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Abstract

Divergence times estimation is an essential component of evolutionary studies. It generally involves several types
of data (molecular, morphological, fossils. . . ) and relies on stochastic models of evolution. An important part of
these models is the prior distribution of divergence times that they use. The birth-death-sampling model, which is
certainly the simplest realistic model of phylogenetic trees, is a natural choice for deriving such prior distributions.
It has been well studied and is still widely used in this context.

The main result provided here is a method for computing the exact distribution of the divergence times of any
phylogenetic tree under a birth-death-sampling model. This computation has a cubic time-complexity, allowing
us to deal with phylogenies of hundreds of tips on standard computers. The approach can be used for dating
phylogenetic trees from their topologies only, for visualizing effects of diversification parameters etc.

An additional result shows how to directly sample all the divergence times of a phylogenetic tree with linear
complexity under the same model. This sampling procedure can be integrated into phylogenetic inference methods,
e.g., for proposing accurate MCMC moves.

1 Introduction

Estimating divergence times is an essential and difficult stage of phylogenetic inference [18, 19, 12, 3, 16, 6]. In order
to perform this estimation, current approaches use stochastic models for combining different types of information:
molecular and/or morphological data, fossil calibrations, evolutionary assumptions etc [25, 20, 7, 9]. Both in a
Bayesian and a maximum likelihood context, an important component of these stochastic models is the “prior”
probability distribution of divergence times (i.e., that which does not take into account information about genotype or
phenotype of species [26, 11, 9]), which is often derived from diversification models [4, 10, 26, 13, 14]. Among these, the
birth-death-sampling model is arguably the simplest realistic model since it includes three important features shaping
phylogenetic trees [27, 28]. Namely, it models cladogenesis and extinction of species by a birth-death process and
takes account of the incompleteness of data by assuming an uniform sampling of extant taxa. Birth-death-sampling
model has been further studied and is currently used for phylogenetic inference [22, 24, 10, 4].

The main result of this work is a method to compute the exact distributions of divergence times of a given tree
topology from the parameters of a birth-death-sampling model. Namely, for any internal node of the phylogeny and
any time t, we provide an algorithm which computes the exact probability for the divergence time associated with this
node to be anterior to t. The complexity of this algorithm is polynomial with the size of the phylogeny, namely cubic
in time and quadratic in memory space. In practice, it can deal with phylogenetic trees with up to hundreds of tips
on standard desktop computers.

The computation of divergence time distributions can be applied to various questions. First, it can be used for
dating phylogenetic trees from their topology only, as the method implemented in the function compute.brlen of the R-
package APE [8, 17]. Second, it can provide prior distributions in phylogenetic inference frameworks. It also allows to
visualize the effects of the birth-death-sampling parameters on the prior divergence times distributions, to investigate
consequences of evolutionary assumptions etc.

An additional result of this work is a method allowing to directly draw samples of the set all the divergence times
of a phylogenetic tree according to the birth-death-sampling model. Though based on the same ideas, this sampling
procedure is independent of the computation of distributions referred to just above. The sampling procedure is very
fast and can easily be integrated into phylogenetic inference software [6, 21], e.g., for proposing accurate MCMC
moves.

The approaches presented here can be extended in several directions. In particular, it is quite straightforward to
deal with heterogeneity in time and to model massive extinctions as in [23]. Taking into account heterogeneity in
the speciation-extinction rates and/or the sampling probability between clades seems feasible but is a more difficult
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Figure 1: Left: the whole diversification process (e.g., from a simple birth-death process); Center: the part of the
process that can be reconstructed is represented in plain – the dotted parts are lost (sampled extant species are those
with ‘X’); Right: the resulting phylogenetic tree.

question which I plan to investigate soon. In collaboration with a co-author of [2], we are currently integrating fossil
finds in the model in order to obtain better node-calibrations for phylogenetic inference.

C-source code of the software performing the computation of divergence time distributions and their sampling
under a birth-death-sampling model is available at https://github.com/gilles-didier/DateBDS.

The rest of the paper is organized as follows. Birth-death-sampling models are formally introduced in Section 2.
Section 3 presents definitions and some results about tree topologies. The “start- and end-patterns”, i.e., the subparts
of the diversification process from which are computed divergence times probabilities, are introduced in Section 4.
Sections 5 and 6 present the computation of the divergence time distributions and a polynomial algorithm to perform
it respectively. The method for directly sampling the divergence times is described in Section 7. The computation of
divergence time distributions is illustrated with the phylogenetic tree of Hominoidae from [5] in Section 8.

2 Birth-death-sampling model

The dynamics of speciation and extinction of species is modelled as a birth-death process with constant rates λ and µ
both through time and lineage [15]. Following [27], each extant species is assumed to be independently sampled (i.e.
included in the study) with probability ρ. The whole model will be referred to as the birth-death-sampling model and
has thus three parameters:

• λ: the speciation rate,

• µ: the extinction rate and

• ρ: the probability for an extant taxa to be sampled.

In all what follows, we make the technical assumption that λ > µ and ρ > 0.
A important point is to distinguish between the part of the process that actually happened, which will be referred to

as the whole or the complete process (Figure 1-Left) and the part that can be observed from the available information
at the present time (i.e., from the sampled extant taxa), which will be referred to as the observed or the reconstructed
process (Figure 1-Right). It can be shown that the reconstructed process of a birth-death-sampling process is a
pure-birth process with time-inhomogeneous birth rate.

Let us start by recalling some already derived probabilities of interest under this model. Under the simple birth-
death model (i.e. with ρ = 1) with parameters (λ, µ), the probability Q(n, t) that a single lineage at time 0 has exactly
n descendants at time t was given in [15]. We have that

Q(0, t) =
µ
(
1− e−(λ−µ)t

)
λ− µe−(λ−µ)t

,

and, for all n > 0,

Q(n, t) = (λ− µ)2e−(λ−µ)t

(
λ(1− e−(λ−µ)t)

)n−1(
λ− µe−(λ−µ)t

)n+1 .
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Under the birth-death-sampling model (λ, µ, ρ), the probability Q(n, t) that a single lineage at time 0 has exactly
n descendants sampled at time t was given in [27]. We have that

Q(0, t) =
µ(1− e−(λ−µ)t) + (1− ρ)

(
λe−(λ−µ)t − µ

)
ρλ+ (λ(1− ρ)− µ)e−(λ−µ)t

,

and, for all n > 0,

Q(n, t) = ρn(λ− µ)2e−(λ−µ)t

(
λ(1− e−(λ−µ)t)

)n−1(
ρλ+ (λ(1− ρ)− µ)e−(λ−µ)t

)n+1 .

In the case where all the tips are sampled, we obtain the same equations as those of [15] just above, i.e., if ρ = 1
thenQ(n, t) = Q(n, t) for all λ, µ, n and t.

3 Tree topologies

Tree topologies arising from diversification processes are rooted and binary thus so are all the tree topologies considered
here. Moreover, all the tree topologies considered below will be labelled, which means their tips, and consequently all
their nodes, are unambiguously identified. From now on, “tree topology” has to be understood as “labelled-rooted-
binary tree topology”.

Since the context will avoid any confusion, we still write T for the set of nodes of any tree topology T . For all tree
topologies T , we put LT for the set of tips of T and, for all nodes n of T , Tn for the subtree of T rooted at n.

For all sets S, |S| denotes the cardinality of S. In particular, |T | denotes the size of the tree topology T (i.e., its
total number of nodes, internal or tips) and |LT | its number of tips.

3.1 Probability

Let us define T(T ) as the probability of a tree topology T given its number of tips under a lineage-homogeneous
process with no extinction, such as the reconstructed birth-death-sampling process [2, Supp. Mat., Appendix 2].

Theorem 1 ([2]). A tree topology T resulting from a pure-birth realization of a lineage-homogeneous process has
probability

T(T ) =
RT

(|LT |−1)! |LT |!
,

conditioned on having |LT | tips, where RT denotes the number of divergence time rankings consistent with T .
If |T |= 1, i.e. T is a single tip, we have RT = 1.
Otherwise, by putting a and b for the two direct descendants of the root of T , we have

RT = 2

(
|LTa |+|LTb |−2

|LTa |−1

)
RTaRTb .

Theorem 1 implies that both RT and T(T ) can be computed in linear time through a post-order traversal of the
tree topology T .

3.2 Start-sets

A start-set of a tree topology T is a possibly empty subset A of internal nodes of T which is such that if an internal
node of T belongs to A then so do all its ancestors. Remark that the empty set ∅ is start-set of any topology.

Being given a tree topology T and a non-empty start-set A, we define

• the start-tree αT,A as the subtree topology of T made of all nodes in A and their direct descendants (Figure
2-Center);

• the set of end-trees ΩT,A as the set of all the subtrees of T rooted at the tips of αT,A, i.e. ΩT,A = {Tm | m ∈ LαT,A}
(Figure 2-Right).

By convention, αT,∅, the start-tree associated to the empty start-set, is the subtree topology made only of the root
of T . There is then only a single end-tree that is the whole tree topology T , i.e., ΩT,∅ = {T }.

In all cases, there are as many trees in ΩT,A as tips in the tree αT,A.
For all internal nodes n of the tree topology T , we define ΓT,n as the set of all start-sets of T which contain n.
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Figure 2: Left: A tree topology T of which {a, b, c} is start-set. Center: The start-tree αT,{a,b,c}. Right: The set of
end-trees ΩT,{a,b,c}. Root nodes are represented with the branch that they end.
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Figure 3: The two types of patterns which are the basis of our computation.

4 Patterns

From now on, we shall consider diversification processes starting at origin time s and ending at time e by evolving
following a birth-death-sampling model (λ, µ, ρ). In practice, the ending time e is usually the present time. A pattern
is a part of the observed diversification process starting from a single lineage at a given time and ending with a certain
number of lineages at another given time. It consists of the resulting tree topology and of the bounding times (Figure
3). We shall consider two types of patterns. Start-patterns start from the origin o of the diversification process and
end at a given time t ∈ [s, e]. End-patterns go from a given time t ∈ [s, e] to the ending time e.

Start- and end-patterns are very similar to patterns of types c and a defined in [2], respectively. Proofs of Lemmas
1 and 2 are essentially the same as those of the corresponding claims in [2].

4.1 Start-patterns

Start-patterns encompass the observed part of the diversification process running from the origin time s until a given
time t ∈ [s, e]. We recall that, by observed part, we mean the part that can be reconstructed from the ending time.
More formally, for all times t ∈ [s, e], a lineage alive at time t is observable if itself or one of its descendants is sampled
at e.

Definition 1. A start-pattern (s, t, T ) starts with a single lineage at the time origin s and ends with n observable
lineages and a tree topology T at t (Figure 3-left).

The probability O(t) for a lineage living at time t in the complete diversification process (as in Figure 1-Left) to
be observable at the ending time e is the complementary probability of having no descendant sampled at time e. We
have that

O(t) = 1−Q(0, e− t)

=
ρ(λ− µ)

ρλ+ (λ(1− ρ)− µ)e−(λ−µ)(e−t) .

Let us now compute the probability X(k, s, t) that a single lineage at time s has k descendants observable from e
at time t ∈ [s, e]. This probability is the sum over all numbers n ≥ k, of the probability that the lineage at s has n
descendants at t in the whole process (i.e., without sampling, which is equal to Q(n, t − s)), among which exactly k

ones are observable (i.e.,
(
n
k

)
O(t)k (1−O(t))

n−k
). By setting n = j + k, we thus have

X(k, s, t) =
∞∑
j=0

Q(j + k, t− s)
(
j + k

k

)
O(t)k (1−O(t))

j

=
ρk(λ− µ)e−(λ−µ)(t−s) [λ(1− e−(λ−µ)(t−s))

]k−1 [
ρλ+ (λ(1− ρ)− µ)e−(λ−µ)(e−t)][

ρλ+ (λ(1− ρ)− µ)e−(λ−µ)(e−s)
]k+1

.
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Figure 4: Schematic of the computation of the probability that the divergence time associated with node b is strictly
anterior to t. Nothing is known about divergence times in the gray part of the tree at the left. The only information
about divergence times in black parts of all trees is whether there are anterior or posterior to t.

Lemma 1. Under the birth-death-sampling model (λ, µ, ρ), the probability of the start-pattern (s, t, T ) is

S(s, t, T ) = T(T )X(|LT |, s, t).

Proof. The probability of the start-pattern (s, t, T ) is the probability of the tree topology T conditioned on its number
of tips, which is T(T ) from Theorem 1, multiplied by the probability of observing this number of tips in a start-pattern,
which is that of getting |LT | observable lineages at t from a single lineage at s, i.e., X(|LT |, s, t).

4.2 End-patterns

End-patterns encompass all the observed parts of the diversification process which start from a single lineage at a
given time t ∈ [s, e] until the ending time of the process.

Definition 2. An end-pattern (t, e, T ) starts with a single lineage at time t and ends with |LT | lineages and a tree
topology T at the ending time e (Figure 3-right).

Lemma 2. Under the birth-death-sampling model (λ, µ, ρ), the probability of the end-pattern (t, e, T ) is

E(t, e, T ) = T(T )Q(|LT |, e− t).

Proof. The probability of the end-pattern (t, e, T ) is the probability of the tree topology T conditioned on its number
of tips, which is T(T ) from Theorem 1, multiplied by the probability of observing this number of tips in an end-pattern,
which is the probability that a single lineage at time t has |LT | descendants sampled at time e, i.e., Q(|LT |, e − t)
[27].

5 Distribution of divergence times

Theorem 2. Let T be a tree topology, s < e be two times and n be an internal node of T . The joint probability of
observing the tree topology T and that the divergence time τn associated with n is anterior to a time t ∈ [s, e] from a
diversification process starting at s and ending at e following the birth-death-sampling model (λ, µ, ρ) is

P(T , τn < t) =
1

|LT |!
∑

A∈ΓT,n

S(s, t, αT,A)
∏

T ′∈ΩT,A

E(t, e, T ′)|LT ′ |!
O(t)

.

Proof. Under the notations of the theorem, let us define An as the set of nodes of T whose divergence times are
anterior to t (i.e. An = {m ∈ T | τm < t}). Since divergence times corresponding to ancestors of a given node are
always posterior to its own divergence time, all sets An are start-sets. Moreover, any event including “τn < t” implies
that n ∈ An, thus that An ⊆ ΓT,n. By construction, the set ΓT,n contains all the possible configurations of nodes of
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T with divergence times anterior to t such that τn < t. Since all these possibilities are mutually exclusive, the law of
total probabilities gives us that

(1)P(T , τn < t) =
∑

A∈ΓT,n

P(T , τn < t,An = A).

The entries of the second column of Figure 4 (just after the sign sum) represent all the start-sets A in ΓT,b.
In order to compute the probability P(T , τn < t,An = A) for a start-set A ∈ ΓT,n, we remark that

• the part of the diversification process anterior to t is the start-pattern (s, t, αT,A) and

• the part of the diversification process posterior to t consists of all end patterns (t, e, T ′) with T ′ ∈ ΩT,A.

Since the birth-death-sampling process is a Markov process, evolution of all the end patterns are independent one
to another and with regard to the part of the process anterior to t, conditional upon starting with an observable
lineage at time t. By assuming that its set of tip labels is known and conditional upon starting with an observable
lineage, the probability of the end pattern (t, e, T ′) is

E(t, e, T ′)
O(t)

, for all T ′ ∈ ΩT,A.

From Lemma 1, the probability of the start-pattern (s, t, αT,A) is S(s, t, αT,A) under the assumption that αT,A
is labelled. We have not a direct labeling of αT,A here : tips of αT,A are identified though the labels of their tip
descendants in T , i.e., the tips of the subtrees in ΩT,A. Since all labellings of T are equiprobable, the probability of a
labeling of αT,A is the inverse of the number of ways of choosing a subset of |LTm | labels from |LT | ones for all tips m
of αT,A without replacement, i.e. the inverse of corresponding multinomial coefficient, which is∏

m ∈LαT,A
|LTm |!

|LT |!
=

∏
T ′∈ΩT,A

|LT ′ |!
|LT |!

.

By construction, a labeling of αT,A fully determines the set of tip-labels of all subtrees Tm with m ∈ LαT,A . Putting
all together, we eventually get that

P(T , τn < t,An = A) = S(s, t, αT,A)

∏
T ′∈ΩT,A

|LT ′ |!
|LT |!

∏
T ′∈ΩT,A

E(t, e, T ′)
O(t)

=
1

|LT |!
S(s, t, αT,A)

∏
T ′∈ΩT,A

E(t, e, T ′)|LT ′ |!
O(t)

,

which, with Equation 1, ends the proof. The whole computation of a toy example is schematized in Figure 4.

Corollary 1. Let T be a tree topology, s and e be the origin and end times of the diversification process and n be
an internal node of T . The probability that the divergence time τn associated with n is anterior to a time t ∈ [s, e]
conditioned on observing the tree topology T under the birth-death-sampling model (λ, µ, ρ) is

P(τn < t | T ) =
P(T , τn < t)

E(s, e, T )

Proof. It is enough to remark that the probability of observing a tree topology T (without constraint on its divergence
times other than belonging to [s, e]) for a diversification process starting from time s with a single lineage and ending
at time e is, by definition, exactly that of the end-pattern (s, e, T ) given in Lemma 2.

We put Fn for the cumulative distribution function (CDF) of the divergence time associated with node n, namely,

Fn : t→ P(τn < t | T ).

Figure 5 displays the probability densities of all the divergence times of the tree at its left. In Figures 5 and 6, the
densities are computed from the corresponding distributions by finite difference approximations.
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from time 0 to 10 under a birth-death-sampling model with parameters λ = 0.1, µ = 0.02 and ρ = 0.5. Densities for
nodes d and e are confounded.

6 A polynomial computation

Since the number of start-sets may be exponential with the size of the tree, notably for balanced trees, Theorem 2 does
not directly provide a polynomial algorithm for computing the divergence time distributions. We shall show in this
section that the left-side of the equation of Theorem 2 can be factorized in order to obtain a polynomial computation.

Let us first introduce an additional notation. For all tree topologies T , all internal nodes n of T and all numbers

k between 1 and the number of tips of T , we put Γ
(k)
T,n for the set of start-sets A of T containing n and such that the

corresponding start-tree αT,A has exactly |LαT,A |= k tips. By construction, a start-tree of T has at least one tip and
at most |LT | tips. We have:

P(τn < t) =
1

|LT |!

|LT |∑
k=1

∑
A∈Γ

(k)
T,n

S(s, t, αT,A)
∏

T ′∈ΩT,A

E(t, e, T ′)|LT ′ |!
O(t)

=
1

|LT |!

|LT |∑
k=1

∑
A∈Γ

(k)
T,n

RαT,AX(|LαT,A |, s, t)
(|LαT,A |−1)! |LαT,A |!

∏
T ′∈ΩT,A

E(t, e, T ′)|LT ′ |!
O(t)

=
1

|LT |!

|LT |∑
k=1

X(k, s, t)

(k − 1)! k! O(t)k

∑
A∈Γ

(k)
T,n

RαT,A

∏
T ′∈ΩT,A

E(t, e, T ′)|LT ′ |!

Let us set for all nodes m of T ,
Υ

(m)
T,n =

⋃
A∈ΓT,n

A ∩ Tm,

where Tm stands here for the set of nodes of the subtree topology rooted at m. Since, by construction, the elements

of Υ
(m)
T,n are start-sets of the tree topology Tm, the start-tree αTm,A and the set of end-trees ΩTm,A are well-defined

for all A ∈ Υ
(m)
T,n . For all numbers 1 ≤ k ≤ |LTm |, we put Υ

(m,k)
T,n for the set of start-sets A ∈ Υ

(m)
T,n such that the

corresponding start-tree αTm,A has exactly k tips.
Let us now define for all nodes m of T and all 1 ≤ k ≤ |LTm |, the quantity

Wm,k =
∑

A∈Υ
(m,k)
T,n

RαTm,A

∏
T ′∈ΩTm,A

(E(t, e, T ′)|LT ′ |! ) .
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Basically, by putting r for the root of T , we have that

(2)P(τn < t) =
1

|LT |!

|LT |∑
k=1

X(k, s, t)

(k − 1)! k! O(t)k
Wr,k.

We shall see how to compute (Wm,k)k=1,...,|LTm | for all nodes m of T .

Let us first consider the case where k = 1. Since Υ
(m,1)
T,n = {∅} for all nodes m of T , we have that

(3)Wm,1 = RTmE(t, e, Tm).

Let us now assume that k > 1, which makes sense only if Tm contains more than a single node, and let a and b be

the two direct descendants of m. Since we assume k > 1, all start-sets of Υ
(m,k)
T,n contain m. It follows that we have

A ∈ Υ
(m,k)
T,n if and only if there exist two start-sets I ∈ Υ

(a)
n and J ∈ Υ

(b)
n with {m} ∪ I ∪ J = A. The tree topology

αTm,A has root m with two child-subtrees αTa,I and αTb,J . In particular, we have |LαTa,I
|+|LαTb,J

|= |LαTm,A
|= k.

From Theorem 1, we have that

RαTm,A
= 2

(
|LαTa,I

|+|LαTb,J
|−2

|LαTa,I
|−1

)
RαTa,I

RαTb,J
.

Moreover, since by construction, ΩTm,A = ΩTa,I ∪ ΩTb,J , we get that

RαTm,A

∏
T ′∈ΩTm,A

E(t, e, T ′) = 2

(
|LαTa,I

|+|LαTb,J
|−2

|LαTa,I
|−1

)
[RαTa,I

∏
T ′∈ΩTa,I

E(t, e, T ′)][RαTb,J

∏
T ′∈ΩTb,J

E(t, e, T ′)].

More generally, the start-sets of Υ
(m,k)
T,n are in one-to-one correspondence with the set of pairs (I, J) of Υ

(a)
T,nΥ

(b)
T,n

such that |LαTa,I
|+|LαTb,I

|= k. This set of pairs is exactly the union over all pairs of positive numbers (i, j) such that

i+ j = k, of the product sets Υ
(a,i)
T,n ×Υ

(b,j)
T,n . It follows that

Wm,k =
∑
i,j

i+j=k

∑
(I,J)∈

Υ
(a,i)
T,n ×Υ

(b,j)
T,n

2

(
i+ j − 2

i− 1

)
[RαTa,I

∏
T ′∈ΩTa,I

E(t, e, T ′)][RαTb,J

∏
T ′∈ΩTb,J

E(t, e, T ′)].

After factorizing the left hand side of the equation just above, we eventually get that for all k > 1,

(4)Wm,k =
∑
i,j

i+j=k

2

(
i+ j − 2

i− 1

)
Wa,iWb,j .

Theorem 3. Let T be a tree topology, s and e be the origin and end times of the diversification process and n be
an internal node of T . Both P(T , τn < t) and P(τn < t | T ) can be computed with time-complexity O(|T |3) and
memory-space-complexity O(|T |2).

Proof. For all tips m of T , (Wm,k)k=1,...,|LTm | reduces to (Wm,1), which is directly given by Equation 3.
For all internal nodes m of T , (Wm,1) is also given by Equation 3. Equation 4 shows that for all 2 ≤ k ≤ |LTm |,

Wm,k can be computed from (Wa,i)i=1,...,|LTa | and (Wb,i)i=1,...,|LTb |, where a and b are the direct descendants of m,

in O(|Tm|) operations.
In sum, for all nodes m of T , the quantities (Wm,k)m∈T ,k=1,...,|LTm | require O(|LTm |) memory space to be stored,

each entry Wm,k requiring O(|LTm |) operations to be computed. It follows that the quantities (Wr,k)r∈T ,k=1,...,|LTr |
can be determined with a post-order traversal of T in O(|T |3) time by using O(|T |2) memory space.

From Equation 2, the probability P(τn < t) can be computed with complexity O(|LT |) from the quantities
(Wr,k)k=1,...,|LT |, which ends the proof.

7 Direct sampling of divergence times

Theorems 2 and 3 and Corollary 1 show how to compute the marginal (with regard to other divergence times) of the
divergence time distribution of any internal node of a phylogenetic tree from given birth-death-sampling parameters and
origin and end times of the diversification. It allows in particular to sample any divergence time of the phylogenetic tree
disregarding the other divergence times. We shall see in this section how to draw a sample of all the divergence times
of any tree topology, still being given birth-death-sampling parameters and origin and end times of the diversification.
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Lemma 3. Let T be a tree topology, s and e be the origin and end times of the diversification process and r be the
root of T . The probability that the root divergence time τr is anterior to a time t ∈ [s, e] conditioned on observing the
tree topology T under the birth-death-sampling model (λ, µ, ρ) is

P(τr < t | T ) = 1−
[

(1− e−(λ−µ)(e−t))(ρλ+ (λ(1− ρ)− µ)e−(λ−µ)(e−s))

(1− e−(λ−µ)(e−s))(ρλ+ (λ(1− ρ)− µ)e−(λ−µ)(e−t))

]|LT |−1

.

Proof. The probability that the divergence time τr associated with r is anterior to a time t ∈ [s, e] is the complementary
probability that τr > t. Observing τr > t means that the starting lineage at s has a single descendant observable at t
from which descends the tree topology T sampled at e. By putting I for the tree topology made of a single tip/lineage,
it follows that

P(τr < t | T ) = 1−P(τr > t | T )

= 1− S(t, e, I)E(t, e, T )

E(s, e, T )O(t)

= 1−
[

(1− e−(λ−µ)(e−t))(ρλ+ (λ(1− ρ)− µ)e−(λ−µ)(e−s))

(1− e−(λ−µ)(e−s))(ρλ+ (λ(1− ρ)− µ)e−(λ−µ)(e−t))

]|LT |−1

.

Remark that the computation of P(τr < t | T ) requires only the number of tips of T (in particular, the shape of T
does not matter). Lemma 3 implies that the CDF Fr : t→ P(τr < t) can be computed at any time t with complexity
O(1). Moreover, one can verify that Fr is strictly increasing under the assumptions on the birth-death-sampling
parameters, i.e., λ > µ and ρ > 0.

Let us first show how to sample the divergence time of the root of a tree topology. The marginal, with regard to
the other divergence times, of the distribution of the root-divergence time conditioned on the tree topology T is Fr.
In order to sample τr under this distribution, we shall use inverse transform sampling which is based on the fact that
if a random variable U is uniform over [0, 1] then F−1

r (U) has distribution function Fr (e.g., [1, chapter 2]). Though
Lemma 3 provides an expression of P(τn < t | T ), I did not find an explicit formula for F−1

r . We thus have to rely on
numerical inversion at a given precision level in order to get a sample of the distribution Fr from an uniform sample on
[0, 1]. The current implementation uses the bisection method, which computes an approximate inverse with a number
of Fr-computations smaller than minus the logarithm of the required precision [1, p 32].

In order to sample the other divergence times, let us remark that by putting a and b for the two direct descendants
of the root of T and t for the time sampled for the root-divergence, we have two independent diversification processes
both starting at t and giving the two subtree topologies Ta and Tb at e. By applying Lemma 3 to Ta and Tb between t
and e, the divergence times of the roots of these subtrees, i.e., a and b, can thus be sampled in the same way as above.
The very same steps can then be performed recursively in order to sample all the divergence times of T .

In short, a pre-order traversal of T allows to sample all its divergence times in a time linear in |T | with a
multiplicative factor proportional to minus the logarithm of the precision required for the samples.

8 Example – Influence of the birth-death-sampling parameters

In order to illustrate the computation of the divergence time distributions, let us consider the Hominoidea subtree
from the Primates tree of [5]. The approach can actually compute the divergence time distributions of the whole
Primates tree of [5] but they cannot be displayed legibly because of its size.

The divergence time distributions were computed under several sets of birth-death-sampling parameters, namely
all combinations with λ = 0.1 or 1, µ = λ− 0.09 or λ− 0.01 and ρ = 0.1 or 0.9. Since λ−µ appears in the probability
formulas, several sets of parameters are chosen in such a way that they have the same difference between their birth
and death rates.

Divergence time distributions obtained in this way are displayed in Figure 6 around their internal nodes (literally,
since nodes are positioned at the median of their divergence times). Each distribution is plotted at its own scale in
order to be optimally displayed. This representation allows to visualize the effects of each parameter on the shape and
the position of distributions, to investigate which parameter values are consistent with a given evolutionary assumption
etc.

We observe on Figure 6 that, all other parameters being fixed, the greater the speciation/birth rate λ (resp. the
sampling probability ρ), the closer are the divergence time distributions to the ending time

Influence of the extinction/death rate on the divergence time distributions is more subtle and ambiguous, at least
for this set of parameters. All other parameters being fixed, it seems that an increase of the extinction rate tends to
push distributions of nodes close to the root towards the starting time and, conversely, those of nodes close to the tips
towards the ending time.
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Figure 6: Divergence time probability densities of the Hominoidea tree from [5] under birth-death-sampling models
with parameters λ = 0.1 or 1, µ = 0.01 or 0.09 and ρ = 0.1 or 0.9. Internal nodes are positioned at their median
divergence time.

The divergence time distributions obtained for λ = 0.1, µ = 0.01 and ρ = 0.9 (Figure 6, column 2, top) and for
λ = 1, µ = 0.91 and ρ = 0.1 (Figure 6, column 1, bottom) are close one to another. The same remark holds for
λ = 0.1, µ = 0.09 and ρ = 0.9 (Figure 6, column 4, top) and for λ = 1, µ = 0.99 and ρ = 0.1 (Figure 6, column 3,
bottom). This point suggests that estimating the birth-death-sampling parameters from the divergence times might
be difficult, even if the divergence times are accurately determined.

The variety of shapes of divergence times probability densities observed in Figures 5 and 6 exceeds that of standard
prior distributions used in phylogenetic inference, e.g., uniform, lognormal, gamma, exponential [11, 9].

References

[1] L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag New York, 1986.

[2] G. Didier, M. Fau, and M. Laurin. Likelihood of Tree Topologies with Fossils and Diversification Rate Estimation.
Systematic Biology, 66(6):964–987, 2017.

[3] P. C. J. Donoghue and Z. Yang. The evolution of methods for establishing evolutionary timescales. Philosophical
Transactions of the Royal Society of London B: Biological Sciences, 371(1699), 2016.

[4] M. dos Reis. Notes on the birth-death prior with fossil calibrations for Bayesian estimation of species divergence
times. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 371(1699), 2016.

[5] M. dos Reis, G. F. Gunnell, J. Barba-Montoya, A. Wilkins, Z. Yang, and A. D. Yoder. Using Phylogenomic Data
to Explore the Effects of Relaxed Clocks and Calibration Strategies on Divergence Time Estimation: Primates
as a Test Case. Systematic Biology, to appear, 2018.

[6] A. J. Drummond, M. A. Suchard, D. Xie, and A. Rambaut. Bayesian phylogenetics with beauti and the beast
1.7. Molecular Biology and Evolution, 29(8):1969–1973, 2012.

[7] A. Gavryushkina, T. A. Heath, D. T. Ksepka, T. Stadler, D. Welch, and A. J. Drummond. Bayesian total-evidence
dating reveals the recent crown radiation of penguins. Systematic Biology, 66(1):57–73, 2017.

10

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 24, 2018. ; https://doi.org/10.1101/376756doi: bioRxiv preprint 

https://doi.org/10.1101/376756


[8] A. Grafen. The phylogenetic regression. Philosophical Transactions of the Royal Society of London B: Biological
Sciences, 326(1233):119–157, 1989.

[9] T. A. Heath. A Hierarchical Bayesian Model for Calibrating Estimates of Species Divergence Times. Systematic
Biology, 61(5):793–809, 2012.

[10] J. Heled and A. J. Drummond. Calibrated Birth-Death Phylogenetic Time-Tree Priors for Bayesian Inference.
Systematic Biology, 64(3):369–383, 2015.

[11] S. Y. W. Ho and M. J. Phillips. Accounting for Calibration Uncertainty in Phylogenetic Estimation of Evolutionary
Divergence Times. Systematic Biology, 58(3):367–380, 2009.

[12] H. Kishino, J. L. Thorne, and W. J. Bruno. Performance of a Divergence Time Estimation Method under a
Probabilistic Model of Rate Evolution. Molecular Biology and Evolution, 18(3):352–361, 2001.

[13] N. J. Matzke and A. Wright. Inferring node dates from tip dates in fossil Canidae: the importance of tree priors.
Biology Letters, 12(8), 2016.
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