.

We then calculated the correlation between the model and unmasked observations (ρ2train) 165

and the model and masked observations (ρ2test). We repeated this for 1,000 pseudo-replicate 166

training and test sets. 167

As a starting point, we fit the additive model (Eq. 1). We found that the additive model 168

converged on ρ2train = ρ2test = 0.8 when ' 30% of the map was used for the fit (red lines, Fig 169

1A). The model converges once each mutation has been observed across a sufficient number 170

of genetic backgrounds to average out the epistatic perturbations to the phenotype. Because, 171

by construction, 20% of the variation in the map is due to epistasis, the best the additive 172

model can do is explain 80% of the variation in phenotype. 173

We next tried to improve our predictive power by adding coefficients describing either 174

pairwise interactions between mutations (Eq. 2) or all interactions (up to eighth-order) (Eq. 175

3). Because Eq. 3 is the model we used to generate the map, this model should, in principle, 176

be able to explain all variation in the map. 177

We found that neither the pairwise nor high-order models performed as well as the 178
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additive model (green and blue lines, Fig 1A). Even when 90% of the genotypes were included 179

in the training set, the pairwise and high-order models had ρ2test of 0.73 and 0.62—much less 180

than the value of 0.80 achieved by the additive model. Worse, this failure to predict the 181

test set was accompanied by much higher ρ2train values. The high-order model, in particular, 182

had a correlation of 1.0 with the training set (Fig 1A, dashed blue line), even while test set 183

correlation languished around 0.6 (Fig 1A, solid blue line). 184

This result arises because regression yields biased estimates of the epistatic coefficients 185

(Otwinowski and Plotkin, 2014). We know that high-order epistasis is present, because we 186

used the same high-order model we are now fitting to generate the underlying map. The 187

fit coefficients, however, do not accurately capture this variation. This can be seen in Fig 188

1B. The blue line reproduces ρ2test for the high-order model from Fig 1A. The gray curve 189

shows values of ρ2test calculated using the epistatic coefficients used to generate the map. 190

The divergence between these curves indicates that the regression fails to extract the correct 191

values for the epistatic coefficients. 192

This can also be seen by examining the values of the extracted epistatic coefficients. The 193

blue curve in Fig 1C shows the estimated value of a single, pairwise epistatic coefficient 194

within the high-order model as data are added to the training set. The gray line shows the 195

coefficient used to generate the map. Rather than monotonically converging to the true value, 196

the estimated coefficient fluctuates in both magnitude and sign as data are added. This was 197

common for all coefficients. We found that, on average, 65% of the pairwise coefficients 198

flipped signs as data was added to our model. 199

These observations were robust to the choice of epistatic model and regression method. 200

We used the Hadamard epistatic model with lasso regression for the results shown, but 201

obtained identical results for all combinations of the Hadamard and biochemical epistatic 202

models with ordinary, lasso, or ridge regression (see methods, Fig S2). 203
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ID genotype phenotype L reference
I genomic mutations E. coli fitness 5 (Khan et al., 2011)
II point mutants bacterial fitness 5 (Weinreich et al., 2006)
III chromosomes A. niger fitness 5 (de Visser et al., 2009)
IV point mutants binding affinity 5 (Anderson et al., 2015)
V alleles in network S. cerevisiae growth rate 6 (Hall et al., 2010)
VI alleles in network S. cerevisiae growth rate 6 (Hall et al., 2010)
VII genomic mutations E. coli fitness 5 (Flynn et al., 2013)
VIII genomic mutations E. coli fitness 5 (Flynn et al., 2013)
IX chromosomes A. niger fitness 5 (de Visser et al., 2009)
X alleles in network S. cerevisiae sporulation 6 (Hall et al., 2010)
XI alleles in network S. cerevisiae mating 6 (Hall et al., 2010)
XII genomic mutations E. coli fitness 6 (Palmer et al., 2015)

Table 1: Published experimental genotype-phenotype maps.

Predictive epistatic models cannot be extracted from experimental 204

genotype-phenotype maps 205

We next asked whether experimental genotype-phenotype maps exhibited similar bias in 206

their regressed epistatic coefficients. We analyzed 12 experimentally characterized genotype- 207

phenotype maps (Table 1). All maps contained all combinations of L mutations, ranging in 208

size from 32 to 128 genotypes. The maps consisted of very different classes of genotypes: 209

collections of point mutations within a single gene, scattered genomic point mutations, or 210

alternate alleles of genes in a metabolic network. The measured phenotypes are also di- 211

verse: competitive fitness, binding affinity, and parameters like growth rate and sporulation 212

efficiency. 213

We started by linearizing the experimental genotype-phenotype maps (see methods) 214

(Sailer and Harms, 2017a; Otwinowski et al., 2018). We then dissected each map into lin- 215

ear epistatic coefficients. Because all genotype-phenotype pairs in these maps have been 216

measured, we have the same number of observations as epistatic coefficients. We can there- 217

fore decompose epistasis into linear coefficients using a matrix transformation (Heckendorn 218

and Whitley, 1999; Poelwijk et al., 2016), avoiding complications arising from regression. 219

We found that all of these maps exhibited statistically significant pairwise and high-order 220
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Figure 2: Predictive epistatic coefficients cannot be resolved from experimental
genotype-phenotype maps. A) Bars show the fraction of variation in phenotype explained
by additive effects (red), pairwise epistasis (green), or any order of high-order epistasis (blue).
Each bar is for one of the twelve experimental genotype-phenotype maps. B) Each sub-panel
shows ρ2train (black) and ρ2test (red) for the map indicated above the graph as epistatic orders
are added to the model. The x-axis is the number of parameters used in the fit. Points are,
from left to right: additive, pairwise, and high-order epistasis. Points and lines indicate the
mean of 1,000 pseudoreplicate samples. Error bars are standard deviation of pseudoreplicate
results. The dashed lines indicate the fraction of the variation in the map explained by the
additive model. These fits used the Hadamard model with lasso regression. See Fig S3 for
other epistatic models and regression strategies.

epistatic interactions. Epistasis contributed from 6% to 79% of the variation in these maps 221

(Fig 2A). 222

We next probed our ability to extract predictive epistatic coefficients from the linearized 223

maps. We created a training set consisting of 80% of the genotype-phenotype pairs in each 224

map, regressed models against this set of observations, and then predicted the phenotypes of 225

the remaining 20% of the genotypes. As above, we fit the additive, pairwise and high-order 226

models. We then repeated this for 1,000 pseudo-replicate training and test sets on each map. 227

As with our simulations, we found we could not reliably extract predictive epistatic 228

coefficients (Fig 2B). In 11 of 12 maps, the additive model performed better than any other 229
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model. In seven of the twelve maps (I, VII, VIII, IX, X, XI, and XII), ρ2test consistently 230

decreased with each addition of epistatic coefficients. In four of the maps (II, III, V, and 231

VI) the addition of pairwise epistasis led to a drop in ρ2test that was partially offset by the 232

addition of high-order coefficients. Ultimately, however, the high-order model did no better 233

than the additive model in these maps. Map IV was the the only map in which adding 234

epistatic coefficients had any positive effect: the addition of pairwise epistasis led to a small 235

increase in ρ2test (from 0.80 to 0.87). This is achieved, however, by increasing the number of 236

fit parameters from 10 to 40, implying that each epistatic coefficient contributed very little 237

to the overall model. As with the simulated maps, these observations were robust to the 238

choice of epistatic model and regression strategy (Fig S3). 239

Experimental epistatic coefficients cannot be distinguished from a 240

random model 241

These results indicate that predictive, linear epistatic coefficients cannot be estimated by 242

regression in these genotype-phenotype maps. We must characterize essentially every pheno- 243

type in a genotype-phenotype map to resolve the epistatic coefficients that describe the map. 244

But, if we have measured every phenotype, there are no more phenotypes to predict. One 245

might conclude that understanding epistasis requires measuring every genotype-phenotype 246

pair in a map. 247

Given the effort required to measure every phenotype, we posed another question: is it 248

worth exhaustively characterizing a map just to extract epistatic coefficients? Or, put dif- 249

ferently, are the epistatic coefficients one can decompose from a complete map informative? 250

We approached this question by comparing the epistatic coefficients extracted from an ex- 251

perimental genotype-phenotype map to those extracted from a null model. Our null model 252

was a random map: we generated phenotypes with an additive model and then perturbed 253

each phenotype by a random value drawn from a normal distribution centered at zero. This 254
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is an appropriate null model because the generating model has no mechanistic interactions 255

at all; any correlations between mutations arise from noise. Such a map consists entirely of 256

“statistical” epistasis (Cordell, 2002). 257

We decomposed the epistasis in Map VIII using all 32measured phenotypes and compared 258

the resulting epistasis to our null model. Fig 3A-C shows the epistasis extracted from the 259

experimental map. In this map 26% of the variation in phenotype is due to epistasis (Fig 260

3B). The residuals between the additive model and the observed phenotypes are normally 261

distributed (Fig 3B). When we decompose the epistasis, we find that pairwise coefficients 262

capture 16.2% and high-order coefficients capture 9.2% of the variation in phenotype. 263

We next constructed our null map. We generated a collection of random additive co- 264

efficients and calculated Padd for each genotype. We then added random perturbations to 265

each phenotype, drawn from a normal distribution with a mean of 0 and a standard devia- 266

tion selected to yield a total magnitude of epistasis similar to the experimental map. This 267

sampling procedure gave the Pobs vs. Padd curve shown in Fig 3E. As with the experimental 268

map, epistasis accounted for 26% of the total variation in the map. We then decomposed 269

this random epistasis with a high-order epistasis model (Fig 3F). 270

The overall structure of epistasis is indistinguishable between the experimental and a 271

random map, even though the values of the specific epistatic coefficients are different (Fig 272

3C vs. F). If we generate many random maps—effectively, sampling over the possible config- 273

urations of epistatic coefficients that arise from a random variation in phenotype—we cannot 274

distinguish the experimental map from among the decoys (Fig S4). This suggests that the 275

linear epistatic coefficients extracted from this map should be viewed as decompositions of 276

random noise, unless this can be shown otherwise. 277

Using an additive model to treat epistasis 278

Our results speak against decomposing epistasis into collections of linear interaction 279

terms. So how should we treat epistasis? We will touch on nonlinear treatments in the 280
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Figure 3: Experimental maps resemble random maps. Panels A and D show genotype-
phenotype maps. Each node is a genotype; each edge is a single point mutation. Colors
indicate quantitative phenotype. Panels B and E show the correlation between the observed
phenotypes and the additive model, with fit residuals shown below the plot. Panels C and F
indicate the magnitude of epistasis in each map as in Fig 2A (top subpanel) and the values of
all model coefficients (bottom subpanel). Colors indicate additive components (red), pairwise
components (green), and high-order components (blue). Each bar shows the value of a single
model coefficient: the red bars correspond to the 5 additive coefficients, the green bars to
the 10 pairwise coefficients, and the blue bars to the 17 high-order coefficients. Panels A-C
are for experimental map VIII; panels D-F are for a simulated map with random epistasis.
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discussion, but before doing so, we will explore our top-performing epistasis model from 281

above: the additive model. 282

The additive model treats epistasis as residual variation not explicitly accounted for by 283

the model. If we measure the phenotypes of a set of combinatorial genotypes, we observe the 284

effect of each mutation in a large number of genetic backgrounds (Fig 4A). We can describe 285

the effect of mutation i with two numbers, its average effect 〈βi〉 and the variance of its 286

effect σ2
i . This same logic applies at the level of whole genotypes. If we have linearized the 287

genotype-phenotype map (Szendro et al., 2013; Sailer and Harms, 2017a; Otwinowski et al., 288

2018), the residuals between ~Pobs and ~Padd will be normally distributed (Fig 3B). As a result, 289

the phenotype of a genotype g is given by: 290

Pobs,g = Padd,g±ξ (6)

where ξ is the standard deviation of the residuals between ~Pobs and ~Padd. This is the basic 291

definition of epistasis given by Fisher (Fisher, 1918), applied across the whole map. 292

This view is particularly useful for predicting unmeasured phenotypes. First: it means 293

each predicted phenotype has a known, normally distributed uncertainty. Even if a large 294

amount of variation remains unexplained by the additive model, it is safely partitioned into 295

a random normal distribution. Put another way, ξ acts as a prediction interval. Second: 296

because the additive model has few terms, we can train it using a very small amount of data. 297

Following this line of reasoning, we asked how many phenotypes we would have to measure 298

to construct a maximally predictive additive model. We constructed additive maps with 299

different alphabet sizes (ranging from 2 to 5) and numbers of mutations (ranging from 6 to 300

8). We then injected random epistasis ranging in magnitude from 10% to 60% of the variation 301

in the phenotype. We simulated experiments where we measured one random genotype at a 302

time, added it to our observations, and predicted the phenotypes of the remaining genotypes. 303

We then plotted ρ2test as a function of the average number of times we saw each individual 304
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Figure 4: Epistasis as uncertainty. A) A partially characterized map. Circles represent
genotypes, some of which have been measured (filled), some of which have not (unfilled).
Lines represent single point mutations. Given these observations, we measure the effect of
mutation 1 in five different backgrounds (red arrows) and can thus calculate the mean and
variance in its effect across the map (〈β1〉 and σ1). B) ρ2test versus the average number of
times each mutation is seen in randomly sampled genotype-phenotype maps with epistasis
responsible for 10% (blue) to 60% (brown) of the variation in the maps. Points indicate
where ρ2test is within 5% of the maximum predictive power of the additive model. C) A
calibration curve indicating how many times, on average, one must observe each mutation
in map to resolve the additive coefficients in a map with different fractions of epistasis.

mutation across all genetic backgrounds (〈nobs〉). 305

When plotted as a function of 〈nobs〉, ρ2test rapidly rises and then saturates at the mag- 306

nitude of the epistasis in the map, independent of alphabet size and number of mutations 307

(Fig 4B). We next asked, as a function of the magnitude of the epistasis in the map, when 308

our predictions would be within 0.05 of the best achievable ρ2test. This is indicated by the 309

points on Fig 4B. We plotted these values as a function of the magnitude of the epistasis in 310

the map. This reveals a linear relationship between the average number of times we need to 311

see each mutation and the total epistasis in the map (Fig 4C). 312

We set out to test this approach using a partially sampled, experimental genotype- 313

phenotype map characterizing the binding specificity of dCas9 to 23-base-pair oligonu- 314

cleotides (Fig 5A). The published experiment sampled 59, 394 of the 7× 1013 (423) possible 315

oligonucleotides. Although all bases were sampled at all positions, there was significant bias 316

towards a specific base at each position in the library (Fig 5A). The map exhibited a highly 317

non-linear relationship between ~Pobs and ~Padd (Fig 5B), so we linearized the map with a 318
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5th-order spline (Eq. 4), yielding normal residuals between ~Pobs,linearized and ~Padd (Fig 5C). 319

We then assessed the predictive power of the map: we added genotypes individually to a 320

training set and evaluated our ability to predict the test set. We found that we were able 321

to fit a model using ≈ 4, 000 genotypes to predict the remaining ≈ 55, 000 measurements. 322

Because of the biased sampling of genotypes in the map, it took 4, 000 genotypes to observe 323

each individual mutation a sufficient number of times to resolve the additive effects of all 324

mutations (Fig 5D). Our prediction curve saturated after we had seen each mutation at least 325

39 times. This is in good agreement with our calibration curve on simulated data, which 326

indicated we would need to observe each mutation an average of 40 times (with random 327

sampling) to saturate an additive model in which epistasis was responsible for 38% of the 328

variation in the map. 329

The predictive power of this model is quite good considering its simplicity: we are able 330

to predict any phenotype to ±38% given we only sampled one, one-billionth of a percent 331

of the map. Extensive epistasis remains, but it follows a normal distribution with a known 332

standard deviation. While there are certainly more sophisticated models, an additive model 333

provides significant predictive power for this map. 334

Discussion 335

Our results suggest that a linear model should not be used to extract pairwise and 336

multi-way interactions between mutations in a genotype-phenotype map. Regressed epistatic 337

coefficients are biased (Fig 1B), unstable to the addition of new data (Fig 1C), and not 338

useful for predicting unmeasured phenotypes (Fig 2A). Far from being an anomaly, this 339

appears to be a shared feature of a collection of a dozen high-precision, combinatorially- 340

complete genotype-phenotype maps (Fig 2B). Further, we can generate epistatic coefficients 341

very similar to those observed in these maps using a simulated map in which we added 342

random, normally distributed noise to each phenotype (Fig 3). This argues for viewing 343

epistatic coefficients as uninterpretable decompositions of random variation, unless shown 344
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Figure 5: A predictive, additive model can be trained on a large genotype-
phenotype map. A) Summary of the genotype-phenotype map reported in (Boyle et al.,
2017). Map consists of 23 sites, each with four bases with the frequency at each site shown in
the sequence logo. The total map has 7× 1013 genotypes; the publication reports measured
phenotypes for 59, 394 genotypes. B) Raw Pobs vs. Padd plot for the map. Each point is a
genotype. The fit residuals are shown below the main plot. We fit an 5th-order spline to
linearize the map (red curve). C) The linearized form of the map, with epistasis removed
using the spline shown in panel B. D) A predictive model can be trained using ≈ 4, 000
genotypes. The bottom x-axis shows the number of unique genotypes used to train the
model (sampled randomly); the top x-axis shows the fewest number of times any mutation
was seen in that sample given the bias in the frequencies of the input mutations. ρ2test was
measured against the remaining 50, 000+ genotypes not used to train the model.

otherwise. 345

Viewed mechanistically, this is unsurprising. The epistatic models under investigation 346

assume linearity, but biology is nonlinear (Bershtein et al., 2006; Lehner, 2011; Chou et al., 347

2011; Tokuriki et al., 2012; Schenk et al., 2013; Sailer and Harms, 2017a; Otwinowski et al., 348

2018). There is no reason to believe that a linear model will capture a complicated non- 349

linear system in a predictive and interpretable way. For example, we showed recently that 350

we could generate high-order epistasis using a toy thermodynamic model of proteins with 351

only explicit pairwise interactions (Sailer and Harms, 2017b). The epistasis arise because 352

mutations have a nonlinear effect on the relative populations of individual protein confor- 353

mations. As a result, epistatic coefficients cannot be interpreted mechanistically—they are 354

purely “statistical” (Cordell, 2002). 355

Further, our results indicate that the signs and magnitudes of specific epistatic interac- 356

tions extracted from genotype-phenotype maps have no universal meaning. For example, 357
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in Fig 1C, the selected pairwise coefficient flips between positive, zero, and negative. If 358

different genotypes of the map are characterized, we obtain different values for the pairwise 359

coefficient, and thus a different interpretation for the effect of epistasis on the phenotype. 360

Treating epistasis with an additive model 361

A simple way to treat epistasis is as the residual variation after fitting an additive model (Eq. 362

6). Despite its simplicity, this is a useful perspective. It can be used to predict unmeasured 363

phenotypes in a genotype-phenotype map with known uncertainty. This is because deviation 364

from the additive model is determined by the magnitude of epistasis in the map (Fig 4A). 365

Further, the simplicity of the model means we can characterize an extremely sparse sample 366

of combinations of mutations across a genotype-phenotype map and still predict missing 367

phenotypes (Fig 4C). 368

This suggests that sparsely sampling combinatorial genotypes, rather than aiming to 369

exhaustively characterize point mutants, may be a powerful way to understand and predict 370

genotype-phenotype maps. As long as each mutation is seen across a sufficiently large number 371

of genetic backgrounds, we can resolve its average effect across a volume of the genotype- 372

phenotype map. In contrast, exhaustively sampling point mutations in a single background— 373

such as a deep mutational scan—will yield mutational effects specific to whatever genetic 374

background is used. Epistasis is not averaged out, meaning such coefficients should not 375

provide high predictive power when mutations are combined. 376

Interpretation of epistasis as a prediction interval only holds when the fit residuals 377

are normally distributed about zero. Curvature between ~Pobs and ~Padd will lead to non- 378

normal residuals and, thus, a distorted picture of the uncertainty (Sailer and Harms, 2017a; 379

Otwinowski et al., 2018). Multiple methods exist for linearizing genotype-phenotype maps, 380

including taking the log of phenotypes (Cordell, 2002), power transforms (Sailer and Harms, 381

2017a), splines (Otwinowski et al., 2018), and even mechanistic models (Schenk et al., 2013; 382

Otwinowski, 2018). This is one area for improvement, as better global models will decrease 383

the amount of variation that must be explained by the additive model. For example, in 384
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our analysis of the dCas9 binding specificity, there is still structure in the residuals, with 385

some clustering along Padd despite linearization using an 5th-order spline (Fig 5C). A model 386

that captures such variation could improve predictive power. Further improvement of global 387

models will thus be an important area of investigation. 388

Moving away from linear models 389

We see three promising ways forward. The first is to view epistasis in terms of its conse- 390

quences for evolutionary trajectories. This includes metrics like the number of accessible 391

trajectories, number of fitness peaks, and summary statistics such as the roughness to slope 392

ratio (Szendro et al., 2013; Ferretti et al., 2018; Crona et al.). These metrics generally do 393

not allow prediction of unmeasured phenotypes nor mechanistic understanding of the map, 394

but can provide useful insights into evolutionary trajectories and outcomes without the poor 395

behavior observed in linear epistasis models. 396

The second is to use non-biological, nonlinear models to extract information from each 397

map. These include tools such as Potts models (Figliuzzi et al., 2016; Hopf et al., 2017), 398

variational auto encoders (Riesselman et al., 2017; Sinai et al., 2017), and neural networks 399

(Wang et al., 2017; Ma et al., 2018). Such approaches can yield predictive models of genotype- 400

phenotype maps, and will no doubt continue to grow in popularity and sophistication. One 401

downside to these models is a requirement for massive amounts of training data—which may 402

not always be feasible, even in the modern high-throughput era. Further, it may be difficult 403

to link such models to an underlying biological mechanism. 404

The third is to attempt to model the underlying mechanistic process that leads to the 405

map (Tokuriki et al., 2012; Schenk et al., 2013; Otwinowski, 2018; Dutta et al., 2018). 406

Rather than taking a “top-down” approach, in which one dissects epistasis into statistical 407

interactions that are hopefully meaningful, one can instead take a “bottom-up” approach, 408

in which one calculates phenotypes from genotypes using a mechanistic biological model. 409
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This model can then be trained against measured phenotypes. This provides a predictive 410

model for unmeasured phenotypes, as well as providing mechanistic insight into map between 411

genotype and phenotype. A good example is that of Schenk et al, who dissected a genotype- 412

phenotype map by explicitly modeling the effect of each mutation on protein stability and 413

enzymatic activity (Schenk et al., 2013). This model captured extensive variation in the map 414

that could not be described with a linear model, while also providing mechanistic insight 415

into the protein under investigation. 416

Conclusion 417

Epistasis was described by Fisher as residual variation left over after fitting an additive 418

model (Fisher, 1918). While it may sometimes be productive to separate these residuals into 419

specific statistical coefficients, a better approach is to build better model. In our view, the 420

long-term goal should not be interpreting epistatic interactions between mutations; rather, 421

the long-term goal should be building mechanistic models that fit experimental observations 422

and, ultimately, make epistasis disappear. 423
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