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ABSTRACT

In the nematode Caenorhabditis elegans, the conserved LIN-41 RNA-binding protein is a
translational repressor that coordinately controls oocyte growth and meiotic maturation. LIN-
41 exerts these effects, at least in part, by preventing the premature activation of the cyclin-
dependent kinase CDK-1. Here we investigate the mechanism by which LIN-41 is rapidly
eliminated upon the onset of meiotic maturation. Elimination of LIN-41 requires the activities of
CDK-1 and multiple SCF-type ubiquitin ligase subunits, including the conserved substrate
adaptor protein SEL-10/Fbw7/Cdc4, suggesting that LIN-41 is a target of ubiquitin-mediated
protein degradation. Within the LIN-41 protein, two non-overlapping regions, Deg-A and Deg-B,
are individually necessary for LIN-41 degradation; both contain several potential
phosphodegron sequences, and at least one of these sites is required for LIN-41 degradation.
Finally, Deg-A and Deg-B are sufficient, in combination, to mediate SEL-10-dependent
degradation when transplanted into a different oocyte protein. Although LIN-41 is a potent
inhibitor of protein translation and M-phase entry, the failure to eliminate LIN-41 from early
embryos does not result in the continued translational repression of LIN-41 oocyte mRNA
targets. Based on these observations, we propose a molecular model for the elimination of LIN-
41 by SCF>®"'° and suggest that LIN-41 is inactivated before it is degraded. Furthermore, we
provide evidence that another RNA-binding protein, the GLD-1 tumor suppressor, is regulated
similarly. Redundant mechanisms to extinguish translational repression by RNA-binding
proteins may both control and provide robustness to irreversible developmental transitions,

including meiotic maturation and the oocyte-to-embryo transition.
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INTRODUCTION

The genetic pathways controlling developmental decisions have evolved to be robust to
perturbations stemming from environmental change, nutrient deprivation, and endogenous
genetic variation (reviewed by Hammerstein et al. 2005; Félix and Wagner 2008). At a genetic
level, robustness stems in large part from redundancy of control and feedback and feed-
forward regulatory mechanisms built into the pathways. In turn, redundancy in genetic control
also provides a hardy and permissive substrate to support evolutionary change (reviewed by
Prince and Pickett 2002; Vavouri et al. 2008). Ultimately, the robustness of genetic pathways is
central to the preservation of the germline, the immortal cell lineage required for sexual
reproduction and perpetuation of a species. Cell fate decisions in the germline fall into two
broad classes, those that are plastic and those that represent irreversible all-or-none
commitments. For example, in several organisms the differentiated progeny of germline stem
cells can dedifferentiate to repopulate the stem cell niche in response to adverse conditions
that deplete the stem cell pool (Brawley and Matunis 2004; Kai and Spradling 2004; Nakagawa
et al. 2007, 2010; Cheng et al. 2008; Barroca et al. 2009). By contrast, the commitment of an
oocyte to complete meiosis and undergo fertilization represents an irrevocable decision. Here
we explore the molecular genetic mechanisms controlling the commitment to fertilization

during the final stages of oogenesis in the nematode Caenorhabditis elegans.

In C. elegans, as in many animals, fully grown oocytes are transcriptionally quiescent
and depend on a maternal load of protein and messenger RNA to complete their development.

As a consequence, the dramatic cell cycle and developmental changes that occur during the
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transition from oogenesis to embryogenesis are driven by post-transcriptional mechanisms.
Such mechanisms include protein phosphorylation, the elimination of maternally-provided
proteins or mRNAs, and the regulation of maternal mRNA translation (reviewed by Verlhac et
al. 2010; Robertson and Lin 2015; Svoboda et al. 2017). The oocyte-to-embryo transition (OET)
initiates when oocytes exit meiotic prophase and enter the first meiotic metaphase (Ml), a cell
cycle and developmental event also known as meiotic resumption or meiotic maturation. The

OET completes when zygotic gene transcription begins after fertilization in the early embryo.

Pioneering studies using amphibian oocytes established that oocyte meiotic maturation
is initiated by the activation of maturation-promoting factor (MPF), in response to progesterone
from the follicle cells (Masui and Markert 1971; reviewed by Masui 2001). The principal
components of MPF are the cyclin-dependent kinase Cdk1 catalytic subunit and a cyclin B
regulatory subunit (Dunphy et al. 1988; Gautier et al. 1988, 1990; Lohka et al. 1988; reviewed
by Nurse 1990). In Xenopus, which represents the best-studied system from a biochemical
standpoint, MPF activation involves the translation of multiple, apparently redundantly-acting
factors, including the cMos protein kinase, B-type cyclins, RINGO/Speedy, and proteins that
remain to be identified (Kobayashi et al. 1991; Minshull et al. 1991; Nebreda et al. 1995; Frank-
Vaillant et al. 1999; Haccard and Jessus 2006a; reviewed by Haccard and Jessus 2006b). Once
activated, MPF stimulates multiple positive feedback mechanisms, including the activation of
the Greatwall kinase, which phosphorylates and activates the protein phosphatase 2A (PP2A)
inhibitor a-endosulfine (Yu et al. 2006; Zhao et al. 2008; Von Stetina et al. 2008; Castilho et al.
2009; Mochida et al. 2010). The inhibition of PP2A results in the activation of the CDC25

phosphatase, which removes the inhibitory CDK1 phosphorylations at Thr14 and Tyr15
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83  catalyzed by the Weel or Myt1 kinases (Kornbluth et al. 1994; Mueller et al. 1995). The initial
84  signal from MPF activation is amplified in a feed-forward mechanism in which active CDK

85  promotes the inactivation of its inhibitors, Weel and Myt1 (reviewed by Ferrell 1999a,b), and
86  stimulates its activator, CDC25 (Kumagai and Dunphy 1996). This regulatory mechanism

87  generates the “switch-like” activation of MPF that promotes the rapid and irreversible cell cycle

88  transition from prophase to metaphase (reviewed by O’Farrell et al. 2001; Kishimoto 2015).

89 MPF is the master regulator of cell cycle progression during oocyte meiotic maturation
90 inC. elegans as in all examined species (Boxem et al. 1999; Burrows et al. 2006; van der Voet et
91 al.2009), yet MPF activation is regulated somewhat differently than in Xenopus. For example,
92  although the inhibitory Weel/Myt1 kinase Wee-1.3 is crucially important for inhibiting MPF
93  activity inimmature C. elegans oocytes (Burrows et al. 2006), an apparent Greatwall homolog is
94  not found in the C. elegans genome and a-endosulfine/ensa-1 is not required for viability or
95 fertility (Kim et al. 2012). Likewise, the signal that triggers MPF activation for meiotic
96  maturation in C. elegans is not progesterone, but rather the major sperm protein (MSP), an
97  abundant cytoskeletal protein that is released from sperm (Miller et al. 2001; Kosinski et al.
98  2005). The latter control mechanism, which serves to link meiotic maturation and ovulation to
99  sperm availability, likely evolved in gonochoristic predecessors of facultative hermaphroditic
100 nematode species like C. elegans. The rate of meiotic maturation declines substantially as a C.
101  elegans hermaphrodite utilizes its limited supply of sperm for self-fertilization but rapidly
102 increases upon mating (Kosinki et al. 2005). When sperm are absent, as in mutant
103  hermaphrodites that do not produce sperm (e.g., fog mutant females), oocytes arrest for

104  prolonged periods and the rate of production and growth of new oocytes declines until
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105  insemination (McCarter et al. 1999; Wolke et al. 2007; Govindan et al. 2009). This serves to
106  preserve metabolically costly oocytes when sperm are unavailable for fertilization. Thus, the
107  molecular mechanisms that control MPF activation must be exquisitely fine-tuned for sperm

108  sensing.

109 Another commonality between the C. elegans and Xenopus systems is that MPF

110  activation depends on translational control mechanisms, though the details differ. In C. elegans,
111 large ribonucleoprotein (RNP) complexes containing the tripartite motif (TRIM)-NHL (NCL-1,

112 HT2A, and LIN-41) RNA-binding protein LIN-41 and the tristetraprolin/TIS11-related RNA-

113 binding proteins OMA-1 and OMA-2 (referred to collectively as the OMA proteins) are major
114  downstream targets of MSP signaling (Spike et al. 2014a,b; Tsukamoto et al. 2017). LIN-41 is the
115  chief determinant of the extended meiotic prophase of C. elegans oocytes (Spike et al. 2014a).
116  Inlin-41 null mutants, pachytene-stage oocytes cellularize prematurely, activate CDK-1,

117  aberrantly disassemble the synaptonemal complex, and enter M phase precociously, causing
118  sterility (Matsuura et al. 2016; Spike et al. 2014a; Tocchini et al. 2016). CDK-1 activation causes
119  oocytes to prematurely transcribe and express genes that are ordinarily restricted to

120  differentiated cells and expressed after the OET (Allen et al. 2014; Spike et al. 2014a; Tocchini
121 et al. 2014). LIN-41 inhibits CDK-1 activation in part through the 3’-untranslated region (UTR)-
122 mediated translational repression of the CDC-25.3 phosphatase (Spike et al. 2014a,b). By

123 contrast, the OMA proteins are redundantly required for CDK-1 activation (Detwiler et al.

124  2001). In the absence of the OMA proteins, oocytes fail to undergo meiotic maturation despite

125  the presence of sperm, resulting in sterility (Detwiler et al. 2001).
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126 Genetic analysis suggests the OMA proteins promote meiotic maturation by inhibiting
127  the function of LIN-41 in the most proximal oocyte. Two lines of molecular evidence are

128  consistent with the idea that LIN-41 must be inactivated to promote meiotic maturation. First,
129  LIN-41is degraded upon the onset of meiotic maturation in response to CDK-1 activation (Spike
130 et al. 2014a; Figure 1, A and B). Second, LIN-41 is a potent translational repressor, yet several of
131  the mRNAs it associates with and represses are translated and co-expressed with LIN-41 prior
132 to meiotic maturation in the —1 and —2 oocytes (Tsukamoto et al. 2017). These mRNAs include
133 those encoding the RNA-binding protein SPN-4, which is required for development of the

134  embryonic germline and the mesendoderm (Gomes et al. 2001), and MEG-1, which is a

135  germplasm or P granule component needed for germline development (Leacock and Reinke
136  2008; Kapelle and Reinke 2011; Wang et al. 2014). By contrast, the OMA proteins are required
137  for the translation of spn-4 and meg-1 transcripts in proximal oocytes, providing a molecular
138  mechanism by which the OMA proteins might antagonize LIN-41 function (Tsukamoto et al.

139 2017).

140 Here we examine the mechanism by which LIN-41 is eliminated by the end of the first
141 meiotic division. We identify two LIN-41 degradation domains, Deg-A and Deg-B, and a

142 potential CDK-1 phosphorylation site within Deg-A that are individually required for efficient
143 degradation. Transplantation of both LIN-41 degradation domains into OMA-2 results in the
144  premature degradation of the resulting fusion protein during meiosis. Furthermore, we find
145  that a Skp, Cullin, F-box (SCF) E3 ubiquitin ligase complex containing the substrate recognition
146  subunit SEL-10 promotes the degradation of LIN-41 and likely functions through the newly

147  identified degradation domains of LIN-41. SEL-10 is a highly conserved F-box protein important
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148  for cell-cycle regulation in both yeast (cell division control protein 4 (Cdc4)) and humans (F-box
149  and WD repeat domain protein (FBW7)) (reviewed in Deshaies and Ferrell 2001; Welcker and

150  Clurman 2008).

151 Intriguingly, we show that SEL-10 is also important for the degradation of the tumor

152  suppressor protein GLD-1/STAR RNA-binding protein, which is required for oocyte

153 differentiation and represses translation in oocytes (Francis et al. 1995a,b; Jones and Sched|
154  1995; Lee and Schedl 2001; Shumacher et al. 2005; Wright et al. 2011; Jungkamp et al. 2011;
155  Scheckel et al. 2012; Farley and Ryder 2012; Doh et al. 2013). GLD-1 was independently

156  identified as a target of SEL-10-mediated degradation by Kisielnicka et al. (2018) along with

157  CPB-3, a cytoplasmic polyadenylation element (CPE)-binding (CPEB) protein, which is also

158  important for oocyte development (Boag et al. 2005; Hasegawa et al. 2006). GLD-1 and CPB-3
159  are degraded during meiotic prophase, as immature oocytes transition from pachytene to

160  diplotene (Kisielnicka et al. 2018), considerably earlier than the degradation of LIN-41 during
161  the OET. This is likely due to differences in signaling-mediated regulation; while the degradation
162  of LIN-41 is regulated by activated CDK-1 (Spike et al. 2014a and this work), the degradation of
163  GLD-1 and CPB-3 is regulated by the MAP kinase MPK-1 (Kisielnicka et al. 2018 and this work).
164  Surprisingly, the ectopic expression of LIN-41 and GLD-1 in sel-10 mutants has only minor

165  effects on fertility and the expression of mRNAs that are translationally repressed by either LIN-
166 41 or GLD-1 during oogenesis. We suggest that the LIN-41 that persists in the embryos of sel-10
167  and certain lin-41 mutants is likely inactivated by additional post-transcriptional mechanisms

168 that remain to be identified.
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MATERIALS AND METHODS

Strains

The genotypes of strains used in this study are reported in Table S1. The following mutations
were used: LGl — mex-3(tn1753[gfp::3xflag::mex-3]), air-2(or207ts), unc-13(e1091), rrf-
1(pk1417), gld-1(q485), lin-41(tn1487ts), lin-41(tn1541[gfp::tev::s-tag::lin-41], lin-
41(tn1541tn1548), lin-41(tn1541tn1562), lin-41(tn1541tn1571), lin-41(tn1541tn1618), lin-
41(tn1541tn1620), lin-41(tn1541tn1622), lin-41(tn1541tn1628), lin-41(tn1541tn1630), lin-
41(tn1541tn1635), lin-41(tn1541tn1638), lin-41(tn1541tn1641), lin-41(tn1541tn1643), lin-
41(tn1541tn1645), lin-41(tn1541tn1661), lin-41(tn1541tn1663), lin-41(tn1541tn1665), lin-
41(tn1541tn1668), lin-41(tn1541tn1684), lin-41(tn1541tn1775), lin-41(tn1767), fog-3(q470),
and lin-11(n566). LGIIl — mpk-1(gal11ts), emb-30(tn377ts), cdk-1(ne2257ts), orc-
1(tn1732[mng::3xflag::orc-1]) and cul-2(or209ts). LGIV — pgl-1(sam37[pgl-
1R765S::mTagRFPT::3xflag) (kindly provided by Dustin Updike), cks-1(ne549ts), and oma-
1(zu405te33). LGV — spn-4(tn1699[spn-4::gfp::3xflag]), oma-2(te51), oma-
2(cp145[mng::3xflag::oma-2]), oma-2(tn1760[mng::3xflag::degA::oma-2]), oma-
2(tn1764[mng::3xflag::degA::degB::oma-2]), lon-3(e2175), sel-10(ar41), sel-10(ok1632), sel-
10(n1077), him-5(e1490), and fog-2(0z40). LGX — meg-1(tn1724[gfp::3xflag::meg-1]). The
following rearrangements were used: hT2[bli-4(e937) let-?(q782) qls48] (I; ) and nT1[qls51]
(IV; V). The following transgene insertions were used: ax/s1498[pie-1p::gfp::gld-1::gld-1 3’UTR,

unc-119(+)](Merritt et al. 2008), itIs37[pie-1p::mCherry::H2B::pie-1 3’UTR, unc-119(+)] (McNally

10
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et al. 2006), ozls5[gld-1::gfp] | (kindly provided by Tim Schedl), oz/s2[gld-1::gfp] Il (Schumacher

et al. 2005), and pwis116[rme-2p::rme-2::gfp::rme-2 3’UTR, unc-119(+)] (Balklava et al. 2007).

Genome editing

Plasmids capable of expressing guide RNAs (gRNAs) that target the lin-41 gene were generated
as described by Arribere et al. (2014) from the vector pRB1017 and sequence-specific
olignonucleotides. We estimated the efficiency with which each /in-41 gRNA was able to target
the lin-41(tn1541) locus by: (1) co-injecting a mixture of the gRNA plasmid (25 ng/ul), the
pDD162 plasmid (Dickinson et al. 2013), which supplies the Cas9 enzyme (50 ng/ul), and a co-
injection marker (myo-2p::Tdtomato, 4 ng/ul) into lin-41(tn1541) hermaphrodites, (2) culturing
individual F1 progeny that expressed the co-injection marker (typically <10 F1s from each
injected parent), and (3) determining the number of F1s that segregated F2 progeny with a Dpy
lin-41 loss-of-function (If) phenotype. File S1 reports the sequences and estimated efficiencies
of the gRNAs we used to generate the lin-41 deletions and point mutations described in this

work; most were relatively effective at targeting lin-41.

During the efficiency experiments for /in-41 gRNAs #10 and #11, we identified /in-
41(tn1541tn1562) and lin-41(tn1541tn1571), respectively, as GFP::LIN-41-positive lin-41(If)
mutants that appeared to have relatively large deletions by PCR. All of the other deletions were
generated in a targeted manner by co-injecting two or more /in-41 gRNA plasmids (25 ng/ul
each), a single-stranded oligonucleotide (ssODN) repair template (500 nM), the pDD162

plasmid (50 ng/ul), and a co-injection marker (myo-2p::Tdtomato, 4 ng/ul) into lin-41(tn1541)

11
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210 hermaphrodites. We used gRNAs on each side of the desired deletion that, in most cases,

211 would not produce substrates for Cas9 digestion after the deletion event. Otherwise, silent

212  mutations were included in the repair template to prevent re-cutting. To identify lin-41(tn1541)
213 deletion mutants, we individually placed F1 worms expressing the co-injection marker on

214  plates, allowed them to lay eggs, and then used PCR to screen pools of up to 6 F1 worms. Pools
215  that appeared to be strongly positive for the desired deletion band were rescreened by PCR to
216  identify F1 animals that had segregated candidate deletion mutants among their F2 progeny.
217  Mutants were either allowed to become homozygous or were balanced using hT2[bli-4(e937)
218  let-?(q782) qis48] (1; lll). Essentially the same method was used to generate amino acid

219  substitutions in lin-41. However, in those experiments we used only one gRNA and repair

220 events were identified using silent mutations that created restriction enzyme recognition sites
221  in each repair template. Screening therefore consisted of PCR followed by a restriction enzyme
222  digestion, and we only pooled 2 F1s in the initial round of screening so that the repair events
223 would be easy to detect. All edited loci were validated by sequencing, and we were able to

224  obtain multiple independent alleles for most targeted deletions and amino acid substitutions.
225  Where possible, two alleles identical to the repair template (but derived from independently
226 injected parents) were saved and assigned allele names. Other, typically imperfect, gene edits
227  were also kept and given allele names if they were informative or potentially useful. Additional
228 information about all of these alleles, as well as detailed genome editing information, including

229  gRNA, repair template, and PCR primer sequences, is provided in File S1.

230 oma-2 (tn1760) and oma-2(tn1764) were created using the method described by
231 Dickinson et al. (2015) to create oma-2(cp145). Indeed, we were careful to replicate oma-

12
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232 2(cp145) as closely as possible; we used the same gRNA plasmid (pDD223) and designed our
233 repair templates to closely mimic pDD271, the repair template used to create oma-2(cp145).
234 However, instead of using PCR to generate the 3’ homology arms of the repair templates, which
235  contain sequences derived from both oma-2 and lin-41, we synthesized these sequences as

236 gBlocks (Integrated DNA Technologies, Skokie, IL). We minimized the size and complexity of

237  each gBlock by removing introns from the lin-41-encoding sequences. oma-2(tn1760) and oma-
238  2(tn1764) were perfect matches to the desired repairs (repair templates pCS557 and pCS561,
239  respectively). Gene edited alleles were out-crossed to the wild type before analyzing fertility

240  and embryonic lethality. Specific genome editing details are provided in File S1.

241

242 Microscopy

243  Movies of GFP::LIN-41, mNG::Deg-A::Deg-B::OMA-2, PGL-1::RFP, and mCHERRY::H2B during the
244  OET were obtained using a Marianas 200 Microscopy Workstation (Intelligent Imaging

245  Innovations) built on an AxioObserver Z.1 stand (Carl Zeiss, Thornwood, NY) and driven by

246  SlideBook 6.0 software (Intelligent Imaging Innovations, Denver, CO). The imaging was

247  performed using a 40x oil Carl Zeiss Plan-Apochromat objective lens (numerical aperture of 1.4)
248  and an Evolve electron-multiplying charge-coupled device camera (Photometrics, Tucson, AZ).
249  The quantification of GFP::LIN-41 in proximal oocytes and embryos relative to distal oocytes
250  was performed using ImagelJ software. All of the other images were acquired on a Carl Zeiss
251  motorized Axioplan 2 microscope with a 63X Plan-Apochromat (numerical aperture 1.4)

252  objective lens using a AxioCam MRm camera and AxioVision software (Carl Zeiss). Image

13
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253  quantifications were also performed using AxioVision, version 4.8.2.0. The average intensity of
254  SPN-4::GFP fluorescence was measured in a ~12 uM diameter circle in the anterior cytoplasm
255  of 1-cell and 2-cell embryos in order to avoid the bright puncta of SPN-4::GFP in the posterior;
256  these are likely P granules, as SPN-4 is known to associate with these non-membrane-bound
257  organelles in embryos (Ogura et al. 2003). The amount of diffusely cytoplasmic SPN-4::GFP

258  appeared to be similar throughout the embryo during these early stages of embryogenesis and
259  in each of the strains we analyzed. Likewise, the average intensity of GFP::MEX-3 and

260  mNG::OMA-2 fluorescence was measured in a ~10 uM diameter circle in the oocyte cytoplasm.
261  Fluorescence was measured in the oocytes that expressed detectable levels of each fusion

262  protein under our imaging conditions (100 ms and 120 ms for GFP::MEX-3 and mNG::OMA-2,
263  respectively) and were large enough to fit a ~10 uM diameter circle in the oocyte cytoplasm.
264  GFP::MEX-3 was detected in 4 or 5 proximal oocytes in all strains, consistent with previous

265  observations (Tsukamoto et al. 2017). mNG::OMA-2 was detected in 5 or 6 proximal oocytes in

266  the sel-10(ar41) mutants and in 7 or more proximal oocytes in the control strain.

267

268  RNA interference

269  Gene-specific RNA interference (RNAi) was performed by feeding C. elegans with double-

270  stranded RNA (dsRNA)-expressing E. coli (Timmons and Fire 1998) at 22° using the RNAi culture
271  media described by Govindan et al. (2006). RNAi clones were obtained from Source BioScience
272 (Nottingham, UK), and the identity of each RNAi clone verified by DNA sequencing. The RNAI

273 clone used for cul-2(RNAI) targets the cul-2 3’'UTR, which may make it less effective at triggering
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274 an RNAi response. Exposure to dsRNA-expressing E. coli was initiated during the fourth larval
275  stage and GFP::LIN-41 was examined after 1 and 2 days. cdk-1(RNAI), skr-1(RNAi) and sel-

276 10(RNAi) at least partially prevented the elimination of GFP::LIN-41 after 1 day, with stronger
277  and more penetrant phenotypic effects on Day 2, while cul-1(RNAi) only prevented the

278  elimination of GFP::LIN-41 after 2 days of RNAIi treatment. All images of RNAi-treated animals

279  were collected on Day 2.

280

281 Western blots

282 Proteins were separated using NuPage 4-12% Bis-Tris gels or 3-8% Tris-Acetate gels (Invitrogen,
283  Carlsbad, CA) and visualized after western blotting. Blots were blocked with 5% nonfat dried
284  milk. Primary antibodies used to detect proteins were affinity-purified rabbit anti-LIN-41 R214
285  (1:20,000 dilution) (Spike et al. 2014a), guinea pig anti-LIN-41 GP49E (1:4,000 dilution) (Spike et
286  al. 2014a), and rabbit anti-GLD-1 (1:3,000 dilution; kindly provided by Sarah Crittenden and

287  Judith Kimble) (Jan et al. 1999). Secondary antibodies used for western blots were peroxidase-
288  conjugated donkey anti-guinea pig (1:40,000 dilution) (Jackson ImmunoResearch, West Grove,
289  PA) and anti-rabbit (1:5,000 dilution) (Thermo Scientific, Waltham, MA) antibodies. Detection
290  was performed using SuperSignal West Femto Maximum Sensitivity Substrate (Thermo

291  Scientific).

292

293
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294  Antibody staining

295  Dissected gonads stained with either the rabbit anti-phospho-histone H3 (Ser10) antibody

296  (1:400 dilution; Millipore, Burlington, MA) or the rabbit anti-RME-2 antibody (1:50 dilution,
297  kindly provided by Barth Grant) (Grant and Hirsh 1999) were fixed in 3% paraformaldehyde for
298 1 hour, as described (Rose et al. 1997). Dissected gonads stained with the rabbit anti-GLD-1
299  primary antibody (1:150 dilution; Jan et al. 1999) were fixed in 1% paraformaldehyde for 10
300 minutes. Primary antibodies were detected using either Cy3-conjugated goat anti-rabbit or
301 Alexa 488-conjugated donkey anti-rabbit secondary antibodies (1:500 dilutions; Jackson

302 ImmunoResearch).

303

304  Data availability

305 All strains and newly-created alleles (see Table S1 and File S1) are available upon request. The
306  sequences of gRNAs, repair templates, PCR primers, lin-41 alleles, and oma-2 alleles are

307 presented in File S1. Plasmids producing gRNAs and those containing repair templates for

308 genome editing are available upon request. All Sanger sequencing files are available upon

309 request. Supplemental materials are available at Figshare: https://doi.org/.

310
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311 RESULTS

312  GFP::LIN-41 is eliminated during the first meiotic division

313  Germline-expressed LIN-41 is restricted to oogenesis and required to prevent premature M-
314 phase entry and to promote growth of developing oocytes (Spike et al. 2014a). In the oogenic
315  germlines of adult hermaphrodites, LIN-41 is expressed from mid-pachytene through

316  subsequent stages of oocyte development, with a notable reduction in LIN-41 levels as oocytes
317 initiate meiotic maturation at the end of oogenesis. Essentially the same pattern is seen in the
318  oocytes of lin-41(tn1541[gfp::tev::s-tag::lin-41]) adult hermaphrodites; these animals carry a
319  gfp-tagged allele of lin-41 and express only GFP-tagged LIN-41 (GFP::LIN-41), yet have

320 essentially wild-type oocyte development and fertility (Figure 1, A and B; Spike et al. 2014a).
321  GFP::LIN-41 is always visible in the oocyte immediately adjacent to the spermatheca (-1

322  oocyte), but is not detectable in most embryos, suggesting that GFP::LIN-41 is eliminated soon
323  after meiotic maturation and ovulation (Figure 1, A and B; Spike et al. 2014a). To more precisely
324  determine the stage at which GFP::LIN-41 is eliminated during the OET, we used time-lapse

325  imaging to examine GFP::LIN-41 as oocytes proceed through meiotic maturation, are ovulated
326 into and fertilized in the spermatheca, and complete their meiotic divisions (Movie S1 and

327  Figure 1, C—H). These images show that GFP::LIN-41 levels drop dramatically after meiotic

328  maturation and ovulation (Figure 1, D and H) and that GFP::LIN-41 is essentially undetectable
329  well before the end of the first meiotic division (Figure 1, F and G). We were able to image

330  several oocytes as they moved into the —1 oocyte position from a slightly earlier developmental

331  stage (-2 or —3 oocyte start position) and completed meiosis. Quantification of GFP::LIN-41
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332 levels in these oocytes revealed that GFP::LIN-41 levels also decline during the late stages of
333  oogenesis, albeit in a somewhat less-dramatic fashion than after meiotic maturation (Figure
334  1H). During meiotic maturation, the oocyte undergoes a cortical cytoskeletal rearrangement
335  prior to ovulation (McCarter et al. 1999). During cortical rearrangement, we observed that
336  GFP::LIN-41 began to localize to punctate structures in the oocyte cytoplasm coincident with
337 the onset of its dramatic disappearance (Movie S1). The nature of these punctate structures is
338  unclear; however, they do not appear to be P granules as most of them do not exhibit

339  colocalization with PGL-1::RFP (Figure S1, A—C).

340

341 Deg-A and Deg-B are required to eliminate GFP::LIN-41 from embryos

342  Toidentify the amino acid sequences of LIN-41 required for its elimination from early embryos,
343  we generated a series of deletions in the coding region of the GFP::LIN-41-expressing lin-

344  41(tn1541) gene using CRISPR-Cas9-based genome editing approaches (see Materials and

345  Methods and File S1 for details). Collectively, these deletions are predicted to remove 95% of
346  the LIN-41 protein and disrupt all known structural domains of LIN-41 (Figure 2, A and B, and
347  File S1). For each mutant, GFP::LIN-41[A] expression was examined to determine whether the
348  deleted portion of LIN-41 is necessary for the elimination of GFP::LIN-41 from embryos (Figure
349 2, D-F, Figure S2, and Figure S3). Null mutations in lin-41 are sterile, with small, abnormal

350 oocytes, and some hypomorphic alleles of lin-41 affect the production of high-quality oocytes
351 (Slack et al. 2000; Spike et al. 2014a). Thus, GFP::LIN-41[A] was often examined in both

352  heterozygotes (lin-41(tn1541A)/unc-13(e1091) lin-11(n566) genotypes) and homozygotes (lin-
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41(tn1541A) genotypes), particularly when the lin-41(tn1541A) homozygotes produced
obviously small or abnormal oocytes or produced a significant number of dead embryos (Figure
S2, Figure S3, and Table 1). This approach enabled us to determine that two non-overlapping
regions in the N-terminal third of LIN-41 are required for the elimination of LIN-41 from
embryos (Figure 2B). We will refer to these regions as the LIN-41 degradation domains Deg-A

and Deg-B.

The LIN-41 Deg-A domain is defined by the /in-41(tn1541tn1638) deletion allele. This
deletion is predicted to affect GFP::LIN-41 by removing 73 amino acids on the N-terminal side
of the LIN-41 RING domain (Figure 2C and File S1). lin-41(tn1541tn1638) is immediately
adjacent to, but does not overlap, the lin-41(tn1541tn1630) deletion, which is predicted to
affect GFP::LIN-41 by removing the LIN-41 RING finger domain (see File S1 for deleted residues).
Consistent with previous amino acid substitution and transgenic rescue data (Tocchini et al.
2014), the RING domain is not required for the elimination of GFP::LIN-41 from embryos (Figure
2E and Figure S2). The LIN-41 Deg-B domain is defined by two contiguous, but non-overlapping,
deletions on the C-terminal side of the LIN-41 RING domain. The lin-41(tn1541tn1635) deletion
is predicted to affect GFP::LIN-41 by removing 44 amino acids on the C-terminal side of the LIN-
41 RING domain (Deg-B1) (Figure 2C and File S1). Compared to the Deg-A deletion mutant (/in-
41(tn1541tn1638)), the Deg-B1 deletion mutant (/in-41(tn1541tn1635)) has a relatively low but
detectable level of GFP::LIN-41[A] in early embryos (compare Figure S2, K and M). However, the
lin-41(tn1541tn1622) deletion, which defines Deg-B2, and the remaining 151 amino acids of
Deg-B (Figure 2C and File S1), has a robust defect in the elimination of GFP::LIN-41[A] from
early embryos that is apparent in both heterozygous and homozygous deletion mutants (Figure
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S2, E and G). Finally, deletions predicted to affect GFP::LIN-41 by removing amino acids and
structural domains C-terminal to Deg-B were able to eliminate GFP::LIN-41[A] from early
embryos (Figure 2A and Figure S3). Interestingly, we found that C-terminal domains could only
be removed individually or in small groups, as GFP::LIN-41[A] was not detectable when a
majority of the C-terminus was removed (lin-41(tn1541tn1628) deletion; Figure 2A and Figure

S3, M-P).

LIN-41[T83] is required to eliminate LIN-41 from embryos

The results described above indicate that the elimination of GFP::LIN-41 does not depend on
any of the previously described structural domains of LIN-41, but instead requires two new
regulatory domains. Analysis of the amino acid sequences of Deg-A and Deg-B shows that each
regulatory domain contains many possible phosphorylation sites (Figure 2C). Previously
published results indicate that the elimination of GFP::LIN-41 from embryos also requires CDK-1
(Spike et al. 2014a), a highly conserved proline-directed serine/threonine kinase essential for
M-phase entry during oocyte meiotic maturation in C. elegans (Boxem et al. 1999). Thus, we
hypothesized that LIN-41 might be a direct target of CDK-1 activity, and that phosphorylation of
either Deg-A or Deg-B by CDK-1 could be sufficient to trigger the elimination of GFP::LIN-41
from embryos. 18 minimal CDK-1 consensus sequences ([S/T]P) are present in Deg-A and Deg-B
(Figure 2C), but only a single site, found in Deg-B1, conforms to an expanded CDK1 consensus

sequence ([S/TIPX[K/R]) (Ubersax et al. 2003). However, changing the potentially
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phosphorylated residue at this site to an alanine (S176A; e.g.: lin-41(tn1541tn1641)) had no

effect on the elimination of GFP::LIN-41 from embryos (Figure 2C and Figure S4A).

We therefore shifted our focus to Deg-A, which is relatively small and contains only
three potential CDK-1 target sites, but strongly prevents the elimination of GFP::LIN-41 from
embryos (Figure S2M). Each site in Deg-A was tested individually to see if it is required for the
elimination of GFP::LIN-41 from embryos. Although the mutations S57A and S90A (e.g.: lin-
41(tn1541tn1663) and lin-41(tn1541tn1661), respectively) had no discernable effect (Figure S4,
C and E), the T83A mutation (e.g.: lin-41(tn1541tn1645)) strongly prevented the elimination of
GFP::LIN-41 from embryos, similar to the Deg-A deletion mutant (Figure 2G, Figure S2M, and
Figure S4G). Time-lapse imaging of oocyte meiotic maturation, ovulation, and fertilization
documents that the T83A mutation strongly abrogates the elimination of GFP::LIN-41 (Movie
S2). During cortical rearrangement, GFP::LIN-41[T83A] localized partially to dynamic punctate
structures like GFP::LIN-41 (compare Movie S1 and Movie S2); however unlike the wild-type
protein, puncta of GFP::LIN-41[T83A] were also observed during the meiotic divisions.
Furthermore, GFP::LIN-41[T83A] persisted through multiple embryonic cleavage divisions and
became at least partially associated with P granules by the 2-cell stage (Movie S2 and Figure S1,
D-1). These results are consistent with the possibility that phosphorylation of LIN-41 by a
proline-directed S/T kinase, such as CDK-1, promotes the rapid elimination of GFP::LIN-41 upon
the onset of meiotic maturation. As a further assessment, we replaced T83 with a glutamic acid
residue (T83E) (e.g.: lin-41(tn1541tn1684)), which is negatively charged and might function as a
phosphomimetic. However, T83E did not result in the premature elimination of GFP::LIN-41, as
when CDK-1 is prematurely activated (Spike et al. 2014a). Instead, T83E prevented the
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417  elimination of GFP::LIN-41 from embryos, similar to T83A (Figure S4, G and |). Thus, we

418  conclude that either T83E does not effectively mimic phosphorylation at this particular site or
419  T83 might not be phosphorylated. In fact, phosphorylation sites that function to recruit adapter
420  proteins are often not recognized by binding partners after phosphomimetic substitution

421  (Dephoure et al. 2013), and this is a possible explanation for the function of T83 and the Deg

422  domains of LIN-41, as we will describe.

423 A requirement for the extreme N-terminus of LIN-41 (amino acids 1-39) with respect to
424  the elimination of GFP::LIN-41 was not examined in the lin-41(tn1541) deletion analysis.

425  Genetic analysis suggests that this region of LIN-41 is important for down-regulating lin-41

426  function specifically in the male tail (Del Rio-Albrechtsen et al. 2006). Gain-of-function (gf)

427  alleles that affect this part of LIN-41 have a defect in male tail tip retraction, while

428  hermaphrodites appear overtly wild-type. lin-41(tn1541) males also have a male tail tip

429  retraction defect (Figure S5, A and B), suggesting that the GFP tag on the N-terminus of LIN-41
430  disrupts this male-specific function. Furthermore, the amino acid change found in the lin-

431  41(bx37gf) allele (G35R) does not affect the elimination of GFP::LIN-41 from early embryos (lin-
432  41(tn1541tn1665); Figure S5, C and E). For these reasons, we suspect that the extreme N-

433  terminus of LIN-41 is unlikely to be involved in the elimination of GFP::LIN-41 from early

434  embryos. One possibility, however, might be that the N-terminal GFP tag on GFP::LIN-41

435  compromises a function that is required redundantly with Deg-A or Deg-B. To explore this

436  possibility, we generated worms expressing LIN-41[T83A] (/in-41(tn1767)) and asked whether
437  the untagged protein also persists in embryos. Using western blots, we found that LIN-41 was
438  undetectable in a lysate made from wild-type embryos, but that LIN-41[T83A] was clearly
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439  presentin a lysate prepared from lin-41(tn1767) mutant embryos (Figure S6C). Thus, the T83A

440  mutation abrogates the elimination of both LIN-41 and GFP::LIN-41 from embryos.

441

442  Functional requirements for individual LIN-41 domains

443  LIN-41is a large protein with two well-defined domains that are proposed to have strikingly
444  different activities. The first of these is actually a multi-domain grouping called a TRIpartite
445  Motif (TRIM) that contains RING, B-box, and coiled-coil (CC) domains; many TRIM proteins are
446  thought to function as RING finger E3 ubiquitin ligases (Ikeda and Inoue 2012). The second

447  functional domain is an RNA-binding domain composed of 6 NHL (NCL-1, HT2A and LIN-41)
448  repeats at the C-terminus of LIN-41 (Slack and Ruvkun 1998; Loedige et al. 2015; Kumari et al.
449  2018). Forward and reverse genetic analyses strongly indicate that the NHL domain is important
450  for both the germline and somatic functions of C. elegans LIN-41 (Slack et al. 2000; Spike et al.
451  2014a; Tocchini et al. 2014), consistent with the identification of LIN-41 as a translational

452  repressor in both tissue types (Spike et al. 2014b; Aeschimann et al. 2017; Tsukamoto et al.
453  2017). By contrast, a deletion of the entire LIN-41 RING domain (Figure 2A), which confers in
454  vitro E3 ligase catalytic activity to mouse LIN41 and other TRIM proteins (Rybak et al. 2009;
455  Esposito et al. 2017), results in appreciable fertility (brood size of 210 + 87; Table 1) and thus is
456  non-essential for C. elegans oogenesis. As described below, the phenotypes seen in lin-

457  41(tn1541) deletion mutants are consistent with prior observations and provide additional

458  insights into the functions of LIN-41 protein domains.
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459  TRIM (Ring, B-box, CC) domain: Deletion of the RING finger in the context of GFP::LIN-41

460  (GFP::LIN-41[ARING]) results in only mild defects. Most lin-41(tn1541tn1630) animals are fertile
461  and have a large number of progeny; no strong defects in oogenesis, embryonic development
462  or body shape are evident (Table 1 and Figure S2, | and J). We did note, however, that lin-

463  41(tn1541tn1630) animals appear to be slightly sick and that they produce ~33% fewer progeny
464  than lin-41(tn1541) hermaphrodites (Table 1). Interestingly, deletion of the other two TRIM

465  sub-domains (GFP::LIN-41[ABbox-CC]) causes a much stronger reduction in LIN-41 function.

466  Most (84%) lin-41(tn1541tn1562) hermaphrodites are fertile, but produce very few progeny (6
467  t4)and have obvious defects in oogenesis as well as a Dumpy (Dpy) body shape (Table 1;

468  Figure S3, A and B). Thus, lin-41(tn1541tn1562) is clearly a hypomorphic allele of /in-41 that

469  affects both its germline and somatic functions.

470 We note that lin-41(tn1541tn1562) might remove additional residues beyond the Bbox-
471  CCregion because, unlike the other lin-41(tn1541A) mutants we created, lin-41(tn1541tn1562)
472  is not a precise exon-exon fusion and requires a new in-frame splicing event to make a full-

473  length protein (Figure 2A and File S1). However, the deletion in this mutant was accompanied
474 by the insertion of a small sequence that includes two potential 5’ splice site consensus

475 sequences; both are in-frame with the downstream exon. Furthermore, the relative size of

476  GFP::LIN-41[ABbox-BBC] on SDS-PAGE western blots is consistent with what we expect to see
477  for the protein made by this particular deletion mutant (File S1 and Figure S6B). This is also true
478  for the other GFP::LIN-41[A] proteins we detected on western blots using anti-LIN-41

479  antibodies (Figure S6, A and B).
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480  IG/filamin domain: |G/filamin (IG) domains are only found in a subset of TRIM-NHL proteins;
481  structural analysis of this part of C. elegans LIN-41 suggests that it forms a classic IG-like domain
482  fold (Tocchini et al. 2014). The IG domain has been proposed to function, along with the coiled-
483  coil domain, as a binding platform for proteins that repress the translation of NHL-bound target
484  mRNAs (Loedige et al. 2013). lin-41(ma104) is a hypomorphic allele that likely disrupts the

485  structure and function of the LIN-41 IG domain (Tocchini et al. 2014). As previously reported
486  (Spike et al. 2014b), outcrossed lin-41(ma104) mutant hermaphrodites have mild oocyte

487  defects and a reduced, but still substantial, brood size of 181 progeny (n=12). Deletion of the I1G
488  domain in the context of GFP::LIN-41 (GFP::LIN-41[AIG]) results in stronger defects. Most lin-
489  41(tn1541tn1571) hermaphrodites are fertile, with a very low brood size (11 progeny) and

490  obvious defects in oogenesis (Table 1 and Figure S3, C and D). Both alleles also result in worms
491  with an obviously Dpy body shape. Thus, despite the difference in brood size, the alleles that
492  affect the IG domain are hypomorphic and reduce both the germline and somatic functions of
493  lin-41. Indeed, it is potentially misleading to conclude that the relative severities of lin-

494  41(mal04)and lin-41(tn1541tn1571) are meaningful, as LIN-41 function may be slightly

495  compromised in the lin-41(tn1541) mutant despite its wild-type brood size (316 + 39; Table 1;
496  Spike et al. 2014a). For example, the introduction of the LIN-41[D1125N] amino acid change
497  that results in a temperature-sensitive (ts) phenotype in an otherwise wild-type LIN-41 protein
498  (e.g.: lin-41(tn1487(ts); 100% fertile at 15°C (n=224), average brood size of 104 (n=64); Spike et
499  al. 2014a) results in a stronger, but still hypomorphic, phenotype in a GFP::LIN-41 mutant

500 background (e.g.: lin-41(tn1541tn1548); 71% fertile at 15°C (n=21), average brood size of 3

501  (n=15)).
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502  The NHL domain: Deletion of the C-terminal NHL domain in the context of GFP::LIN-41

503  (GFP::LIN-41[ANHL]) results in a strong loss-of-function lin-41 phenotype. Whereas lin-

504  41(tn1541) hermaphrodites are fertile, with normal oocyte development and overall

505 appearance, nearly all (98.5%) lin-41(tn1541tn1618) hermaphrodites are sterile and have a Dpy
506  body shape (Table 1). Oogenesis is extremely abnormal in most animals (Figure S3, G and H),
507 although lin-41(tn1541tn1618) hermaphrodites appear capable of producing embryos on

508 occasion (Table 1 and Figure S3, | and J). The fact that deletion of the LIN-41 NHL domain does
509  not result in 100% sterility is surprising because the /in-41(n2914) null mutation has never been
510 observed to produce progeny. Thus, LIN-41 can exhibit some, albeit very low, biological

511  function in the absence of the NHL domain. We suggest, that this low-level function may be
512  mediated through components of the LIN-41 RNP (Spike et al. 2014b; Tsukamoto et al. 2017).
513  We confirmed that CDK-1 exhibits premature activation in post-dauer lin-41(tn1541tn1618)
514  mutants, as it does in lin-41(n2914) null mutants, by staining adult hermaphrodite germlines
515  with an antibody specific to histone H3 phosphorylated on Serine 10 (pH3(510)). This antibody
516  stains the nucleoplasm and condensed chromosomes of wild-type diakinesis-stage oocytes as
517  they prepare enter M-phase near the spermatheca (Hsu et al. 2000). Both M-phase and anti-
518  pH3(S10) staining occur prematurely in strong loss-of-function /in-41 mutants and are cdk-1-
519 dependent (Spike et al. 2014a). As expected for a strong loss-of-function mutant, and

520  consistent with the idea that premature M-phase entry and CDK-1 activation occur

521  prematurely, we detected pH3(S10)-positive condensed chromosomes in or near the loop

522  region of the gonad, and just after the end of pachytene, in most lin-41(tn1541tn1618) oogenic

523  germlines (n=6/9). Interestingly, GFP::LIN-41[ANHL] forms abnormal aggregates in the oocytes
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524  of lin-41(tn1541tn1618) homozygotes; these aggregates are not seen in heterozygotes (Figure
525 S3, G, |, and K). The reason for this aberrant pattern of localization is unknown, but GFP::LIN-
526  41[ANHL] aggregation is also seen in post-dauer lin-41(tn1541tn1618); cdk-1(RNAi) animals

527  (n=32), and therefore does not depend on the dysregulation of cdk-1 function that occurs

528  during oogenesis in strong loss-of-function /in-41 mutants (Spike et al. 2014a). These aggregates

529  may reflect abnormal biogenesis of LIN-41 RNPs in the absence of the NHL domain.

530 Meiotic degradation domains are nonessential: We initially hypothesized that the deletion of
531  LIN-41 degradation domains might result in a gain-of-function phenotype that would impact
532  fertility or embryonic viability. However, lin-41(tn1541tn1643), a large deletion that removes
533  Deg-A, the RING finger, and Deg-B in the context of GFP::LIN-41, behaves as a recessive

534  hypomorph that preferentially affects germline function. Homozygous mutants do not have a
535  strong Dpy phenotype, but do have an extremely small brood size and display obvious defects
536 in oogenesis and embryogenesis (Table 1 and Figure S2, O and P). In contrast, heterozygous lin-
537  41(tn1541tn1643) mutants appear essentially normal (n=20). This is also true for deletions that
538  subdivide the large N-terminal region of LIN-41, such as lin-41(tn1541tn1620) and lin-

539  41(tn1541tn1622) (Table 1 and Figure S2, A-H). Indeed, even when homozygous, the relatively
540 small Deg-A deletion (lin-41(tn1541tn1638)), which results in abundant GFP::LIN-41[ADeg-A] in
541  early embryos, appears to have minimal consequences for GFP::LIN-41 function at 20° (Table 1
542  and Figure S2, M and N). Likewise, animals expressing LIN-41[T83] and GFP::LIN-41[T83] appear
543  essentially wild-type; the latter have only a slightly reduced brood size relative to GFP::LIN-41-
544  expressing controls (Table 1 and Figure S4, G and H). Consequently, we decided to look carefully
545  atthe ovulation rates of the minimally affected LIN-41 Deg-A deletion (/lin-41(tn1541tn1638))
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and T83A point mutants (/lin-41(tn1541tn1645) and lin-41(tn1767)). Oocyte meiotic maturation
is a rate-limiting step for hermaphrodite fertility and the ovulation rate approximates the rate
of oocyte meiotic maturation (McCarter et al. 1999; Miller et al. 2001, Govindan et al. 2006).
Importantly, several aspects of nuclear and cytoplasmic oocyte maturation occur prematurely
in lin-41(If) mutations (Spike et al. 2014a,b; Tsukamoto et al. 2017). Deg-A domain mutants
exhibit mean ovulation rates that are significantly reduced relative to genotype-matched
controls (Figure 2H). Interestingly, the mean ovulation rate of the lin-41(tn1541) control strain
was elevated relative to wild-type animals (Figure 2H, 3.4 vs 2.9 ovulations/gonad arm/hr).
Together, these observations suggest that (1) /lin-41(tn1541) might be a weak hypomorph that
causes a slight increase in the oocyte maturation rate and (2) Deg-A domain mutants cause the
opposite phenotype, a reduced oocyte maturation rate. These changes in the rate of oocyte
maturation are relatively modest, however, and our phenotypic analyses generally suggest that
the elimination of LIN-41 from early embryos is not a critical control point for regulating LIN-41

function or activity levels in vivo.

LIN-41[Deg] domains are sufficient for degradation

OMA-1 and OMA-2 (OMA-1/2) are functionally redundant cytoplasmic RNA binding proteins
expressed in oocytes and early embryos (Detwiler et al. 2001) that co-purify with LIN-41 RNP
complexes (Spike et al. 2014b, Tsukamoto et al. 2017). OMA-1/2 levels remain high in 1-cell
embryos until the first mitotic division, when they are rapidly degraded (Lin 2003; Nishi and Lin

2005; Shirayama et al. 2006; Stitzel et al. 2006). The expression and subsequent elimination of
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567 OMA-2 can be easily visualized in oma-2(cp145) mutants (Dickinson et al. 2015; Figure 3A and
568  Figure S7, A and B), which express an mNeonGreen-tagged form of OMA-2 that is largely

569  functional in vivo (Table 2, compare oma-1(zu405te33); oma-2(cp145) to oma-1(zu405te33);
570 oma-2(te51) and oma-1(zu405te33)). Based on these attributes, we decided to test whether
571  the LIN-41 Deg domains are sufficient to induce the premature degradation of mNG::OMA-2
572  during meiosis. Molecularly, we chose to place LIN-41 DEG domains between mNeonGreen and
573  OMA-2 (Figure 3, A—C), as this is similar to their locations in GFP::LIN-41 (Figure 2, A and B) and
574  no structural (e.g., X-ray crystallographic) data are available to aid the experimental design.

575  Using the same method that Dickinson et al. (2015) used to make oma-2(cp145), we created
576  two new oma-2 alleles that also contain lin-41-encoded Deg domains and examined the pattern

577  of mNG::DEG::OMA-2 accumulation prior to the first mitotic division (Figure 3 and Figure S7).

578 We began by testing LIN-41 Deg-A, which contains the possible CDK-1 target site (T83)
579  required for the elimination of LIN-41. oma-2(tn1760) mutants express mNG::Deg-A::OMA-2 in
580  oocytes and 1-cell embryos. Similar to mNG::OMA-2, this protein is present in 1-cell embryos
581  just prior to the first mitotic division but eliminated from older embryos (Figure 3, D and E, and
582 Figure S7, A, B, E, and F). Indeed, the only obvious difference was the amount of mNG in older
583  1-cell pronuclear stage embryos, which was significantly reduced in oma-2(tn1760) embryos
584  compared to oma-2(cp145) controls (compare Figure 3, D and E, and Figure S8A). This reduction
585  might be caused by Deg-A-mediated destabilization of the mNG::0OMA-2 fusion protein (see
586  below), but is not equivalent to the rapid elimination of GFP::LIN-41 that occurs in meiosis |
587  (Movie S1 and Figure 1). Because Deg-A on its own was not sufficient to trigger the rapid

588  elimination of MNG::OMA-2 in 1-cell embryos, we tested LIN-41 Deg-A and Deg-B together.
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589  oma-2(tn1764) mutants express mNG::Deg-A, Deg-B::OMA-2 in oocytes, but in 1-cell embryos
590 the amount of mNG is substantially reduced or absent (Figure 3F and Figure S7, G and I). To
591  more precisely determine the stage at which mNG::DEG-A, Deg-B::OMA-2 is eliminated, we
592  used time-lapse imaging (Movie S3 and Figure 3, L-0). Levels of this fusion protein drop

593  somewhat during the first meiotic division (Figure 3, M and N) and become essentially

594  undetectable before the end of the second meiotic division (Figure 30). We conclude that Deg-
595  Aand Deg-B are sufficient in combination to trigger the rapid degradation of mNG::OMA-2

596  during meiosis, although this event is temporally delayed relative to GFP::LIN-41 (Figure 3P).

597 oma-1 and oma-2 share redundant functions during both oocyte and early embryo

598 development (Detwiler et al. 2001; Guven-Ozkan et al. 2008). Double mutants carrying strong
599 loss-of-function alleles (e.g., oma-1(zu405te33); oma-2(te51)) are sterile with a defect in

600 meiotic maturation (Detwiler et al. 2001; Table 1). For the most part, the embryonic functions
601 of oma-1/2 have been studied using conditions that reduce, but do not eliminate, OMA-1/2

602  function in embryos, such as double RNA interference (RNAi) or reduction-of-function alleles
603  that are incompletely sterile (Nishi and Lin 2005; Guven-Ozkan et al. 2008). In oma-

604  1(zu405te33); oma-2(tn1764) double mutants, OMA-2 is expressed during oogenesis but

605 eliminated prematurely from embryos. Consequently, these double mutants are very fertile but
606  produce progeny that die during embryogenesis (Table 2). Thus, as a novel allele that

607  specifically reduces embryonic OMA-2, oma-2(tn1764) may be useful for studying the

608  embryonic functions of oma-1/2. Our initial observations indicate that young oma-

609  1(zu405te33); oma-2(tn1764) embryos exhibit cell division defects and ectopic cleavage furrows
610  (Figure S8B); similar defects have been reported after oma-1/2(RNAi) depletion (Li et al. 2009).
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611 When combined with oma-1(zu405te33), oma-2(tn1764) exhibits a stronger embryonic
612  phenotype than either oma-2(cp145) or oma-2(tn1760). However, the severity of the oma-

613  1(te33zu405);, oma-2(tn1760) double mutant phenotype relative to oma-1(te33zu405); oma-
614  2(cpl45) was somewhat surprising (Table 2; 60 vs. 12% embryonic lethality). One possibility for
615  the stronger embryonic phenotype might be the reduction in mNG::Deg-A::OMA-2 levels

616  observed in oma-2(tn1760) pronuclear-stage embryos (Figure 3E and Figure S8A). We examined
617  this more closely by crossing each mNG-tagged oma-2 allele into an emb-30(tn377ts) mutant
618  background. emb-30 encodes a subunit of the Anaphase Promoting Complex (APC), and adult
619  emb-30(tn377ts) hermaphrodites upshifted to restrictive temperature (25°C) produce 1-cell
620 embryos that arrest in metaphase of the first meiotic division (Furuta et al. 2000). Arrest in

621  meiotic metaphase does not prevent or delay the elimination of GFP::LIN-41, which is

622 independent of APC function (Spike et al. 2014a). We observed that mNG::OMA-2 is turned
623  over in arrested meiotic embryos, but could typically be seen in 4 embryos in the uterus of

624  emb-30(tn377ts); oma-2(cp145) hermaphrodites after a 5-7 hour upshift to 25°C (Figure S8C).
625  In contrast, both of the LIN-41 Deg domain-containing OMA-2 proteins appeared to be less

626  stable under the same conditions. mNG::Deg-A, Deg-B::OMA-2 was seen in 0—1 mNG-positive
627 embryos and appeared to be the least stable (Figure S8E), as expected from our previous

628  analysis (Figure 3 and Figure S7). mNG::Deg-A::OMA-2 was seen in 2 mNG-positive embryos and
629 therefore appeared to be of intermediate stability (Figure S8D). Thus, although Deg-A is not
630  sufficient for rapid elimination, it likely reduces the stability of mNG::Deg-A::OMA-2 in meiotic
631  embryos. The consequent reduction in protein levels could contribute to the stronger oma-

632  2(tn1760) embryonic phenotype, although it also seems possible that insertion of LIN-41 Deg-A
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633  at the N-terminus of OMA-2 might perturb the nearby TAF-4 binding domain (Figure 3, A-C),

634  which is critical for the function of OMA-2 in embryos (Guven-Ozkan et al. 2008).

635

636  GFP:LIN-41 is eliminated from embryos by SCF****°

637  Several different Skp, Cullin, F-box (SCF)-containing E3 ubiquitin ligase complexes promote

638  protein degradation during meiosis and early embryogenesis in C. elegans (Peel et al. 2012; Du
639 etal. 2015; Beard et al. 2016). We initially used RNAi to knock down the functions of each of
640  the six cullins identified in the C. elegans genome (Kipreos et al. 1996; Nayak et al. 2002) to

641  determine whether an SCF-type E3 ligase is involved in the elimination of GFP::LIN-41. In

642  general, RNAi was initiated in lin-41(tn1541) hermaphrodites at the L4 larval stage and

643  GFP::LIN-41 was examined in adults, two days after the initiation of the RNAi treatment at 22°C.
644  Of the six cullins we tested, only the cul-1(RNAi)-treated animals produced multiple young

645  embryos with faint GFP::LIN-41 (n=12), suggesting that CUL-1 may be required to eliminate

646  GFP::LIN-41 from embryos. rrf-1(pk1417) mutants are RNAi-defective in certain somatic cells,
647  including the somatic gonad, but are sensitive to RNAi in the germline (Sijen et al. 2001; Kumsta
648 and Hansen 2012). Treatment of rrf-1(pk1417) lin-41(tn1541) hermaphrodites with cul-1(RNAi)
649  alsoresulted in the failure to eliminate GFP::LIN-41 from early embryos (n=54; Figure 4C).

650 Together, these results suggest that a germline-expressed CUL-1-containing SCF E3 ubiquitin
651  ligase may eliminate GFP::LIN-41 from early embryos. At least three of the C. elegans cullins,
652  cul-1, cul-2 and cul-3, are important for normal embryonic development. We observed highly

653  penetrant embryonic lethality after treating rrf-1(pk1417) lin-41(tn1541) and lin-41(tn1541)
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654  animals with cul-1(RNAi) and cul-3(RNAi), respectively. However, cul-2(RNAi) did not result in
655  any obvious phenotypes. We therefore examined lin-41(tn1541); cul-2(or209ts) adults

656  upshifted to 25°C as L4s to assess whether cul-2 is important for the elimination of GFP::LIN-41
657  from embryos. GFP::LIN-41 was eliminated normally from the dead embryos produced by cul-
658  2(or209ts) parents at restrictive temperature (n=71), suggesting that a CUL-2-containing SCF E3

659  ubiquitin ligase is not involved in the elimination of GFP::LIN-41 from embryos.

660 In SCF-type E3 ligases, cullins interact with Skp-1-related proteins. Twenty-one Skp1-
661 related (skr) genes have been identified in C. elegans, and RNAi experiments suggest the closely
662  related skr-1 and skr-2 genes function in the germline and early embryo (Nayak et al. 2002;

663  Yamanaka et al. 2002; Shirayama et al. 2006; Fox et al. 2011; Mohammad et al. 2018). In

664  addition, both SKR-1 and SKR-2 can interact with CUL-1 (Nayak et al. 2002, Yamanaka et al.

665  2002). We therefore examined whether skr-1(RNAi), which likely reduces the function of both
666  skr-1 and skr-2, would prevent the elimination of GFP::LIN-41 from early embryos. lin-

667  41(tn1541); skr-1(RNAi) animals produced embryos with defects in the elimination of GFP::LIN-
668 41 two days after RNAi treatment (n=26; Figure 4B). Treatment of rrf-1(pk1417) lin-41(tn1541)
669  animals with skr-1(RNAi) also prevented the elimination of GFP::LIN-41 from early embryos
670  (n=14). In addition, the rrf-1(pk1417) lin-41(tn1541) mutants treated with skr-1(RNAi) for two
671  days at 22°C exhibited defects in germline morphology and embryo production that are

672  consistent with the phenotypes previously described after skr-1/2(RNAi) (Nayak et al. 2002).

673 At least three F-box-containing substrate recognition subunits, LIN-23, PROM-1, and

674  SEL-10, are thought to function with either SKR-1 or SKR-2 and CUL-1 in the C. elegans germline
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675  or early embryos (Peel et al. 2012; Du et al. 2015; Kisielnicka et al. 2018; Mohammad et al.

676  2018). LIN-23, SEL-10 and their vertebrate orthologs (3-TrCP and Fbw?7, respectively) regulate
677  the cell cycle and cell cycle-dependent protein degradation (Kipreos et al. 2000; Nakayama and
678  Nakayama 2005; Welcker and Clurman 2008; de la Cova and Greenwald 2012). Because the
679  rapid elimination of GFP::LIN-41 appears to be coupled to meiotic maturation, a cell-cycle

680 event, we used RNAi to knock down the activities of /in-23 and sel-10 as a first step toward the
681  analysis of candidate F-box proteins. lin-23(RNAi) had no effect on the elimination of GFP::LIN-
682 41 from rrf-1(pk1417) lin-41(tn1541) embryos (n=52; Figure S9C). Consistent with this

683  observation, mutations designed to prevent the phosphorylation of a possible 3-TrCP binding
684  site near the amino-terminus of LIN-41 (amino acids 32—38) also do not prevent the elimination
685  of GFP::LIN-41 from embryos (lin-41(tn1541tn1668); Figure S5, D and E). However, sel-10(RNAi)
686  did prevent the elimination of GFP::LIN-41 from rrf-1(pk1417) lin-41(tn1541) embryos (n=17).
687  Similarly, the elimination of GFP::LIN-41 from young embryos is prevented by the strong loss-of-
688  function mutations sel-10(ok1632) and sel-10(ar41) (Figure 4, D, E, G, and I). All of our sel-

689  10(ar41) strains also contain lon-3(e2175), a convenient cis-linked marker that encodes a cuticle
690  collagen (Nystréom et al. 2002; Suzuki et al. 2002). GFP::LIN-41 is eliminated normally from lon-
691  3(e2175) mutant embryos (Figure 4F). Finally, we observed that se/-10(n1077), which has both
692  gain-of-function and loss-of-function properties (Jager et al. 2004), fails to eliminate GFP::LIN-
693 41 from early embryos (Figure 4J). Genetic and physical interactions indicate that SEL-10 and
694  SKR-1 function together in C. elegans (Killian et al. 2008; Kisielnicka et al. 2018). Because our
695  skr-1(RNAIi) experiments are likely to also target skr-2 (Nayak et al. 2002), we are unable to

696 parse out the relative roles of SKR-1 and SKR-2 at this time. Collectively, these observations
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SEL-10

697  suggest that a germline-expressed SCF E3 ubiquitin ligase containing SKR-1/2, CUL-1 and

698  SEL-10is likely involved in the elimination of GFP::LIN-41 from early embryos (Figure 5E).

699

700  SEL-10 functions through LIN-41 degradation domains

701 LIN-41 can be detected in sel-10(ok1632) mutant but not wild-type embryos by western blot
702  analysis (Figure S6C), indicating that endogenous and GFP-tagged LIN-41 behave similarly. We
703 hypothesized that the Deg domains are likely used to target LIN-41 for degradation by SCF>*-°.
704  To test this hypothesis, we examined whether the premature elimination of mNG::Deg-A, Deg-
705  B::OMA-2, which is mediated by the LIN-41 Deg domains, is prevented in sel-10 mutant

706  embryos. Although mNG::Deg-A, Deg-B::OMA-2 is eliminated by the pronuclear stage in

707  otherwise wild-type 1-cell embryos, mNG::Deg-A, Deg-B::OMA-2 levels remain high in lon-

708  3(e2175) sel-10(ar41) embryos at the same stage of embryonic development (Figure 3, F, G, J,
709 and K, and Figure S7, G, H, K, and L). As for GFP::LIN-41, this is not caused by the cis-linked

710  marker lon-3(e2175) (Figure S7, | and J). These observations suggest that sel-10(ar41) should
711 suppress the completely penetrant maternal-effect lethal phenotype exhibited by oma-

712 1(zu405te33); oma-2(tn1764) mutants (Table 2). Consistent with this expectation, oma-

713 1(zu405te33); oma-2(tn1764) lon-3(e2175) sel-10(ar41) animals produce hatchlings and can be
714  maintained as a homozygous strain (Table 2). However, we note that sel-10(ar41) is a relatively
715  weak suppressor of the oma-1(zu405te33); oma-2(tn1764) maternal-effect lethal mutant

716  phenotype, since only 10-15% of the embryos produced by oma-1(zu405te33); oma-2(tn1764)

717  lon-3(e2175) sel-10(ar41) animals hatch. This observation is consistent with the possibility that
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718  mNG::Deg-A, Deg-B::OMA-2 may only be partially functional in the 1-cell embryo. One

719  possibility is that the Deg-A, Deg-B insertion perturbs OMA-2 function. Additionally, sel-

720  10(ar41) mildly reduces mNG::OMA-2 accumulation in the germline likely through effects on
721  GLD-1 (see below). Although the degradation of OMA-1, and presumably OMA-2, appears to be
722  mediated by several SCF E3 ubiquitin ligases, SEL-10 has not been implicated in this process

723  (Shirayama et al. 2006; Du et al. 2015). Indeed, mNG::OMA-2 is degraded at the expected time
724  inoma-2(cpl145) lon-3(e2175) sel-10(ar41) embryos (Figure S7, C and D). Likewise, mNG::Deg-A,
725  Deg-B::OMA-2 levels only remain high until the end of the 1-cell stage in oma-2(tn1764) lon-
726  3(e2175) sel-10(ar41) embryos, when the degradation of OMA-2 is normally initiated (Figure S7,
727  Kand L). We conclude that SEL-10 is not required for the elimination of OMA-2 and likely

728  functions through the LIN-41 Deg domains to promote the proteolytic degradation of LIN-41

729  and mNG::Deg-A, Deg-B::OMA-2 during meiosis.

730

731  SEL-10is required for the CDK-1-dependent elimination of GFP::LIN-41

732 Substrate recognition subunits such as SEL-10 recognize their targets by binding to short linear
733  sequence motifs called degrons (Lucas and Ciulli 2017). LIN-41 Deg domains were therefore

734  examined for sequences similar to the SEL-10/Fbw7/Cdc4 degron consensus sequence

735  OD[pT/pS]PXX[pT/pS/E/D], where ® represents a hydrophobic amino acid. This degron is

736  commonly referred to as a Cdc4 phosphodegron or CPD; it contains two essential residues, a
737  phosphorylated residue that is typically a phosphothreonine, immediately followed by a proline

738  (pTP) (Nash et al. 2001). Residues surrounding LIN-41 T83, which is important for the
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739  elimination of LIN-41 from embryos, are poor matches to this consensus sequence (sequence
740  FDTPPSM, mismatches are underlined; Figure S10). The best match to a high-affinity CPD

741  appears to be around residue T340 in the LIN-41 Deg-B2 domain (sequence LATPMSS; Figure
742  S10). This was the only candidate Fow7 binding site identified in LIN-41 using the Eukaryotic
743  Linear Motif (ELM) database (Gouw et al. 2018), which requires a perfect match to a relatively
744 stringent consensus sequence. However, changing T340 to an alanine (T340A) (e.g.: lin-

745  41(tn1541tn1775) has no effect on the elimination of GFP::LIN-41 from embryos (Figure 2C and
746  Figure S4, K and L). Therefore, if SEL-10 binds directly to LIN-41 Deg domains it might recognize
747  imperfect or lower-affinity degrons. We note that the SEL-10 ortholog Cdc4p utilizes multiple
748  imperfect degrons to target the cell division protein Siclp for degradation (Nash et al. 2001).
749  Likewise, multiple weak degrons in an intrinsically disordered region of the c-Jun protein

750  synergize to promote a high-affinity interaction with the SEL-10 ortholog Fbw7 (Csizmok et al.
751  2018). It seems plausible that SEL-10 might function similarly. Alternatively, the failure to

752 eliminate LIN-41 from embryos could be an indirect consequence of the lack of SCF***°. To

753  begin to address this possibility, we sought to clarify the epistatic relationships between sel-10

754  and other factors involved in the elimination of GFP::LIN-41 from embryos.

755 CDK-1 was previously shown to be required for the elimination of GFP::LIN-41 (Spike et
756  al. 2014a). Likewise, cdk-1(RNAi) on rrf-1(pk1417) lin-41(tn1541) hermaphrodites prevents the
757  elimination of GFP::LIN-41 from embryos (n=67; Figure S9, A and B). Therefore, germline-

758  expressed CDK-1 likely promotes the elimination of GFP::LIN-41. CDK-1 is a conserved and

759  essential cell-cycle regulator required for M-phase entry and progression during both meiotic
760  and mitotic cell divisions (Boxem et al. 1999). Consequently, most cdk-1 alleles are sterile,
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761  precluding the examination of GFP::LIN-41 in cdk-1 mutant embryos. Two temperature-

762  sensitive alleles of cdk-1 that produce oocytes have been described; both cause a later

763  embryonic arrest phenotype than the 1-cell meiotic arrest phenotype seen after cdk-1(RNAI)
764  (Boxem et al. 1999; Shirayama et al. 2006). Furthermore, although both mutations alter

765  residues in the T loop/activation domain of CDK-1, neither cdk-1(ts) allele causes obvious cell-
766 cycle defects (Shirayama et al. 2006). We examined GFP::LIN-41 in cdk-1(ne2257ts) animals at
767  the restrictive temperature and found that GFP::LIN-41 disappears normally from embryos
768  (n=57; Figure S9, E and F). Similarly, GFP::LIN-41 disappears normally in cks-1(ne549ts) mutant
769  embryos (n=33; Figure S9, G and H), which phenotypically resemble cdk-1(ne2257ts) embryos
770  at the restrictive temperature (Shirayama et al. 2006). Thus, the subset of CDK-1 activities

771  affected by cdk-1(ne2257ts) does not include either the elimination of GFP::LIN-41 or entry into

772  meiotic M phase.

773 Kinases other than CDK-1 might play a role in the SEL-10-mediated elimination of LIN-
774  41.Indeed, WEE-1.3, a kinase that negatively regulates CDK-1 (Burrows et al. 2006), prevents
775  the premature elimination of GFP::LIN-41 from oocytes (Spike et al. 2014a). However, our

776 attempts to identify additional kinases that affect the elimination of GFP::LIN-41 have so far
777  been unsuccessful. For example, the mitogen-activated protein (MAP) kinase MPK-1 is active in
778  the late stages of oogenesis and is an important regulator of oocyte meiotic maturation (Lee et
779  al. 2007). Furthermore, as a proline-directed serine/threonine kinase, MPK-1 could potentially
780  phosphorylate CPDs in LIN-41 Deg domains. However, GFP::LIN-41 disappears normally in mpk-
781  1(galllts) embryos at the restrictive temperature (n=97; Figure S9, |-L). Likewise, the Aurora
782  kinase AIR-2 is present and active in maturing oocytes (Schumacher et al. 1998), but GFP::LIN-
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783 41 is eliminated normally after air-2 gene function is attenuated by air-2(or207ts) (n=14), by air-
784  2(RNAI) (n=40), or after air-2(RNAi) on air-2(or207ts) mutants (n=38; Figure S9, M and N). Other
785  single kinase knock-down or elimination experiments that have failed to affect the elimination
786  of GFP::LIN-41 from lin-41(tn1541) embryos include gsk-3(RNAi) (n=32), cdk-2(RNAi) (n=24), plk-
787  1(RNAi), and mbk-2(pk1427) (Spike 2014a). Since LIN-41 functions to inhibit CDK-1 activation
788  for M-phase entry during meiotic maturation (Spike et al. 2014a), CDK-1 may be the chief

789  effector kinase mediating feedback regulation of wild-type LIN-41.

790 SEL-10/Fbw7/Cdc4p degrons are only activated after being phosphorylated by a proline-
791  directed serine/threonine kinase such as CDK-1. Thus, prior phosphorylation by CDK-1 might be
792  required for SEL-10 to directly interact with degrons in the LIN-41 Deg domains. cdk-1(RNAI)
793  and sel-10(If) cause the same phenotype with respect to GFP::LIN-41 degradation, precluding a
794  direct analysis of their epistatic relationship. However, it is possible to examine this relationship
795  indirectly through wee-1.3 (Burrows et al. 2006). GFP::LIN-41 is eliminated prematurely when
796  wee-1.3 function is attenuated by RNAI; this occurs in both wild-type (Spike et al. 2014a) and
797  lon-3(e2175) mutants (n=21; Figure 5, A and B). When the same experiment is performed in

798  lon-3(e2175) sel-10(ar41) mutants, however, GFP::LIN-41 is not eliminated prematurely.

799 Instead, GFP::LIN-41 persists, typically at reduced levels, in the proximal oocytes of lon-

800 3(e2175) sel-10(ar41); wee-1.3(RNAi) animals (n=51; Figure 5, C and D). Because CDK-1 is

801 prematurely activated, wee-1.3(RNAi) oocytes mature prematurely and exhibit numerous

802  defects (Burrows et al. 2006). Obvious oocyte abnormalities caused by strong wee-1.3(RNAI)
803  are evident in sel-10(ar41) mutants, confirming that these animals are competent to respond to
804  wee-1.3(RNAI) (Figure 5, compare B and D). We conclude that the epistatic relationship
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805 between wee-1.3 and sel-10 is consistent with the model shown in Figure 5E, which postulates
806  that active CDK-1 promotes the phosphorylation of LIN-41 and its subsequent destruction by an

807  SCF*"'°E3 ubiquitin ligase.

808

809  Embryonic LIN-41 does not strongly inhibit the expression of mRNAs repressed by LIN-41

810  LIN-41 represses the translation of several different mRNAs during oogenesis (Spike et al.

811  2014b; Tsukamoto et al. 2017). Their protein products normally begin to accumulate in late

812  oogenesis or early embryogenesis, and some are essential for normal development (Gomes et
813  al. 2001; Leacock and Reinke 2008; Tsukamoto et al. 2017). We therefore anticipated that the
814  failure to eliminate LIN-41 would result in the ectopic repression of these mRNAs, and that this,
815  inturn, might result in embryo or oocyte abnormalities. However, the lin-41(tn1767) mutant,
816  which fails to eliminate LIN-41[T83A] from early embryos, appears essentially wild-type at 20°C
817  (Table 1). Similarly, sel-10(ok1632) and sel-10(ar41) mutants, which fail to eliminate LIN-41

818  from early embryos, produce large broods of progeny at 20°C that are similar in size to

819  genotype-matched controls (Table 3). Indeed, we only observed a moderate decrease in fertility
820  when sel-10(0k1632) mutants were grown at an elevated temperature (25°C; Table 3). We

821  therefore decided to examine the amount of protein made by several LIN-41 target mRNAs

822  (spn-4, meg-1, and orc-1 mRNAs, respectively) in strains that fail to eliminate LIN-41 from

823  embryos, as this should provide a sensitive way to monitor LIN-41 translational repression

824  activity. Protein expression was examined using fluorescently-tagged alleles of each gene; the

825  proteins made by spn-4(tn1699[spn-4::9fp::3xflag]), meg-1(tn1724[gfp::3xflag::meg-1]) and
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826  orc-1(tn1732[mng::3xflag::orc-1) were previously shown to be ectopically or prematurely

827  expressed in lin-41(If) oocytes (Tsukamoto et al. 2017). As described below, only minor

828  differences in protein expression were observed in lin-41(tn1767) and sel-10(ar41) embryos and
829  oocytes (Figure 6 and Figure S11). Collectively, these observations suggest that the ectopic LIN-
830 41 presentin lin-41(tn1767) and sel-10(If) embryos is largely ineffective at repressing

831 translation.

832 LIN-41 mediates 3’-UTR-dependent translational repression of spn-4, and spn-4 mRNA is
833  the most abundant and enriched mRNA in LIN-41 RNPs (Tsukamoto et al. 2017). SPN-4::GFP is
834  faint, but visible, in 1 or 2 proximal oocytes and rapidly accumulates during the oocyte-to-

835  embryo transition (Tsukamoto et al. 2017). This pattern, and the amount of SPN-4::GFP in early
836 embryos, is largely unaffected by lin-41(tn1767) and sel-10(ar41) at 20°C (Figure 6, A, B, G, and
837 H, and Figure S11, A, B, K, and L). Quantification of GFP levels revealed no differences in SPN-
838  4::GFP levelsin lin-41(tn1767); spn-4(tn1699) 1- and 2-cell embryos and a slight reduction in
839  SPN-4::GFP levels in spn-4(tn1699) lon-3(e2175) sel-10(ar41) 2-cell embryos relative to age and
840  genotype-matched controls (Figure 6, K and L). In these quantitative experiments, we analyzed
841  the anterior cytoplasm of 1- and 2-cell embryos and did not include the bright puncta of SPN-
842  4::GFP evident in the posterior cytoplasm (see Materials and Methods). Finally, we also failed to
843  identify any apparent differences in SPN-4::GFP accumulation or intensity in spn-4(tn1699) lon-
844  3(e2175) sel-10(ar41) (n=26) and spn-4(tn1699) lon-3(e2175) (n=19) animals upshifted as L4s to

845  25°C.
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846 GFP::MEG-1 expression is evident somewhat earlier in oogenesis than SPN-4::GFP and
847  seems to accumulate more slowly. Again, the pattern and amount of GFP::MEG-1 was largely
848  unaffected in lin-41(tn1767) and sel-10(ar41) mutants at 20°C (Figure 6, C, D, |, and J, and Figure
849 S11,C, D, G, and H). GFP::MEG-1 has a complex pattern of accumulation in the early embryo; it
850 appears to be eliminated from somatic blastomeres and localizes, at least partially, to P

851  granules (Figure 6C and Figure S11C), similar to what was previously described by Leacock and
852  Reinke (2008) for endogenous MEG-1. Due to these complexities, we quantified GFP::MEG-1
853 levels in the cytoplasm of proximal oocytes instead of embryos. There were no differences in
854  GFP::MEG-1 levels in lin-41(tn1767); meg-1(tn1724) animals and only a slight reduction in the —
855 1 oocytes of lon-3(e2175) sel-10(ar41); meg-1(tn1724) animals relative to controls. Finally, we
856  examined lon-3(e2175) sel-10(ar41); meg-1(tn1724) (n=17) and lon-3(e2175); meg-1(tn1724)
857  (n=15) animals upshifted as L4s to 25°C, but again failed to identify any apparent differences in

858 GFP::MEG-1 accumulation.

859 mNG::ORC-1 is not visibly expressed in oocytes but becomes increasingly evident in

860 embryos as they develop (Tsukamoto et al. 2017). mNG::ORC-1 associates with chromatin at
861  certain stages of the cell cycle (Sonneville et al. 2012), and is faintly visible in 1-cell embryos

862  during metaphase of the first mitotic division (Figure 6E). mNG::ORC-1 was only examined in /in-
863  41(tn1767) mutants at 20°C. As for SPN-4::GFP and GFP::MEG-1, the pattern and amount of

864  mNG::ORC-1 was largely unaffected by lin-41(tn1767) (Figure 6, E and F, and Figure S11, E and
865  F). Most importantly, the small amount of mNG::ORC-1 visible in 1-cell embryos was not

866  obviously reduced in the lin-41(tn1767) background. Because LIN-41 is a potent translational
867  repressor of spn-4, meg-1, and orc-1 (Tsukamoto et al. 2017), we conclude that a mechanism
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SEL-10

868  distinct from SCF -mediated degradation antagonizes LIN-41 function to promote their

869  expression during the late stages of oogenesis and the OET.

870 Because molecular tests failed to reveal an increase in LIN-41 activity in se/-10 mutants,
871  we also tested the ability of a sel-10(0ok1632) strong loss-of-function mutation to suppress the
872  temperature-sensitive lin-41(tn1487ts) allele at a semi-permissive temperature. This was found
873  not to be the case; rather, sel-10(0k1632) enhanced the lin-41(tn1487ts) defects (Table 3).

874  Taken together, these results indicate that the regulation of LIN-41 by sel-10 is nonessential.

875

876  SEL-10 promotes the elimination of GLD-1 from oocytes

877  GLD-1is a translational repressor that, like LIN-41, controls and coordinates oocyte

878  differentiation and cell cycle progression (Francis et al. 1995a,b; Jones et al. 1996). In gld-

879  1(q485) null mutants, pachytene-stage oocytes re-enter the mitotic cell cycle and form a tumor
880  (Francis et al. 1995a,b). GLD-1 also has redundant functions to inhibit the proliferative fate of
881  germline progenitor cells and to promote their entry into the meiotic pathway of development
882  during oogenesis and spermatogenesis, as well as a function to promote spermatogenesis in
883  hermaphrodites (Francis et al. 1995a,b; Kadyk and Kimble 1998). GLD-1 is abundantly expressed
884  during the early and middle stages of meiotic prophase, but eliminated from oocytes as they
885  progress from late pachytene through diplotene and to diakinesis during the later stages of

886  oocyte development (Jones et al. 1996). GLD-1 binds to, and represses the translation of, many
887  mRNAs that are normally translated in oocytes (Lee and Schedl 2001; Lee and Sched| 2004;

888  Schumacher et al. 2005; Wright et al. 2011; Jungkamp et al. 2011; Scheckel et al. 2012). Thus, it
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889  has generally been assumed that the elimination of GLD-1 from oocytes permits the translation
890  of these mRNAs (reviewed in Lee and Sched| 2010). Although it occurs at an earlier stage of
891  oocyte development, this model is analogous to what we originally hypothesized with respect
892  to LIN-41. However, because the LIN-41 ectopically found in sel-10 loss-of-function embryos
893  appears to be insufficient to sustain translational repression, it seems likely that the activity of
894  LIN-41 is also regulated by a non-proteolytic mechanism. Given the similarities between LIN-41
895 and GLD-1, we wondered whether GLD-1 might also be regulated by both proteolytic and non-

896  proteolytic mechanisms.

897 To begin to approach this question, we investigated whether the elimination of GLD-1,
898  like LIN-41, requires SEL-10. Surprisingly, we found that GLD-1::GFP and GLD-1 do indeed

899  persist at elevated levels in the oocytes of sel-10(ar41) and sel-10(ok1632) mutants (Figure 7, A
900 and B, and Figure S12, A, B, D, and E), indicating that LIN-41 and GLD-1 may be regulated

901  similarly. Indeed, while we were completing this work, the failure to eliminate GLD-1 in a timely
902 fashion from sel-10(ok1632) mutant oocytes was independently discovered by Kisielnicka et al.
903  (2018). Their results suggest that both GLD-1 and the cytoplasmic polyadenylation element-

904  binding protein CPB-3 are likely degraded by essentially the same SCF*™*°

E3 ubiquitin ligase

905 (Kisielnicka et al. 2018) that regulates LIN-41 (this work). Consistent with this hypothesis, they
906  observed that slow-migrating isoforms of GLD-1, which are likely phosphorylated (Jeong et al.
907 2011), accumulate in sel-10(ok1632) mutants. In agreement with this finding, we also observe

908 anincrease in the slow-migrating isoforms of GLD-1 in both sel-10(ok1632) and sel-10(ar41)

909  mutants relative to controls (Figure 7C).
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It was recently proposed that sperm trigger the proteasome-dependent elimination of
GLD-1 from oocytes such that a GFP::GLD-1 transgene (an N-terminal fusion) was expressed at
higher levels in unmated females than in mated females or hermaphrodites (Bohnert and
Kenyon 2017). We therefore decided to examine the localization of a rescuing GLD-1::GFP
transgene (a C-terminal fusion) in both wild-type and sel-10(ar41) mutant females, which lack
sperm. However, in our experiments, GLD-1::GFP did not persist at elevated levels in female
oocytes; instead, it was eliminated from oocytes in both the presence and absence of sperm
(Figure 7, A and D, Figure S12, A and C). Likewise, endogenous GLD-1, detected with specific
antibodies (Jan et al. 1999), also disappeared from oocytes in both hermaphrodites and females
(Figure S12, D and F). However, GLD-1::GFP levels remained elevated in the oocytes of sel-
10(ar41) mutant females (Figure 7E). Oocytes remain in the gonad for an extended period of
time in the absence of sperm (McCarter et al. 1999). Indeed, we noticed that there seemed to
be relatively less GLD-1::GFP in the sel-10(ar41) oocytes of females as compared to
hermaphrodites, possibly as a result of sel-10-independent protein turnover. From these
results, we conclude that the sel-10-dependent elimination of GLD-1::GFP is sperm-
independent. Furthermore, the expression patterns of GLD-1::GFP, which rescues the gl/d-
1(q485) null mutation to fertility (Schumacher et al. 2005; Figure 7A), and endogenous GLD-1
(Figure S12, D and F), fail to support the hypothesis that sperm trigger the elimination of GLD-1
from oocytes. We have tested the GFP::GLD-1 transgene (ax/s1498[pie-1p::gfp::gld-1::gld-1
3’UTR, unc-119(+)]; Merritt et al. 2008 ) used by Bohnert and Kenyon (2017) to monitor GLD-1
expression in females; however, we found that it fails to rescue gld-1(q485) null mutants to

fertility. Adult gld-1(q485); axIs1498 hermaphrodites are invariably sterile and exhibit a range
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932  of phenotypes from a tumorous phenotype that is equivalent to the null allele to the

933  production of abnormal oocytes. We analyzed 192 progeny from gld-1(q485)/+; axIs1498 adult
934  hermaphrodites; 53 (27.6%) were gld-1(q485); axls1498 and were sterile, consistent with the
935 inability of ax/s1498 to provide wild-type gld-1 function. We conclude that the increased

936  expression of GFP::GLD-1 observed in the oocytes of ax/s1498 females (Bohnert and Kenyon
937  2017)is most likely a transgene expression artifact and does not reflect the expression and

938  regulation of endogenous GLD-1.

939

940  Ectopic GLD-1 in proximal oocytes does not strongly inhibit the expression of mRNAs

941  repressed by GLD-1

942  Asfor LIN-41, we examined whether the mRNA targets of GLD-1-mediated translational

943  repression are ectopically repressed in sel-10(ar41) mutant oocytes. Studies of GLD-1 function
944  in the proliferative versus meiotic entry decision of germline progenitor cells demonstrate that
945  GLP-1/Notch signaling functions to inhibit GLD-1 accumulation in the distal end of the germline.
946  When GLD-1 accumulates ectopically in g/p-1 mutants, or double mutants affecting the Pumilio
947  and FBF proteins FBF-1 and FBF-2, germline progenitor cells fail to proliferate and prematurely
948  enter the meiotic pathway of development (Crittenden et al. 2002; Hansen et al. 2004). Thus,
949  our initial expectation was that ectopic GLD-1 expression in proximal oocytes in strong sel-10
950 loss-of-function mutants might exert substantial effects on the repression of its mRNA targets.
951  Asfor LIN-41, this proved not to be the case; only subtle or modest effects were observed as

952 described below.
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953 GLD-1 binds the 3’-UTR of the spn-4 mRNA (Junkamp et al. 2011), which we initially
954  examined as a LIN-41 target, and GLD-1 appears to repress SPN-4 accumulation in the distal
955  germline (Mootz et al. 2004). As described previously, SPN-4::GFP expression was not strongly
956  affected by the sel-10(ar41) mutation (Figure S11, I-L) despite the ectopic expression of both
957  GLD-1 and LIN-41 (Figure 4 and Figure 7). MEX-3 is expressed in proximal oocytes and also

958  appears to be repressed by GLD-1 (Mootz et al. 2004; Jungkamp et al. 2011). We used the

959  fluorescently-tagged mex-3(tn1753[gfp::3xflag::mex-3]) allele to quantitatively examine the
960  expression of GFP::MEX-3 in these oocytes at both 20° and 25°C. GFP::MEX-3 levels were not
961 reduced in sel-10(ar41) oocytes at either temperature, but were generally very similar to the
962  wild-type controls (Figure 7F, and Figure S12H). In addition, we examined the expression of the
963  yolk receptor RME-2 (Grant and Hirsh 1999), a well-established target of GLD-1-mediated

964  translational repression (Lee and Schedl 2001; Junkamp et al. 2011; Wright et al. 2011). We
965  began by examining the expression of RME-2::GFP from pwis116[rme-2p::rme-2::GFP::rme-2
966  3’UTR]in oocytes at 22°C, to prevent transgene silencing. Again, the levels of RME-2::GFP were
967  similar in the proximal oocytes of sel-10(ar41) and wild-type controls (Figure 7, G and H).

968 Likewise, similar levels of endogenous RME-2 were seen in sel-10(ok1632) and wild-type

969  oocytes stained with anti-RME-2-specific antibodies (Figure S12, | and J). Finally, we examined
970  the expression of OMA-2, another well-established target of GLD-1-mediated translational

971 repression (Lee and Schedl 2004; Wright et al. 2011; Scheckel et al. 2012). As we examined the
972  expression of MNG::OMA-2 in sel-10(ar41) embryos in our analysis of LIN-41 Deg domains

973  (Figure S7, A-D; described above), we quantitatively compared the expression level of

974  mNG::OMA-2 expression in the proximal oocytes of the wild type and sel-10(ar41) mutants and
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975  observed a modest reduction (~¥30-50%) in mMNG::OMA-2 expression levels in sel-10(ar41)

976  mutants (Figure 71). This result is agreement with the finding that an antibody that detects

977  OMA-2 and its paralog OMA-1 exhibits a modest reduction in immuofluoresence staining (~10-
978  33%, depending on the region of the proximal gonad analyzed) in the sel-10(ok1632) strong

979  loss-of-function mutant (Kisielnicka et al. 2018).

980 Collectively, these results suggest that the ectopic GLD-1 in se/-10 mutant oocytes is

981  minimally effective at repressing translation of mRNA targets. The observation that some

982  targets (e.g., spn-4, mex-3, and rme-2) might be unaffected by ectopic GLD-1, whereas others
983  (e.g., oma-2) are modestly affected, is consistent with the observation that certain g/d-1 mutant
984  alleles disrupt binding and repression of some mRNA targets but not others (Schumacher et al.
985  2005). Furthermore, these observations are again consistent with the fact that se/-10 mutants
986 are viable and fertile (Table 3), as the efficient repression of proteins such as SPN-4, MEX-3 and
987 RME-2 during oogenesis should have negative consequences for embryonic development

988  (Draper et al. 1996; Grant and Hirsh 1999; Gomes et al. 2001).

989

990  The SCF™°-dependent degradation of LIN-41 and GLD-1 depend on different kinases

991  As described above, the SCF**"'°-dependent degradation of LIN-41 depends on CDK-1, but not
992  MPK-1 (Figure S9, I-L). Consequently, we examined the requirement of these kinases for the
993  SCF*"'%dependent degradation of GLD-1. Whereas cdk-1(RNAi) or cdk-2(RNAi) had no effect
994  on the accumulation of GLD-1::GFP in proximal oocytes (n=14 and n=23, respectively), we

995  observed ectopic expression of GLD-1::GFP in the proximal oocytes of ozIs5[gld-1::gfp]; mpk-
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996  1(gallits) hermaphrodites at the non-permissive temperature (Figure S13). Thus, although
997  both GLD-1 and LIN-41 are regulated by SCF**"'*-dependent degradation, the temporal and
998  spatial control of their accumulation during oogenesis is differentially responsive to protein

999  kinase signaling, befitting their individual biological functions in promoting oogenesis.

1000
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1001 DISCUSSION

1002  Feedback regulation of LIN-41 and the spatial control of oocyte meiotic maturation

1003  The oocytes of most sexually reproducing animals arrest in meiotic prophase for a prolonged
1004  period (reviewed by Huelgas-Morales and Greenstein 2017; Avilés-Pagan and Orr-Weaver

1005  2018). This conserved arrest likely enables transcriptionally quiescent oocytes to grow by

1006  accumulating cellular organelles and cytoplasmic factors needed for embryonic development.
1007 Indeed, in C. elegans oocyte growth and meiotic maturation are coordinately controlled by LIN-
1008  41. In the absence of LIN-41 function, pachytene-stage oocytes abruptly cellularize, activate
1009  CDK-1, and enter M phase (Spike et al. 2014a). A salient feature of C. elegans oogenesis is that
1010  meiotic maturation is restricted to the oocyte in the most proximal position adjacent the

1011  spermatheca. This restriction ensures that only fully grown oocytes undergo meiotic maturation
1012  when they are positioned to enter the spermatheca during ovulation so they can become

1013  fertilized. Genetic evidence suggests that OMA proteins function to inhibit LIN-41 to facilitate
1014  meiotic maturation of the most proximal oocyte (Spike et al. 2014a). Specifically, proximal

1015  oocytes fail to enter M phase in lin-41(ts); oma-1(null); oma-2(null) triple mutants; whereas,
1016  pachytene stage oocytes prematurely enter M phase in lin-41(null); oma-1(null); oma-2(null)
1017  triple mutants (Spike et al. 2014a). Thus, the OMA proteins are absolutely required to spatially
1018  restrict for M-phase entry to the —1 oocyte, where they counteract LIN-41’s inhibitory activity.
1019  Consistent with this idea, molecular evidence suggests that LIN-41 is inactivated as a

1020  translational repressor in the final stages of oogenesis (Spike et al. 2014a; Tsukamoto et al.

1021  2017), which precedes the elimination of LIN-41 upon the onset of meiotic maturation.
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Specifically, two targets of LIN-41-mediated translational repression, spn-4 and meg-1, are co-
expressed with LIN-41 in the most proximal oocytes. The expression of spn-4 and meg-1 in
proximal oocytes requires the function of the OMA proteins (Tsukamoto et al. 2017), consistent

with the idea that the OMA proteins antagonize LIN-41 function in the late stages of oogenesis.

Here we show that the SCF>®-*°

promotes the rapid ubiquitin-mediated degradation of
LIN-41 that leads to its elimination during meiosis |I. Analysis of sel-10 mutants indicates that
the inactivation and degradation of LIN-41 are separable; the LIN-41 that accumulates in sel-10
mutants appears to be largely inactive as a translational repressor. However, we did note that
several LIN-41 variants (LIN-41(T83A) and LIN-41(ADeg-A)), which are defective in the SCF**:*°-
mediated degradation, decrease the meiotic maturation rate. This finding is consistent with the

idea that LIN-41 inhibits meiotic maturation and that SCF>*"*°

-mediated degradation
constitutes a non-essential component of the regulatory mechanism. The nature of the
“primary” mechanism inactivating LIN-41 prior to its degradation is currently unknown but

could act on LIN-41 directly or another component of the large RNP complex it associates with

(Spike et al. 2014b; Tsukamoto et al. 2017).

LIN-41 and CDK-1 reciprocally inhibit one another’s activity. Thus, the “primary”
inactivation mechanism might play a key role in tipping the balance between LIN-41 and CDK-1
to generate a spatially restricted all-or-none meiotic maturation response. Upon its activation,
CDK-1 triggers meiotic maturation and promotes the SCF>*"'°-dependent elimination of LIN-41.
The elimination of LIN-41 requires the Deg-A and Deg-B domains in the LIN-41 N-terminal

region. The LIN-41 Deg-A and Deg-B domains are intrinsically disordered and contain
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1043  sequences that might function as phosphodegrons. The SCF>*"'°-dependent elimination of LIN-
1044 41 is blocked by the T83A mutation affecting a predicted CDK-1 phosphorylation site within the
1045  Deg-A domain, though whether this regulation is direct or indirect remains to be determined.
1046  We note one exception to the rule that CDK-1 activity promotes LIN-41 degradation. The lin-
1047  41(tn1541tn1618) mutation (Figure 2), which deletes the NHL domain, produces a strong loss-
1048  of-function lin-41 mutant phenotype in which pachytene-stage oocytes enter M phase

1049  precociously. Nonetheless, we observe that the GFP::LIN-41(ANHL) protein still accumulates in
1050 the proximal gonad, albeit in an aberrantly punctate pattern (Figure S3, G-J). Interestingly, in
1051  the presence of a wild-type LIN-41 protein, the GFP::LIN-41(ANHL) mutant protein accumulates
1052  normally and is subject to SCF*™**-dependent degradation on schedule. It may be that the
1053  accumulation of the GFP::LIN-41(ANHL) protein in a punctate pattern correlates with its

1054  inaccessibility to CDK-1-dependent regulation. Alternatively, the degradation of LIN-41 during
1055  meiotic maturation may depend on LIN-41 activity during pachytene, as could be the case if a
1056 component of the SCF**"'° degradation mechanism depends on lin-41 function for its synthesis

1057  or activity.

1058 The Deg domains may function as a timer to ensure that CDK-1 activity reaches an
1059  optimal threshold to ensure the successful completion of the meiotic divisions prior to the
1060 initiation of LIN-41 degradation. If LIN-41 is eliminated too early the fidelity of meiotic

1061  chromosome segregation may be compromised as is observed in certain hypomorphic lin-41
1062 mutant alleles (e.g., tn1487tn1515, tn1487tn1516, tn1487tn1536, and tn1487tn1539; Spike et
1063  al. 2014a). Thus, it will be important to elucidate the precise mechanisms by which the LIN-41

SEL-10

1064  Deg domains link CDK-1 activity to SCF -mediated degradation. The regulation of the G1/S
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phase transition in budding yeast provides a framework for thinking about this issue (Nash et al.
2001; Kdvomagi et al. 2011; Yang et al. 2013; reviewed by Hopkins et al. 2017). The cyclin-
dependent kinase complex, Cdk1-Clb5/6 promotes the entry into S phase but is inhibited by
binding to its inhibitor Sicl (Nugroho and Mendenhall 1994; Schwob et al. 1994). Sicl is a

¢ mediated

substrate of the Cdk1-Clb5/6 kinase, which phosphorylates Sicl to promote SCF
degradation (Verma et al. 1997; Feldman et al. 1997; Nash et al. 2001). The cyclin-dependent
kinase Cdk1-CIn1/2 initiates the decision to enter S phase during G1 and is not inhibited by
Sicl. Phosphorylation of Sicl by Cdk1-CIn1/2, while not sufficient to trigger Sicl degradation,
primes Sicl for multisite phosphorylation by Clb5/6. The Sicl CPD sequences contain multiple
sites for phosphorylation by both Cdk1-CIb5/6 and Cdk1-CIn1/2, which results in the switch-
like destruction of Sicl. A failure to degrade Sic1 substantially delays the G1/S transition,
whereas deletion of SIC1 causes DNA replication to initiate too early, resulting in genome
instability (Nugroho et al. 1994; Cross et al. 2007). Further dissection of the mechanism by

which the LIN-41 Deg domains function will illuminate whether analogous mechanisms are

employed in a developmental context.

Ubiquitin-mediated protein degradation and the OET

Signaling pathways and downstream kinase activation coordinate the cell-cycle and
developmental events that underpin oocyte and early embryo development. In C. elegans the
ERK MAP kinase signaling pathway and its effector kinase MPK-1 regulate pachytene

progression and multiple aspects of oogenesis, including oocyte growth and specific events that
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1086  occur during meiotic maturation (reviewed by Arur 2017). Consistent with these phenotypes,
1087  sustained activation of MPK-1 occurs during pachytene and in proximal oocytes (Lee et al.

1088  2007). Likewise, in proximal oocytes activated cyclin-dependent kinase CDK-1 regulates an

1089  important aspect of oocyte meiotic maturation by promoting the transition from meiotic

1090  prophase to meiotic M phase, as we have described. Once activated, CDK-1 phosphorylates the
1091  DYRK mini-brain kinase MBK-2 as part of an intricate regulatory mechanism that permits MBK-2
1092 activation near the end of the first meiotic division (Pellettieri et al. 2003; Stitzel et al. 2006,
1093  2007; Cheng et al. 2009; Parry et al. 2009). These three kinases (MPK-1, CDK-1, and MBK-2) all
1094  function, at least in part, to promote the degradation of one or more RNA-binding proteins

1095  during oogenesis or the OET.

1096 After meiosis, the OMA proteins are detectably phosphorylated by activated MBK-2
1097  (Nishi and Lin 2005). Phosphorylation by MBK-2 promotes a direct physical interaction between
1098 the OMA proteins and the transcription factor TAF-4; this permits the sequestration of TAF-4 in
1099  the cytoplasm and prevents the premature onset of zygotic transcription (Guven-Ozkan et al.
1100  2008). Furthermore, MBK-2-dependent phosphorylation primes the OMA proteins for

1101  phosphorylation by the glycogen synthase kinase GSK-3 and for degradation during the first
1102  mitotic division (Nishi and Lin, 2005; Shirayama et al. 2006). In addition to MBK-2 and GSK-3,
1103  the degradation of the OMA proteins requires the normal activities of additional kinases,

1104  including CDK-1/Cyclin B3, and several proposed E3 ubiquitin ligases (Shirayama et al. 2006; Du
1105 et al. 2015). The failure to degrade OMA-1 and eliminate it from early embryos is deleterious
1106  (Lin et al. 2003) and contributes to phenotypes exhibited by mutants that fail to degrade the
1107  OMA proteins (Shirayama et al. 2006). Indeed, the ectopic expression of OMA-1 in early
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1108  embryos represses the translation of at least one mRNA target of the OMA proteins, zif-1

1109  mRNA, but only when OMA-1 is not phosphorylated by MBK-2, as in the oma-1(zu405gf)

1110  mutant (Guven-Ozkan et al. 2010). Thus, the MBK-2-dependent phosphorylation of the OMA
1111 proteins not only primes these proteins for degradation but also inhibits their ability to function

1112  astranslational repressors.

1113 Likewise, the ability of GLD-1 to function as a translational repressor might be inhibited
1114 by MPK-1-dependent phosphorylation (Kisielnicka et al. 2018; this work). Since mpk-1 activity is
1115  also required for the elimination of GLD-1, MPK-1-dependent phosphorylation would

1116  coordinate the inactivation of GLD-1 as a translational repressor with GLD-1 degradation.

1117  Consistent with this hypothesis, MPK-1 promotes the phosphorylation of GLD-1 and promotes
1118  its SCF"%-mediated degradation (Kisielnicka et al. 2018; this work). Furthermore, this

1119  hypothesis potentially explains why the ectopic GLD-1 expressed in sel-10 mutant oocytes is

1120 relatively ineffective at repressing the translation of multiple target mRNAs.

1121 In sharp contrast to OMA-1 and GLD-1, our current understanding of the regulation of
1122 LIN-41 suggests that the inactivation of LIN-41 as a translational repressor is temporally and
1123 molecularly distinct from its degradation. Targets of LIN-41 translational repression such as spn-
1124 4 and meg-1 are actively translated prior to meiotic maturation and the CDK-1-dependent

1125  elimination of LIN-41. We have not yet determined that LIN-41 is phosphorylated by CDK-1 or
1126  any other kinase, as electrophoretic mobility changes are not reproducibly observed in sel-10
1127  mutants using several gel systems (unpublished results). The fact that spn-4 and meg-1 mRNAs

1128  are translated normally when cdk-1 function is attenuated by RNAi (Tsukamoto et al. 2018)
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1129  suggests that the CDK-1 is not required to inactivate LIN-41 as a translational repressor. In
1130  addition, we show here that mutations affecting the function of the LIN-41 Deg domains do not
1131 exhibit gain-of-function phenotypes or substantially repress the translation of LIN-41 target

1132 mMRNAs.

1133

1134  Multiple mechanisms regulate LIN-41 proteins

1135  LIN-41 was first identified through its role in the heterochronic gene regulatory pathway that
1136  controls the timing of postembryonic cell divisions and cell fate decisions in somatic cells in C.
1137  elegans (Reinhart et al. 2000; Slack et al. 2000; reviewed by Rougvie and Moss 2013). In this
1138  capacity, LIN-41 functions to repress the translation of several transcription factors, including
1139  LIN-29, MAB-3, MAB-10, and DMD-3, which play key roles in specifying somatic cell fates during
1140  the L4 and adult stages (Reinhart et al. 2000; Harris and Horvitz 2011; Aeschimann et al. 2017).
1141  LIN-41 binds to the mRNAs of these genes and represses their translation during early larval
1142  stages (e.g., L1-L3) (Aeschimann et al. 2017). The Let-7 microRNA promotes the switch from
1143  early larval stages to the L4 and adult stages by repressing translation of LIN-41 beginning in the
1144 L4 stage (Reinhart et al. 2000; Slack et al. 2000). This regulation is specific to the soma as the
1145  let-7(n2583ts) mutation does not increase the accumulation of LIN-41 in the oogenic germline
1146  (Spike et al. 2014a). It is not clear whether specific protein degradation mechanisms collaborate
1147  with Let-7-mediated regulation to ensure that LIN-41 does not perdure from the early larval
1148  stages into the L4 and adult stage in somatic cells. If such mechanisms exist, they are unlikely to

1149  depend solely on the Deg domains because lin-41 mutations affecting the Deg domains (e.g.,
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1150 tn1620,tn1622 tn1635, tn1638, tn1643, and tn1645) do not phenocopy let-7 mutations or
1151  exhibit dominant somatic defects. Additionally, the Deg mutations do not confer an overt lin-
1152  41(If) Dpy phenotype. Further, lin-41(tn1541tn1643[ADeg-A—-RING—Deg-B]) L3-stage larvae do
1153  not exhibit precocious adult alae (n=7; Ann Rougvie, personal communication) as is frequently
1154  observed in lin-41(n2914) null mutants (Slack et al. 2000). The Deg domains mediate LIN-41
1155  degradation during the OET over short time scales (i.e., 10-15 minutes), whereas the larval

SEL10_mediated

1156  stages last for hours. This difference may obviate a requirement for SCF
1157  degradation of LIN-41 during the larval stages. Interestingly, several lin-41 gain-of-function
1158 alleles affecting the N-terminal 39 amino acid residues result in a defect in tip retraction during
1159  male tail development resulting in the production of a leptoderan (Lep) tail characteristic of
1160  other rhabditid nematode species (Del Rio-Albrechtsen et al. 2006). These lin-41(Lep) gain-of-

1161  function alleles do not affect LIN-41 degradation during the OET and thus define a site for LIN-

1162 41 regulation in somatic cells, which could involve proteolytic degradation.

1163 LIN-41 is highly conserved. The mammalian ortholog LIN-41/TRIM71 is required for
1164  embryonic viability and neural tube closure in mice (Maller Schulman et al. 2008; Cuevas et al.
1165  2015; Mitschka et al. 2015). LIN-41/TRIM71 was found to promote reprogramming of dermal
1166  fibroblasts to induced-pluripotent stem cells (IPSC) through the negative regulation of

1167  differentiation genes including the transcription factor EGR1 (Worringer et al. 2014).

1168  Importantly, the Let-7 microRNA inhibits reprogramming in part through the repression of LIN-
1169  41. Thus, the regulation of LIN-41 by Let-7 is a conserved regulatory module. By contrast, the
1170  Deg domains of C. elegans LIN-41 are not found in the mammalian orthologs and appear to be

1171 rapidly evolving in closely related rhabditid nematodes.

57


https://doi.org/10.1101/378398
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/378398; this version posted July 26, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1172 Developing systems must deploy mechanisms to extinguish RNA-binding protein-

1173  mediated translational repression. Such mechanisms may function to promote translation of
1174  batteries of genes needed to drive developmental transitions. LIN-41-associated mRNAs include
1175  many key genes required for embryonic development (Tsukamoto et al. 2017). Thus the

1176  inactivation of LIN-41 likely plays a key role in shaping the proteome during the OET. The

1177  “primary” mechanism inactivating LIN-41 prior to its degradation, and its potential conservation
1178  in LIN-41 orthologs or members of the TRIM-NHL class of RNA-binding proteins, remain to be

1179 determined.

1180
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1606 TABLES
1607  Table 1 Fertility and fecundity of lin-41 alleles at 20°C
GENOTYPE PREDICTED FERTILE BrRoOD DEAD
PROTEIN (%)? Size® EMBRYOS
CHANGE (%)°
lin-41(tn1541) N-terminal 100 316 £39° 0.3
GFP (n=68) (n=6) (n=361)
lin-41(tn1541tn1618)°>" A NHL 15 1 ND
(AA 819-1128) (n=65) (n=1)
lin-41(tn1541tn1571)°>" A lg 78.5 11+12  57.19
(AA 677-824)  (n=65) (n=9) (n=35)
lin-41(tn1541tn1562)*" A Bbox-CC 84 6+3 ND
(AA 356-707)" (n=87) (n=17)
lin-41(tn1541tn1643)° A N-terminal 66 6+4 75.4°
(AA 40-356)  (n=90) (n=48) (n=142)
lin-41(tn1541tn1620)° A N-terminal 97 39+ 32 36.49
(AA 40-205)  (n=67) (n=10) (n=110)
lin-41(tn1541tn1622)° A Deg-B2 100 33+16 39.0¢°
(AA 206-356)  (n=65) (n=6) (n=105)
lin-41(tn1541tn1635) A Deg-B1 100 127 £+ 108 2.9
(AA 162-205)  (n=70) (n=10) (n=105)
lin-41(tn1541tn1630) A RING 98.5 210+87 2.8
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(AA 113-161)  (n=65) (n=12) (n=144)

lin-41(tn1541tn1638) A Deg-A 100 217 +103 6.3
(AA 40-112)  (n=70) (n=10) (n=174)

lin-41(tn1541tn1645)  T83A 100 251+86 1.0
(n=70) (n=10) (n=193)

lin-41(tn1767) T83A 98.3 31331 0.0

(n=120)  (n=6) (n=176)

1608 2 Fertile animals produced at least 1 viable offspring.

1609  ° The average number of progeny that hatched from fertile animals + the standard

1610  deviation.
1611  © The percent lethality among the embryos laid on Day 1 of adulthood.

1612  ° Essentially identical to the lin-41(tn1541) brood size previously reported in Spike et al.

1613 2014 (319 + 28 (n=30)).
1614  °The progeny of lin-41/hT2[qls48] hermaphrodites.

1615 ' These animals have a dumpy (Dpy) body shape, as previously described for lin-41(If)

1616 alleles (Slack et al. 2000).
1617 9 Some of the embryos laid were small or otherwise appeared to be abnormal.

1618 " The minimum number of amino acids removed by tn1562. Assuming the use of an in-
1619 frame 5’ splice site in the 17-bp insertion, either one amino acid (L) or five amino acids

1620  (LSPLL) would replace amino acids 356-707.
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Table 2 Sterility and embryonic lethality in oma-2 and oma-1; oma-2 mutant

strains at 20°C

Genotype

Embryos laid®

Dead embryos (%)

oma-2(cp145)

oma-2(tn1760)

oma-2(tn1764)

oma-2(tn1764) lon-3(e2175) sel-10(ar41)
oma-1(zu405te33)

oma-1(zu405te33); oma-2(te51) M+Z-°
oma-1(zu405te33); oma-2(cp145)
oma-1(zu405te33); oma-2(tn1760)
oma-1(zu405te33); oma-2(tn1764) M+Z-"*°
oma-1(zu405te33); oma-2(tn1764) lon-
3(e2175) sel-10(ar41) M+Z->"
oma-1(zu405te33); oma-2(tn1764) lon-

3(e2175) sel-10(ar41)

314 £ 48 (n=6)
306 + 39 (n=6)
300 + 45 (n=6)
288 + 26 (n=6)
261 + 18 (n=6)

0 (n>21)°

212 £ 29 (n=12)
224 + 35 (n=6)
249 + 29 (n=5)

246 + 32 (n=6)

196 + 56 (n=6)

0.6 (n=1793)
0.6 (n=1835)
2.1 (n=1797)
1.1 (n=1727)
0.8 (n=1568)

NA

12.3% (n=2516)

60.3 (n=1341)
100 (n>1256)

89.4 (n=1476)

84.9 (n=1175)

& Average number of embryos laid per worm + standard deviation.

® M+Z- animals were the progeny of nT1[qls51] balancer-containing parents, which are

heterozygous for both oma-1 and oma-2. All other animals were the progeny of parents

of the listed genotype.

¢ Sterile, with a defect in meiotic maturation as described by Detwiler et al. 2001.
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1628 ¢ Percent embryo lethality was variable among the 12 parents analyzed; it ranged

1629  between 6 and 35%.
1630  ° These animals lay many eggs, none of which hatch (n=30).
1631 ' These animals lay many eggs, some of which hatch (n=24).

1632
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1633  Table 3 sel-10 mutant brood sizes at 20° and 25°C

GENOTYPE T (°C) BrRooD Size

wild type 20 304.0 £ 31.1 (n=29)
wild type?® 25 266.8 + 39.0 (n=19)
sel-10(ok1632)? 20 258.3+ 67.7 (n=30)
sel-10(0k1632)? 25 72.2 + 34.0° (n=30)
lin-41(tn1487ts); sel-10(0k1632)° 20 3.2 + 3.4 (n=53)
lin-41(tn1487ts)* 20 41.4 + 23.8 (n=36)
lon-3(e2175) 20 294.5 + 36.7 (n=20)
lon-3(e2175) sel-10(ar41) 20 280.2 £ 40.1 (n=20)

1634 2 Newly fertilized embryos were collected at 15°C and shifted to 25°C.

1635  ° Approximately 10.0 + 5.3% of sel-10(ok1632) hermaphrodites (n=3568)
1636  are infertile, exhibiting incompletely penetrant sterility or maternal-effect

1637 lethality when grown and examined for seven generations at 25°C.

1638 ° The progeny of sel-10(ok1632); lin-41(tn1487ts)/hT2[qls48]

1639  hermaphrodites.

1640  ° The progeny of lin-41(tn1487ts)/h T2(qls48) hermaphrodites.
1641

1642

1643

1644
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1645 FIGURE LEGENDS

1646

1647  FIGURE 1. GFP::LIN-41 is eliminated during the first meiotic division. (A, B) Composite GFP (A)

1648  and DIC (B) images of a lin-41(tn1541[gfp::tev::s-tag::lin-41]) adult hermaphrodite. GFP::LIN-41
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1649 s apparent in the middle and proximal regions of the germline (solid outline, (A)), with reduced
1650 levels in the —1 oocyte immediately adjacent to the spermatheca (sp). The positions of some
1651  embryos (dashed outlines, (A)) and oocytes are indicated relative to the spermatheca in (B); a
1652  fertilized embryo in the spermatheca would be at the zero position. These labels and naming
1653  conventions are used throughout. 100 ms GFP exposures; scale bar, 50 um. (C-G) Time-lapse
1654  images of GFP::LIN-41 (white) and mCHERRY::HISTONE-labeled chromosomes (red) were

1655  acquired in a living lin-41(tn1541); itls37[pie-1p::mCherry:::H2B::pie-1 3’UTR, unc-119(+)] adult
1656  hermaphrodite by confocal microscopy. Images are shown for select time points (t) prior to
1657  meiotic maturation (C, t=—4.5 min), at ovulation (D, t=0 min), and during the first meiotic

1658  division (E, t=+4 min; F, t=+11.8 min; G, t=+16.9 min) as an individual oocyte (C, solid outline)
1659  progresses from the —1 to the +1 position and through the OET (D—G, dashed outlines). Scale
1660  bar, 50 um. Movie S1, worm #1, shows the complete time-lapse series from which the still
1661  images were taken. (H) Five oocytes were imaged as they progressed from the —1 position
1662  through meiotic divisions; the relative amount of background-corrected GFP::LIN-41 with

1663  respect to distal oocytes is shown on the graph at each time point. Three of the oocytes were
1664  also imaged at earlier stages as they moved from a more distal location (-2 oocyte (red) or —3
1665  oocyte (green) position) into the —1 oocyte position (blue), as indicated. Timing on the x-axis is
1666  relative to ovulation (t=0). Bars indicate the standard deviation for different meiotic events

1667  (e.g.: NEBD, nuclear envelope breakdown; Met, metaphase; Ana, anaphase).

1668

1669
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1670

1671  FIGURE 2. GFP::LIN-41 elimination requires two non-overlapping regions of LIN-41 and a

1672  potential phosphorylation site. (A) The exon-intron structure and deletion analysis of lin-
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1673  41(tn1541). Colored boxes indicate exonic regions that encode GFP (green) or previously

1674  described protein domains of LIN-41 (see (B)). Deletions made in the context of lin-41(tn1541)
1675  are drawn as lines, labeled with a deletion-specific allele name, below LIN-41-encoding exons
1676  and introns (exons labeled 1-15). GFP::LIN-41 can be detected in the germline of most deletion
1677  mutants (solid lines), with one exception (tn1628, dotted line). Deletions in red prevent the
1678  elimination of GFP::LIN-41 from early embryos. The vertical dashed lines delimit the beginning
1679  of Deg-A and the end of Deg-B, respectively. (B) The previously described (RING (yellow), B-box
1680  (gray), BBC (orange), Ig/filamin (purple), NHL (blue)) and newly-identified (Deg (red)) protein
1681  domains of LIN-41. The vertical dashed line in (B) indicates the two parts of Deg-B, B1 and B2,
1682  which are individually removed in lin-41(tn1541tn1635) and lin-41(tn1541tn1622), respectively.
1683  (C) The amino acid sequences of Deg-A, Deg-B1 and Deg-B2. Many of the amino acids are

1684  serines and threonines (underlined); some are potential targets of proline-directed

1685  serine/threonine [S/T] kinases (bold) and have had the [S/T] residue changed to an alanine
1686  (colored and bold) in the context of lin-41(tn1541). The T83A mutation in Deg-A results in the
1687  persistence of GFP::LIN-41[T83A] in embryos (red), whereas the other changes do not

1688  (indicated in blue font). (D—G) GFP::LIN-41 is eliminated from the early embryos (dashed

1689  outlines) of lin-41(tn1541) (D, control) and lin-41(tn1541tn1630) (E, RING deleted) homozygous
1690  mutants but persists in the early embryos of lin-41(tn1541tn1638) (F, Deg-A deleted) and lin-
1691  41(tn1541tn1645) (G, LIN-41[T83A]) homozygous mutants. The position of the spermatheca
1692  (sp) is indicated, for reference. 100 ms GFP exposures; scale bar, 20 um. (H) The rate of

1693  ovulation is slightly reduced in mutants with a compromised LIN-41 Deg-A domain. Ovulation

1694  rate is expressed as the number of ovulations/gonad arm/hour and was measured in at least 25
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1695  Day 2 adults. Significance was determined using a Student’s t test: P<.001 is indicated by 3
1696  asterisks, P<.0001 is indicated by 4 asterisks. itIs37[pie-1p::mCherry:::H2B::pie-1 3’"UTR, unc-
1697  119(+)] was also present in each of the GFP::LIN-41-expressing strains; it is not expected to alter

1698 the ovulation rate.

1699
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1700

1701  FIGURE 3. LIN-41 degradation domains when implanted into mNG::OMA-2 promote its rapid
1702  elimination during meiosis. (A—C) The exon-intron structures of oma-

1703  2(cpl45[mng::tev::3xflag::oma-2]), oma-2(tn1760[mng::tev::3xflag::deg-a::oma-2]) and oma-
1704  2(tn1764[mng::tev::3xflag::deg-a::deg-b::oma-2]). Boxes represent exonic regions that encode
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mNeonGreen (green), the tobacco etch virus cleavage site (TEV, dark gray), FLAG epitope tags
(light gray), LIN-41 Deg-A and Deg-B domains (red), the likely TAF-4 interaction domain of OMA-
2 (dark blue), two OMA-2 CCCH zinc fingers (white), and other OMA-2 coding sequences (cyan).
The position of LIN-41 T83 within the LIN-41 Deg-A domain is indicated by an asterisk. (D—K)
GFP (D-G) and DIC (H-K) images of oma-2(cp145) (D,H), oma-2(tn1760) (E,l), oma-2(tn1764) (F,
J) and oma-2(tn1764) lon-3(e2175) sel-10(ar41) (G, K) 1-cell embryos at pronuclear meeting (E,
), or just slightly later, as the pronuclei begin a counter-clockwise rotation (D, F-G, H, J, and K)
prior to NEBD and the first mitotic division. Part of a —1 oocyte is visible in (F, J) and is indicated
for reference. 150 ms GFP exposures; scale bar, 10 um. (L—0O) Time-lapse images of mNG::Deg-
A,B::OMA-2 (white) and mCHERRY::HISTONE-labeled chromosomes (red) were acquired in a
living oma-2(tn1764); itls37[pie-1p::mCherry:::H2B::pie-1 3’'UTR, unc-119(+)] adult
hermaphrodite by confocal microscopy. Images are shown for select time points (t) at ovulation
(L, t=0 min), during the first (M, t=+5 min, N, t=+10.5 min) and second meiotic divisions (O,
t=+24.5 min) as an embryo (dashed outline) progresses through both meiotic divisions. See
Movie S3 for the complete time-lapse sequence. Scale bar, 50 um. (P) A visual summary of the
dynamic expression patterns of mNG::OMA-2 (cyan), GFP::LIN-41 (red) and mNG::Deg-
A,B::OMA-2 (purple). Oocytes are to the left and embryos are to the right of the spermatheca

(sp). Meiotic embryos (MI, MIl) have completed their respective divisions.
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1724

1725  FIGURE 4. Subunits of the SCF**"'° E3 ubiquitin ligase are required for the elimination of

1726  GFP::LIN-41 from early embryos. (A—E) Composite images of GFP::LIN-41 in adult rrf-1(pk1417)
1727  lin-41(tn1541) hermaphrodites fed control RNAi bacteria (A), and adult hermaphrodites with
1728 reduced SCF**"'°E3 ubiqitin ligase activity (B—E): lin-41(tn1541); skr-1(RNAi) (B), rrf-1(pk1417)

1729  lin-41(tn1541); cul-1(RNAI) (C), lin-41(tn1541); lon-3(e2175) sel-10(ar41) (D), and lin-41(tn1541);
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1730  sel-10(ok1632) (E). 100 ms GFP exposures, brightened slightly (and equivalently) to better

1731  visualize embryonic GFP::LIN-41; scale bar, 50 um. (F-O) Images of 2-cell embryos removed
1732 from the uterus of hermaphrodites were imaged for GFP (F-J) and DIC (K—0O); the genotypes
1733  were as follows: lin-41(tn1541); lon-3(e2175) (F, K), lin-41(tn1541); lon-3(e2175) sel-10(ar41) (G,
1734 L), lin-41(tn1541) (H, M), lin-41(tn1541); sel-10(ok1632) (I,N), and lin-41(tn1541); sel-10(n1077)
1735  (J, O). Arrowheads indicate a few of the GFP::LIN-41 aggregates in the posterior blastomeres of
1736  sel-10 mutant embryos, which likely correspond to P granules. 300 ms GFP exposures; scale bar,

1737 10 pum.

1738
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1739

1740  FIGURE 5. SEL-10 is required for the WEE-1.3-inhibited degradation of GFP::LIN-41. (A-D)

1741  Composite GFP (A, C) and DIC (B, D) images of lin-41(tn1541); lon-3(e2175); wee-1.3(RNAi) (A,
1742  B) and lin-41(tn1541); lon-3(e2175) sel-10(ar41); wee-1.3(RNAi) (C, D) animals. GFP::LIN-41 is
1743  prematurely eliminated from oocytes by wee-1.3(RNAi) (arrowhead), but persists in abnormal
1744  oocytes near the spermatheca (sp, arrow) in sel-10(ar41); wee-1.3(RNAi) animals (C, D),

1745  suggesting that SEL-10 is required for this process. 150 ms GFP exposures, brightened slightly;
1746  scale bar, 50 um. (E) A simple model for the elimination of LIN-41 (green) that incorporates the
1747  known molecular functions of WEE-1.3 kinase, cyclin-dependent kinase (CDK-1) and subunits of
1748  the SCF*™"*°E3 ubiquitin ligase. In brief, we hypothesize that SEL-10 (orange) may recognize

1749  phosphorylated LIN-41 (green) and trigger its ubiquitin-mediated degradation in collaboration
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1750  with the other SCF E3 ubiquitin ligase subunits, SKR-1/2 (blue) and CUL-1 (blue). CUL-1

1751  orthologs bind RING finger proteins (RBX, gray), which recruit a ubiquitin-conjugating enzyme
1752  (UBC, gray) that catalyzes the transfer of ubiquitin (yellow) to protein substrates, such as LIN-
1753  41. Subsequent recruitment of poly-ubiquitinated substrates to the proteasome results in

1754  degradation (not shown). This model is consistent with the epistatic relationship between wee-
1755  1.3(RNAi) and sel-10(ar41) with respect to the elimination of GFP::LIN-41, but other models are

1756  also possible.

1757
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1758

1759  FIGURE 6. Persisting LIN-41 or LIN-41[T83A] does not strongly inhibit the expression of LIN-41
1760  targets of translational repression in young embryos. (A-J) Young embryos express similar

1761  levels of SPN-4::GFP (A, B, G, and H), GFP::MEG-1 (C, D, |, and J) and mNG::ORC-1 (arrowhead in
1762  E, F) when ectopic LIN-41[T83A] (B, D, and F; lin-41(tn1767) mutant embryos), ectopic LIN-41
1763  (H, J; sel-10(ar41) mutant embryos) or normal (undectable) levels of LIN-41 (B, D, F, H, and J)
1764  are present. Exposures were 100 ms for SPN-4::GFP, 200 ms for GFP::MEG-1 and 600 ms for

1765  mNG::ORC-1; scale bar, 10 um. (K) Quantification of the intensity of SPN-4::GFP expression in
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1766  spn-4(tn1699) and lin-41(tn1767); spn-4(tn1699) 1 and 2-cell embryos. No significant

1767  differences were seen (n.s.). (L) Quantification of the intensity of SPN-4::GFP expression in spn-
1768  4(tn1699); lon-3(e2175) and spn-4(tn1699); lon-3(e2175) sel-10(ar41) 1 and 2-cell embryos.
1769  Levels appeared to be slightly lower in the sel-10(ar41) 2-cell embryos (P<.001). Note that the
1770  slightly reduced level of SPN-4::GFP in image (H) relative to image (G) accurately illustrates the

1771  very modest magnitude of this difference in expression.

1772
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1773

1774  FIGURE 7. GLD-1 persists at elevated levels in the oocytes of sel-10(ar41) mutants. (A, B)
1775  Composite images of GLD-1::GFP in gld-1(q485); lon-3(e2175); ozls2[gld-1::gfp] (A) and gld-
1776  1(q485); lon-3(e2175) sel-10(ar41); ozls2[gld-1::gfp] (B) adult hermaphrodites. GLD-1::GFP
1777  levels remain elevated in the proximal oocytes (e.g.: —4 oocytes, arrowheads) of sel-10(ar41)

1778  animals (B) relative to controls (A). 17 ms GFP exposures, brightened slightly. (C) Slow-migrating
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1779  forms of GLD-1 (red arrow) are more abundant in sel-10(If) adult hermaphrodites than in sel-
1780  10(+) controls, where the fast-migrating form of GLD-1 (black arrow) predominates. (D, E)

1781  Composite images of GLD-1::GFP in fog-3(q470); lon-3(e2175); ozls2[gld-1::gfp] (D) and fog-
1782  3(q470); lon-3(e2175) sel-10(ar41); ozIs2[gld-1::gfp] females (E). GLD-1::GFP levels are elevated
1783  in the proximal oocytes (e.g.: —4 oocytes, arrowheads) of sel-10(ar41) females (B) relative to
1784  controls (A), although this is not as dramatic as in hermaphrodites. A somewhat longer GFP
1785  exposure (35 ms, brightened slightly) was needed than in (A and B), likely due to the presence
1786  of endogenous GLD-1. (F) Quantification of the intensity of GFP::MEX-3 in the proximal oocytes
1787  of lon-3(e2175); mex-3(tn1753) and lon-3(e2175) sel-10(ar41); mex-3(tn1753) hermaphrodites
1788  at 25°C. No significant differences were seen (n.s.). (G-H) Composite images of lon-3(e2175);
1789  pwisll16[rme-2p::rme-2::GFP::rme-2 3’UTR] (G) and lon-3(e2175) sel-10(ar41); pwis116 [rme-
1790  2p::rme-2::GFP::rme-2 3’UTR] (H) hermaphrodites at 22°C. 300 ms GFP exposures. Neither

1791  target of GLD-1 translational repression (MEX-3, RME-2) was strongly or even marginally

1792  reduced in expression in sel-10(ar41) oocytes. (I) Quantification of the intensity of mNG::OMA-2
1793  in the proximal oocytes of oma-2(cp145) lon-3(e2175) and oma-2(cp145) lon-3(e2175) sel-

1794  10(ar41) hermaphrodites at 20°C. Differences in expression were highly significant (P<.0001,
1795 indicated by 4 asterisks), but relatively modest in magnitude. For example, we measured a 37%
1796  reduction in average fluorescence in the —2 oocytes of sel-10(ar41) animals relative to the same

1797  oocytes in control animals. Scale bar, 50 um (A, B, D, E, G, and H).
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