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Abstract

Background The US has experienced a nationwide resurgence of pertussis since the mid-1970s, de-

spite high vaccine coverage. Short-lived immunity induced by Diphtheria-Tetanus-acellular Pertussis

(DTaP) vaccines in young children is widely believed to be responsible for this growing burden. How-

ever, the duration of protection conferred by DTaP vaccines remains incompletely quantified.

Methods and Findings We employed a rigorously validated, age-structured model of pertussis

transmission to explore a range of hypotheses regarding the degree of waning DTaP-derived immunity. For

every hypothesis, we calculated the vaccine e�ectiveness and the relative increase in the odds of acquiring

pertussis (or odds ratio) in children aged 5 to 9 years. We then assessed the simulated DTaP vaccine

traits that best reproduced the empirical values of odds ratios from recent US epidemiological studies.

We found a marked association between the degree of waning immunity, the vaccine e�ectiveness, and

the odds ratio. Unexpectedly, the odds ratio was positively associated with the vaccine e�ectiveness, as

a consequence of non-linear, age-assortative dynamics. Based on the empirical odds ratios, we estimated

that vaccine e�ectiveness exceeded 75% and that more than 65% of children remained immune to pertussis

5 years after the last DTaP dose.

Conclusions Our results show that temporal trends in the odds of acquiring pertussis are a seriously

flawed measure of the durability of vaccine-induced protection. They further demonstrate that DTaP

vaccines confer imperfect, but long-lived protection. We argue that control strategies should be based

upon the best available estimates of vaccine properties and the age-structure of the transmission network.
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Pertussis, or whooping cough, is an acute respiratory disease, caused by a bacterial infection and typ-

ically characterized by a prolonged cough [1]. Despite the availability of prophylactic vaccines since the

1930s [2], recent epidemiological data indicate that the control of pertussis remains incomplete and problem-

atic. Indeed, the disease continues to exact a heavy toll worldwide, with an estimated 24.1 [7–40] million

cases and 161 [38–671] thousand deaths in 2014 in children younger than 5 yr, for the most part in low-

income countries [3]. Despite large reductions in reported cases after the start of routine vaccination with

Diphtheria–Tetanus–whole-cell Pertussis (DTwP, also known as DTP) vaccines, pertussis has re-emerged in

several high-income countries that maintained high vaccination coverage [4, 5]. Prominently, the US has

experienced a nationwide resurgence of pertussis since the mid-1970s [6, 7], with incidence highest in infants

but increasing disproportionately in adolescents and adults [8, 9]. Most recent US estimates indicate that

15,737 individuals contracted pertussis in 2016, including 1,793 cases and 6 deaths in infants [10]. Additional

control measures were implemented in response to this growing burden, which have met with mixed success

(e.g., [11], but also [12, 13]). These di�culties illustrate both the complexity of, and knowledge gaps in, our

understanding of pertussis biology and epidemiology [14, 15]. Foremost among the latter are uncertainties

surrounding the nature of vaccinal immunity, which make the evaluation of vaccine e�cacy in the field

challenging [16].

Waning immunity following vaccination with Diphtheria-Tetanus-acellular Pertussis (DTaP) vaccines is

widely believed to be responsible for the growing burden of pertussis in the US [17, 18, 19]. These sub-

unit vaccines, based on a subset of purified antigens of Bordetella pertussis, were developed in response to

concerns over the safety of DTwP vaccines [1]. Vaccine trials demonstrated the safety and the e�cacy of

DTaP vaccines [20], which progressively replaced DTwP in most high-income countries, including the US

which switch to the acellular vaccines in the mid-1990s [21, 22]. However, concerns over the population-

level impacts of these vaccines soon surfaced [18]. In a recent meta-analysis that included 2 case-control

studies [23, 24] and 1 cohort study [25] in the US, McGirr et al. [26] estimated that the odds of acquiring

pertussis increased 1.33[1.23–1.43]-fold each year since receipt of the last dose of DTaP. Similar results were

obtained in another, more recent, case-control study [27]. These results have been interpreted as evidence

for widespread and rapid waning of protection conferred by DTaP vaccines, casting doubt on the vaccine’s

ability to control pertussis and sparking debate on the need for other control strategies [28, 17, 18] and

new vaccines [29, 30]. However, it has not been established that this is a valid interpretation. Here, we

demonstrate that this interpretation is in fact invalid by showing that the observed odds ratio is more

consistent with much more durable vaccinal protection.

To this end, we used an empirically validated population-based model of pertussis transmission, structured

according to age and parametrized using high-quality age-specific incidence data from Massachusetts [31].
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As previously reported, this model successfully captured key features of pertussis epidemiology in the US

(Fig. 1), chiefly the resurgence from the mid-1970s (Fig. 1B) and the concomitant shift of cases to adolescents

and adults (Fig. 1C) [31]. According to this model, these changes are an end-of-honeymoon e�ect [32]—that

is, they are the slowly manifesting but predictable consequences of incomplete historical coverage with

imperfect, but nevertheless e�cacious, vaccines that confer slowly waning protection and generate strong

herd immunity. The underlying mechanism of this e�ect is illustrated in the immunological profile presented

in Fig. 1A, and further explained in the legend of Fig. 1.

Unexpectedly, we also found that our model-based estimates of the increase in the odds of pertussis

were consistent with those that have been obtained in the aforementioned case-control and cohort studies

commonly interpreted as evidence for rapidly waning DTaP immunity (Fig. 3F in Ref. [31] and Refs. [23,

24, 25, 26, 27]). To fully resolve the apparent paradox, we took advantage of the validated model, adapting

it to incorporate known changes in immunization practices in the US (including the switch to DTaP [21, 22]

and the introduction of booster vaccination with Tdap in adolescents [33]) and using it to systematically

compare di�erent measures of DTaP e�cacy. Specifically, we performed extensive simulations to contrast 3

measures of DTaP e�cacy in 5 simulated cohorts of children born between 2001 and 2005. First, we varied

the degree of waning immunity following DTaP vaccination, here quantified as the probability that DTaP-

induced immunity wanes within 5 yr (p5). Second, we estimated the resulting vaccine e�ectiveness (VE)

using standard methods. Finally, we computed the average relative yearly change in the odds of acquiring

pertussis (or odds ratio, OR) after last DTaP vaccination. By comparing our model-based OR estimates

with those of empirical studies [23, 24, 25, 26, 27], we sought to determine the vaccinal traits of DTaP that

best explained recent epidemiological data in the US.
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Figure 1: Resurgence of pertussis in the US as an end-of-honeymoon e�ect. This figure shows
a typical simulation of a stochastic model of pertussis transmission [31], under a US-like scenario of immu-
nization, assuming that 95% of infants are immunized with vaccines that wane slowly on average (average
waning rate, 0.011 per yr, 5% probability that immunity wanes within 5 yr). A: Variations of the fraction
susceptible to pertussis infection over time (x-axis), and according to age (y-axis). The top x-axis indicates
changes in immunization practices assumed in the model: 1940, start of mass vaccination with DTwP; 1967,
start of booster doses in children aged 15–18 mo (4th dose) and 4–6 yr (5th dose); 1992, start of DTaP for
booster doses; 1997, start of DTaP for all doses. B: Total incidence of pertussis. The vertical dashed line
indicates the assumed start time of mass vaccination with DTwP. C: Incidence of cases over age (x-axis) and
over time (color). Each line represents a distinct year. The 3 panels illustrate the end-of-honeymoon e�ect,
as follows. In the prevaccine era, cases are concentrated in young children who, upon recovery, develop long-
lived immunity against reinfection, resulting in strong herd immunity in older individuals. The inception of
mass vaccination leads to an overall reduction in transmission in those vaccinated and in the population at
large. Hence, children who were not vaccinated (or in whom vaccinal protection did not initially take) are
increasingly likely to reach adulthood having avoided natural infection. Concomitantly, older cohorts, with
their long-lived immunity derived from natural infection during the prevaccine era, gradually die out. The
result is the gradual buildup of susceptibles visible in panel A, which leads to a gradual resurgence. See
Text S1 for complete details on the model formulation, parametrization, and implementation.

The results, presented in Fig. 2A, revealed a marked association between the 3 measures of vaccine

e�cacy. As expected, the estimated vaccine e�ectiveness increased as the degree of waning decreased,

exceeding 90% when immunity waned in less than 15% within 5 yr. Counterintuitively, an equally strong,

but positive, association was found between the vaccine e�ectiveness and the yearly increase in the odds ratio.
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To understand this result, we show in Fig. 2B the simulated incidence rates in children aged 5 to 9 yr (i.e., 0

to 4 yr following the last DTaP vaccination), for a range of assumptions regarding DTaP e�cacy. Assuming a

slowly waning, highly e�cacious DTaP (p5 = 0.05, VE = 0.96), pertussis incidence was predicted to increase

almost linearly over age, on average by 43% after every year since last DTaP vaccination (Fig. 2B, top

panel). This result is best interpreted as a consequence of the high transmissibility of pertussis (estimated

Basic Reproduction Ratio, R0 ¥ 10 in MA [31], see also Refs. [34, 35]): at vaccine coverage below the

critical threshold, circulation persists and the risk of disease remains relatively high in groups with high

contact rates, such as schoolchildren (Fig. S2). In contrast, the incidence profile di�ered markedly in the

high-waning, low-e�cacy DTaP scenario (Fig. 2B, lower panel). Here the incidence was predicted to peak

1–3 yr after last receipt of DTaP, resulting on average in a decrease in the risk of pertussis (i.e., OR Æ 1).

Under this scenario, transmissibility is so high that the pool of susceptible children—including those for

whom vaccinal immunity has waned—is rapidly depleted, limiting further transmission [36]. Hence, these

results demonstrate an intricate relationship between the degree of waning and the odds ratios, making their

interpretation di�cult and their validity as a measure of vaccine e�cacy and the durability of immunity

questionable.

Based on the meta-analysis estimate in Ref. [26] (OR=1.33 [1.23–1.43]), we predict that the e�ectiveness

of DTaP in children aged 5 to 9 yr exceeds ¥75% (Fig. 2A). We also predict that more than 65% of children

remain immune to pertussis 5 yr after the last dose of DTaP, or, equivalently, that the duration of protection

exceeds approximately 12 yr. Of note, we find that the odds ratio estimates become more variable when

the vaccine e�ectiveness exceeds 90%, as post-vaccine cases become increasingly rare and their dynamics

increasingly stochastic. We propose that this finding might qualitatively explain the large estimation un-

certainty found in some empirical studies [24, 25, 26], although we acknowledge other potential sources of

uncertainty not incorporated into our model. To further quantify the predicted e�cacy of DTaP, we also

calculated the vaccine impact, a population-level measure of the overall reduction in transmission caused by

vaccination [37, 38]. We found comparable results based on this measure, with empirical estimates of odds

ratios more consistent with a vaccine impact exceeding about 50% (Fig. S4). We also found these results

to be robust to alternative assumptions regarding the level of vaccine coverage, the simulation protocol,

and the inclusion of demographic trends (Figs. S7–S9). Critically, these results were also insensitive to the

assumed e�cacy of Tdap in teenagers (Fig. S6). Altogether, we conclude from these experiments that, in

stark opposition to recent claims [17, 18], recent epidemiological data in the US are actually more consistent

with e�cacious DTaP vaccines that confer long-term protection, reduce overall transmission, and induce

herd immunity. It would be a mistake to conclude, however, that routine vaccination with DTaP alone will

be su�cient to eradicate the disease [31].
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Figure 2: Comparison of DTaP e�cacy measures. A: Association between odds ratios (x-axis) and
vaccine e�ectiveness (y-axis), based on 104 simulations with varying degrees of waning (color scale). The
empirical range of odds ratios is based on the meta-analysis estimate in Ref. [26]. B: Pertussis incidence as
a function of time since last receipt of DTaP for 3 values of DTaP-induced immunity waning. In each panel,
the 5 lines represent 5 cohorts of children born between 2001 and 2005, tracked 0 to 4 yr after receipt of the
last dose of DTaP (that is, during ages 5 to 9 yr). The y-axis values di�er between panels, for visual clarity.
See Text S1 for information on how the quantities in this figure were estimated.

With serological correlates of vaccinal protection still obscure [29], the e�cacy of pertussis vaccines has

been regularly debated [16]. A major point of contention remains the ability of pertussis vaccines to prevent

transmission, in addition to disease [39, 40, 41, 42]. Regarding DTwP vaccines, a large body of evidence (re-

viewed in Ref. [15]) has shown that they can successfully reduce transmission. In contrast, there is a growing

consensus that DTaP vaccines do not reduce transmission, and therefore might be inadequate to control

pertussis [17, 18]. This view is partly based on evidence that DTaP generates an immune response di�erent

from that of DTwP or natural infection [43], though the immunological mechanisms of vaccinal protection

remain incompletely understood. Furthermore, experimental studies in animal models have suggested that

vaccination with DTaP prevents symptomatic disease, but not transmissible infection [44, 41]. We have pre-

viously argued that such results cannot be straightforwardly extrapolated to human populations inasmuch

as they are inconsistent with the clear-cut signatures of herd immunity following DTaP vaccination observed
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in several countries [42, 15] The present findings entirely confirm this view, as they point to e�cacious DTaP

vaccines that confer an admittedly imperfect, but slowly waning immunity.

Our results have policy implications. First, the rationale behind future control strategies should incor-

porate the fact that, despite widespread belief, DTaP vaccines are actually e�cacious and able to cause

indirect e�ects via herd immunity. Second, we propose that control objectives should take into account the

epidemiological dynamics of pertussis, in particular its high transmissibility. Indeed, our results suggest

that a relatively high burden of pertussis—including periodic outbreaks in school-aged children—may be the

norm, even with e�cacious but imperfect vaccines. In view of the high transmissibility of pertussis, current

DTaP vaccines are likely insu�cient to eradicate the disease on their own, but they nevertheless remain

an important part of e�ective control strategies. Empirically validated models of pertussis transmission,

such as those presented here, will prove useful to define achievable control objectives, assess the impact of

current control measures, and predict the e�ect of new control strategies. Finally, our results emphasize the

complexity of pertussis epidemiology and the fact that seemingly intuitive measures of vaccine e�cacy can

be misleading in the face of this complexity.
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