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Abstract 10 

Background Human pathogens are widespread in the environment, and examination of pathogen-enriched 11 

environments in a rapid and high-throughput fashion is important for development of pathogen-risk 12 

precautionary measures. 13 

Methods In this study, a Local BLASTP procedure for metagenomic screening of pathogens in the environment 14 

was developed using a toxin-centered database. A total of 27 microbiomes derived from ocean water, freshwater, 15 

soil, feces, and wastewater were screened using the Local BLASTP procedure. Bioinformatic analysis and 16 

Canonical Correspondence Analysis were conducted to examine whether the toxins included in the database 17 

were taxonomically associated. 18 

Results The specificity of the Local BLASTP method was tested with known and unknown toxin sequences. 19 

Bioinformatic analysis indicated that most toxins were phylum-specific but not genus-specific. Canonical 20 

Correspondence Analysis implied that almost all of the toxins were associated with the phyla of Proteobacteria, 21 

Nitrospirae and Firmicutes. Local BLASTP screening of the global microbiomes showed that pore-forming 22 

RTX toxin and adenylate cyclase Cya were most prevalent globally in terms of relative abundance, while 23 

polluted water and feces samples were the most pathogen-enriched. 24 

Conclusions A Local BLASTP procedure was established for rapid detection of toxins in environmental 25 

samples. Screening of global microbiomes in this study provided a quantitative estimate of the most prevalent 26 

toxins and most pathogen-enriched environment. 27 

Keywords 28 

Metagenomics, Microbiome, Local BLASTP, Toxins, Pathogens 29 

  30 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 25, 2018. ; https://doi.org/10.1101/376855doi: bioRxiv preprint 

https://doi.org/10.1101/376855


Introduction 31 

Rapid identification of pathogens in a particular environment is important for pathogen-risk management. 32 

Human pathogens are ubiquitous in the environment, and infections from particular environments have been 33 

reported worldwide. For example, soil-related infectious diseases are common [1, 2]. Legionella longbeachae 34 

infection has been reported in many cases, mainly due to potting mixes and composts [3]. Survival of enteric 35 

viruses and bacteria has also been detected in various water environments, including aquifers and lakes [4-7]. 36 

Examination of pathogens from infected individuals with a particular clinical syndrome has been a major 37 

achievement of modern medical microbiology [8]. Nevertheless, we still know little about the magnitude of the 38 

abundance and diversity of known common pathogens in various environments, which is very important to the 39 

development of appropriate precautions for individuals who work or play with certain environmental substrates. 40 

This can be realized through metagenomic detection of pathogenic factors in a time-efficient and high-41 

throughput manner using next-generation sequencing methods. 42 

Metagenomic detection of pathogens can be accomplished through different schemes. Li et al. examined 43 

the level and diversity of bacterial pathogens in sewage treatment plants using a 16S rRNA amplicon-based 44 

metagenomic procedure [9]. Quantitative PCR has also been applied for monitoring specific pathogens in 45 

wastewater [10]. More studies have applied the whole-genome-assembly scheme to detect one or multiple 46 

dominant pathogens, most of which were for viral detection in clinical samples [11-14]. Although metagenomic-47 

based whole-genome-assembly for bacterial pathogen detection can be conducted at the single species level [15], 48 

its computational requirements are high if in a high-throughput fashion. In 2014, Baldwin et al. [16] designed 49 

the PathoChip for screening pathogens in human tissues by targeting unique sequences of viral and prokaryotic 50 

genomes with multiple probes in a microarray. This approach can screen virtually all pathogen-enriched samples 51 

in a high-throughput manner. 52 

Despite the aforementioned progress in metagenomic tools for pathogen detection, metagenomic screening 53 

for bacterial pathogens in environments such as soil, where microbial diversity is tremendous, is still 54 

challenging. This is mostly due to difficulty in assembling short reads generated by next-generation sequencing 55 

[8]. The whole-genome-assembly approach is efficient at identifying viromes, but not at dealing with bacterial 56 

communities. Amplicon-based approaches are able to detect bacterial pathogens in a high-throughput manner; 57 

however, it is well known that phenotypic diversity exists widely across and within microbial species of a genus 58 

because of divergent evolution [17, 18]. This also holds true for pathogenic factors [19]. Moreover, toxin factors, 59 

such as the Shiga toxin (stx) of Shigella, are primarily transferable through lateral gene transfer, which leads to 60 

the continuous evolution of pathogen species [20]. Therefore, it is necessary to examine the pathogen diversity 61 

in environmental metagenomes using essential virulence genes as biomarkers. 62 

In this study, a toxin-centered virulence factors database was established, and the well-developed Local 63 

BLASTP method was applied to detect virulent factors in various environments globally. This procedure is 64 

metagenome-based and can be conducted in a high-throughput fashion, which greatly simplifies development of 65 

precautions for pathogen-enriched environments. 66 
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Methods and Materials 67 

Environments and their metagenomes 68 

Twenty-seven metagenomes were selected and downloaded from the MG-RAST server (Table 1). These 69 

metagenomes were derived from ocean water, freshwater, wastewater, natural soil, deserts and feces, 70 

representing the major environmental media found worldwide. Sequencing methods of the metagenomes include 71 

the Illumina, Ion Torrent and 454 platforms, and predicted proteins in the metagenomes ranged from 33,743 72 

(fresh water, ID mgm4720261) to 1,966,121 (weedy garden soil, ID mgm4679254). The gene calling results 73 

were used for toxin factor screening in this study. The taxonomic composition at the genus level was also 74 

retrieved from the MG-RAST server for each metagenome. 75 

Toxin factor database 76 

A toxin-centered database was established for bacterial pathogen detection in metagenomes in this study. 77 

Candidate toxin factors for pathogenic screening of environmental metagenomes were gathered based on well-78 

studied pathogens summarized in Wikipedia® under the entry of “pathogenic bacteria”, the Virulence Factor 79 

Database [21], a soil borne pathogen report by Jeffery and van der Putten [2],and a manure pathogen report by 80 

the United States Water Environment Federation [22]. Sequences of the toxin factors were then retrieved by 81 

searching the UniProt database using the toxin plus pathogen names as an entry [23], while typical homologs at 82 

a cutoff E value of 10-6 were gathered from GenBank based on BLAST results. Considering that virulence 83 

process involves several essential factors including toxins, various pathogen-derived secretion proteins were 84 

also included in the database, and it was tested that whether secretion proteins were as specific as toxin proteins 85 

for pathogen detection. The disease relevance of all virulence factors was screened using the WikiGenes system 86 

[24] and relevant publications (Table 2). 87 

Local BLASTP 88 

The Local BLASTP was applied following the procedure used in our previous study [58]. Basically, the gene 89 

calling results of each metagenome were searched against the toxin factor database using BLASTP embedded in 90 

BioEdit. The cutoff expectation E value was set as 10-6. The results of the Local BLASTP in BioEdit were then 91 

copied to an Excel worksheet, after which they were subjected to duplicate removal, quality control and 92 

subtotaled according to database ID. Duplicate removal was based on the hypothesis that each sequence 93 

contains one copy of a specific toxin factor, since the gene-calling results were used. For quality control of the 94 

BLSAT results, a cutoff value of 40% for amino acids identity and 20 aa (1/3 of the length of the shortest toxin 95 

factors (e.g., the Heat-Stable Enterotoxin C)) for query alignment length were used to filter the records. The 96 

toxins abundance matrix was formed for subsequent analyses. 97 

Specificity tests of the Local BLASTP method 98 

Sequences from the toxin database established in this study, as “known sequences” to the database, were 99 

selected randomly and searched against the database using the BLASTP procedure. The genome of Clostridium 100 
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perfringens ATCC 13124 (NC_008261), as “unknown” sequences to the database, was subject the Local 101 

BLASTX procedure as well. Homologous proteins were searched exhaustively in the GenBank database using 102 

BLASTP, with the representative toxin factors in the toxins database as a query. Sequences were retrieved and 103 

aligned using ClustalW, and Maximum-likelihood phylogeny was conducted with MEGA 7 [59]. 104 

Data analysis 105 

The toxin frequency in each metagenome was normalized to a total gene frequency of 1M to eliminate the 106 

effects of gene pool size. Toxin abundance in the 27 metagenomes was visualized using Circos [60]. The genus 107 

abundance of all metagenomes was calculated and sorted by genus name, followed by manual construction of a 108 

genus abundance matrix for subsequent biodiversity-toxin abundance Canonical Correspondence Analysis using 109 

R [61]. 110 

Results and Discussion 111 

In this study, a toxin-centered database was established for bacterial pathogen screening in various microbiomes 112 

globally through a Local BLASTP procedure. The specificity of the procedure was tested, the relative 113 

abundance of toxins in the microbiomes was examined, and the toxin-taxonomic abundance correspondence 114 

analysis was performed. 115 

Like the previously established Local BLASTN method for antibiotic and metal resistance genes screening 116 

[58, 62, 63], the Local BLASTP method using the toxin-centered pathogen database in this study was successful 117 

at accurately identifying toxin proteins from the database. For screening of the Clostridium perfringens ATCC 118 

13124 genome, the methods successfully detected the pore-forming genes and multiple copies of the 119 

glucosyltransferase (toxB-like) and ADP-ribosyltransferase (spvB-like) genes, based on the raw data. These 120 

results are consistent with the virulence genetic features of Clostridium sp. [21], which have not been well 121 

detailed in the GenBank annotation record. Such a cross-validation positively indicated that the Local BLASTP 122 

procedure established here is useful in predicting toxin genes in unknown genomes. Yet for a semi-quantitative 123 

method to estimate toxin factors in metagenomes, a false positive analysis is required to examine to what level 124 

mismatch is included in the Local BLASTP results. Actually, the cutoff values of identity greatly impact the 125 

homolog virulence factor abundance returned. At cutoff values of 40% for identify and 20 aa for alignment 126 

length, only four records for Clostridium perfringens ATCC 13124 genome query were returned after 127 

duplication removal, one for 1-phosphatidylinositol phosphodiesterase, one for pore-forming alveolysin, one for 128 

Ornithine carbamoyltransferase and one for RNA interferase NdoA. At a cutoff identity value of 35%, one more 129 

record (Toxin secretion ATP binding protein) was returned. This means that the Local BLASTP procedure was 130 

able to detect the virulence factors in unknown genomic dataset at least semi-quantitatively, with proper cutoff 131 

values for data quality control. The accuracy of the BLASTP procedure in virulence factor detection was further 132 

tested using the genomes of Bacillus thuringiensis serovar konkukian str. 97-27 (AE017355.1) and Helicobacter 133 

pylori 26695 (AE000511.1) (results not shown).   134 

As mentioned above, functional genes including toxin factors may partly evolve through lateral gene 135 

transfer, which makes their taxonomic affiliation difficult. It is thus interesting to explore how specific toxin 136 
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factors are associated with the taxonomic units of pathogens. Here, I explored this issue by investigating the 137 

taxonomic distribution of homologs of toxinsretrieved from the GenBank database. Generally, at a lower 138 

expectation value, most toxins were associated with a specific group of pathogens. For example, at a cutoff E 139 

value of 10-6 (the default unless specified), 241 out of 242 returned records of Mycobacterium tuberculosis 140 

RelEhomologs fell within the phylum Actinobacteria. Moreover, 89% of these homologs were from the genus 141 

Mycobacterium, while 99.7% of Yersinia pestis CdiAhomologs and 92.7% of Bordetella pertussis cya homologs 142 

belonged to Proteobacteria, and homologs of Aeromonas dhakensis repeats-in toxin (RtxA) were mostly 143 

associated with the class Gammaproteobacteria (206 out of 242). However, no obvious genus-toxin association 144 

was identified. It is worth noting that these results largely depended on the availability of toxin sequences in 145 

each taxonomic unit. The lack of a genus-toxin association basically denied the possibility of detecting a 146 

specific pathogen using a specific toxin as a single signature [16]. 147 

It is still not clear whether virulence secretion proteins are specific for pathogen detection as signatures, 148 

through they are essential for virulence process [20]. For example, the contact-dependent toxin delivery protein 149 

CdiA was found to be widespread in bacteria [37]. The relative abundance of secretion proteins in the 27 150 

microbiomes was determined as well as that of the toxins which are essential to virulence processes. The results 151 

of the present study showed that the abundance of secretion proteins selected in the database was strongly 152 

correlated with the toxin abundance (R2 = 0.80, Figure 1). The most abundant secretion proteins included L. 153 

waltersii toxin secretion protein (LWT1SS), L. pneumophila toxin secretion protein ApxIB, and Aeromonas 154 

hydrophila RTX transporter (RtxB) (data not shown). Further exploration indicated that although A. hydrophila 155 

RtxB homologs from GenBank were found in all Proteobacteria classes, most of the RtxB-harboring species 156 

have been reported to be pathogens, including Vibrio spp. [64], Pseudomonas spp., Neisseria meningitides [65], 157 

Ralstonia spp. [66], and Yersinia spp. [21]. This may imply the pathogen-specific nature of secretion proteins 158 

included in the database, and that toxin secretion proteins can be used as signatures for pathogen detection as 159 

well. 160 

Toxin-phyla CCA results showed that all phyla can be clearly separated into two groups, and that almost all 161 

toxins were associated with Proteobacteria, Nitrospirae and Firmicutes (Figure 2). Considering the phylum-162 

specificity of the toxins stated above, these results can be biased because of the taxonomic affiliation of toxins 163 

included in the Local BLASTP database. The taxonomic distribution proportion of currently available genomes 164 

of identified pathogens was reflected in the toxin database, with Proteobacteria and Firmicutes accounting for 165 

the majority of the genomes. However, the CCA results may also indicate, at least in part, a proportional lack of 166 

pathogens in some phyla, such as Crenarchaeota, Euryarchaeota, Verrucomicrobia and Bacteroidetes [67]. 167 

Archaea cannot easily absorb phage particles because of their extracellular structures, which differ from bacteria 168 

[68]. A recent study by Li et al. also found that the five most abundant bacterial pathogens were from either 169 

Proteobacteria or Firmicutes in wastewater microbiomes [9]. Taken together, these findings could indicate that 170 

Proteobacteria or Firmicutes were evolutionarily enriched with pathogens when they dominated most 171 

environmental microbiomes on the planet [69, 70]. 172 

Interestingly, there was a strong association between the phylum Nitrospirae and toxins of RNase 173 

inteferases (MvpA and MapC) and Listeria monocytogenes1-phosphatidylinositol phosphodiesterase PLC. 174 
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Further searches against the UniProt database [71] revealed no homologous records of MvpA and PLC from 175 

Nitrospirae, and only 109 out of 15,574 bacterial records for VapC were from Nitrospirae. These findings imply 176 

that there are many more Nitrospirae pathogens harboring MvpA and PLC that have yet to be discovered. 177 

The screening of toxins in the 27 global microbiomes revealed the most prevalent toxins and pathogen-178 

enriched environment. Specifically, the results showed that the RTX toxin RtxA and adenylate cyclase Cya were 179 

most prevalent globally in terms of relative abundance. RTX toxins comprise a large family of pore-forming 180 

exotoxins. Known homologs in the GenBank database of Aeromonas dhakensis RtxA were mainly in the genera 181 

of Aeromonas, Pseudomonas (e.g., CP015992), Vibrio (e.g., CP002556) and Legionella (e.g., CP015953). These 182 

genera are well known to be associated with gastroenteritis, eye and wound infections, cholera and legionellosis, 183 

and RTX toxins are a key part of the virulence systems of each of these conditions [72-75]. Cya is an essential 184 

unit of Bacillus anthracisvirulence that causes anthrax and may lead to mammalian death [76]. Known 185 

homologs in the GenBank database of Bacillus anthracis Cya were mainly from Bacillus spp., Bordetella spp., 186 

Pseudomonas aeruginosa, Yersiniapseudotuberculosis, and Vibrio spp. Their presence in the environment 187 

should be carefully examined and precautions should be taken to prevent infection by these organisms since 188 

many of them are associated with very common diseases such as whooping cough. 189 

The main purpose of the Local BLASTP method established here was to screen pathogen-enriched 190 

environments to enable development of precautionary measures. Our results clearly indicated that contaminated 191 

lake water, feces and wastewater microbiomes were rich in pathogens (Figure 3). Although there was no 192 

detailed background information regarding these environments in this study, the results presented herein may 193 

provide important implications for pathogen-related risk control. Surprisingly, two lake water microbiomes from 194 

Nanjing, China contained the highest toxin factors among the 27 samples. Further investigation of the location 195 

and contamination status supported the sewage-nature of the lake water. In China, most polluted lakes receive 196 

sewage that includes feces materials [77]. According to an official survey conducted in 2015, Nanjing has 28 197 

lakes with a total area of 14 km2, among which 96.7% are classified as polluted (Class V of the national 198 

standard). Studies have documented that pathogens tend to be enriched in polluted waters [14]. It is not 199 

surprising to find that feces samples had very high abundance of toxins. Epidemical statistics have indicated that 200 

feces are the most important pathway for diarrheal diseases, which is a leading cause of childhood death 201 

globally [78]. Thus, the present study provides a method for obtaining quantitative estimates of pathogen 202 

enrichment of various environments, and polluted freshwater systems are found to be highly pathogen-enriched 203 

relative to safer environments such as ocean water and natural soils. 204 

Conclusions 205 

A Local BLASTP procedure was established for rapid detection of toxins in environmental samples. 206 

Screening of global microbiomes in this study provided a quantitative estimate of the most prevalent toxins and 207 

most pathogen-enriched environments. 208 
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Figure captions 393 

Figure 1 Correlation between relative abundance of toxins and secretion proteins in the global microbiomes. 394 

Figure 2 Canonical correspondence analysis of the associations between phyla and toxins. 395 

Figure 3 Circular visualization of the toxin abundance in the microbiomes selected from locations worldwide. 396 

The designated environment was prefixed with the first letters of the environment names and suffixed with the 397 
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last three numbers of their MG-RAST ID in Table 1. 398 
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Table 1 General information regarding the metagenomes retrieved from the MG-RAST server 
MG-RAST ID bp Count Sequence 

Count 
Material Location Country Coordinates Sequencing 

Method 
Protein 
Predicted 

mgm4713202 89,726,117 442,552 Water Moorea Pacific Ocean 17.538, -149.829 Illumina 254,139 
mgm4713205 106,474,596 476,363 Water Moorea Pacific Ocean 17.538, -149.829 Illumina 235,777 

mgm4713197 60,417,678 272,918 water Moorea Pacific Ocean 17.538, -149.829 Illumina 140,195 
mgm4719940 360,335,259 1,425,556 Water Irish Sea Atlantic Ocean 53.225, -4.159 Illumina 1,023,445 
mgm4533707 134,833,790 668,257 Brackish Water Columbia River coastal 

margin, OR & WA 
USA 46.265, -123.999 Illumina 508,217 

 
mgm4720261 35,487,527 6,896 Fresh Water Galway Ireland 53.276, -9.060 Illumina 33,743 
mgm4695622 114,430,648 111,889 Fresh Water Nanjing, Jiangsu China 32.600, 118.160 Illumina 148,833 
mgm4695626 86,732,360 78,621 Fresh Water Nanjing, Jiangsu China 32.400, 118.140 Illumina 111,489 
mgm4589537 337,068,782 2,099,471 Surface Water West Virginia USA 38.094, -81.959 Illumina 1,842,975 

mgm4679248 603,919,746 3,365,512 Soil Seoul South Korea 37.460, 126.948 Illumina 1,361,948 
mgm4679254 689,019,062 3,688,750 Soil Seoul South Korea 37.459, 126.948 Illumina 1,966,121 
mgm4514299 322,114,449 242,0832 Saline Desert Soil Gujarat of India India 23.7925, 71.008 Ion Torrent 1,323,378 
mgm4543019 282,578,916 2,016,127 Saline Desert Soil Gujarat of India India 23.908, 70.538 Ion Torrent 842,475 
mgm4697397 143,214,978 397,067 Organic Soil Beijing China 32.054, 118.763 Illumina 299,940 
N/A 507,124,889 1,552,234 Shrub Land Soil Mt Isa Australia 20.440, 139.300 Illumina 1,413,889 
N/A 532,850,584 1,632,914 Red Soil Mt Isa Australia 20.440, 139.300 Illumina 1,408,943 
N/A 433,386,397 1,338,665 Red Soil Polluted Mt Isa Australia 20.440, 139.300 Illumina 1,081,822 
mgm4507016 163,648,718 227,551 Feces Bologna Italy 44.495, 11.343 Illumina 250347 
mgm4718752 329,518,322 1,312,822 Feces Upstate NY USA 42.668, -76.528 Illumina 950489 
mgm4568577 10,065,266 50,137 Mine Water Guangdong China 24.503, 113.710 454 34,287 
mgm4568580 12,911,442 62,018 Mine Water Guangdong China 22.940, 112.050 454 36,461 
mgm4620491 52,759,415 244,855 Biosolides Guelph ON Canada Canada 43.545, -80.248 Illumina 238630 
mgm4546371 84,424,005 907,785 Wastewater Universiti Teknologi 

Malaysia 
Malaysia 2.558, 104.642 Illumina 803,682 

mgm4620487 147,523,219 696,132 Wastewater Guelph ON Canada Canada 43.5448, -80.248 Illumina 640,283 
mgm4620488 115,131,556 578,337 Wastewater Guelph ON Canada Canada 43.545, -80.248 Illumina 537,267 
mgm4560423 22734940 73479 Feces Lake Eyasi, Tanzania Tanzania -3.635, 35.083 Illumina 76,569 
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mgm4440281 35439683 334386 Mine drainage Soudan Mine United States of 
America 

47.819, -92.243 454 227,038 
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Table 2 Typical virulence factors investigated in this study and their disease–relevance 
Toxin factor ID in the databse Typical pathogens and disease Role of the 

toxin 
Referenc
e  

Mono(ADP-ribosyl)transferase  spvB Salmonella dublin (gastroenteritis) ADP-
ribosylating, 
destabilizing 
cytoskeleton 

[25] 

Adenylate cyclase cyaA Sa. choleraesuis (typhoid fever) 
Bordetella pertussis (whooping cough) 
Bacillus anthracis (anthrax) 

Pore-forming 
with cAMP-
elevating 
activity 

[26] 

1-phosphatidylinositol phosphodiesterase PLC Listeria monocytogenes (listeriosis) Lysis of the 
phagolysosom
al membrane 

[27] 

Chlamydia protein associating with death 
domains 

CADD Chlamydia trachomatis (trachoma, urethritis, 
etc.) 

Inducing cell 
apoptosis 

[28] 

Listeriolysin O hly Li. monocytogenes (listeriosis) Pore forming, 
hemolysin 

[29, 30] 

Alveolysin alo Ba. anthracis Pore-forming  [31] 
Perfringolysin O pfo Clostridium perfringens (food poisoning) Pore-forming [32] 
Glucosyltransferase toxin B toxB Cl. sordellii 

Cl. difficile (diarrhea) 
Cytopathic 
effects 

[33] 

Shiga toxin 1 stx1 Escherichia coli (diarrhea) 
Shigella dysenteriae (Shigellosis) 

Haemolytic 
uraemic 
syndrome 

[20] 

Shiga-like toxin 2  stx2 Enterobacteria phage 933W 
E. coli  

Haemolytic 
uraemic 
syndrome 

[34] 

Leucotoxin luk Staphylococcus aureus (sinusitis, skin 
abscess) 

Lysis of 
leukocytes 

[35] 

Exfoliative toxin ET St. aureus Proteolytic 
activity 

[36] 

Toxin CdiA cdiA E. coli  
Yersinia pestis (plaque)  

Decreasing 
aerobic 
respiration 

[37] 
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and ATP 
levels 

RNA interferase mazF/pemK/ndoA/relE/relK/relG/yoeB/higB/
mvpA 

Proteus vulgaris (wound infections) 
Mycobacterium tuberculosis (tuberculosis) 
E. coli  

Cleavage of 
cellular 
mRNAs, 
inhibiting 
growth 

[38-43] 

Endonuclease VapC vapC Shigella flexneri (diarrhea) 
Sa. Dublin 
My. Tuberculosis 
Coxiella burnetii (Q fever) 

tRNase 
activities  

[40] 

Ornithine carbamoyltransferase argK Pseudomonas savastanoi Promoting 
survival and 
pathogenicity  

[44] 

Exotoxin A ETA Ps. aeruginosa (eye and wound infections) ADP-
ribosylating 
eukaryotic 
elongation 
factor 2 

[45] 

Hemolytic phospholipase C plcH Ps. Aeruginosa 
Clostridium perfringens (food poisoning) 

Membrane-
damaging 

[46] 

ADP-ribosyltransferase toxin  exoS P. aeruginosa Inhibition of 
phagocytosis 

[47] 

Exoenzyme U exoU P. aeruginosa Membrane-
lytic and 
cytotoxic 

[48] 

Dermonecrotic toxin dnt Bo. pertussis  Stimulating 
the assembly 
of actin stress 
fibers and 
focal 
adhesions 

[49, 50] 

Pertussis toxin subunit 1 ptxA Bo. pertussis  Causing 
disruption of 
host cellular 
regulation 

[49] 
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Repeats-in toxin rtxA Legionella pneumophila (Legionnaries’ 
disease)  
Aeromonas dhakensis (gastroenteritis, 
septicemia) 

Adherence 
and pore 
forming 

[51, 52] 

Aerolysin aerA Aeromonas spp. Cytolytic 
pore-forming 

[53] 

Cholera toxin secretion protein EpsF epsF Le. pneumophila Toxin 
secretion 

[54] 

Zeta toxin family protein ZETA Coxiella sp. DG_40 Inhibiting cell 
wall 
biosynthesis 

[55] 

Toxin secretion ATP binding protein LwT1SS Le. waltersii Toxin 
secretion 

[56] 

Outer membrane channel protein CpnT cpnT My. tuberculosis  Nutrient 
uptake 

[57] 

Type IV secretion system protein Ptl ptlCH Bo. pertussis Secretion of 
pertussis toxin  

[49] 
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Fig 1 
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Fig 2 
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Fig 3 
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