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Abstract 

Understanding the complexity of human brain dynamics and brain connectivity across the 
repertoire of functional neuroimaging and various conditions, is of paramount importance.  
Novel measures should be designed tailored to the input focusing on multichannel activity 
and dynamic functional brain connectivity (DFBC). 

Here, we defined a novel complexity index (CI) from the field of symbolic dynamics that 
quantifies patterns of different words up to a length from a symbolic sequence. The CI 
characterizes the complexity of the brain activity. 

We analysed dynamic functional brain connectivity by adopting the sliding window 
approach using imaginary part of phase locking value (iPLV) for EEG/ECoG/MEG and 
wavelet coherence (WC) for fMRI. Both intra and cross-frequency couplings (CFC) namely 
phase-to-amplitude were estimated using iPLV/WC at every snapshot of the DFBC. Using 
proper surrogate analysis, we defined the dominant intrinsic coupling mode (DICM) per pair 
of regions-of-interest (ROI). The spatio-temporal probability distribution of DICM were 
reported to reveal the most prominent coupling modes per condition and modality. Finally, a 
novel flexibility index is defined that quantifies the transition of DICM per pair of ROIs 
between consecutive time-windows.  

The whole methodology was demonstrated using four neuroimaging datasets 
(EEG/ECoG/MEG/fMRI).  

Finally, we succeeded to totally discriminate healthy controls from schizophrenic using FI 
and dynamic reconfiguration of DICM. Anesthesia independently of the drug caused a global 
decreased of complexity in all frequency bands with the exception in δ and alters the dynamic 
reconfiguration of DICM. CI and DICM of MEG/fMRI resting-state recordings in two spatial 
scales  were high reliable.  

 

Keywords: Complexity, Symbolic Dynamics, Dynamic Functional Connectivity, Dominant 

Coupling Modes, Flexibility Index, Multiplexity, Reliability 

Abbreviations: 

DFBC - dynamic functional brain connectivity 
iPLV- imaginary part of phase locking value 
CFC – cross frequency coupling 
WC – wavelet coherence 
ROI – regions of interest 
EEG – electroencephalography 
MEG – magnetoencephalography 
FMRI – functional magnetic resonance imaging 
ROI – Regions of Interests 
DICM – dominant intrinsic coupling modes 
FI – flexibility index 
CI –complexity index 
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Significant Statement (100 words): 

In the present study, we demonstrated novel indexes for the estimation of complexity 

in both raw brain activity and dynamic functional connectivity. To  ort the universality of 

both indexes for the majority of functional neuroimaging modalities, we adopted open 

datasets from electro and magneto-encephalography, from electro-corticography and 

functional magnetic resonance imaging. Both indexes proved informative and reliable across 

repeat scan sessions. Moreover, we succeeded to totally discriminate with absolute accuracy 

healthy controls from schizophrenic patients. Both indexes proved sensitive to common 

anesthetic drugs effect in monkeys and reliable in MEG and fMRI repeat scan sessions. We 

first reported the notion of cross-frequency coupling in BOLD activity. Our analysis could be 

adapted it in any task and modality for any hypothesis driven study. 
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1. Introduction  

There are many complex systems in nature that change over time where their functionality 

could be estimated by applying traditional methods to the recorded time series. Especially, in 

the case that the time series that characterize the complex system are simple and linear then 

simple approaches like Fourier transform can characterize the signal patterns. More complex 

systems such as chaotic oscillations, bifurcations and more challenging brain activity demand 

more sophisticated approaches that deal with the metastability and non-linearity of the 

underlying functionality (Gao et al., 2011 ; Dimitriadis et al., 2012). 

One of the most important family of techniques in temporal data mining is the symbolic 

time-series analysis. The general idea of symbolization is the transformation of a raw time-

series into a sequence of discrete symbols. The whole approach opens a variety of available 

neuroinformatic tools that share common theoretical background with Markov chain (Seneta, 

1981), bioinformatics (Baldi and Brunak,1998) and with theory of communication (Shannon 

and Weaver,1998). 

 A well-know method for analyzing the time-delay embedding of a 1D time series 

time-series that describes a dynamical system is the recurrence plots (Marwan et al., 2007). 

This method reveals the dynamical invariants of a system. A new technique called Fuzzy 

Symbolic Dynamics (FSD) clusters each multidimensional point to a neighborhood and then 

maps this information to a simplified two or three dimensional diagram (Duch and 

Dobosz 2011). 

 A large set of complexity estimators derived from information theory have been 

applied to symbolic sequences from multichannel EEG/MEG data in order to further 

understand brain dynamics, to design novel diagnostic tools tailored to brain diseases and 

also to discriminate brain activity between different cognitive tasks (Gao et al., 2011). A 

notable attention has been given to Lempel-Ziv Complexity (LZ) which quantifies different 

substrings in the binarized symbolic time series (Lempel-Ziv,1976). The binarization 

threshold is the mean amplitude of the time-series in most of the cases. LZ complexity has 

been used in recordings from rats during sleep (Abasolo et al., 2015), during propofol 

anesthesia (Hudetz et al., 2016), in Alzheimer’s disease (Abasolo et al., 2006), in traumatic 

brain injury (Luo et al., 2013), in dyslexia (Dimitriadis et al., 2017), in mild traumatic brain 

injury (Antonakakis et al., 2017) etc. 

 LZ complexity has many limitations. First of all, you have to apply an arbitrary 

threshold scheme that transform the original time series into a symbolic sequence of 0s and 

1s. Secondly, the binarization is applied to the 1D time series and not a reconstructed phase 
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space via time-delay embedding. This well-known approach can reveal the nonlinear and 

complex nature of the system described via the time series.   

 In two recent studies, we introduced a novel complexity index (CI) based on the 

transformation of a reconstructed phase space of a 1D time-series via time-delay embedding 

procedure to a symbolic sequence via neural-gas algorithm (Antonakakis et al., 2017 ; 

Dimitriadis et al., 2017). Neural-gas algorithm learns the manifold of the trajectory and 

transforms it into a symbolic sequence. Then, CI is defined as the distribution of distinct 

words up to a specific length of letters-symbols normalized by the distribution of distinct 

words of a number of randomized versions of symbolic time series. We reported higher CI 

values for dyslexic children versus non-impaired readers using MEG resting-state 

(Dimitriadis et al., 2017) and lower CI values for mTBI subjects versus healthy controls using 

MEG resting-state (Antonakakis et al., 2017). CI outperforms LZ complexity after applying 

machine learning approach for differentiate non-impaired readers from dyslexic children and 

healthy controls with age-matched mTBI subjects.  

 Brain dynamics recorded via EEG/MEG are complex signals that encapsulate the 

activity in various frequencies called brain rhythms. Additionally to the power spectrum 

analysis of signal as 1D time-series using Fourier or wavelet transform or to more 

sophisticated analysis such as our CI, it is more than important to reveal the different type of 

functional interactions. There are two complementary functional coupling mechanisms in 

spontaneous activity and also in task-related activity, the phase coupling and the coupling of 

signal envelopes in predefined band-pass filtered brain signals. Both types of intrinsic 

coupling modes (ICMs) have demonstrated different degree of sensitivity in normal and 

disease brain activity and also different correlation levels with structural connectivity (Engel 

et al., 2013). Apart from studying ICMs by taking into account the functional coupling in 

both amplitude and phase domain between signals with the same frequency content, it is 

significant to explore also their cross-frequency coupling mechanisms (Jirsa and Müller, 

2013; Dimitriadis et al., 2015ba,b,2016a,c,2017).  

It is well known that human brain mechanisms support functionally seperated temporal 

frames to group brain activity into sequences of neural assemblies where multi-frequency 

interactions simultaneously synchronized across the whole brain. These multiplex 

interactions create the syntactic rules which are significant for the exchange of information 

across the cortex (Buzsaki and Watscon,2012).  

Several studies have explored and revealed the physiological significant role of cross-

frequency coupling mechanisms. To give an example, the strength of θ-γ coupling in the 
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hippocampus and striatum of the rat was influenced by task demands (Tort et al., 

2008,2009). In another experiment, the coupling strength between a θ (4-Hz) oscillation 

and y power within the prefrontal cortex increased during the working memory phase of a 

choice task (Fujisawa and Buzsaki, 2011). 

The observed phenomenon of cross-frequency coupling mechanism supports the 

hierarchical organization of multiple brain oscillations across space and time and untangled 

the simultaneously brain interactions across multiple time scales  (Canolty and Knight,2010 ; 

Fell and Axmacher,2011). Well established computational models have explored the 

theoretical advantages of the existence of cross-frequency coupling (Lisman and Idiart, 1995 

; Neymotin et al., 2011). These models revealed the key mechanisms of cross-frequency 

coupling which may serve as the backbone of a neural syntax. The exist syntactic rules allow 

for both segmentation of spike trains into cell assemblies (“letters”) and assembly sequences 

(neural “words”) (Buszaki,2010). 

From the aforementioned evidences, it is more than important to explore the repertoire of 

available intra and cross-frequency interactions among brain rhythms and between brain 

areas under the same graph model. 

Here, we provided a framework of how to study the majority of available and well 

established interactions simultaneously and across the whole brain. It is important to explore 

brain interactions globally and afterward to focus on sub-networks and local interactions. On 

the top of it, we define an index that quantifies the flexibility of a pair of ROIs which 

quantifies the exchange rate of the preferred (dominant) coupling mode. 

 The complexity and the multiplexity of the human brain functional connectivity can 

be explored on the original functional dimensions only if all the possible interactions are 

studying under the same framework. For that reason, it is important to study the dominant 

type of interactions between every pair of brain areas at every snapshot of dynamic functional 

connectivity graph (DFCG) across the experimental time. We hypothesize that the dynamic 

reconfiguration of dominant intrinsic coupling modes (DICM) can capture the complexity – 

multiplexity of human and also the non-human brain during spontaneous activity and also in 

cognitive tasks. Additionally, the flexibility of this reconfiguration can be directly be linked 

to the multiplexity of brain functionality and its ability to adjust fast to any environmental 

stimulus (Buzsáki and Draguhn, 2004; Buzsaki, 2010; Buzsaki et al., 2013). We recently 

demonstrated the effectiveness of FI via the definition of DICM using a life-span EEG 

dataset in order to design a chronnectomic Brain Aged Index (CBAI) (Dimitriadis et al., 

2017). 
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 Here, we demonstrated the effectiveness of both complexity approaches in raw 

activity and dynamic functional connectivity using the following four datasets: 

1) A EEG study with healthy control and schizophrenic patients at resting-state 

2) A ECoG study from a monkey recorded during alter and after anesthesia 

3) A MEG repeat-scan study at resting-state 

4) A fMRI repeat-scan study from a single subject 

In Materials and Methods section, we described the data acquisition and details of the four 

datasets, the preprocessing steps including the denoising with ICA and the beamforming 

analysis to reconstruct the sources. The Results section is devoted to describe the results 

including classification results, significant changes between conditions and reliability of the 

proposed indexes in repeat scan sessions. Finally, the Discussion section includes the 

discussion of the current research results with future extensions. 

 

2. Materials and Methods 

In this section, we describe the datasets including subjects and data acquisition from the 

four functional neuroimaging modalities. We also described the preprocessing steps and how 

complexity indexes have been estimated. 

 

2.1.1  EEG recordings 

The subjects were adolescents who had been screened by psychiatrist and devided into two 

groups: healthy (n = 39) and with symptoms of schizophrenia (n = 45). Both groups included 

only school boys. The age of the patients ranged from 10 years and 8 months to 14 years. The 

control group included 39 healthy schoolboys aged from 11 years to 13 years and 9 months. 

The mean age in both groups was 12 years and 3 months. 

EEG activity was recorded from 16 EEG channels where their electrode positions is 

demonstrated in Fig.1. The sampling rate is 128 Hz and the recording time was 1 min, thus a 

total of 7680 samples refer to 1 minute of EEG record. You can download the EEG 

recordings from the website : http://brain.bio.msu.ru/eeg_schizophrenia.htm . The dataset has 

been adopted from previous published papers. 

 

[Figure 1 around here] 

2.1. 2 ECoG Recordings  
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Chronically implanted, customized multichannel ECoG electrode arrays (Unique Medical, 

Japan) were used for neural recording (Nagasaka et al.,2011). The array was implanted in the 

subdural space in 4 adult macaque monkeys（M1-M3 are Macaca fuscata and M4 is Macaca 

mulatta). One hundred and twenty-eight ECoG electrodes with an inter-electrode distance of 

5 mm were implanted in the left hemisphere, continuously covering over the frontal, parietal, 

temporal, and occipital lobes. Fig.2 illustrates the positions of the ECoG electrodes. Parts of 

the dataset are shared in the public server Neurotycho.org (http://neurotycho.org/) . I analysed 

EcoG recordings from one monkey was sitting calm with head and arm restrained. ECoG 

data were recorded first with alert and later with anesthetic condition after injecting propofol 

(Yanagawa et al., 2013). For further details see the original article. 

ECoG electrodes have been clustered to the following brain areas: 

Medial prefrontal cortex, lateral prefrontal cortex, premotor cortex, primary and 

somatosensory cortices, parietal cortex, temporal cortex, higher visual cortex and lower 

visual cortex (see Fig.1 in Yanagawa et al., 2013). 

[Figure 2 around here] 

 

 

2.1.3 MEG Recordings 

2.1.3.1 Subjects 

     40 healthy subjects (age 22..85�}3.74years, 15 women and 25 men) underwent two 

resting-state MEG sessions (eyes open) with a 1-week test-retest interval. For each 

participant, scans were scheduled at the same day of the week and same time of the day. The 

duration of MEG resting-state was 5 mins for every participant. The study was approved by 

the Ethics Committee of the School of Psychology at Cardiff University, and participants 

provided informed and written consent. 

 

2.1.3.2 MEG-MRI Recordings 
 

Whole-head MEG recordings were made using a 275-channel CTF radial gradiometer 

system. 29 reference channels were recorded for noise cancellation purposes and the primary 

sensors were analysed as synthetic third-order gradiometers (Vrba and Robinson, 2001). Two 

or three of the 275 channels were turned off due to excessive sensor noise (depending on time 

of acquisition). Subjects were seated upright in the magnetically shielded room. To achieve 
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MRI/MEG co-registration, fiduciary markers were placed at fixed distances from three 

anatomical landmarks identifiable in the subject’s anatomical MRI, and their locations were 

verified afterwards using high-resolution digital photographs. Head localisation was 

performed before and after each recording, and a trigger was sent to the acquisition computer 

at relevant stimulus events. For further details see Dimitriadis et al., 2018. 

 

2.1.4  fMRI Single-Case Long Term Dataset 

The participant on this single-case study (author R.A.P.) is a right-handed Caucasian 

male, aged 45 years at the onset of the study. RS-fMRI was recorded in one hundred scans 

throughout the data collection period (89 in the production phase), using a multi-band EPI 

sequence (TR = 1.16 ms, TE = 30 ms, flip angle = 63 degrees (the Ernst angle for gray 

matter), voxel size = 2.4 × 2.4 × 2 mm, distance factor = 20%, 68 slices, oriented 30 degrees 

back from AC/PC, 96 × 96 matrix, 230 mm FOV, MB factor = 4, 10:00 scan length).  

 

 

2.2 Preprocessing Steps 

In this section, we described the denoising step of brain activity for 

EEG/MEG/ECoG/fMRI datasets, the beamformer analysis for MEG dataset and the filtering 

set up on predefined frequency bands. 

 

2.2.1 Independent Component Analysis 

Ongoing activity from each modality was corrected for artifacts through the following 

procedure. Line noise was removed with a notch filter at 60 Hz and the data recording from a 

single subject was whitened and reduced in dimensionality by means of Principal Component 

Analysis (PCA) with a threshold corresponding to 95% of total variance (Delorme and 

Makeig, 2004; Antonakakis et al., 2013). The resulting signals were further  submitted 

to  ICA using the extended Infomax algorithm as implemented in EEGLAB (Delorme and 

Makeig, 2004). A given independent component (IC) was considered to reflect ocular,muscle 

or cardiac artifacts if more than 30% of its z-score kurtosis or skewness values, respectively, 

were outside ±2 of the distribution mean (Antonakakis et al., 2013; Dimitriadis et al., 2015c). 

Finally, the artifactual IC were zeroed and the artefact free activity was back-projected to the 

original dimension space. ICA was used as the candidate denoising method for every dataset. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2018. ; https://doi.org/10.1101/377028doi: bioRxiv preprint 

https://doi.org/10.1101/377028
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

 

 

 

2.2.2 EEG Analysis 

      EEG activity of {δ, θ, α1, α2, β1, β2, γ} frequency bands defined respectively within the 

ranges {0.5–4 Hz; 4–8 Hz; 8–10 Hz; 10–13 Hz; 13–20 Hz; 20–30 Hz; 30–48 Hz}. EEG 

recordings were bandpass filtered with a 3rd order zero-phase Butterworth filter using 

filtfilt.m MATLAB function. 

  

 

2.2.3 ECoG Analysis 

      ECoG activity of {δ, θ, α1, α2, β1, β2, γ1, γ2 } frequency bands defined respectively 

within the ranges {0.5–4 Hz; 4–8 Hz; 8–10 Hz; 10–13 Hz; 13–20 Hz; 20–30 Hz; 30–48 Hz }. 

ECoG recordings were bandpass filtered with a 3rd order zero-phase Butterworth filter using 

filtfilt.m MATLAB function. 

 

2.2.4 Beamformer Analysis of MEG Activity 

The activity of {δ, θ, α1, α2, β1, β2, γ } frequency bands defined respectively within the 

ranges {0.5–4 Hz; 4–8 Hz; 8–10 Hz; 10–13 Hz; 13–20 Hz; 20–30 Hz; 30–48 Hz } was first 

beamformed with linear constrained minimum norm variance (LCMV) in the artefact-free 

MEG data to determine ninety anatomical regions of interest (ROIs) in a template volume 

conduction head model. Here, we used the AAL-90 ROIs atlas.  

The beamformer sequentially reconstructs the activity for each voxel in a predefined grid 

covering the entire brain (spacing 6 mm) by weighting the contribution of each MEG sensor 

to a voxel’s time series a procedure that creates the spatial filters that can then project sensor 

activity to the cortical activity. Every ROI within the cortex contains many voxels and there 

are many algorithms of how to represent each ROI with a representative time series. Here, we 

estimated the representative time series via a linear weighted interpolation of the entire set of 

voxel time series that are encapsulated within every ROI. This method has already been 

demonstrated in a previous study employing the same MEG dataset (Dimitriadis et al., 2018). 

The whole analysis was written in MATLAB with routines from fieldtrip toolbox 

(Oostenveld et al., 2011). For further details regarding MRI acquisition and beamforming 

analysis, see (Dimitriadis et al., 2018). 
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2.2.5 fMRI Recordings 

Artifact free Fmri recordings were decomposed using the maximal overlap discrete 

wavelet transform (MODWT) method to the related wavelet coefficients for the first four 

wavelet scales, which in this case correspond to the frequency ranges 0.125∼0.25 Hz (Scale 

1), 0.06∼0.125 Hz (Scale 2), 0.03∼0.06 Hz (Scale 3), and 0.015∼0.03 Hz (Scale 4) 

(Dimitriadis et al., 2017). Bold activity of each of the 630 regions was decomposed with 

MODWT in wavelet coefficients for each scale.  Free-surfer parcellation of BOLD activity 

gave a total of 630 regions for subsequent analysis. For further details please see the original 

paper (Poldrack et al., 2015). 

 

 

2.3 Neural-Gas algorithm and Complexity Index (CI) 

An alternative method to transform the time-series expressed the brain activity into 

symbols is to adopt a proper algorithm that can learn the manifold of a reconstructed phase 

space and then determining the appropriate mapping between trajectories and symbols 

(alphabet). Here, i embedded each band-passed time-series (Fig.3.A.) into a common 

reconstructed space (Fig.3.B) and then applied the NG algorithm to derive a set of symbols 

that can describe the original signal with a reduced amount of error (Fig.3.C). For details on 

the procedure see (Dimitriadis et al., 2016d). Each concatenated time series was first 

embedded in a multidimensional space as described in equation (1): 

(1) 

where the time lag T is determined using mutual information and the embedding 

dimension dE is obtained using the false nearest neighbors test (Abarbanel,1996). Having 

estimated the reconstructed error between the original MEG time series and the one described 

by the NG-derived codebook, we fixed the number of symbols for each time series. The 

reconstruction error was set equals to 0.04. Finally, each ROI-based time-series was 

transformed to a Symbolic Time Series STSNG=[1 2 3 4 5 6 2 1 …] where each integer 

corresponds to one symbol (Fig.3.A-D).  

    We  applied this learning scheme within each group and frequency independently of each 

ROI activity for EEG,MEG and fMRI datasets. 
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CI quantifies the “richness of the language” within a symbolic sequence, and has been 

used in several fields, such as data compression, data mining, computational biology 

computational linguistics (Leve and Seebold, 2001). We adopted the CI based on symbolic 

sequences as presented in Janson et al. (2004). Low CI values describe sequences containing 

frequent repeated substrings that become periodic. 

The magnitude of the derived CI values was normalized based on the deviation from the 

complexity that can be derived by random-shuffled versions of the original symbolic 

sequence. Here, we used 1,000 randomized versions of the original symbolic sequence and 

the normalization procedure can be seen in Fig.3.G (Dimitriadis et al., 2016b). 

  

[Figure 3 around here] 

 

2.4 Dynamic iPLV estimates: the time-varying integrated iPLV graph (TVIiPLV 

graph) 

The goal of the analytic procedures described in this section is to understand the repertoire 

of phase-to-phase interactions and their temporal evolution, while taking into account the 

quasi-instantaneous spatiotemporal distribution of iPLV estimates. This was achieved by 

computing one set of iPLV estimates within each of a series of sliding overlapping windows 

spanning the entire recording set for continuous EEG-ECoG-MEG recording for the three out 

of four datasets. For fMRI dataset, I adopted wavelet coherence (WC) estimated over the 

wavelet decomposed time series in order to avoid positive and negative values of the 

correlation.  

The width of the temporal window was set equal to the duration of 1 sec, as an adequate 

number to capture the dynamics of every brain rhythm (fast and slows, Dimitriadis et 

al., 2013a). For EEG/ECoG/MEG, the center of the stepping window moved forward every 

20 ms and both intra and inter-frequency interactions between every possible pair of 

frequencies were re-estimated leading to a quasi-stable in time static iPLV graph. For fMRI 

dataset, i adopted a time-window of 20 TR and the center of window moved forward by step 

equals to 1 TR and in every temporal segment, quasi-static WC graph were estimated that 

tabulates functional interactions within and between frequencies between every possible pair 

of ROIs. 

 In this manner, a series of iPLV graph estimates were computed per subject or condition, 

for each of the intra- frequency coupling (7 (EEG) or 8 (ECoG-MEG) or 4 (fMRI)–
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frequencies) and the 21 (EEG) or 28 (ECoG-MEG)  or 6 (fMRI) possible cross-frequency 

pairs. 

This procedure, the implementation details of which can be found elsewhere (Dimitriadis 

et al., 2010, 2012, 2013b, 2015a,c), resulted in 7 (EEG) or 8 (ECoG-MEG) or 4 (fMRI) time-

varying graphs per participant (TViPLV or TVWC) for within frequency bands and 21 (EEG) 

or 28 (ECoG-MEG)  or 6 (fMRI))  TViPLV or TVWC graphs per participant for each possible 

cross-frequency pair, each serving as an instantaneous snapshot of the surface 

network. TViPLV or TVWC  tabulate iPLV/WC estimates between every possible pair of 

sensors/sources/ROIs. For each subject, a 4D tensor [frequencies bands (28 (EEG),36(ECoG-

MEG), 10 (fMRI) × slides  × sensors/sources/ROIs × sensors/sources/ROIs ] was created for 

each condition integrating subject-specific spatio-temporal phase interactions . 

Afterward, we applied surrogate analysis in order to reveal the  dominant type of 

interaction for each pair of sensors/sources/ROIs and at each snapshot of the TViPLV or 
TVWC. We constructed  1000 surrogate time-series by cutting first at a single point at a 

random location the original time series, creating two temporal segments and then 

exchanging the two resulting temporal segments (Aru et al., 2015). We restricted the range of 

the selected cutting point in a temporal window within the middle of the recording session. 

This procedure alters the temporal coherence between the pairs of every temporal segment 

for every possible coupling mode. The proposed surrogate scheme was applied to the original 

whole time series and not to the signal-segment at every slide. Repeating this procedure leads 

to a set of surrogates with a minimal distortion of the original phase dynamics (see 

Dimitriadis et al., 2017). Finally, for each pair of sensors/sources/ROIs and for each temporal 

segment, I estimated 1000 iPLV/WC for every within frequency interaction and every 

possible pair of frequencies. Practically, we assigned a p-value to each within and between 

frequencies interaction and for each sensors/sources/ROIs by comparing the original 

iPLV/WC value with 1000 surrogates iPLVSurr/WCiPLV. Then, we corrected for multiple 

comparisons across 28 (EEG),36(ECoG-MEG) and 10 (fMRI) possible DICM in order to 

reveal a DICM per pair of sensors/sources/ROIs and for each temporal segment. There are in 

total three scenarios :  

a) no p-value survived the multiple correction (p’ < p/(28 or 36 or 10 ) where p=0.05) 

b) more than one survived and in that case, we selected the DICM with the maximum 

iPLV/WC value or 

c) only one survived the multiple correction 
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Fig.4.A illustrates how the DICM is defined in the first two temporal segments from the 

EEG dataset between FP1  and P4 EEG sensors. 

Finally, we tabulated both the strength and the type of dominant coupling mode in 2 3D 

tensor [slides × sensors/sources/ROIs × sensors/sources/ROIs], one that keeps the strength of 

the coupling based on iPLV/WC and a second one for keeping the dominant coupling of 

interaction using integers from 1 up to 28 (EEG),36 (ECoG-MEG) or 10 (fMRI) {for ECoG-

MEG : 1 for δ, 2 for θ,…,8 for γ2, 9 for δ−θ,…, 36 for β2 − γ2, for fMRI: 1 for scale 1, 2 for 

scale 2, … , 10 for scale 3-scale 4 }. The notion of phase-to-amplitude cross-frequency 

coupling (CFC) estimator has been used also in our previous studies with EEG/MEG brain 

signals (Dimitriadis et al., 2015b, 2016a,b,c, 2017). 

 

[Figure 4 around here] 

 

2.5 Dominant intrinsic coupling mode transition rate 

Based on the 2nd 3D DIFCG that keeps the information of the DICM per pair of 

sensors/sources/ROIs and across time, we estimated the transition rate for each pair of 

sensors/sources/ROIs. The estimator is called flexibility index (FI) proposed and quantifies 

how many times a sensor/source/ROI changes DICM across experimental time similar but 

not the same with Flexibility Index based on cluster assignment (Bassett et al., 2011). This 

metric will called hereafter FIDICM which is defined as: 

(2) 

FIDICM gets higher values for higher “jumps” of DICM between a pair of 

sensors/sources/ROIs between consecutive time windows. Fig.4.B illustrates how a transition 

is estimated for the first pair of temporal segments ts1-2 and for FP1-P4 EEG pair. 

This approach leads to [sensors/sources/ROIs] x sensors/sources/ROIs features per subject 

or scan. 

2.6 Spatio-temporal distribution of dominant intrinsic coupling modes—

comodulograms 

Based on the 2nd DIFCG that keeps the information of the DICM, we can tabulate in a 

frequencies × frequencies matrix the probability distribution of observing each of the DICM 
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frequencies (7 (EEG) or 8 (ECoG-MEG) or 4 (fMRI)–frequencies + 21 (EEG) or 28 (ECoG-

MEG)  or 6 (fMRI)-cross-frequency pairs) across space and time. 

This spatio-temporal probability distribution is called hereafter as comodulograms. For 

further details see Dimitriadis et al., 2016a,2017. 

 

2.7 Reliability of FI 

The reliability of FI has been accessed with intra-class correlation (ICC) index (Koo and 

Mae,2016). 

 

3. Results 

In this section, we reported the results of CI,FI and comodulograms for each 

functional neuroimaging dataset separately. 

 

3.1 Classifying Healthy Controls and Schizophrenic Adults with CI and FI 

 We applied a feature selection and machine learning strategy independently for CI, FI 

and comodulograms. We employed the laplacian score as a feature selection algorithm (He et 

al., 2005) and kNN classifier with 5 nearest neighbors as a simple classifier in order to further 

enhance the discriminative power of the novel complexity indexes. We used a 5-fold cross-

validation scheme using the 75% of subjects from both groups in order to internally optimize 

the number of features. kNN classifier was trained in the 75% of the dataset and tested on the 

rest 25% with pre-selected number of features. 

 Fig. 5 illustrates the group-averaged CI across EEG sensors and frequency bands. The 

selected seven CI features are denoted with ‘*’. The classification performance based on CI 

reached 78%.  

   

[Figure 5 around here] 

 

Fig. 6.A-B illustrates the group-averaged FI across every pair of EEG sensors for 

healthy control and schizophrenic group,correspondingly. The selected ten FI features 

(connections) are denoted with ‘*’ and are located in fronto-temporo-parietal network. The 

classification performance based on those ten FI was absolute (100%).   

Fig. 6.C-D illustrates the group-averaged comodulograms for healthy control and 

schizophrenic group, correspondingly. The selected five comodulograms features are denoted 
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with ‘*’ and are referred to the probability distribution (PD) across space and time of δ-θ, δ-

α1,δ-α2, δ-β1 and  θ-α1. The classification performance based on selected PD features was 

absolute (100%).   

 

[Figure 6 around here] 

 

 

 

 

3.2 Sensitivity of FI and Comodulograms of DICM during Awake and Anesthesia 

Fig. 7 illustrates the group-averaged CI for each frequency band and for both awake and 

anesthesia conditions. CI values were first averaged across the ECoG sensors for each 

condition and monkey and afterward across the cohort. Statistical significant trends were 

detected between the two conditions (p < 0.01, Wilcoxon rank sum test, Bonferroni corrected, 

p’<p/8). CI was higher in awake condition compared to anesthesia condition in all frequency 

bands with the exception of δ while CI was higher in anesthesia compared to awake condition 

in δ frequency. 

Fig. 8.A-B illustrates the group-averaged topologies of FI across every pair of ECoG 

sensors for awake and anesthesia group,correspondingly. We applied a z-score > 3 to every 

condition in order to enhance the visualization of the survived connections. It is clear that FI 

is reduced during anesthesia while a dense network is located over higher and lower visual 

areas with a few connections between visual areas and lateral prefrontal cortex during 

anesthesia (Fig.8.A) compared to a dense network during awake condition (Fig.8.A). 

The selected twelve FI features (connections) via the machine learning scheme are 

located between medial prefrontal cortex, later prefrontal cortex and parietal cortexThe 

classification performance for separating awake from anesthesia condition based on FI was 

absolute (100%).   

Fig. 8.C-D illustrates the group-averaged comodulograms for awake and anesthesia 

conditions, correspondingly. The selected seven comodulograms features are denoted with 

‘*’ and are referred to the probability distribution (PD) across space and time of δ-α1,δ-α2 

(higher for anesthesia),   α1, α2, α1-γ,  α2-γ (higher in awake) and  δ (higher in anesthesia). The 

classification performance between awake and anesthesia based on PD was absolute (100%).   
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[Figure 7,8 around here] 

 

 

3.3 Reliability of FI and Comodulograms of DICM during MEG Resting-State 

Figure 9 illustrates the group-averaged mean CI values across the frequency bands and 

within the five well-known brain networks. CI values were first averaged within each brain 

network and for each scan session afterward across scans and the standard deviation was 

estimated across subjects. Additionally, intra-class correlation values have been estimated in 

order to access the reproducibility of CI values (Fig.9.B). 

The adopted tatistical analysis revealed a common frequency-dependent trend where 

DMN and FP demonstrate significant higher CI compared to the rest of brain networks across 

the frequency bands ( Fig.9.A, p < 0.01, Bonferroni corrected p’<p/80 where 80 denotes the 8 

frequency bands multiplied by the ten pair-wise comparisons between every pair of brain 

networks). Complementary, the CI was higher for the lower frequency bands (δ,θ,α1,α2) 

compared to the higher (β1,β2,γ) .  

Finally, CI values were high reliable across the frequency bands and brain networks with 

ICC values above 0.85 (Fig.9.B). 

FI values estimated within and between brain networks were also high reliable between 

scan session 1 and scan session 2 (Fig.9. C,D). Interestingly, the more flexible set of pairs of 

brain networks are the DMN-CO, FP-CO following by DMN-CO and FP-S. 

 

[Figure 9 around here] 

 
 

Every CI that statistically differed between the two conditions is denoted with ‘*’. 

(p < 0.01, Bonferroni corrected p’<p/80 where 80 denotes the 8 frequency bands multiplied 

by the ten pair-wise comparisons between every pair of brain networks). 

(DMN:Default Mode Network, FP:Fronto Parietal, O:Occipital, CO:Cingulo-Opercular, 

S:Sensorimotor) 

 

In Fig.10.A,B the group-averaged comodulograms are illustrated for scan session 1 and 2, 

correspondingly. Similarly, in Fig.11.C,D, the group-averaged comodulograms are 

demonstrated within and between every pair of brain networks for scan session 1 and 2 , 
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correspondingly. It is worth to notice that the pattern of DICM is highly reproducible in both 

spatial scales (whole network A-B and between networks C-D). Our methodology harness the 

notion of DICM in order to reveal the multiplexity of human brain dynamics in both spatial 

scales using MEG resting-state activity. Δ and α2 frequencies govern the DICM and the 

multiplexity of neuromagnetic recordings at resting-state. The estimated ICC for both 

estimated comodulograms (Fig.10) was 0.91 � 0.06 across the cohort. 

 

[Figure 10 around here] 

 

 

3.4 Reliability of FI and Comodulograms of DICM during fMRI Resting-State 

Fig.11.A illustrates the scan-averaged CI estimated within thirteen brain networks and the 

related ICC for fMRI resting-state . CI was statistically significant different between scale 1 

and the rest 2-4 and also between scale 2 and scales 3-4 across brain networks (p < 0.01, 

Bonferroni corrected p’<p/78 where 78 denotes the thirteen brain networks multiplied by the 

six pair-wise comparisons between every pair of brain networks). It seems that CI follows the 

frequency scales with the exception for scales 3 which had similar CI values with scale 4. 

ICC values were > 0.9 meaning that CI were high reliable (Fig.11.B). 

 

[Figure 11 around here] 

 

Fig.12.A and B demonstrates the scan-averaged FI between and within the thirteen brain 

networks in both split-half scan sessions. The outcome clearly supports the reliability of the 

FI which was ��� 	 0.93 � 0.03 across scan – sessions.  

Trial-averaged comodulogram across the whole brain network and between and within the 

thirteen brain networks are illustrated in Fig.12.C and D, correspondingly. Fig.12.C reveals 

frequency scale 1 as the basic brain modulator following by scale 2. These pattern was 

observed also on the more detailed spatial scale of brain networks both within (main 

diagonal) and between brain networks (off-diagonal) (Fig.12.D). 

 

[Figure 12 around here] 

 

4. Discussion 
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In the present study,  we presented a methodology approach for the estimation of 

complexity of brain activity and also the complexity of brain connectivity under the notion of 

dominant intrinsic coupling modes (DICM). We decided to demonstrate the whole approach 

using representative datasets from the majority of functional neuroimaging modalities. As a 

representative EEG dataset, we selected one with healthy controls and schizophrenic patients 

at resting-state in order to demonstrate the effectiveness of the proposed methodology to 

discriminate the two populations. ECoG recordings were selected from four monkeys 

undergoing anesthesia with different drugs in order to reveal the different pattern of 

multiplexity and DICM between awake and anesthesia and also a common trend 

independently of the drug. Reliability is very important nowadays for functional 

neuroimaging. For that reason, we have analysed repeat-MEG and fMRI scan recordings in 

order to estimated the reliability of CI,FI and DICM across the repeat scans. 

There are several complexity indexes that can quantify the randomness of sequence. The 

most famous is called LempelZiv complexity of a sequence which was defined by Lempel 

and Ziv and it is known as LZ complexity index (Lempel and Ziv, 1976) . This complexity 

measure counts the number of different patterns in a symbolic binary sequence with a finite 

length when scanned from the left to right. For example, the Lempel-Ziv complexity of the 

sequence s = 101001010010111 is 7, equals the total number of different patterns 

1|0|10|01|010|0101|11| when scanned from the left to the right. The disadvantage of this 

algorithm is the arbitrary selection of the threshold that is needed for the binarization of the 

original time series into a symbolic sequence of 0s and 1s. Moreover, LZ complexity index 

cannot reveal the complex of a non-linear system described by a time series. For the 

aforementioned reasons, we introduced here a novel approach which first embedded the time 

series into a reconstructing state space and then applying neural-gas algorithm, we clustered 

the data time points into a specific group of points selected in a data-driven way via the 

reconstruction error. Based on the derived symbolic sequence, we estimated the spectrum of 

the total number of words up to a length. The same spectrum is estimated for a number of 

surrogated symbolic time series produced by shuffling the original time series. The novel 

complexity index is estimated by dividing the original spectrum with the sum of spectrums 

estimated from the surrogates (Fig.3). In two previous studies, we tested the proposed CI 

versus the LZ complexity index. We reported an improved classification accuracy with the 

proposed CI compared to LZ index of dyslexic children versus non-impaired readers 

(Dimitriadis et al., 2017) and of mild traumatic brainn injured patients versus healthy controls 

using  (Antonakakis et al., 2017). We also found out higher CI values for dyslexic children 
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versus non-impaired readers using MEG resting-state (Dimitriadis et al., 2017) and lower CI 

values for mTBI subjects versus healthy controls using MEG resting-state (Antonakakis et 

al., 2017). 

We designed a novel flexibility index (FI) based on the spatio-temporal fluctuation of 

dominant intrinsic coupling modes (DICM) in order to explore the multiplexity of human 

brain dynamics. Till now, brain connectivity has been studied independently for each brain 

rhythm avoiding also to explore cross-frequency interactions across the whole brain. Here, 

we introduced to the neuroscience community, a way of how to integrate into  a single 

dynamic integrated functional connectivity graph the repertoire of possible coupling modes. 

This repertoire includes both intra and cross-frequency coupling mechanisms. Human brain 

mechanisms support distinct temporal frames to group brain activity into sequences of 

accemblies where multi-frequency interactions occur across the whole brain. These multiplex 

interactions create the syntactic rules which are significant for the exchange of information 

across the cortex (Buzsaki and Watscon,2012). Here, we provided a framework of how to 

study the majority of available and well established interactions simultaneously and across 

the whole brain. It is important to explore brain interactions globally and afterward to focus 

on sub-networks and local interactions. On the top of it, we define an index that quantifies the 

flexibility of a pair of ROIs which quantifies the exchange rate of the preferred (dominant) 

coupling mode. 

Both measures of CI and FI have been presented in the majority of neuroimaging studies 

while they can be adapted in any study at resting-state and also on task-related activity with 

any neuroimaging modality. Moreover, multi-modal correlation of CI – FI values derived 

from datasets acquired from simultaneously recordings of two functional modalities like in 

EEG-MEG, EEG-fMRI is more than significant. It would more than important to explore the 

enriched information of both indexes to build a sensitive biomarker for a large number of 

brain disorders/diseases like in dyslexia (Dimitriadis et al.,2017), in mild traumatic brain 

injury (Antonakakis et al., 2017), in Alzheimer’s disease, in schizophrenia etc. 

Following a machine learning approach, we revealed very interesting results related to the 

novel introduced features that can potentially discriminate the healthy controls from the 

schizophrenia patients. CI values succeeded to classify the two groups with 78% while FI and 

comodulograms with absolute accuracy (100%). The selected FI features were topologically 

located between fronto-temporo-parietal brain areas. Schizophrenia alters the probability 

distributions (PD) of δ-θ, δ-α1,δ-α2, δ-β1 and  θ-α1 . A recent study revealed frontal slow-

wave abnormalities in schizophrenia that are associated with negative symptoms while the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2018. ; https://doi.org/10.1101/377028doi: bioRxiv preprint 

https://doi.org/10.1101/377028
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

increase of frontal δ activity in schizophrenic populations is linked to poorer attention (Chen 

et al., 2015). Complementary, schizophrenia alters the dynamic reconfiguration of DICM 

which is reflected in both FI and comodulograms. This is the very first study that reports 

significant results in schizophrenia under the notion of multiplexity including cross-frequency 

coupling estimates.  It’s more than important to gain the advantage of functional 

neuroimaging and especially the EEG/MEG to reveal the dominant coupling modes in 

schizophrenia and in general in psychiatry (Alamian et al., 2017). 

The analysis of ECoG recordings from four monkeys in awake condition and during 

anesthesia with various drugs untangled significant common trends. First of all, CI was 

higher in awake condition compared to anesthesia condition in all frequency bands with the 

exception of δ where CI was higher in anesthesia compared to awake condition (Murphy et 

al., 2011). 

Our analysis revealed a reduced FI during anesthesia while a dense network is located 

over higher and lower visual areas with a few connections between visual areas and lateral 

prefrontal cortex compared to the more dense network during awake. 

Machine learning approach selected twelve FI features (connections) which are 

located between medial prefrontal cortex, later prefrontal cortex and parietal cortex. The 

classification performance for separating awake from anesthesic condition based on FI was 

absolute (100%).   

Additionally, machine learning scheme selected seven comodulograms features 

referred to the probability distribution (PD) across space and time of δ-α1,δ-α2 (higher for 

anesthesia),  α1, α2, α1-γ,  α2-γ (higher in awake) and δ (higher in anesthesia). The 

classification performance between awake and anesthesic conditions based on PD was 

absolute (100%). This significant analysis of integrating all the possible coupling modes into 

a common framework and practical an integrated dynamic functional brain networks assists 

to explore the multiplexity of human brain dynamics under various conditions. These results 

untangled the swift of dominant coupling modes from α frequencies in awake condition to δ 

frequency in anesthesia (Purdon et al., 2013).  

Analyzing neuromagnetic recordings from repeat scans under the same methodology 

revealed significant and reliable trends of complexity of brain activity and multiplexity of 

brain connectivity. Statistical analysis revealed a common frequency-dependent trend where 

DMN and FP demonstrate significant higher CI compared to the rest of brain networks across 

the frequency bands. Complementary, the CI was higher for the lower frequency bands 
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(δ,θ,α1,α2) compared to the higher frequencies (β1,β2,γ). CI values were high reliable across 

the frequency bands and brain networks with ICC values above 0.85 (Fig.9.B). 

FI values estimated within and between brain networks were also high reliable between 

scan session 1 and scan session 2. Interestingly, the more flexible set of pairs of brain 

networks are the DMN-CO, FP-CO following by DMN-CO and FP-S. It is worth to notice 

that the pattern of DICM is highly reproducible in both spatial scales whole network vs 

between networks. Our methodology harness the notion of DICM in order to reveal the 

multiplexity of human brain dynamics in both spatial scales using MEG resting-state activity. 

It is revealed that Δ and α2 frequencies govern the DICM and the multiplexity of 

neuromagnetic recordings at resting-state.  The estimated ICC for both estimated 

comodulograms was 0.91 � 0.06 across the cohort.  

A recent study revealed that higher functional brain dynamics between FP-DMN is 

correlated with higher cognitive flexibility (Douw et al., 2016).Here, we revealed that FP and 

DMN are the central core of brain flexibility in terms of dynamic reconfiguration of dominant 

coupling modes.  

Finally, we demonstrated the proposed CI,FI and comodulograms in fMRI resting-state 

repeat scan recordings. The scan-averaged CI was estimated within thirteen brain networks 

and the related ICC. CI was statistically significant different between scale 1 and the rest 2-4 

and also between scale 2 and scales 3-4 across brain networks. CI follows the frequency 

scales with the exception for scales 3 which had similar CI values with scale 4. ICC values 

for CI estimates were > 0.9 meaning that CI were high reliable. 

This is the very first study that introduced the notion of cross-frequency coupling and 

DICM in fMRI. We found that the scan-averaged FI between and within the thirteen brain 

networks in both split-half scan sessions were high reliable with ICC values reaching the 

0.93 � 0.03 across scan – sessions.  

Trial-averaged comodulogram across the whole brain network and between and within the 

thirteen brain networks reveal a significant trend where frequency scale 1 is the basic brain 

modulator following by scale 2. These pattern was observed also on the more detailed spatial 

scale of brain networks both within and between them. The methodology of DICM and FI 

will be useful to be applied to both cognitive tasks and disease cases. 

It is important for any neuroscientist to understand the importance of these novel 

methodologies for understanding the complexity of brain activity (Antonakakis et al., 2016b ; 

Dimitriadis et al.,2016b) and connectivity in functional neuroimaging. The incorporation of 

both intra and inter-frequency couplings to an integrated dynamic functional connectivity 
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graph could reveal the pattern of DICM within and between brain networks and also their FI 

(Antonakakis et al., 2016a,2017a,b ; Dimitriadis et al., 2015a,2015b,2016a,2016c,2017). 

Only with the adaptation of such methodology, the multiplexity of human brain connectivity 

could be revealed. 

 

5. Conclusions 

In the present study, we demonstrated a novel framework of exploring  the complexity of 

brain activity and connectivity in the majority of functional neuroimaging modalities. The 

results were very promising for characterizing cognitive states at resting-state, during 

anesthesia, for designing reliable biomarkers and also for a better understanding of the 

multiplexity of functional brain connectivity. Present results further support previous findings 

focusing on dynamic reconfiguration of DICM as a framework of studying the brain rhythms 

and their possible interactions simultaneously. Multiplexity of human brain interactions can 

be explored only by integrating both intra and inter-frequency coupling modes into a brain 

network model. 
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Figure Captions 

 

Figure 1. The topographical positions of EEG channels. 
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Figure 2. The topographical positions of EcoG channels1. 

 

 

Figure 3. From raw time-series to CI 

A. The original EEG activity in θ band from the first healthy control subject over Fp1 

sensor 

B. The reconstructed embedded space of the time series demonstrated in A using 

embedding dimension 3 and time-delay equals to 9. 

C. Applying neural-gas algorithm in B, we clustered the time-points in the embedding 

space into 6 classes where each corresponds to a symbol. 

D. The distribution of the Symbols S across the embedding space. 

                                                           
1 http://neurotycho.org/spatial-map-ecog-array-task 
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E. Symbolic Time Series (STS) as the outcome of the neural-gas algorithm demonstrated 

in C 

F. Distribution of distinct words length up to length 7 for the real STS demonstrated in E 

G. Mean distribution of distinct words up to length 7 from 1000 randomized versions of 

the original STS 

H. CI is estimated as the ration of the sum of distribution of distinct words up to length 7 

illustrated in F versus the mean distribution of distinct words up to length 7 from the 

1000 randomized versions of the original STS as shown in G. 

 

 

 

 

 

 

 

 

 

 

Figure 4.Determining Dominant Intrinsic Coupling Modes (DICM).  

A. Schematic illustration of the approach employed to identify the DICM between two 

EEG sensors (FP1 and P4) for two consecutive 1s sliding temporal segment (ts1, ts2) during 

the resting-state EEG activity from the first normal subject. In this example the functional 

interdependence between band-passed signals from the two sensors was indexed by 

imaginary Phase Locking (iPLV). In this manner iPLV was computed between the two EEG 
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sensors either at same-frequency oscillations (e.g., δ to δ) or between different frequencies 

(e.g., δ to θ). Statistical filtering, using surrogate data for reference, was employed to assess 

whether each iPLV value was significantly different than chance. During ts1 the DICM 

reflected significant phase locking between α1 and α2 oscillations (indicated by red 

rectangles) whereas during in ts2 the dominant interaction was found between δ and α1 

oscillations.  

B. Burst of DICM between the two sensors. 

This packeting can be thought to associate the ‘letters’ contained in the DICM series to form 

a neural “word.”, a possible integration of many DICM (Buzsaki and Watscon,2012). For the 

first pair of ts1-2, i illustrated how a transition is defined for FP1-P4 EEG pair important for 

the estimation of FI (see section 2.5). 

 

 

 

 

 

 

 

 

Figure 5. Group-Averaged Complexity Index (CI) across EEG sensors. 

A-G) Group-averaged CI for δ up to γ frequency. 

Every CI selected is denoted with ‘*’. 
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Figure 6. Group-Averaged Flexibility Index (FI) and Comodulograms. 

A-B) Group-averaged FI for healthy control group (A) and schizophrenic group (B) 

C-D) Group-averaged comodulograms for healthy control group (C) and schizophrenic group 
(D) estimated across space and time. 

Every FI and PD selected is denoted with ‘*’. 
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Figure 7. Group-Averaged Complexity Index (CI) across ECoG sensors and monkeys. 

A-G) Group-averaged CI for δ up to γ frequency. 

Every CI that statistically differed between the two conditions is denoted with ‘*’. 

(p < 0.01, Wilcoxon rank sum test, Bonferroni corrected, p’<p/8) 
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Figure 8. Group-Averaged Flexibility Index (FI) and Comodulograms. 

A-B) Group-averaged topologies FI for awake idle condition  (A) and for anesthesia (B). We 
applied a z-score > 3 as a threshold to enhance the visualization of the survived connections 
based on FI. 

C-D) Group-averaged comodulograms for awake condition (C) and anesthesia (D) estimated 
across space and time. 

Every FI and PD selected is denoted with ‘*’. 
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Figure 9. Group-Averaged Complexity Index (CI) and Flexibility Index (FI)  

Group-averaged CI for δ up to γ2 frequency. 

A)  Group-averaged CI for δ up to γ frequency. 
B) Group-averaged ICC for δ up to γ frequency. 
C) Group-averaged FI within and between brain networks from the first scan session  
D) Group-averaged FI within and between brain networks from the second scan session  
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Figure 10. Group-Averaged Comodulograms in whole brain and brain networks. 

A-B) Group-averaged comodulograms for scan session 1 (A) and scan session 2 (B) 
C-D) Group-averaged comodulograms within and between the five brain networks for 
scan session 1 (C) and scan session 2 (D). 
(DMN:Default Mode Network, FP:Fronto Parietal, O:Occipital, CO:Cingulo-

Opercular, S:Sensorimotor) 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2018. ; https://doi.org/10.1101/377028doi: bioRxiv preprint 

https://doi.org/10.1101/377028
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 11. Scan-Averaged Complexity Index (CI) and ICC. 

A) Scan-Averaged Complexity Index (CI)  
B)  ICC values across frequency sub-bands (scales) and the thirteen brain networks 

Statistical significant differences are denoted with ‘*’ 

(*, p < 0.01, Bonferroni corrected p’<p/78 where 78 denotes the thirteen brain networks 
multiplied by the six pair-wise comparisons between every pair of brain networks). 

CO:Cingulo-opercular, DMN:Default Mode Network , DA: Dorsal Attention, 

(FP1:Frontoparietal 1, FP2:Frontoparietal 2, MP:Medial-Parietal, PO:Parieto-Occipital,    
S:Salience, SM:Somatomotor, VA: Ventral-Attention,V1:Visual-1, V2:Visual-2, R:rest of 
unclassified nodes)(p < 0.01, Bonferroni corrected p’<p/8 where 78 denotes the thirteen brain 
networks multiplied by the six pair-wise comparisons between every pair of brain networks). 
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Figure 12. FI and Comodulograms across the repeat scans fMRI resting-state 

A. FI within and between the brain networks for the first half of repeat scans 
B. FI within and between the brain networks for the second half of repeat scans 
C. Scan-averaged comodulograms estimated across the whole network 
D. Scan-averaged comodulograms estimated within and between the brain networks 
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