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One sentence summary: A module comprising the small ORFs mlpt/pri/tal, the 
transcription factor Svb, and the ubiquitin ligase UBR3, possesses an ancestral function 
in insect embryo patterning which is lost in flies but reactivated when Svb expression is 
restored. 
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Summary: Small open reading frames (smORFs) that code for “micropeptides” (10-100 
amino acids) exhibit remarkable evolutionary complexity.  Conserved micropeptides 
encoded by the millepattes (mlpt) gene are essential in Tribolium for embryogenesis but 
in Drosophila, function only in leg and cuticle differentiation.   We find that a module 
identified in Drosophila trichome patterning, comprising Mlpt, UBR3, and Shaven-baby 
(Svb), coordinates early embryo patterning in several insect orders. Intriguingly, Mlpt 
segmentation function can be re-awakened in the Drosophila blastoderm, demonstrating 
the potency of an ancestral developmental switch retained despite evolving embryonic 
patterning modes.  smORFs  like millepattes thus illustrate plasticity of micropeptide 
functions despite constraints of essential genetic networks.  

 
Introduction.   
Small open reading frames (or smORFs) are abundant in all genomes, but few have been 
investigated. One of the first smORFs to be deeply studied phenocopies the unusual phenotype of 
Shaven-baby (Svb), a transcription factor that is a central node in epidermal patterning in flies 
(Payre F et al, 1999). Larvae lacking svb are left without epidermal trichomes, due to failure to 
activate the actin remodeling program underlying their differentiation. The smORFs encoded by 
the insect-specific millepattes (mlpt) locus have now been described and studied in several insect 
developmental systems. The peptides are deeply conserved throughout insects, a taxon 
representing over 300 million years of evolution. Two contemporary studies independently 
identified this gene in Drosophila, naming it “tarsalless” (tal) as a regulator of proximal-distal 
leg patterning (Payre F et al 1999, Pueyo JI and Couso JP.,2008) and “polished rice” (pri) for its 
essential role in formation of trichomes in the larval cuticle (Galindo MI, et al 2007). In the 
epidermis, Pri peptides enable recruitment of the proteasome via the E3 ubiquitin ligase, UBR3, 
to the transcription factor shaven-baby. Svb, a transcriptional repressor, is converted to a 
transcriptional activator through proteasome-mediated cleavage and degradation of its N-terminal 
repression domain (Zanet J. et al 2015). The locus encoding Pri peptides exhibits detectable 
synteny and encodes conserved peptides of varying number throughout the insect lineage 
(Galindo MI, et al 2007, Kondo T, et al 2007, Savard J et al 2006). Independently, Savard et al. 
(2006) discovered an essential function for this locus in the formation of abdominal segments in 
the so-called “short-germ” flour beetle, Tribolium castaneum. In beetles, RNAi knockdown of 
mlpt caused loss of abdominal segments (posterior truncation of the embryo), as well as 
transformation of anterior abdominal segments to thoracic fate, leading to a distinctive phenotype 
of extra pairs of legs (millepattes is French for centipede).  Strikingly, no early embryonic 
patterning phenotype was observed for mlpt (tal, pri) in Drosophila, in spite of its expression 
pattern, which resembles the striped expression of Drosophila hairy, a critical segmentation gene 
in flies (Galindo MI, et al 2007, Kondo T, et al 2007; Figure 5). This apparent paradox left open 
the question of how Mlpt peptides may function in segmentation in Tribolium.   
 
Results. 
Identification of mlpt partners Svb and Ubr3 in Tribolium segmentation. In the genome-wide 
iBeetle RNAi screen in Tribolium (Schmitt-Engel, C. et al 2015) we identified ubr3 on the basis 
of its cuticle phenotype that strongly resembles that of mlpt (Table S1; Fig 1B,C), which 
suggested that the complete fly module comprising mlpt/svb/ubr3 may be conserved. Indeed, 
targeted knockdown of svb by parental RNAi leads to an abdominal truncation and homeotic 
transformation phenotype that closely resembles that of mlpt and ubr3 knockdowns (Figure 1 D, 
E; Savard J et al 2006; Materials and methods).  In addition to segmentation defects, these 
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phenotypes share several similarities, including transformation of abdominal segments towards 
thoracic identity, shortened sensory bristles, shortened leg segments with a “bubble-like” 
terminus, and missing telson appendages. (Fig 1. B-G). Perturbed animals also exhibit subtle 
phenotypic differences in number of ectopic leg bearing segments and body length. Severe ubr3 
RNAi phenotypes are stronger, often with severely shortened larvae missing most abdominal 
segments, while embryo RNAi even at very low concentrations is lethal (no cuticles develop), 
supporting the involvement of this ubiquitin E3 ligase in mlpt-independent functions. ubr3 RNAi 
leg segments are also more rounded and the pretarsi shorter. Knockdown svb larvae are 
characterized by the presence of legs on the first two abdominal segments only; one or more legs 
on segment A1 are often reduced.  Presence of T2-like spiracles on A1 and the absence of 
spiracles on A2 in svb knockdowns suggest transformation of the two anterior abdominal 
segments into thoracic segments, T2 and T3, respectively. Leg segments are more severely 
shortened and rounded and pretarsi more strongly reduced in svb knockdowns than in mlpt 
knockdowns (Fig 1, Supplement). 
    
CRISPR knock-out of svb highlights an additional phenotype not apparent from RNAi 
knockdown, which is considerable thinning of the epidermal cuticle similar to what has been 
observed in the fly (Andrew DJ and Baker BS, 2008; Figure 4; Figure 1, Supplement 3). These 
results strongly support similar functions of  Mlpt, Ubr3 and Svb in Tribolium and flies. 
Moreover, similarities in transcript, and protein structure and disorder disposition profiles 
between Drosophila and Tribolium Svb suggest similar molecular interactions (Figure 1- 
supplement 1). As in flies, we observe that Tc-mlpt knockdown embryos accumulate the repressor 
form of Svb protein, as detected by an antibody recognizing the N terminal repression domain of 
Drosophila Svb (Figure 1- supplement 1). Taken together, our data support a cooperation among 
Svb, Ubr3 and Mlpt peptides, defining a conserved module essential for Tribolium segmentation. 
 
Notably, expression of the segmental marker wg confirms that only abdominal segments are 
disrupted in mlpt, svb, and ubr3 RNAi embryos while thoracic segments are formed normally 
(Fig. 1 H). This is of interest since in the "short germ" embryo of Tribolium only head and thorax 
form in the “syncytial” or acellular environment of dividing nuclei in the blastoderm, while after 
cellularization, the embryo undergoes convergent extension, and abdominal segments continue to 
arise in a sequential and regular manner from the posterior “growth zone”  (Rosenberg MI et al, 
2009, Liu PZ and Kaufman TC, 2005).  In Drosophila, although both pri/mlpt and svb are 
expressed throughout embryogenesis, there is little overlap in their expression domains until after 
germband retraction, as pri/mlpt is expressed in stripes resembling pair rule stripes, while svb is 
expressed only in the head (Figure 4); ubr3 expression is ubiquitous. Since functional conversion 
to an activator via cleavage of Svb protein relies on the presence of Pri/Mlpt peptides, the timing 
and co-incidence of their expression is important.  The observation that loss of pri segmentation 
function in flies coincides with absence of svb expression in the early fly embryo led us to 
investigate the mRNA expression of Mlpt partners Svb and Ubr3 in Tribolium.  
 
We find that, as in the fly, svb and mlpt mRNA are expressed during both blastoderm and 
germband stages of embryogenesis in Tribolium, and importantly, are co-expressed in the early 
embryo as Tribolium svb mRNA is expressed maternally (data not shown). Zygotic expression of 
Tribolium svb also overlaps with mlpt in the pre-growth zone at the onset of gastrulation (Fig. 1I, 
1I'). In the extending embryo, this overlap resolves into complementary expression: the posterior 
svb domain evolves into a strong anterior band and a more diffuse posterior expression (Figure 
1J'’) while mlpt has much stronger posterior expression (Figure 1J).  As the germ rudiment 
matures, svb forms two distinct expression domains flanking the mlpt expression domain (Figure 
1K, K’). High levels of mlpt and svb expression may be mutually repressive (Figure 1, 
supplement 5). Subsequently, svb and mlpt expression domains shift, wave-like, anteriorly while 
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anterior svb expression fades and its posterior expression detaches from the posterior end 
(Fig.  1M’).  Concomitantly, mlpt trunk expression moves anteriorly and a second posterior 
domain arises that is again complementary to the now anteriorly shifted svb domain (Fig. 1 M), 
with fading anterior mlpt overlapping with the fading anterior svb domain (Fig. 1M and M’).  The 
interaction at the interfaces of the complementary domains may be critical for patterning of the 
abdominal segments. Posterior trunk expression of mlpt eventually also detaches from the growth 
zone and gradually fades while svb persists as a strong narrow band of expression until 
segmentation is completed (Figure 1- supplement 2).  Late svb is expressed in presumptive 
neurons during germ band extension, and later, in the head and appendages (Figure 1M’, Figure 
1- supplement 2).    
 
In summary, Tribolium mlpt and svb expression patterns are dynamic and often complementary, 
though at times, overlapping. Loss of function phenotypes of Tc mlpt, svb and ubr3 suggest that a 
functional module for mlpt discovered in Drosophila trichome patterning also works in concert in 
embryonic segmentation, leg patterning and cuticle formation in Tribolium.  
 
Complementarity of expression of pri/mlpt and svb is conserved deeply in insects.   Our data 
revealed a surprising and essential role for this gene module in controlling posterior segment 
formation and identity in Tribolium. To determine whether these genes are similarly important for 
embryonic development of other insects, we investigated their expression patterns in additional, 
more basal insect species: the water strider, Gerris buenoi (“Gb”; Hemiptera, Gerridae) and the 
milkweed bug, Oncopeltus fasciatus (“Ofas”; Hemiptera, Lygaeidae). Figure 2 highlights the 
expression patterns of these genes at several timepoints in embryogenesis.   The early 
development of water strider and milkweed bug are quite similar. Ubr3 expression is ubiquitous 
in both Tribolium and Gerris and was not examined further. mlpt and svb expression in the early 
hemipteran embryo is observed in adjacent domains at the anterior of the precellular blastoderm 
embryo (e.g. Oncopeltus, Figure 2A-A’), with additional strong posterior svb expression at the 
future site of invagination which becomes broad expression throughout the early growth zone 
(Figure 2A; Figure 2- supplement 1). This complementarity perdures, until a transition to 
transient overlap in the early growth zone (Figure 2- supplement 1D-D'). Subsequently, 
expression domains of svb and mlpt again resolve into complementary “waves” of svb  and mlpt 
stripes moving  anteriorly within the growth zone (Figure 2B-B’; 2D-E’; Figure 2- supplement 2); 
Ofas mlpt expression is also diffusely expressed through recently added segments anterior to the 
GZ (Figure 2C’). Later expression in both species is seen in the limb buds and mouth parts 
(Figure 2C-C’, E-E’), consistent with a function in patterning the leg and head appendages, as 
well as in presumptive neurons of the head and along the midline. These data hint at a surprising 
role for this gene module in controlling segment formation and identity in representatives of the 
Coleoptera and Hemiptera, but not Diptera. 
 
Conserved function of mlpt gene module in insect segmentation. We next tested whether and 
how broadly mlpt, svb, and ubr3 may functionally cooperate during embryogenesis in these 
additional short germ insects. We used RNAi against each of these genes in water striders and 
milkweed bugs, and find that all cause severe patterning defects.  
 
Embryos of hemimetabolous insects, including water striders and milkweed bugs, complete 
embryogenesis and undergo a series of molts (which does not include a pupal stage) through 
which these hatchlings eventually achieve adult size and morphology. These intermediate nymph 
stages exhibit the full complexity of adult structures, allowing for detailed phenotypic 
analysis.  In water strider and milkweed bugs, the wildtype hatchling possesses three long pairs of 
legs, which extend along the ventral side, curling around the posterior, as well as a long pair of 
antennae that extend posteriorly along the ventral midline  (Figure 3A-B; 3I-J). mlpt RNAi in 
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both Gb and Ofas results in loss of posterior abdominal segments and fusion of thoracic 
segments, with shortened rounded legs that terminate proximal to the trunk;  reduction and fusion 
of head appendages is also apparent (Fig 3C-D, 3K-L). In Ofas, severely affected embryos fail to 
gastrulate, resulting in an everted gut. Gb  and Ofas svb RNAi also results in loss of abdominal 
segments and rounding of more distally truncated legs (Figure 3E-F, 3M-N). ubr3 RNAi in both 
species gives the most severe phenotype, reflecting its presumed additional functions independent 
of svb and mlpt.  Gb ubr3 RNAi embryos exhibit loss of posterior abdomen, as well as fusion or 
loss of most leg-bearing segments and reduced head appendages and eyes; remaining legs are 
fused and shortened with bubble-like termini (Figure 3G-H).  In Ofas, severe ubr3 RNAi embryos 
are almost completely ablated, leaving unidentifiable ectodermal tissue connected to everted 
presumptive visceral tissue.  More mildly affected embryos possess some apparent segment 
identity, with head and eyes, but no appendages and limited evidence for correct axial polarity 
(Figure 3O-P).  
 
Conservation in alternative long germ insects. 
Since all basal insect species examined showed evidence of conserved function of this module in 
segmentation, we tested whether other more derived species may retain this functionality. Like 
Drosophila, Nasonia, Apis, and other Hymenoptera exhibit “long germ” embryogenesis, in which 
the embryo is mostly patterned in the context of the syncytical blastoderm, and which has evolved 
several times in the insect phylum (Rosenberg MI, et al 2009, Liu PZ and Kaufman TC, 
2005,Misof B et al 2014). Drosophila svb expression in the early embryo is restricted to two 
stripes in the head (Mével-Ninio M et al 1995, Figure 4 A,B), while Dmel pri is expressed 
throughout the blastoderm, resembling the striped expression of the pair-rule gene hairy (3). In 
contrast, in the long germ embryo of Nasonia vitripennis, mlpt and svb are expressed in the 
precellular blastoderm in adjacent posterior domains (Figure 4E-F’), at the region of the wasp 
embryo described previously as the progenitor of the late-forming segments (Rosenberg MI et al 
2014).  Nv svb is also expressed in a prominent stripe in the middle of the embryo, similar to 
expression of the thoracic gap gene, Krüppel (Brent AE et al 2007; Figure 4E), while mlpt 
expression has an anterior cap, and broad expression posterior to the svb domain (Figure 4E’-
F’).  Later expression of both genes in flies can be seen in segmental stripes during germband 
extension that prefigure the larval trichomes (Figure 4C-D’), while in Nasonia, both genes have 
expression on the dorsal side of the embryo, beginning around gastrulation (Figure 4G’; Figure 2- 
supplement 2).  Late expression of svb in Nasonia appears in stripes, prefiguring the larval 
trichomes. Late expression of mlpt is also in stripes, which are reminiscent of segmental genes en 
and wg, and coincident with svb expression, as well as in spots in the presumptive nervous system 
(Figure 2- supplement 2).  Thus, in a wide range of insects, complementary and sporadic 
overlapping expression of svb and mlpt in the embryo correlates with an essential role in 
embryonic segmentation.    
 
In holometabolous insects, like Drosophila and Nasonia, the embryo hatches into a larva, whose 
cuticle is ornamented with dense bristles called trichomes.  Since the pattern of trichomes, or 
denticles, is predictable and distinctive along the anterior-posterior (A-P) and dorsoventral axes 
and within each segment, it can serve as a readout for correct segmentation.  The fly larva has a 
characteristic trichome pattern in WT flies (Figure 4I), which is severely reduced (hence, 
"shaven") in the thin cuticles of larvae mutant for svb, pri, or ubr3 (Figure 4J-L). However, all 
segments are still formed in these mutants.  The larval cuticle pattern of Nasonia differs from the 
fly; three thoracic and 10 abdominal segmental bristle bands can be discerned, as well as 4 
spiracles, located on thoracic segment T2, and abdominal segments A1, A2 and A3, which 
provide essential landmarks for segment identification (Pultz MA et al 2000; Figure 4M).  In 
Nasonia, mlpt RNAi causes posterior truncation and segment fusions, evident as a severely 
shortened larval cuticle, with two remaining bands of denticles that are likely thoracic and 
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anterior abdomen (Figure 4N).  Similarly, svb RNAi causes severe posterior truncation and loss 
of most abdominal segments.  Two clear bands of denticles and two pairs of spiracles remain 
(Figure 4O).   Larvae from ubr3 RNAi were almost uniformly too fragile to recover (not shown), 
likely owing to the observed absence/thinning of cuticle; mildly affected ubr3 RNAi larvae 
exhibit thin cuticle, devoid of denticles on the posterior, with anterior fusion of remaining 
denticles (Figure 4P).  Altogether, our data support conserved functions for mlpt, svb and ubr3 in 
embryonic segmentation of a long germ insect, leaving only long germ Drosophila from among 
species tested without such an early patterning function.  
 
 
Reawakening functionality mlpt/svb/ubr3 module in segmentation by restoring Svb 
expression in the early Drosophila embryo. Since we find this functional module to be ancestral 
and deeply conserved in both short and long germ insects, we sought to determine how the 
module lost its segmentation role in Drosophila. ubr3 is ubiquitous and mlpt is expressed in pair-
rule like stripes, but svb expression is absent at these early Drosophila embryonic stages.  We 
therefore hypothesized that the loss of the segmentation function of this gene module occurred 
through the loss of svb expression during embryogenesis in the Drosophila lineage. To test this 
hypothesis, we added back svb expression to the early embryo context using the Gal4/UAS 
system (Brand AH & Perrimon N, 1993), as it is observed in the blastoderm embryos of 
Tribolium, Oncopeltus, Gerris, and Nasonia. Strikingly, over-expression of svb in the early 
embryo resulted in segmentation defects (Figure 5B, middle panels) while loss of mlpt function 
did not (Galindo MI et al, 2007). This result suggests that the function of the mlpt/svb/ubr3 
module in segmentation is contingent upon expression of all three partners and that the loss of 
this function in flies evolved through the loss of svb expression and the dissociation of the trio 
during early embryogenesis. We next tested whether the segmentation defects observed were due 
to the processing of the ectopically expressed svb into an activator by mlpt and ubr3. To do this, 
we over-expressed OvoB, a transcriptional activator originating from the same locus as Svb that 
behaves like the cleaved form of Svb but that does not require cleavage by Mlpt and Ubr3. 
Maternal (ectopic) expression of OvoB activator causes segmentation defects that are reminiscent 
of those obtained by Svb over-expression (Figure 5B, right panels). This result indicates that the 
segmentation defects observed upon over-expression of either Svb or OvoB are the result of the 
accumulation of the activator form of Svb/Ovo protein, and that, in this context, ectopic Svb can 
be regulated and converted to activator form by Mlpt peptides. We therefore conclude that the 
cooperativity of this gene module has remained intact throughout evolution, and the inactivation 
of its function in Drosophila segmentation likely occurred through the promoter-mediated 
abrogation of early expression of Svb, an essential component of the module. 
  
Discussion.  
In summary, our experiments reveal how a cooperative trio of genes, initially discovered in 
Drosophila where it has a more restricted functional capacity, possesses important ancestral 
functions in insect embryonic segmentation, representing a significant addition to the anterior-
posterior patterning network in insects. Segmentation function of this module has receded in the 
Drosophila lineage through the dissipation of temporal coexpression, while retaining cooperative 
potency, a solution that preserves connectivity for use in other processes in the fly, such as leg 
patterning, trichome patterning, and metamorphosis. We surmise that the loss of the essential 
function of Svb/Mlpt/Ubr3 in segmentation of flies was facilitated by the shift to complete 
segment patterning before cellularization, which leaves no segments aside for delayed patterning, 
thus obviating the need for a switch between modes of segmentation.  Our current study also 
illustrates how the use of non-Drosophilid insects with varied modes of embryogenesis can 
uncover a deeply conserved function, which would have been missed using only the well-studied 
Drosophila model. 
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We observe several conserved functions of this module of mlpt, svb and ubr3.  All insects from 
the most basal studied (Gerris) to the most derived (Drosophila) exhibit strong epidermal 
patterning defects, evident both in the patterns of apical projections on the larval cuticles of flies 
and wasps, and in the thinning of the cuticle (Figures 1, 4; Figure 1, Supplement 3) as well as 
defects in leg patterning in all species examined (Figure 1G, Figure 3).  The conserved outputs of 
this module highlight transcriptional networks downstream of Svb whose connectivity are largely 
intact over large evolutionary distance, as are sequence features within Svb protein (conserved N-
terminus, proteolytic cleavage sites) required for mlpt/ubr3 mediated cleavage (Figure 1- 
supplement 1). Several Svb epidermal targets identified in flies are similarly regulated in 
Tribolium (Li C et al, 2016).  Expression patterns of several Svb epidermal target genes in 
Nasonia support this conclusion (Figure 1, Supplement 4). Together, these observations 
underscore the ancestral conservation of both Svb transcriptional networks and phenotypes dating 
to early in the radiation of arthropods.   
 
Outside of Drosophila, we observe conserved function in insect embryonic segmentation, 
affecting formation of posterior segments in all insects tested, as well as additional defects in 
head and thoracic segment derivatives, delineating a new module for insect embryonic 
segmentation.  Our experimental data show that promoter control of Svb expression timing may 
be sufficient to bring segment patterning potency on- or off-line in the embryo (Figure 5). The 
phylogenetic distribution within insects of short/long germ modes of development, whose 
hallmark is delayed abdominal segment formation and patterning, suggests that evolution has 
likely repeatedly sampled these modes (Misof, B. et al, 2014).  Our data suggest one mechanism 
by which delayed posterior segment formation may be switched on/off via Svb/Mlpt/Ubr3.   
 
The highly dynamic expression of mlpt and svb and the complementarity of their expression 
patterns, seen in every non-Drosophilid insect examined in this study, are striking.  Mlpt/svb 
boundaries occur at varying positions in different insect embryos.  Their expression domains also 
overlap at times, as in the head in the early Drosophila embryo, and later, in the same denticle 
prepattern.  We often observe a sharp boundary in non-Drosophilid insects between two domains 
of strong expression, suggesting mutual exclusivity between high svb and mlpt expression, or a 
negative feedback loop. Indeed, we observe derepression of svb when mlpt is reduced by RNAi 
(Supplementary Figure 7). The position of the complementary Svb/Mlpt expression boundaries at 
the interface between patterned segments and unpatterned cells in the growth zone is intriguing.  
A strong domain of svb expression in the growth zone is observed in all short germ species 
examined, often adjacent to a strong mlpt expression domain.  In cells distant from the boundary, 
high levels of Svb repressor protein that excludes Mlpt expression would silence target 
promoters, while Svb targets in the region of overlap at the junctions between the svb-mlpt 
domains would be activated due to more moderate Svb repressor levels that are no longer 
inhibitory to Mlpt expression.  Alternatively, potential non-cell autonomous activity of Mlpt 
peptides could activate Svb and its target promoters close to the boundary even in the absence of 
an overlap between the mRNA expression domains. The potential of this interface to produce a 
narrow adjacent domain of Svb target activation is indeed interesting. The short-range gradient of 
Svb activator could constitute a retracting wavefront (regulated by or acting in conjunction with a 
speed/frequency regulator; Zhu, X et al, 2017) that determines spatial patterning. The position of 
the complementary Svb/Mlpt expression boundaries at the interface between blastoderm and 
oscillation-driven growth zone invites further study. 
 
Beyond insects, Svb/Ovo is conserved in all animals, and predates bilateria (Kumar A et al, 
2012). Svb in animals functions “classically” in germline and epidermis, though evidence now 
suggests epithelial function in mouse, as well (Dai, X. et al, 1998; Nair, M. et al. 2006). Svb 
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mammalian homologs are involved in phenotypic changes in cells, including significant 
cytoskeletal rearrangements, and mesenchymal to epithelial transitions (MET; Ito, T. et al, 2017; 
Roca, H. et al., 2013; Zanet J, et al., 2015; 28. Jia, D. et al, 2015). Insect gastrulation, which also 
relies heavily on cytoskeletal rearrangements during germband elongation and germ layer growth 
(Collinet, C. et al, 2015; Munjal, A. et al, 2015) may share this feature, since embryos with 
reduced Mlpt or Svb appear deficient in convergent extension and directional growth, implicating 
cytoskeletal effectors.  Importantly, both in mammalian models and invertebrates, the repressor 
form of Svb/Ovo transcription factor has different activity than the activator form (Masu, Y. et al, 
1998; Hayashi, M. et al, 2017). Insects achieve switching between these activities through post-
translational conversion of Svb protein through proteolytic processing, while vertebrate Ovo 
proteins possess different promoters controlling transcript variants with divergent transcriptional 
activity (Li, B. et al, 2002; Masu, Y. et al, 1998). Together, our data suggest how a post-
translational mechanism involving a micropeptide like Mlpt can be used to switch Svb activity, 
broadly regulating phenotypic plasticity during embryogenesis. 
 
In conclusion, our experiments build on the strength of deep evolutionary understanding of a 
micropeptide switch and its genetic context to revive ancestral functionality in an essential 
developmental network. This process demonstrates potential for the rational design of novel 
biological switches, using evolutionarily conserved components in contexts in which they no 
longer possess native function, but in which they are poised to do so.  
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Materials and Methods.   
 
Experimental Design. All insect cultures were reared at ambient temperature of 25ºC, unless 
otherwise noted.  Wild type Nasonia embryos were collected from virgin AsymCx (34) females 
host fed on Sarcophaga bullata pupae (Carolina Biological), aged as needed at 25ºC, and fixed 
for 25 minutes in 4% heptane-saturated formaldehyde/1X Phosphate Buffered Saline (PBS), with 
vigorous shaking. Embryos were transferred to 100% methanol for storage, or further processed. 
Embryos were then rehydrated to 1X PBS with 0.1% Tween (PBT) through a methanol/PBT 
series, and hand peeled under 1X PBT using 1mL insulin needles (Becton-Dickinson).  
 
Wild-type Oncopeltus embryos were collected on cotton from mated females, and aged, as 
needed, in a 25ºC incubator.  Embryos were first boiled for 1 to 3 minutes in a microfuge tube in 
water, followed by a 1 minute incubation on ice, before further processing. Embryos were fixed 
in 12% heptane-saturated formaldehyde/1X PBS for 20 minutes with shaking. The heptane was 
replaced by methanol, and the embryos either stored under methanol at -20ºC or processed 
immediately.  Embryos were then rehydrated to 1X PBT through a methanol/PBT series, and 
dechorionated, before further fixation for 90-120 minutes in 4% formaldehyde/1X 
PBT.  Embryos were then transferred to and stored in 100% methanol.  
 
Wild type Gerris buenoi were collected from a pond in Toronto, Ontario, Canada and established 
in the lab. Stocks were maintained in aquaria at 25 °C with a 14-h light/10-h dark cycle, and fed 
with fresh crickets.  Styrofoam float pads were provided to females as substrate for egg lays. 
Embryos were collected and incubated at 20-25°C until desired developmental timepoints, at 
which time they were dissected in 1x PBS with 0.05% tween-20 (“PTW”).  Once dissected, 
embryos were fixed in 4% paraformaldehyde and stored under 100% Methanol at -20ºC until 
use.   
 
Wild type Drosophila lines were reared at ambient temperature under standard conditions.  
 
Wild type Tribolium embryos were fixed and single whole-mount in situ hybridizations were 
performed as previously described (35, 36, 37). Digoxigenin-labeled RNA probes were detected 
using alkaline phosphatase-conjugated anti-DIG antibodies (1:2000; Roche) and NBT/BCIP 
substrates (Roche) as per manufacturer instructions. 
 
Antibody staining of Tribolium embryos:  Freshly fixed embryos were washed with PBT (PBS 
and 0.1% Triton X) and exposed to rabbit anti-Svb 1S at a concentration of 1:2000 for 4h at room 
temperature on a rotating wheel.  Following washes, the embryos were incubated with 
preabsorbed alkaline phosphatase conjugated goat anti-rabbit secondary antibody at a 
concentration of 1:1000 for 2h at room temperature on the wheel.  Following washes the embryos 
were stained with NBT-BCIP substrate and visualized under a stereomicroscope. 
 
 
Parental RNAi (pRNAi) and larval/hatchling cuticle preparation: 
Tribolium pRNAi: dsRNA synthesis and parental RNAi were performed as described previously 
(38; 39).  dsRNAs were injected into female pupae or virgin adult females at a concentration of 1-
3µg/µl.  RNAi phenotypes were confirmed by injection of non-overlapping dsRNA fragments.  
 
First instar larval cuticles were cleared in Hoyer’s medium/lactic acid (1:1) overnight at 60 
°C.  Cuticular autofluorescence was detected on a Zeiss Axiophot microscope.  Z stacks and 
projections were created with a Zeiss ApoTome microscope using the Axiovision 4.6.3.SP1 
Software. Colour images were taken by (ProgResC14) using the ProgResC141.7.3 software and 
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maximum projection images were created from z stacks using the Analysis D software 
(Olympus). 
 
Oncopeltus pRNAi: dsRNA template was amplified from target gene fragments which had been 
cloned into either pCR-Topo (Qiagen) or pGEM (invitrogen), using T7 promoter-containing 
oligos, as described previously (40). Purified PCR product was used for dsRNA transcription 
using Megascript RNAi (Ambion) according to manufacturer’s instructions. dsRNA was injected 
into newly eclosed virgin female  milkweed bugs, at a concentration of 1-3µg/µl.  After injection, 
females were mated to uninjected males, and embryos were collected for the duration of 
egglaying.  Embryos for phenotypic evalution were incubated at 28ºC for 8 days, and unhatched 
embryos were dissected from their membranes and imaged for hatchling phenotypes.   
 

Gerris buenoi parental RNAi. Knock down of pri, svb and ubr3 genes was performed by 
injection of double-stranded RNAi into adult females abdomen (41). dsRNA was synthesized by 
in vitro transcription and purified following the protocol described in (40) Nature Protocols. 
dsRNA was injected at a concentration of 1ug/uL in 1X injection buffer prepared following the 
protocol in (43). dsRNA directed against the yellow fluorescent protein gene was used as an 
injection control. 
 
Nasonia embryo RNAi: dsRNA template was amplified from target gene fragments that had been 
previously cloned into pCR-Topo (Qiagen) or directly from embryo cDNA, using standard T7 
promoter-containing oligos, as described previously (41). Purified PCR product was used for 
dsRNA transcription using Megascript RNAi (Ambion) according to manufacturer’s instructions, 
and purified product diluted to 1-3µg/µl for injection.  pRNAi for mlpt  and svb in Nasonia 
resulted in sterility.  Therefore, haploid embryos laid by unmated host-fed virgin Nasonia females 
were microinjected with dsRNA using a Femto-Jet microinjector (Eppendorf), and transferred to 
a slide to develop in a humid chamber at 28ºC for 36H.  Unhatched larvae were dissected from 
extraembryonic membranes and cleared in freshly prepared Lacto:Hoyer’s medium overnight at 
65ºC, and imaged for cuticle autofluorescence the following day.  
 
Drosophila UAS/Gal4 experiments. The following Drosophila lines were used in this study: w, 
pri1/TM6, Ubi-GFP, svbR9/ FM7, Kr-GFP, nullo-Gal4 (from Gehring lab), mat-Gal4, nanos-Gal 
(gift from N. Dostatni). UAS drivers used in this study are as follows: UAS-svb, UAS-ovoA, 
UAS-ovoB, UAS-pri. Ubr3 mutant embryos devoid of maternal and zygotic contribution were 
generated using the Ubr3B allele according to (15).  
 
 
In situ hybridizations and immunostaining. 
Gerris buenoi. In situ hybridizations in Gerris were performed as previously described (41). 
Briefly, embryos were rehydrated to 1X Gerris PBT, through a MeOH/PTW series, and then 
washed 3 times in PTW to eliminate residual methanol. Embryos were then permeabilized in PBT 
0.3% and PBT 1% (1X PBS; 0.3% or 1% Triton X100) for 1 hour. Following these washes, 
embryos were rinsed once for 10 minutes in a 1:1 mixture of PBT 1% and Hybe B (Hybe B is: 
50% Formamide; 5% dextran sulfate; 100 mg/ml yeast tRNA; 10X salts). The 10X salt mix 
contains 3 M NaCl; 100 mM Trizma Base; 60 mM NaH2PO4; 50 mM Na2HPO4; 5 mM Ficoll; 
50 mM PVP; and 50 mM EDTA. RNA probes corresponding to each gene were transcribed from 
cDNA templates cloned into pGEM-T (Promega), and then transcribed in vitro using either T7 or 
Sp6 RNA polymerase (Roche) and labeled with Digoxigenin-RNA labeling mix (Roche). Pre-
incubation of embryos was carried out in Hybe-B for 1 hour at 60°C before adding Digoxigenin-
labeled RNA probes overnight at 60°C. The next day, embryos were washed in decreasing 
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concentrations of Hybe-B diluted with PBT 0.3% (with 3:1, 1:1, 1:3) and then rinsed three times 
5 minutes each in PBT 0.3% and then once for 20 minutes in blocking solution (1X PBS; 1% 
Triton X100; 1% BSA) at room temperature before adding alkaline phosphatase conjugated anti-
DIG antibody  (Roche). Embryos were incubated with primary antibody for 2 hours at room 
temperature. Following primary antibody, embryos were washed for 5 minutes in PBT 0.3% and 
and then 5 min in PTW 0.05%. Color enzymatic reaction was carried out using NBT/BCIP 
substrate (Roche) in alkaline phosphatase buffer (0.1M Tris pH 9.5; 0.05M MgCl2; 0.1M NaCl; 
0.1% Tween-20), according to manufacturer’s instructions. Upon completion, the reaction was 
stopped with several washes of PBT 0.3% and PTW 0.1% (1xPBS; 0.1% Tween-20). Stained 
embryos were stored in 50% Glycerol/1x PBS at 4°C or -20°C until mounting on slides in 80% 
glycerol for imaging. 
  
Immunostaining on Gerris embryos: Embryos were cleaned with dilute bleach solution and 
washed PTW 0.05%. After dissection, embryos were fixed for 20min in 4% Formaldehyde/1X 
PTW 0.05%. Embryos were then permeabilized with PBT 0.3% for 30 minutes and incubated in 
antibody blocking solution (1X PBS; 0.1% Triton X100; 0.1% BSA; 10% NGS) at room 
temperature for 1 hour. Embryos were transferred to blocking solution containing primary 
antibody (mouse anti-Ubx-AbdA Hybridoma bank 1:5 dilution; rabbit anti-Dll (42), catalog 
number; 1:200 dilution) and incubated overnight at 4°C. The next day embryos were washed in 
PTW 0.05% (two quick washes, then two longer washes 10 min each) and incubated for 30 
minutes in blocking solution at room temperature with shaking, before adding the secondary 
antibody (Rabbit anti-mouse-HRP [1:1000] from Promega or Donkey anti-Rabbit-HRP [1:500] 
from Jackson Immuno research) diluted in PTW. All secondary antibodies were incubated with 
embryos for 2 hours at room temperature with shaking. Following secondary antibody, embryos 
were rinsed in PBT 0.3% and PTW 0.05% three times each for 10 minutes at room temperature.  
Before enzymatic developing with DAB with color enhancer (Diaminobenzidine tetrahydro-
Chloride from Sigma), embryos were briefly incubated with DAB solution for 5 minutes at room 
temperature. Upon completion, staining was stopped by washing the embryos briefly in PBT 
0.3%, followed by 5 times, five minute washes in PBT 0.3%.  Five more washes of 5 minutes in 
PTW 0.1% followed. Embryos were transferred to 30% glycerol/1X PBS for 5 min, and then 50% 
Glycerol/1X PBS for 5 min, before sinking in 80% glycerol/1X PBS at 4°C until mounting in 
80% glycerol under coverslips for imaging. 

Oncopeltus in situ hybridizations were carried out (as described for Nasonia in 14) on embryos 
peeled and stored under 100% methanol, and rehydrated through an methanol/1x PBS, 
0.1%Tween (1xPBT) series.  Briefly, rehydrated embryos were washed several times in 1x PBT 
before a 5 minute post-fix in 5% formadelhyde/1X PBT, followed by 3 five minute washes in 1X 
PBT.  Embryos were briefly treated with Proteinase K (4µg/mL final concentration) in 1X PBT 
for 5 min, followed by 3 five minute washes in 1X PBT, and an additional 5 minute post-fix in 
5% formaldehyde/1X PBT. Following 3 x three minute washes in 1X PBT, embryos were 
incubated in hybridization buffer for 5 minutes at room temperature, followed by incubation in 
fresh hybe buffer for a 1 hour pre-hybridization step at 65ºC.  RNA probes were prepared and 
added to a fresh portion of hybridization buffer and incubated at 85ºC for 5 minutes, then one 
minute on ice, before replacing pre-hybe with hybe buffer containing denatured RNA 
probe.  Tubes were incubated overnight at 65ºC. After washes in formamide wash buffer, 
embryos were washed in several changes of 1X MABT buffer, before incubation in 1X MABT+ 
2% Blocking Reagent (BBR; Roche Diagnostics) for 1 hour, and then 1X MABT/2%BBR/20% 
sheep serum for an additional hour, before addition of fresh 1X MABT/2%BBR/20% sheep 
serum containing anti-DIG AP Fab fragments (1:2000; Roche) for overnight incubation at 4ºC.  
In the morning, extenstive 1X MABT washes were carried out before equilibration of embryos 
with AP staining buffer and then staining with AP staining buffer containing NBT/BCIP (Roche; 
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as per manufacturers instructions).  After staining, three 1X PBT washes were carried out before 
a final post-fixation step (5% formaldehyde/1xPBT), and then one PBT wash before sinking in 
50% glycerol/1xPBS, and then 70% glycerol/1xPBS, which was also used for mounting before 
imaging.  
 
Nasonia in situ hybridizations. Nasonia embryos were collected and fixed in 4% 
formaldehyde/1X PBS/Heptane for 28 minutes with moderate shaking. The embryos were hand-
peeled under 1x PBS+ 0.1% tween, after being affixed in room air to double sided tape, and 
hand-peeled as described previously, except that embryos were collected from host-fed, mated 
females. Fixed embryos were stored under methanol at -20ºC until use.  
 
In situ hybridizations were carried out as described previously (44). Briefly, fixed embryos that 
had been stored under methanol were gradually brought up to 1X PBT in a PBT/MeOH series, 
and washed three times in 1x PBS +0.1% tween-20 (PBT) before a 30 minute post-fixation in 5% 
formaldehyde/1XPBT. The embryos were then washed three times in 1X PBT, and digested in 
Proteinase K  for five minutes (final concentration of 4mg/mL) before three PBT washes. 
Embryos were blocked for 1 hour in hybridization buffer before probe preparation (85ºC, 5’; ice 
1’) and addition for overnight incubation at 65ºC. The next day, embryos were washed in 
formamide wash buffer three times, and and then 1X MABT buffer three times, before blocking 
in 2% Blocking Reagent (BBR; Roche Diagnostics) in 1X MABT for 1 hour, then in 10% horse 
serum/2% BBR/1XMABT for 2 hours. Embryos were incubated overnight at 4ºC with primary 
antibody (anti-DIG-AP Fab fragments; Roche, 1:2000). The third day, embryos were washed in 
1X MABT for ten x  20 minutes washes before equilibrating the embryos in AP staining buffer 
and developing in AP buffer with NBT/BCIP solution (Roche Diagnostics). After staining, 
embryos were washed in 1x PBT three times for five minutes each before a single 25 minutes 
post-fix step in 5% formaldehyde/1XPBT. Embryos were then washed several times with 1X 
PBT, and allowed to sink in 50% glycerol/1XPBS and then 70% glycerol/1XPBS, which was 
subsequently used for mounting. 

Cloning of Tribolium cDNA sequences. For Tribolium svb, all primer pairs shown were used to 
generate template for dsRNA synthesis. Amplicons generated by the last four pairs were also 
used for antisense RNA probe synthesis.  dsRNA fragments corresponding to different regions of 
the svb transcript were used for gene knockdown by RNAi.  All dsRNA fragments resulted in 
similar knockdown phenotypes with high penetrance.  Primers were designed based on the Next-
RNAi software, Primer3 or  MacVector.  The nucleotides shown in red indicate tags of parts of 
T7 (3’ primer) and SP6 (5’ primer) promoter sequences attached to gene-specific sequences in the 
manner described by Schmitt-Engel et al. 2015.  The products were used for a second PCR using 
T7 and SP6-T7 primers for generating a double stranded template for in-vitro transcription by T7 
polymerase.  For in-situ RNA probes, the second PCR was done using the complete T7 and SP6 
promoter sequences and subsequently in-vitro transcription was performed to generate a 
digoxigenin-labeled antisense RNA probe with the appropriate polymerase.  Amplicons that were 
cloned into pBluescript vector were amplified with T7 and T3-T7 primers for subsequent dsRNA 
synthesis or T7 and T3 primers for subsequent antisense RNA probe synthesis using either T3 or 
T7 RNA polymerase.  The primer design was based on the RNAseq data (Tcas au5 prediction) 
for svb available on iBeetle-Base. For mlpt dsRNA and probe synthesis, a full-length mlpt cDNA 
cloned into pBluescript was obtained from Dr. Michael Schoppmeier.  For ubr3, all primer pairs 
shown were used for dsRNA synthesis.  All dsRNA fragments resulted in similarly strong 
knockdown phenotypes with very high penetrance.  The fragments generated with the primers 
containing iBeetle numbers were also used as probes. 

Generating a Tcas svb mutant using CRISPR/Cas9:  The svb gRNAs were directed to the 
putative transactivation domain in exon 2 of Tc-svb. The G (required by the U6 promoter for 
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transcription initiation) is marked in green.  The PAM sequence is shown in blue.  The sequences 
in orange represent the complementary overhangs generated by Bsa1 digestion.  A fourth gRNA 
was directed to the Tribolium single-minded gene (Tc-sim, Rode and Klingler, unpublished).  
Embryonic injection mix consisted of 125 ng each of the four gRNA expression vectors, 500ng of 
the donor eGFP vector containing the sim target sequence, and 500ng of the Cas9 expression 
vector.  Non-homologous end joining (NHEJ) method was employed for directed knock-in of an 
eGFP containing donor marker plasmid into the exon2 of the endogenous svb gene.  The sim 
gRNA was used to target the sim sequence in the marker plasmid leading to its Cas9-induced 
linearization.  This was followed by insertion of the linearized plasmid into one or more target 
sites in the svb genome.  A successful knock-in of the marker plasmid was obtained only at 
gRNA target site 3.  This insertion site was present in all svb transcripts and was also downstream 
from a putative second start codon, thus increasing the chances of obtaining a svb null phenotype. 
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Figure 1. Loss of function embryonic phenotypes of mlpt, ubr3, and svb and their embryonic 
expression reveal a cooperative segmentation function of the module in Tribolium 
castaneum (Tribolium). (A-F) Cuticle phenotypes of first instar larvae of Tribolium WT [A], 
mlpt [B], ubr3 [C], svb [D, E] RNAi, and a knock-in svb CRISPR mutant [F]. mlpt, svb, and ubr3 
knockdown larvae after parental RNAi are shortened along the anteroposterior axis and are more 
compact relative to wild type.  While only the first two abdominal segments are transformed in 
svb knockdowns, almost all abdominal segments can be transformed to thoracic identity in mlpt 
and ubr3 knockdowns. One or both legs on the transformed A1 segment are usually reduced to 
stumps in svb knockdowns (white arrows; D, E).  D and E portray weaker and stronger svb RNAi 
phenotypes respectively.  To create the svb CRISPR mutant, guide RNAs targeting the 
transactivation domain of svb were used to knock-in a plasmid bearing EGFP under the control of 
a 3xP3 promoter into the svb locus by inducing double-stranded breaks followed by non-
homologous end joining (NHEJ).  svb mutant cuticles have very low autofluorescence and appear 
dim [F].  WT, wild-type; u, urogomphi; p, pygopods. (G) Comparison of the prothoracic leg from 
a Tribolium WT, a svb RNAi, and a svb mutant larva. Leg segments of the svb knockdown and 
mutant larvae are significantly shortened and rounded compared to the WT and the pretarsus, 
significantly reduced.  Bristles are missing on the mutant leg and the pretarsus is not sclerotized.  
coxa (c); trochanter (t); femur (f); tibiotarsus (tt); pretarsus (pt) (H) wingless expression in 
Tribolium WT, mlpt, svb, and ubr3 RNAi embryos. The stripe corresponding to the 3rd thoracic 
segment (T3) is shown (black arrows).  In all three knockdowns, segmental stripes can be 
disrupted right after the T3 stripe has formed. (I-M’)  Whole mount in-situ hybridization results 
showing the expression of Tc-mlpt and Tc-svb from late blastoderm through extending germband 
stages highlighting their complementarity of expression.  In the late blastoderm mlpt and svb 
expression domains overlap in the posterior (I and I').  In the late germ rudiment svb is strongly 
expressed in an anterior band with diffuse expression in the posterior; mlpt is strongly expressed 
in the diffuse svb domain (J and J').  In the early germband, svb expression clears out in the 
middle forming an anterior and a posterior band; intense mlpt expression is present in the middle 
region with sparse svb and absent at the posterior end (K and K’).  As the germband grows, the 
anterior domain of svb fades while its posterior domain remains strong abutting on the posterior 
border of the mlpt 1st trunk domain (L and L’).  The 1st trunk domain of mlpt fades while a 2nd one 
is established at the posterior; svb domain detaches from the posterior and is concentrated in a 
region close to the posterior end, roughly between the two mlpt trunk domains (M and M'). 
 
Figure 2.  Embryonic expression of mlpt and Svb mRNA in hemipteran embryos of Gerris 
buenoi  and Oncopeltus fasciatus. (A-C) Expression of svb in the G. buenoi embryo.  (A) 
G.bue Svb expression is evident as faint expression the head and thorax, along with stronger 
domains of expression in the abdomen of the early germband. (B) Mid germbands exhibit more 
restricted expression of Svb, in a stribpe in the growth zone, as well as in putative neurons in the 
head, and faint expression in the limb buds. (C) Late stage embryos exhibit banded expression of 
Svb in the legs and head appendages, as well as in foci of expression in the head.  (A’-C’) 
Expression of mlpt in the G. buenoi embryo.  (A’)  G.bue mlpt expression in the early germband 
is restricted to a thoracic stripe and two distinct domains of abdominal expression, which abut 
domains of G.bue Svb expression (A).  (B’)  Mid germband embryos exhibit strong staining  in 
the limb buds, as well as in the extreme posterior of the growth zone, immediately adjacent to a 
strong domain of G. bue Svb in the middle of the growth zone (B’). (C’) Late stage G. bue 
embryos exhibit strong staining in the mature limbs, as well as in foci of expression along the 
midline of the embryo. (D-F) mRNA expression of Svb in the Oncopeltus fasciatus embryo. 
(D) A dorsal view of a blastoderm embryo of Oncopeltus highlights its two domains of 
expression: one anterior domain of head expression, and a posterior domain encompassing 
thoracic segments, and strong staining at the site of ingression where gastrulation begins. (E) 
Early germband staining for Ofas Svb transcripts reveals faint staining in the headlobes, as well as 
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strong staning in two distinct stripes in the growth zone.  (F) Later germbands express svb in 
putative neurons of the head, as well as in limb buds and a strong stripe in the middle of the 
growth zone. (D’-F’) mRNA expression of Ofas mlpt in the Oncopeltus embryo. (D’) 
Blastoderm expression of Ofas mlpt is slightly less robust than Svb expression, and is restricted to 
a single strong strip corresponding to the future head segments. (E’). Early germband embryos 
exhibit a single domain of Ofas mlpt expression in the extreme posterior of the growth zone, 
posterior to the strong mid-growth zone domain of Ofas Svb expression.  (F’) Mid-germband 
Ofas embryos exhibit strong expression in the head appendages, as well as broad low level 
expression in the putative head and thoracic segments and strong but diffuse expression 
throughout the growth zone.   
 

Figure 3. Knockdown of mlpt, svb, and ubr3 function by RNAi in Hemipteran embryos 
results in a shared subset of segmentation and patterning phenotypes. (A-H) Gerris buenoi 
phenotypic study of mlpt, svb, and ubr3 RNAi. Wild type Gerris buenoi hatchlings from a (A) 
lateral and (B) ventral perspective. Gbue hatchlings possess visible bristles on a pigmented 
epidermis, red pigmented eyes of characteristic shape and size, and elongated mouth parts and 
antennae that extend along the ventral side of the embryo, terminating between the long legs 
which wrap around the posterior end of the embryo.  (C-D) Gbue mlpt RNAi embryos (shown 
laterally in C, ventral view in D) exhibit posterior truncation, resulting from loss of posterior 
abdominal segments, as well as loss and/or fusion of legs and head appendages and alterations in 
eye morphology. (E-F) Gbue Svb RNAi embryos (show laterally in E, ventral view in F) also 
exhibit posterior truncation with shortening or fusion of legs and head appendages.  (G-H) Gbue 
ubr3 RNAi embryos (shown laterally in G, ventral view in H) exhibit more severe phenotypes, 
which include posterior truncation and more extreme alterations/loss of legs and head 
appendages, as well as more severe disruption of the eye. (I-P) Embryonic phenotypes of 
Oncopeltus fasciatus (Ofas) mlpt, svb, and ubr3 RNAi. Wild type Ofas hatchlings from a lateral 
(I) and ventral (J) perspective, showing typical pigmentation, and typical characteristic size, 
shape and number of appendages. (K-L) Parental RNAi of Ofas mlpt causes severe posterior 
truncation, loss of abdominal segments, and fusion/loss of thoracic segments, and shortened legs 
and head appendages and a reduced eye.  (M-N) Parental RNAi of Ofas svb causes fusion/loss of 
thoracic segments and reduction of both legs and eyes. More severe RNAi phenotypes include 
posterior truncation of the embryo, loss/fusion of legs and head appendages. (O-P) Parental RNAi 
of Ofas ubr3 causes severe truncation of the embryo, loss of all appendages and reduction of the 
eye, as well as apparent loss of axial polarity/axis duplication in severely affected embryos. In 
addition, severely affected embryos of all genotypes exhibited significant thinning of the cuticle. 

 

Figure 4. Expression and loss of function phenotypes of svb, and mlpt/pri in the long germ 
embryos of Drosophila melanogaster and Nasonia vitripennis. (A-D’) Expression of Dmel svb 
and pri mRNA in the Drosophila embryo. (A-D) D. melanogaster embryonic Svb mRNA 
expression. (A) D.melanogaster embryos express Svb mRNA in the pre-cellular blastoderm and 
(B) gastrula embryo, where it is expressed in two stripes in the head. (C) Embryonic expression 
of D.mel Svb at germband extension. Expression at this stage is more widespread, including 
stronger staining in a segmental pattern of stripes. (D) Dorsal closure embryo expression of D.mel 
Svb mRNA. At the final stages of embryogenesis, strong expression of Dmel svb is seen in a 
pattern that prefigures the denticles, apical projections of actin that form small bristles on the 
larval cuticle and which have a stereotypical pattern on both the dorsal and ventral sides of the 
Drosophila larva. (A’-D’) D.melanogaster embryonic pri mRNA expression. (A’) Precellular 
blastoderm expression of D.mel pri mRNA. pri mRNA is expressed in seven thin, apparently 
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parasegmental stripes plus a head stripe (similar to the blastoderm expression of pair-rule gene, 
hairy), of which all but one stripe perdure through gastrulation (B’).  (C) Germband extension 
embryo expression of D.mel pri mRNA. Ten segmental stripes of Dmel pri expression are evident 
at full germband extension, with additional expression in presumptive neurons in the head. (D) 
Strong Dmel pri expression is observed throughout the dorsal closure embryo, with the darkest 
staining highlighting the trachea and prefiguring patterns of dorsal and ventral larval denticles, 
coincident with Dmel Svb mRNA expression. (E-H’) Expression of Svb and mlpt mRNA in the 
Nasonia vitripennis (N.vit) embryo.  N.vit Svb is expressed in the mid (E) and late (F) blastoderm 
embryo in two stripes.  The anterior stripe, initially more robust, is in the middle of the embryo, 
resembling the expression of gap gene, N.vit Krüppel (ref Ava).  A more posterior stripe of N.vit 
Svb is expressed in the same region of the embryo where the most posterior stripe of N.vit eve is 
expressed, and later gives rise to 6 additional posterior segments. These embryos also exhibit a 
strong stripe of dorsal expression.  (G) The gastrula embryo of Nvit exhibits low level Svb 
expression throughout the embryo, with some enrichment at the cephalic furrow; the posterior 
stripe of N.vit Svb splits into two stripes at gastrulation and the central thoracic stripe is no longer 
seen. Dorsal expression of Nvit Svb is also lost during gastrulation. (H) By dorsal closure, Nvit 
embryos exhibit widespread Svb mRNA expression, with visible enrichment in a segmental 
pattern and prefiguring the pattern of larval denticles, as in Drosophila. (E’-H’) Embryonic 
expression of N.vit mlpt mRNA.  (E’) Mid blastoderm expression of N.vit mlpt mRNA. Nv mlpt 
RNA is expressed in an anterior cap and a stronger posterior domain, covering the entire posterior 
of the embryo, but enriched in a strong stripe at the anterior of this domain.  (F’) Late blastoderm 
expression of N.vit mlpt RNA includes a head domain of similar intensity, is weaker, and also 
withdrawn anteriorly from the embryo posterior. This leaves a broad posterior stripe overlaying 
the region of posterior N.vit eve expression, and a small domain of more intense expression 
underlying the pole cells. (G’) Germband retraction embryo expression of N.vit mlpt. After 
gastrulation, during which mlpt expression is observed on the dorsal side of the embryo, and in 
two stripes (at the middle and at the posterior of the embryo), dorsal expression is enhanced as the 
embryo approaches dorsal closure, with the addition of several stripes of expression along the 
lateral ectoderm.  (H’) Late embryo expression of N.vit mlpt. At the end of embryogenesis, N.vit 
mlpt expression is observed in presumptive neurons in the head and throughout the embryo, in 
stripes of ectoderm in each segment, as well as in additional cell types throughout the head and 
trunk of the embryo.  (I-L) Cuticle preps of Drosophila melanogaster larvae. (I) Cuticle of wild 
type D. mel larva showing typical pattern of ventral denticles. (J) Cuticle of D.mel pri mutant 
larva, showing both cuticle defects and absence of denticles.  (K) Cuticle of D.mel Svb mutant  
larva, showing severe depletion of ventral denticles, as well as thinning of larval cuticle. (L) 
Cuticle of D.mel ubr3 mutant larva, showing absence of denticles and thinning cuticle. (M-P) 
Cuticle preps of Nasonia vitripennis larvae. (M) Cuticle of wild type N.vit larva, showing 
stereotypical pattern of denticles, and spiracles that serve as positional identity landmarks, on 
segments T2, A1, A2, and A3. (N) Cuticle of N.vit mlpt RNAi larva.  Larva is extremely 
truncated with loss/fusion of all abdominal segments, and fusion of several remaining anterior 
segments. Only one spiracle remains.  (O) Cuticle of N.vit Svb RNAi larva.  The larva is 
extremely truncated, with loss of most or all abdominal segments, and fusion of thoracic 
segments, leaving a single wide band of denticles and one (or two) spiracles in this fused domain. 
(P) Cuticle of N.vit ubr3 RNAi larva.  Severe phenotypes of N.vit ubr3 RNAi results in larvae 
with little or no cuticle that are impossible to recover.  Here, the more mild larval phenotype 
includes a shortened larva with a thin, naked cuticle at the posterior, and few denticles in the 
anterior.  

 
Figure 5. Maternal overexpression of Dmel Svb in the early embryo “reawakens” 
segmentation function.  (A) Schematic representation of mRNA expression of both D. mel pri 
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and Svb in wild type embryos (left embryos) and in embryos expressing D.mel Svb maternally 
from a strong ubiquitous promoter (right embryos).  (B) Phenotype of maternal expression of Svb 
in D. melanogaster. Top panels are larval cuticle preps showing the pattern of ventral  denticles 
that are used as a proxy for proper patterning.  Left most panels show denticle pattern and 
engrailed protein staining in wild type Drosophila melanogaster.  Middle panels show denticle 
pattern and engrailed protein staining in D. mel overexpressing Svb from a ubiquitous maternal 
promoter (a-tubulin). Right panels show denticle pattern and engrailed protein staining in D.mel 
overexpressing OvoB activator from the maternal a-tubulin promoter.  
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