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Abstract

Specific protein-protein interactions are crucial in most cellular processes. They enable multi-
protein complexes to assemble and to remain stable, and they allow signal transduction in
various pathways. Functional interactions between proteins result in coevolution between the
interacting partners, and thus in correlations between their sequences. Pairwise maximum-
entropy based models have enabled successful inference of pairs of amino-acid residues that
are in contact in the three-dimensional structure of multi-protein complexes, starting from the
correlations in the sequence data of known interaction partners. Recently, algorithms inspired by
these methods have been developed to identify which proteins are specific interaction partners
among the paralogous proteins of two families, starting from sequence data alone. Here, we
demonstrate that a slightly higher performance for partner identification can be reached by an
approximate maximization of the mutual information between the sequence alignments of the
two protein families. This stands in contrast with structure prediction of proteins and of multi-
protein complexes from sequence data, where pairwise maximum-entropy based global statistical
models substantially improve performance compared to mutual information. Our findings entail
that the statistical dependences allowing interaction partner prediction from sequence data are
not restricted to the residue pairs that are in direct contact at the interface between the partner
proteins.

Author summary

Specific protein-protein interactions are at the heart of most intra-cellular processes. Mapping
these interactions is thus crucial to a systems-level understanding of cells, and has broad applica-
tions to areas such as drug targeting. Systematic experimental identification of protein interac-
tion partners is still challenging. However, a large and rapidly growing amount of sequence data
is now available. Recently, algorithms have been proposed to identify which proteins interact
from their sequences alone, thanks to the co-variation of the sequences of interacting proteins.
These algorithms build upon inference methods that have been used with success to predict
the three-dimensional structures of proteins and multi-protein complexes, and their focus is on
the amino-acid residues that are in direct contact. Here, we propose a simpler method to iden-
tify which proteins interact among the paralogous proteins of two families, starting from their
sequences alone. Our method relies on an approximate maximization of mutual information be-
tween the sequences of the two families, without specifically emphasizing the contacting residue
pairs. We demonstrate that this method slightly outperforms the earlier one. This result high-
lights that partner prediction does not only rely on the identities and interactions of directly
contacting amino-acids.
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Introduction 1

Most cellular processes are carried out by interacting proteins. Specific protein-protein inter- 2

actions allow multi-protein complexes to assemble, and ensure proper signal transduction in 3

various pathways. Hence, mapping specific protein-protein interactions is an important funda- 4

mental question. High-throughput experiments have recently elucidated a substantial fraction 5

of protein-protein interactions in a few model organisms [1], but such experiments remain chal- 6

lenging. An attractive alternative possibility is to exploit the increasingly abundant sequence 7

data in order to identify specific protein-protein interaction partners. 8

The sequences of interacting proteins are correlated, both because of evolutionary constraints 9

arising from the need to maintain physico-chemical complementarity among amino-acids in con- 10

tact, and because of shared evolutionary history. The first type of correlations has received 11

substantial interest, both within single proteins and across protein partners, as evolutionary 12

constraints induce correlations between amino acids that are in contact in the folded protein 13

or in the multi-protein complex. Hence, the correlations observed in multiple sequence align- 14

ments of homologous proteins contain information about protein structure. Global statistical 15

models allow direct and indirect correlations to be disentangled [2–4]. Such models, built using 16

the maximum entropy principle [5], and assuming pairwise interactions, known in the field of 17

proteins as Direct Coupling Analysis (DCA), have been used with success to determine three- 18

dimensional protein structures from sequences [6, 7], to predict mutational effects [8–10], to find 19

residue contacts between known interaction partners [4, 11–15], and most recently to predict 20

interaction partners from sequence data [16, 17]. DCA models lay the emphasis on interactions 21

between residues that are in direct contact in the three-dimensional protein structure, and have 22

been optimized for contact prediction. However, correlations in protein sequences also have 23

important collective modes [18, 19], which can arise from functional selection [20, 21], and addi- 24

tional correlations are due to phylogeny [18, 22, 23]. These contributions are deleterious to the 25

prediction of contacts [23] but not necessarily to the prediction of interacting partners, since a 26

pair of interacting partners may be subject to common functional selection, and may also have 27

a more strongly shared phylogenetic history than non-interacting proteins. 28

Here, we present an alternative approach to predict interaction partners from sequence data, 29

among the paralogous proteins belonging to two interacting families. In contrast to the previ- 30

ous pairwise maximum entropy-based approaches [16, 17], the present method is based on an 31

approximate maximization of mutual information between the sequences from the two protein 32

families. Specifically, we develop a variant of the iterative pairing algorithm (IPA) introduced in 33

Ref. [16], where we use mutual information (MI) as a score to maximize, instead of the effective 34

interaction energy from a pairwise maximum entropy (DCA) model. We demonstrate that this 35

mutual information-based algorithm (MI-IPA) performs slightly better than the one (DCA-IPA) 36

introduced by us and colleagues in Ref. [16]. Our findings entail that the statistical dependences 37

allowing interaction partner prediction from sequence data are not restricted to the contacting 38

residue pairs revealed by DCA. 39

Results 40

We developed an iterative pairing algorithm (MI-IPA) that pairs paralogous proteins from two 41

interacting protein families A and B by approximately maximizing mutual information between 42

the sequences of the two families. Here, we first introduce the information theory-based pairing 43

score we employ, before briefly explaining the steps of the MI-IPA. Next, we present the results 44

we obtained with the MI-IPA. Throughout, we compare the performance of the MI-IPA to that 45

obtained with the DCA-IPA from Ref. [16], which infers a pairwise maximum entropy model 46

and approximately maximizes the resulting effective interaction energies. First, we consider 47

the case where the MI-IPA starts with a training set of known protein pairs, obtaining good 48

performance even with few training pairs. Then, we show that the MI-IPA can make accurate 49

predictions starting without any training set, as would be needed to predict novel protein-protein 50
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interactions. We further demonstrate the robustness of our algorithm by successfully applying 51

it to several pairs of proteins. Finally, we assess to what extent the MI-IPA is successful at 52

maximizing mutual information. 53

A pairing score based on pointwise mutual information (PMI) 54

Consider an alignment of M concatenated sequences AB of length L, where A is a protein from 55

family A and B is a protein from family B. At each amino-acid site i ∈ {1, .., L}, a given 56

sequence can feature any amino acid (represented by α ∈ {1, .., 20}), or a gap (represented by 57

α = 21). To describe the statistics of this concatenated alignment (CA), we employ the single- 58

site frequencies of occurrence of each state α at each site i, denoted by fi(α), and the two-site 59

frequencies of occurrence of each ordered pair of states (α, β) at each ordered pair of sites (i, j), 60

denoted by fij(α, β). These empirical frequencies are obtained by counting the sequences where 61

given residues occur at given sites and dividing by the number M of sequences in the CA. 62

(Note that when computing frequencies from real protein data, it is useful to weight sequences 63

so as to attenuate the impact of biased sampling, and to include pseudocounts, in order to 64

mitigate finite-sample effects, see Methods.) The empirical frequencies constitute estimates of 65

the corresponding probabilities pi(α) and pij(α, β), and tend toward them in the limit where 66

the number M of sequences in the alignment tends to infinity. 67

The pointwise mutual information (PMI) of a pair of residues (α, β) at a pair of sites (i, j) 68

is defined as [24]: 69

PMIij(α, β) = log

[
pij(α, β)

pi(α)pj(β)

]
. (1)

Averaging this quantity over all possible residue pairs yields the mutual information (MI) be- 70

tween sites i and j [25]: 71

MIij =
∑
α,β

pij(α, β) PMIij(α, β) =
∑
α,β

pij(α, β) log

[
pij(α, β)

pi(α)pj(β)

]
. (2)

PMI has been used in linguistics to study the co-occurrence of words [26, 27]. Note that in some 72

instances [24, 26] PMI is called MI, and MI is then referred to as the average value of MI. 73

We define a pairing score SAB for each pair AB of proteins as the sum of the PMIs of the 74

inter-protein pairs of sites of this concatenated sequence (i.e. those that involve one site in 75

protein A and one site in protein B): 76

SAB =

LA∑
i=1

L∑
j=LA+1

PMIij(αi, βj) , (3)

where we have denoted the concatenated sequence AB by (α1, . . . , αLA
, βLA+1, · · · , βL), with LA 77

the length of the A sequence. This score can be computed for a pair AB that is a member of 78

the CA used to estimate the PMI of each residue pair at each site, but also for any other pair 79

AB comprised of the sequences of members of the protein families A and B. 80

Next, consider a candidate assignment X of M ′ pairs AB, where each protein A is paired with
a protein B from the same species, resulting in a CA of M ′ sequences of length L = LA + LB.
Again, the pairs in this CA can involve the proteins in the CA of M pairs used to estimate
the PMIs, with the same assignment or a different one, or any other pair AB comprised of the
sequences of members of the protein families A and B. We define the overall pairing score SX

of the assignment X by the average of all pairing scores (see Eq. 3) of the pairs involved:

SX =
1

M ′

∑
AB∈X

SAB =
1

M ′

LA∑
i=1

L∑
j=LA+1

∑
AB∈X

PMIij(αi, βj)

=
1

M ′

LA∑
i=1

L∑
j=LA+1

∑
α,β

∑
AB∈X

αi=α, βj=β

PMIij(α, β) =

LA∑
i=1

L∑
j=LA+1

∑
α,β

fij(α, β) PMIij(α, β) . (4)
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In the limit of large alignments, the empirical frequencies tend toward probabilities. Besides, 81

if the scored CA is the same as the one used to calculate the PMIs, all frequencies will be the 82

same for both of them. For different CA, in the case of an assignment consistent with the CA 83

used to estimate the PMIs, the limiting two-body probabilities will be the same in the two CA. 84

Hence, in these cases, combining Eqs. 2 and 4 yields 85

SX −−−−−→
M→∞
M ′→∞

LA∑
i=1

L∑
j=LA+1

MIij . (5)

For large alignments, maximizing SX thus corresponds to maximizing the sum of the MIs of 86

inter-protein site pairs, which is itself a pairwise approximation of the MI between the sequences 87

of two protein families A and B. A brute-force maximization of SX over all possible assignments 88

X of a realistic dataset would result in a combinatorial explosion, since all allowed permutations 89

of pairs would need to be considered. In practice, since biologically meaningful pairings have to 90

be made within a species, this means that we would need to consider all combinations of all per- 91

mutations within each species, which already yields prohibitively large numbers of assignments 92

to test. Hence, we propose an algorithm to perform an approximate maximization of SX. 93

An iterative pairing algorithm (IPA) based on MI 94

In order to approximately maximize mutual information via the score SX (see Eq. 4), we propose 95

an iterative pairing algorithm (referred to as MI-IPA) inspired by that of Ref. [16] (referred 96

to as DCA-IPA), where the effective interaction energy from a global statistical model was 97

approximately maximized. 98

In each iteration, we first estimate PMIs for all inter-protein residue pairs from a concate- 99

nated alignment (CA) of paired sequences. The initial CA, used at the first iteration, is either 100

built from a training set of known correct protein pairs, or made from random pairs, assuming 101

no prior knowledge of interacting pairs. We calculate the pairing scores SAB (see Eq. 3) for every 102

possible protein pair AB within each species, by summing the inter-protein PMIs. Next, within 103

each species, we assign pairs by maximizing the sum of SAB scores in the species (assuming 104

one-to-one specific interactions), thereby maximizing SX (see Eq. 4) over biologically relevant 105

pair assignments, where each protein has a partner within its species. We attribute a confidence 106

score to each predicted pair, by using the difference of scores between the optimal assignment 107

of pairs in the species and the best alternative assignment that does not involve this predicted 108

pair. The CA is then updated by including the highest-scoring protein pairs, and the next 109

iteration can begin. At each iteration, all pairs in the CA are re-selected based on confidence 110

scores (except the initial training pairs, if any), allowing for error correction. More details on 111

each step of the MI-IPA are given in Methods. 112

The MI-IPA accurately predicts interaction partners from a training set of 113

known partners 114

As in Ref. [16], we use histidine kinases (HKs) and response regulators (RRs) from prokaryotic 115

two-component signaling systems as our main benchmark. Two-component systems are impor- 116

tant pathways that enable bacteria to sense and respond to environment signals. Typically, a 117

transmembrane HK senses a signal, autophosphorylates, and transfers its phosphate group to its 118

cognate RR, which in turn induces a cellular response [28]. Importantly, most cognate HK-RR 119

pairs are encoded in the same operon, so actual interaction partners are known, which enables 120

us to assess performance. 121

Unless otherwise specified, our results were obtained on a “standard dataset” comprising 122

5064 HK-RR pairs for which the correct pairings are known from gene adjacency. Each species 123

has on average 〈mp〉 = 11.0 pairs, and at least two pairs (see Methods). 124

We start by predicting interaction partners starting from a training set of known pairs. As 125

our training set, we pick a random set of Nstart known HK-RR pairs from the standard dataset. 126
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The first iteration of the MI-IPA uses this concatenated alignment (CA) to compute PMIs and 127

score possible pairs. We blind the pairings of the remaining dataset, and use it as a testing set 128

on which we predict pairings. At each subsequent iteration n > 1, the CA used to recompute 129

PMIs contains the initial training pairs plus the (n−1)Nincrement highest-scoring predicted pairs 130

from the previous iteration (see Methods). 131

As in the case of the DCA-IPA [16], iterating, and thereby progressively adding high-scoring 132

pairs to the CA, allows us to increase the fraction of pairs that are correctly predicted. This 133

gradual improvement of the TP fraction during the iterations of the MI-IPA is shown in Fig. 1A 134

for different training set sizes Nstart. The increase of TP fraction is especially spectacular for 135

small training sets. Fig. 1B shows the initial TP fraction, obtained at the first iteration, and the 136

final TP fraction, obtained at the last iteration, versus the size of the training set Nstart, both for 137

the MI-IPA and for the DCA-IPA [16]. In both cases, comparing the initial and final TP fractions 138

demonstrates the major interest of our iterative approach, through the massive increase in TP 139

fraction, especially for small training sets. Moreover, the final TP fraction depends only weakly 140

on Nstart: the iterative approach removes the need for large training sets. Both algorithms yield 141

very good performance, and the MI-IPA even outperforms the DCA-IPA in the trickiest case of 142

small training sets. In this limit (Nstart = 1), the MI-IPA yields 86% true positive (TP) pairs 143

while the DCA-IPA yields 84% TP, while both start from 12% TP at the first iteration. These 144

final TP fractions are strikingly higher than the random expectation of 9%, while such small 145

training sets contain very little information about pairings, as illustrated by the associated low 146

initial TP fraction. 147
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Figure 1: Performance of the MI-IPA for different training set sizes Nstart. (A) Increase
of the TP fraction with the number of iterations during the MI-IPA. (B) Initial and final TP
fractions (at the first and last iteration) versus Nstart for the MI-IPA and for the DCA-IPA
of Ref. [16]. In both panels, the standard dataset of HK-RRs is used, and the CA includes
Nincrement = 6 additional pairs at each iteration. All results are averaged over 50 replicates that
differ by the random choice of HK-RR pairs in the training set. Dashed lines represent the
average TP fraction obtained for random within-species HK-RR pairings.

Since the MI-IPA to the DCA-IPA yield similar performance, we asked whether they tend to 148

predict the same correct pairs when starting from the same training set. To assess this, consider 149

a species with m AB pairs, and denote by p (resp. q) the number of pairs correctly assigned by 150

the MI-IPA (resp. by the DCA-IPA) in this species. If the two algorithms made independent 151

predictions, it would correspond to independently and randomly drawing p (resp. q) proteins A 152

among m, to be correctly paired. In this null model, the number of possible MI-IPA assignments 153

that share k correct pairs with the DCA-IPA is
(
q
k

)(
m−q
p−k
)
: k correct pairs are chosen among the 154

q pairs correctly assigned by the DCA-IPA, and the other p−k ones are chosen among the m−q 155

proteins A incorrectly paired by the DCA-IPA. Besides, the total number of possible MI-IPA 156

assignments with p correct pairs is
(
m
p

)
. Hence, the probability P (p, k,m, q) that k correct pairs 157
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are predicted by both algorithms is given by the hypergeometric distribution: 158

P (p, k,m, q) =

(
q
k

)(
m−q
p−k
)(

m
p

) . (6)

The expectation of k under this distribution is given by 159

〈k〉 =
p q

m
. (7)

Hence, in this fully independent null model, the expectation of the total number of correct pairs 160

predicted by both algorithms can be obtained by summing the expectations in Eq. 7 over all 161

species in the dataset. Moreover, in each species, the observed number kobs of shared correct 162

pairs can be compared to this null model, as well as to the extreme case where all correct pairs 163

that can be shared are shared, yielding min(p, q) shared pairs. Hence, we define the relative 164

excess E of shared predictions by 165

E =

∑S
i=1 kobs,i − 〈ki〉∑S

i=1 min(pi, qi)− 〈ki〉
, (8)

where the index i corresponds to a particular species, the sums run over the S species present 166

in the dataset, and the expectations are given by Eq. 7. If E > 0, the two algorithms tend 167

to predict the same pairs more frequently than if their predictions were fully independent. In 168

addition, the maximal value E can take is 1, including the case where predictions from both 169

algorithms are exactly the same. We calculated the average value of E across 50 replicates where 170

both algorithms were started from the same training set, for various Nstart values, in the same 171

conditions as in Fig. 1. As expected, we found that E increases with Nstart, as the algorithms 172

share more information to begin with. However, E depends rather weakly on the size Nstart 173

of the training set, varying smoothly from 53% for Nstart = 1 to 68% for Nstart = 2000. This 174

indicates a significant tendency of the two algorithms to make the same correct predictions, even 175

in the case of small training sets. 176

Great accuracy is maintained in the absence of a training set 177

In Ref. [16], we showed that the DCA-IPA yields very good identification of interacting pairs 178

without any training set, i.e. without any prior knowledge of interacting pairs. Given this 179

previous result, and given the success of the MI-IPA with very small training sets, we ask 180

whether the MI-IPA also makes good predictions in the absence of a training set. To test this, 181

we followed the approach introduced in Ref. [16] by randomly pairing each HK with an RR 182

from the same species, and using these 5064 random pairs to train the initial model. At each 183

subsequent iteration n > 1, the CA only contained the (n − 1)Nincrement highest-scoring pairs 184

from the previous iteration (see Methods). 185

Fig. 2A shows the final TP fraction obtained for different values of Nincrement, both for the 186

MI-IPA and for the DCA-IPA. In both cases, the iterative method performs best for small 187

increment steps, which highlights again the interest of the iterative approach. Importantly, the 188

MI-IPA performs better than the DCA-IPA for all values of Nincrement, and requires substantially 189

less small increments than the DCA-IPA to reach the same performance. The low–Nincrement 190

limit of the final TP fraction is 0.87 for the MI-IPA, versus 0.84 for the DCA-IPA. These values 191

are consistent with those obtained above with a single training pair, Nstart = 1 (Fig. 1A). We 192

emphasize that the striking TP fraction of 0.87 is attained by the MI-IPA without any prior 193

knowledge of HK-RR interactions. Ref. [16] showed that an important ingredient for the DCA- 194

IPA to bootstrap its way toward high predictive power is that sequence similarity is favored at 195

early iterations, which increases the TP fraction in the CA, because correct pairs have more 196

neighbors in terms of Hamming distance than incorrect pairs. In Ref. [16], this was called the 197

Anna Karenina effect, in reference to the first sentence of Tolstoy’s novel. The same explanation 198

holds for the success of the MI-IPA starting from no training set. 199
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In Fig. S1A, we investigated the performance of other variants of the IPA in the same 200

conditions as in Fig. 2A. Instead of PMIs, we explored the possibilities of using normalized 201

PMIs (NPMIs), NPMIij(α, β) = −PMIij(α, β)/ log(fij(α, β)) [27] and covariances, Cij(α, β) = 202

fij(α, β)− fi(α)fj(β) (recall that in the mean-field approximation, DCA employs the inverse of 203

this covariance matrix). For small Nincrement values, we find that NPMIs perform similarly as 204

PMIs, while covariances do significantly worse than both PMIs and DCA scores. 205
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Figure 2: Performance of the MI-IPA without a training set. (A) Final TP fraction
obtained by the MI-IPA and the DCA-IPA versus Nincrement for the standard HK-RR dataset.
At the first iteration, the CA is made of random within-species HK-RR pairs. At each subsequent
iteration n > 1, the CA includes the (n−1)Nincrement top predicted pairs. All results are averaged
over 50 replicates employing different initial random pairings. The dashed line represents the
average TP fraction obtained for random within-species HK-RR pairings. (B) Final TP fraction
obtained by the MI-IPA and the DCA-IPA versus the total number M of HK-RR pairs in the
dataset, starting from random pairings. For each M , except that corresponding to the full
dataset, datasets are constructed by picking species randomly from the full dataset, and results
are averaged over multiple different such alignments (from 50 up to 500 for small M). For the
full dataset (largest M), averaging is done on 50 different initial random within-species pairings.
All results in (B) are obtained in the small-Nincrement limit.

An important parameter for the performance of the MI-IPA is dataset size. Qualitatively, 206

larger datasets imply more close neighbors, which is favorable to the success of bootstrapping, 207

and they also allow one to estimate MI more accurately, so we expect the MI-IPA to perform 208

best for large datasets. In the case of DCA, it is well-known that large datasets are required 209

to properly infer the global statistical model at the heart of the method, so it is interesting to 210

study whether the two methods will have similar limitations for small datasets or not. Indeed, 211

Fig. 2B shows that the performance of both methods increases with dataset size. However, the 212

rise of performance occurs for slightly smaller datasets in the case of the MI-IPA than for the 213

DCA-IPA. Hence, the MI-IPA is better suited for partner prediction in small datasets. For the 214

complete dataset (23,424 HK-RR pairs, see Methods), both methods reach the same striking 215

final TP fraction of 0.93. 216

As above, we investigated the extent to which the MI-IPA and the DCA-IPA tend to make 217

the same correct predictions. Note that this time, the two algorithms do not start from shared 218

information since there is no training set. For the standard dataset of 5064 HK-RR pairs, with 219

Nincrement = 6, we found that the average excess shared fraction (see Eq. 7) of correct pairs 220

between the two algorithms is E = 53%, i.e. the same as the value obtained in the limit of a 221

very small shared training set, Nstart = 1 (see above). Recall that this positive value means that 222

the two algorithms tend to make the same correct predictions. Moreover, the bias is 53% of the 223

maximal value it could take. It is interesting to compare this result to the bias toward shared 224

correct predictions across different replicates of the same algorithm. We obtained E = 73% for 225
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the DCA-IPA, and E = 94% for the MI-IPA, meaning that predictions from the two different 226

algorithms are less similar than those made by the same algorithm. 227

Since the two algorithms do make some different correct predictions, we next asked whether 228

this can exploited, with the intuition that pairs that are predicted both by the MI score and by 229

the DCA score will tend to be correct more often than other pairs. We tried a combined IPA 230

which calculates both scores at each iteration and computes separately the two corresponding 231

pair assignments. Our ranking of pairs puts first the pairs contained in both assignments, and 232

these pairs are ordered by decreasing MI-based confidence scores. Next come the other pairs: 233

the assignment predicted using MI is conserved for them, and they are ordered by decreasing 234

MI-based confidence scores. This means that the pairs consistently predicted by both methods 235

are going to enter the CA earlier in the iterative process than those that differ. A very minor 236

improvement was obtained over the MI-IPA using this method (see Fig. S1B). Since DCA 237

typically requires large datasets to be reliable, we also tried combining MI and DCA by using 238

MI at early iterations, when the CA is small, and switching to DCA at later iterations. No 239

improvement over the MI-IPA was obtained using this method (see Fig. S1B). 240

Performance of the MI-IPA is robust across various protein pairs 241

To demonstrate the generality of the MI-IPA, we applied it to several pairs of protein families [13]. 242

First, we considered several protein pairs involved in ABC transporter complexes, which permit 243

the translocation of different substances across cell membranes [29]. We built alignments of 244

homologs of the Escherichia coli interacting protein pairs MALG-MALK, FBPB-FBPC, and 245

GSIC-GSID, all involved in ABC transporter complexes, using the same method as in Ref. [16] 246

(see Methods). As in the case of HK-RRs, for each of these pairs of protein families, we worked 247

on subsets of ∼ 5000 protein pairs from species containing at least two pairs. In addition, we 248

considered smaller families of proteins, yielding ∼ 2000 pairs. More specifically, we chose two 249

pairs of proteins involved in enzymatic complexes: PAAH-PAAJ is a pair of proteins involved 250

in the fatty acid β-oxidation multienzyme complex [30], and XDHC-XDHA is a pair of proteins 251

involved in the xanthine dehydrogenase complex [31]. 252

Fig. 3 shows the performance of the MI-IPA and of the DCA-IPA for these protein pairs, 253

starting from no initial training set, for various values of Nincrement. In all cases, we find that both 254

methods perform very well for small Nincrement, but that higher performances are reached by 255

the MI-IPA, particularly at larger Nincrement values. This is consistent with the results obtained 256

with HK-RRs (see Fig. 2A). Note that here, compared to HK-RRs, larger Nincrement values 257

suffice to obtain good performance. This is due to the fact that the pairing tasks are easier here, 258

since the average number of proteins pairs per species is smaller (see Fig. 3, to be compared to 259

〈mp〉 = 11.0 for HK-RRs). 260

These accurate predictions demonstrate the broad applicability of the MI-IPA. Note that 261

HK-RRs interact transiently, while the ABC transporter and enzymatic proteins we considered 262

form permanent complexes, which highlights the generality of the method. 263

The MI-IPA reaches near-maximal MI 264

The MI-IPA approximately maximizes MI between the sequence alignments of two protein fam- 265

ilies A and B. However, there is not guarantee that it will find the assignment with highest MI. 266

In addition, the score we maximize converges toward the sum of MIs of all inter-protein residue 267

pairs (henceforth called “pairwise MI”) only in the limit of large alignments and assignments 268

consistent with the CA used to estimate the PMIs (see Eq. 5). In practice, how well does the 269

MI-IPA approach the goal of maximizing pairwise MI? 270

In order to answer this question, we now compare the pairwise MI of the pairs assigned by the 271

MI-IPA to that of the actual protein pairs, and to the pairwise MI of the random within-species 272

assignment which is used to initialize the MI-IPA in the absence of a training set. Fig. 4A shows 273

these three quantities as a function of dataset size M , for HK-RR datasets to which the MI-IPA 274

is applied starting from no training set, as in Fig. 2B. We observe a global trend of all computed 275
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Figure 3: Performance of the MI-IPA for different protein pairs. Final TP fraction
obtained without a training set by the MI-IPA and the DCA-IPA versus Nincrement. (A,B,C)
Pairs involved in ABC transporters; datasets of ∼ 5000 pairs extracted from larger full datasets.
(D,E) Pairs involved in enzymatic complexes; full datasets of ∼ 2000 pairs. In each case, the
mean number 〈mp〉 of pairs per species is indicated, and dashed lines represent the average TP
fraction obtained for random within-species pairings. All results are averaged over 50 replicates
that differ in their initial random within-species pairings.

pairwise MIs to decrease when M is increased. This arises from a well-known finite size effect 276

that occurs when estimating entropies from real datasets [32], and thus affects entropy-derived 277

quantities such as MIs. To illustrate this point, Fig. 4A also shows the pairwise MI of HK-RR 278

datasets where each column of the alignment is randomly scrambled, thus destroying actual 279

correlations while retaining finite-size noise, as well as one-body frequencies. This null model 280

features a similar decreasing trend as the other curves, thus demonstrating that this trend comes 281

from finite-size effects. Note also that the scrambled alignment features pairwise MI values close 282

to those of the initial random assignment, which makes sense because in both cases inter-protein 283

residue pairs are decorrelated by the scrambling. The slightly higher MI of the initial random 284

assignment arises from the fact that random partners are chosen within each species in this case, 285

while complete columns are scrambled in the null model. Apart from the downward trend, a 286

striking observation from Fig. 4A is that the pairwise MIs of the assignments predicted by the 287

MI-IPA are significantly higher than those of the initial random assignments, and close to those 288

of the actual protein pairs. Fig. 4B highlights these points by considering the excess pairwise MI 289

in the actual protein pairs versus the initial and final assignments in the MI-IPA. Interestingly, 290

even for small datasets, where the MI-IPA yields small TP fractions (see Fig. 2B), the pairwise 291

MI of the assignment predicted by the MI-IPA is much closer to that of the actual assignment 292

than to that of the initial random assignment. This suggests that the MI-IPA does a good job 293

at maximizing pairwise MI, even though it does not reach the absolute maximum. 294

So far, we have used naive estimates of the pairwise MI, employing empirical frequencies 295

instead of probabilities in MI (see Eq. 2), without correcting for the finite-size effect discussed 296

above and visible in Fig. 4A. Various approaches have been proposed in order to correct for the 297

systematic error due to finite-size effects in entropy (and thus MI) estimates. One can use the fact 298

that these finite-size effects have a leading-order contribution of the form M̂I−MI ∝ K/M , where 299
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Figure 4: Increase of pairwise MI obtained by the MI-IPA. (A) Estimates of the pairwise
MI (sum of MIs of all inter-protein residue pairs) are shown versus the total number M of
sequences in the dataset. The different curves correspond to the pairwise MI of the actual set
of correctly paired HK-RRs, of the initial random within-species assignment used to initialize
the MI-IPA, and of the final assignment predicted by the MI-IPA, as well as of an alignment
where each column was scrambled. Both axes have a logarithmic scale. The slope −1, expected
from leading-order finite-size effects, is indicated by the dashed line. For each M , HK-RR
datasets are constructed by picking species randomly from the full dataset, and results are
averaged over 50 different such alignments. (B) Excess pairwise MI of the actual set of correctly
paired HK-RRs, compared to the initial random within-species pair assignments and to the final
assignment predicted by the MI-IPA. The MI-IPA successfully reduces this excess pairwise MI,
thus approaching the pairwise MI of the actual alignment. Same data as in (A).

MI is the actual value of the mutual information and M̂I is its naive estimate using empirical 300

frequencies, while K is the number of independent values that can be taken by the pair of random 301

variables considered, and M represents dataset size [32]. Estimates M̂I obtained by subsampling 302

the initial dataset can be linearly (or polynomially, to include higher-order corrections) fitted 303

versus 1/M , yielding the actual MI as the intercept. However, if M is not larger than K, 304

subleading corrections become too important, and this method becomes inaccurate. Here, K 305

can go up to the square of the number of possible states per site, i.e. ∼ 400. Consistently, 306

we found that polynomial fits become poor when considering datasets with less than ∼ 1000 307

sequences. Fig. S2A presents results obtained using corrections from these fits, for datasets 308

of at least 1000 sequences. A more sophisticated method to reliably estimating the entropies 309

of discrete distributions was introduced in Ref. [33]. It employs a Bayesian approach and a 310

flat prior on the entropy, and results in a correction of finite-size bias in entropy estimates. 311

This NSB (Nemenman-Shafee-Bialek) correction is successful in undersampled cases [33, 34]. 312

In Fig. S2B, we show results obtained on our datasets using the NSB correction. Employing 313

either of these two corrections of finite-size effects on the MI estimates (see Fig. S2) confirms 314

our previous conclusion. For all dataset sizes, the pairwise MI of the assignment predicted by 315

the MI-IPA is significantly closer to that of the actual assignment than to that of the initial 316

random assignment, thus confirming that the MI-IPA yields results with near-maximal pairwise 317

MI. 318

Discussion 319

Here, we introduced a method based on MI to predict interacting partners among the paralogs 320

of two protein families, starting from sequences only. Specifically, our iterative pairing algorithm 321

(MI-IPA) finds an assignment of protein pairs that approximately maximizes the MI between 322

the sequences of the two protein families. We demonstrated that the MI-IPA allows one to 323
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predict interacting protein pairs with high accuracy, starting from sequence data only. High 324

performance is obtained even in the absence of an initial training set of known interacting pairs. 325

In Ref. [16], us and colleagues introduced a similar iterative pairing algorithm (DCA-IPA) 326

that approximately maximized an effective interaction energy between proteins, instead of MI. 327

This effective interaction energy was calculated from a global statistical model, more specifically 328

a pairwise maximum entropy model, approximately inferred from the empirical one and two-body 329

frequencies of the sequence data. Such models, often called Direct Coupling Analysis (DCA), 330

have been successful at predicting amino-acid pairs that are in contact in folded proteins [4, 6, 35], 331

and have permitted prediction of the three-dimensional structure of proteins from sequence 332

data [4, 6, 7, 13, 35, 36]. For structure prediction, these global statistical models outperform 333

the use of MI [4, 6], and have yielded major progress in the field, despite the promising results 334

obtained by MI-based methods implementing corrections for background MI [37]. In the specific 335

case of interacting proteins, DCA allows one to simultaneously infer interaction partners and 336

structural contacts between them [17]. 337

Here, we demonstrated that the MI-IPA performs at least as well as the DCA-IPA, and often 338

outperforms it. This result highlights a striking difference between the prediction of contacting 339

pairs of residues, and the prediction of interacting partners. Crucially, we have achieved an 340

accurate identification of interacting partners without the need to build a global statistical model 341

of the sequence data highlighting effective pairwise interactions between contacting residues, 342

which is at the root of DCA. An important motivation underlying DCA and other related 343

approaches, such as the Bayesian network method of Ref. [3] and the sparse inverse covariance 344

estimation of Ref. [38], is to disentangle correlations arising caused by direct interactions from 345

indirect correlations due to a chain of couplings [2–4, 38]. While this distinction between direct 346

and indirect correlations is crucial to infer which residues are in contact in the folded protein, its 347

importance is probably reduced in the determination of interacting partners among paralogous 348

proteins. Besides, MI has been extremely successful in determining “specificity residues” crucial 349

in the interactions between HKs and their cognate RRs: these residues are those involved 350

in interprotein residue pairs with highest MIs [39–41]. Strikingly, mutating only these few 351

specificity residues has allowed to fully switch the specificity of HK-RR pairs [39]. Hence, our 352

present results reinforce the conclusion of these earlier studies, showing that MI can accurately 353

reveal the specificity of interacting protein pairs. 354

Finally, the MI between two sequence sites simply measures how much observing a residue 355

at one site tells us about the other. It is entirely agnostic regarding the origin of this sta- 356

tistical dependence, and incorporates contributions from phylogeny [22, 23] as well as from 357

those arising from functional selection. In addition, the latter contributions include those from 358

structural contacts, but might also involve aspects of protein function other than structural 359

ones, including collective correlations between residues [18–21, 42]. This stands in contrast with 360

DCA, which was developed and optimized specifically to infer contacting residues and protein 361

structure. The fact that the MI-IPA slightly outperforms the DCA-IPA thus constitutes a hint 362

that sources of covariation other than those that maintain structural contacts help to identify 363

interaction partners among paralogs. This might be due to multiple effects. In particular, global 364

functional selection could potentially affect both interacting partners together. For instance, a 365

functionally important mechanical deformation of the complex formed by these partners could 366

be subject to selection, yielding collective correlations that extend in the sequences of both 367

partners [20, 21]. Besides, interacting partners may also share more phylogenetic history than 368

non-interacting proteins, e.g. if the genes encoding the partners tend to be duplicated and/or 369

horizontally transferred together [43–45]. Then, phylogenetic correlations could aid the pre- 370

diction of interacting partners among paralogous proteins, despite being deleterious to residue 371

contact identification [23]. Next, it will be interesting to further investigate these various sources 372

of covariation, both functional and phylogenetic. This should be useful for the particular prob- 373

lem of prediction of interacting protein pairs, as well as for the more general understanding of 374

the sequence-function relationship in proteins. 375
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Methods 376

Here, we first explain the different steps of the MI-IPA. Next, we describe the datasets used and 377

the way the statistics of these alignments are computed. 378

Iterative pairing algorithm based on mutual information (MI-IPA) 379

Ref. [16] introduced an iterative pairing algorithm (IPA) to predict interaction partners among 380

paralogs from two protein families. It essentially performs an approximate maximization of 381

the average effective interaction energy between pairs of proteins comprised of one protein of 382

family A and one of family B, and the effective interaction energy is calculated from a pairwise 383

maximum entropy model (see also Ref. [17]). Here, we propose the MI-IPA, a variant of the 384

IPA that approximately maximizes MI via SX (see Eq. 4), instead of the effective interaction 385

energy. Importantly, the MI-IPA does not require the construction of a global statistical model 386

of the data, contrary to the algorithms from Refs. [16, 17]. Let us now describe each step of an 387

iteration of the MI-IPA, after explaining how the CA is constructed for the very first iteration. 388

For simplicity, we assume that in each species, there is the same number of proteins of family 389

A and of family B. If this is not the case, an injective matching strategy can be used [17], so 390

in each species, the relevant number of proteins is the minimum of the number of proteins of 391

family A and of proteins of family B. 392

Initialization of the CA 393

If starting from a training set of known interaction partners AB, the CA for the first iteration 394

of the IPA is built from the pairs AB in this training set. In subsequent iterations, the training 395

set pairs are always kept in the CA, and additional pairs with the highest confidence scores (see 396

below) are added to the CA. 397

In the absence of a training set, each protein A of the dataset where we wish to predict 398

pairings is randomly paired with a protein B from its species. All these random pairs are 399

included in the CA for the first iteration of the MI-IPA. Hence, this initial CA contains a 400

mixture of correct and incorrect pairs, with one correct pair per species on average. At the 401

second iteration, the CA is built using only the Nincrement AB pairs with the highest confidence 402

scores obtained from this first iteration. 403

Now that we have explained the initial construction of the CA, let us describe each step of 404

an iteration of the MI-IPA. 405

1. Calculation of pointwise mutual informations (PMI) 406

Each iteration begins by the calculation of PMI scores from the CA of paired AB sequences. The 407

empirical one- and two-site frequencies, fi(α) and fij(α, β), of occurrence of amino-acid states 408

α (or β) at each site i (or j) are computed for the CA, using a specific weighting of similar 409

sequences, and a pseudocount correction (see below) [4, 6, 11, 35]. The PMI of each residue pair 410

(α, β) at each pair of sites (i, j), defined in Eq. 1, is then estimated from these frequencies as 411

PMIij(α, β) = log

[
fij(α, β)

fi(α)fj(β)

]
. (9)

2. Calculation of pairing scores for all possible AB pairs 412

Having calculated PMIs on the CA, we next turn to the dataset where we wish to predict 413

pairings. The MI-based pairing score SAB of each possible AB pair within each species in the 414

dataset is calculated by summing all the inter-protein PMIs involved, as defined in Eq. 3. 415
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3. AB pair assignments and ranking by confidence score 416

We make one-to-one AB pairs within each species in the dataset by maximizing the sum of the 417

scores of all pairs in this species. Considering the matrix of the scores of all possible pairs, 418

this amounts to choosing one element per line and per column, such that the sum of all of 419

them is maximal. This assignment problem is solved exactly and efficiently using the Hungarian 420

algorithm (also known as the Munkres algorithm) [46–48]. Each pair is scored by a confidence 421

score ∆SAB, which is the difference between the sum of the scores of the assigned pairs in the 422

species and that obtained by using the Hungarian algorithm again while this pair is disallowed. 423

Once pairs are made and confidence scores are calculated in each species, all the assigned AB 424

pairs from all species are ranked in order of decreasing confidence score. 425

Note that in Ref. [16], we had used an approximate greedy approach to the assignment 426

problem, where the pair with lowest energy is selected first, and the two proteins involved 427

are removed from further consideration, and the process is repeated until all As and Bs are 428

paired. For the DCA-IPA of Ref. [16], the greedy algorithm performed marginally better than 429

the Hungarian algorithm, while in the present MI-IPA, the Hungarian algorithm yields better 430

performance (see Fig. S3). This slight difference may be explained by the fact the PMI scores 431

are most meaningful collectively, as their sum tends to a pairwise approximation of MI (see 432

Eq. 5). 433

4. Incrementation of the CA 434

The ranking of the AB pairs is used to pick those pairs that are included in the CA at the next 435

iteration. Pairs with a high confidence score are more likely to be correct because there was 436

less ambiguity in the assignment. The number of pairs in the CA is increased by Nincrement at 437

each iteration, and the MI-IPA is run until all the As and Bs in the dataset have been paired 438

and added to the CA. In the last iteration, all pairs assigned at the second to last iteration are 439

included in the CA. 440

If starting from a training set of AB pairs, the Nstart training pairs remain in the CA 441

throughout. The As and Bs from all the other pairs in the CA are re-paired and re-scored at each 442

iteration, and only re-enter the CA if their confidence score is sufficiently high. In other words, 443

at the first iteration, the CA only contains the Nstart training pairs. Then, for any iteration 444

number n > 1, it contains these exact same Nstart training pairs, plus the (n − 1)Nincrement 445

assigned AB pairs that had the highest confidence scores at iteration number n− 1. 446

In the absence of a training set, all As and Bs in the dataset are paired and scored at each 447

iteration, and all the pairs of the CA are fully re-picked at each iteration based on the confidence 448

score. For any iteration number n > 1, the CA contains the (n− 1)Nincrement assigned AB pairs 449

that had the highest confidence scores at iteration number n− 1. 450

Once the new CA is constructed, the next iteration can start. 451

Dataset construction 452

We use the HK-RR datasets described in Ref. [16]. Briefly, the complete dataset was built using 453

the online database P2CS [49, 50], yielding a total of 23,424 HK-RR pairs (known by genome 454

proximity) from 2102 different species. We focused on the protein domains through which HKs 455

and RRs interact, which are the Pfam HisKA domain present in most HKs (64 amino acids) 456

and the Pfam Response reg domain present in all RRs (112 amino acids). 457

In most of the paper, and as in [16], we focused on a smaller “standard dataset” extracted 458

from this complete dataset, both because protein families that possess as many members as the 459

HKs and RRs are atypical, and in view of computational time constraints. This standard dataset 460

was constructed by picking species randomly, and comprises 5064 pairs from 459 species. In our 461

datasets, we discarded sequences from species that contain only one pair, for which pairing is 462

unambiguous. It allows us to assess the impact of training set size (Nstart) without including an 463

implicit training set via these pairs, and it also enables us to address prediction in the absence 464

of any known pairs (no training set). 465
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While we used HK-RRs as the main benchmark for the MI-IPA, we assessed the generality 466

of its performance by applying it to several other pairs of protein families. For these proteins, 467

paired alignments of homologs of known Escherichia coli interacting protein pairs were built 468

using a method adapted from Ref. [13], as detailed in Ref. [16]. 469

Statistics of the concatenated alignment (CA) 470

Let us consider a CA of paired AB sequences. At each site i ∈ {1, .., L}, where L is the length 471

of an AB sequence, a given concatenated sequence can feature any of 21 amino acid states α. 472

The raw empirical frequencies fi(α) and fij(α, β), obtained by counting the sequences where 473

given residues occur at given sites and dividing by the number M of sequences in the CA, are 474

subject to sampling bias, due to phylogeny and to the choice of species that are sequenced [6, 35]. 475

Hence, we use a standard correction that re-weights “neighboring” concatenated sequences with 476

mean Hamming distance per site < θ. In practice θ = 0.15 was found to yield the best results, 477

but the dependence of performance on θ is weak (see Fig. S4A). The weight associated to a 478

given concatenated sequence a is 1/ma, where ma is the number of neighbors of a within the 479

threshold (including the sequence considered) [6, 11, 35]. This allows one to define an effective 480

total number of sequences, Meff =
∑M

a=1 1/ma. 481

We also introduce pseudocounts via a parameter Λ [4, 6, 11, 35] to avoid issues due e.g. 482

to amino-acid pairs that never appear. Indeed, those can yield mathematical difficulties, such 483

as diverging PMI estimates. Note that pseudocounts are widely used in DCA too [35]. The 484

corrected one-body frequencies f̃i read 485

f̃i(α) =
Λ

q
+ (1− Λ)fi(α) , (10)

where q = 21 is the number of possible states per site. Similarly, the corrected two-body
frequencies f̃ij read

f̃ij(α, β) =
Λ

q2
+ (1− Λ)fij(α, β) if i 6= j , (11)

f̃ii(α, β) =
Λ

q
δαβ + (1− Λ)fii(α, β) = fi(α)δαβ , (12)

where δαβ = 1 if α = β and 0 otherwise. We found that Λ = 0.15 yields the best performance 486

of the MI-IPA, but the dependence of performance on Λ is weak (see Fig. S4B). Note that this 487

value is lower than the typical value used in DCA (Λ = 0.5) [6, 35]. 488

Note that our demonstration that the average pairing score SX of an assignment tends to the 489

sum of MIs of inter-protein residue pairs (see Eqs. 4 and 5) did not include proximity weightings 490

and pseudocounts. In practice, at each iteration of our algorithm, assignments are made within 491

each species separately, a scale at which it is convenient to just use the sum of pairing scores 492

SAB (see Eq. 3), and find the assignment that maximizes it. This means that the convergence to 493

the sum of MIs is approximate when using proximity weightings and pseudocounts to calculate 494

the frequencies in the CA and estimate PMIs. 495

Note also that empirical frequencies without weightings or pseudocounts were employed to 496

study how well the MI-IPA maximizes MI (Figs. 4 and S2). 497
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Figure S1: IPA variants. (A) Final TP fraction obtained versus Nincrement for the standard
HK-RR dataset, starting from random within-species HK-RR pairs. In addition to the MI-IPA
and the DCA-IPA (see Fig. 2A), two other variants of the IPA are presented, which score inter-
protein residue pairs by the normalized PMI (NPMI-IPA) and by the covariance (Cov-IPA),
respectively (see Results). Apart from this scoring difference, all particulars are the same as in
the MI-IPA (see Methods). (B) Similar graph as in (A), showing two variants of the IPA that
combine MI and DCA: “Switch” uses the MI-IPA for the first half of iterations, before switching
to the DCA-IPA; “Both” uses both MI and DCA at each iteration and favors protein pairs that
are predicted by both methods (see Results). In both panels, all results are averaged over 50
replicates employing different initial random pairings, and the dashed line represents the average
TP fraction obtained for random within-species HK-RR pairings.
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Figure S2: Increase of pairwise MI obtained by the MI-IPA: finite-size effect cor-
rections. In both panels, similar results as those in Fig. 4B are reported, but two different
finite-size effect corrections to the MI estimates are implemented. Excess pairwise MI of the
actual set of correctly paired HK-RRs, compared to the initial random within-species pair as-
signments and to the final assignment predicted by the MI-IPA, are plotted versus the total
number M of sequences in the dataset. (A) Finite-size correction using subsampling of each
dataset and fitting versus 1/M (see Results). Third-degree polynomial fitting was employed.
(B) NSB correction [33, 34] (see Results). In both panels, naive estimates (see Fig. 4B) are
also shown for comparison. For each M , HK-RR datasets are constructed by picking species
randomly from the full dataset, and results are averaged over 50 different such alignments.
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Figure S3: IPA assignment variants. Final TP fraction obtained versus Nincrement for the
standard HK-RR dataset, starting from random within-species HK-RR pairs. For both the MI-
IPA and the DCA-IPA, two variants of the protein pair assignment strategy are presented. Once
pairing scores are computed, pairs are assigned within each species either using the Hungarian
algorithm, which maximizes the sum of scores in the species, or using a greedy algorithm, that
favors individual pairs with top scores (see Methods). In all the rest of the paper, the Hungarian
algorithm is used for the MI-IPA, and the greedy one is used for the DCA-IPA, as in Ref. [16].
All results are averaged over 50 replicates employing different initial random pairings, and the
dashed line represents the average TP fraction obtained for random within-species HK-RR
pairings.
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Figure S4: Impact of the weighting of similar sequences and of the pseudocount.
(A) Final TP fraction obtained for the standard HK-RR dataset, starting from random within-
species HK-RR pairs, with Nincrement = 6, for various values of the threshold θ of mean Hamming
distance per site below which two sequences are considered as neighbors and weighted accordingly
(see Methods). Pseudocount Λ = 0.15 was used. (B) Similar graph, but varying the pseudocount
Λ (see Methods), at fixed θ = 0.15. In both panels, all results are averaged over 50 replicates
employing different initial random pairings.
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