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12

Abstract FMRI studies investigating the acquisition of sequential motor skills in13

humans have revealed learning-related functional reorganizations of the cortico-striatal14

and cortico-cerebellar motor systems in link with the hippocampus. Yet, the functional15

significance of these activity level changes is not fully understood as they convey the16

evolution of both sequence-specific knowledge and unspecific task expertise. Moreover,17

these changes do not specifically assess the occurrence of learning-related plasticity. To18

address these issues, we investigated local circuits tuning to sequence-specific19

information using multivariate distances between patterns evoked by consolidated or20

newly acquired motor sequences production. Results reveal that representations in21

dorsolateral striatum, prefrontal and secondary motor cortices are greater when22

executing consolidated sequences than untrained ones. By contrast, sequence23

representations in the hippocampus and dorsomedial striatum are less engaged. Our24

findings show, for the first time in humans, that complementary sequence-specific motor25

representations evolve distinctively during critical phases of skill acquisition and26

consolidation.27

28

Introduction29

Animals and humans are able to acquire and automatize new sequences of movements,30

hence allowing them to expand and update their repertoire of complex goal-oriented31

motor actions for long-term use. To investigate the mechanisms underlying this type32

of procedural memory in humans, a large body of behavioral studies has used motor33

sequence learning (MSL) tasks designed to test the ability to perform temporally ordered34

and coordinated movements, learned either implicitly or explicitly and has assessed their35
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performances in different phases of the acquisition process (Korman et al. 2003; Abra-36

hamse et al. 2013; Diedrichsen and Kornysheva 2015; Verwey et al. 2015). While practice37

of an explicit MSL task leads to substantial within-session execution improvements, there38

is now ample evidence indicating that between-session maintenance, and even increases,39

in performance can be observed after a night of sleep (Nettersheim et al. 2015; Landry et40

al. 2016), while performance are unstable and tends to decay during an equal period of41

wake (Doyon et al. 2009b; Brawn et al. 2010; Nettersheim et al. 2015; Landry et al. 2016).42

Therefore, it is thought that sleep favors reprocessing of the motor memory trace, thus43

promoting its consolidation for long-term skill proficiency (Fischer et al. 2002; see King et44

al. 2017; Doyon et al. 2018 for recent in-depth reviews).45

Functional magnetic resonance imaging (fMRI) studies using General-Linear-Model (GLM)46

contrasts of activation have also revealed that MSL is associated with the recruitment of an47

extended network of cerebral (Hardwick et al. 2013), cerebellar and spinal regions (Vahdat48

et al. 2015), whose contributions differentiate as learning progresses (Karni et al. 1998;49

Dayan and Cohen 2011; Doyon et al. 2018). In fact, critical plastic changes (Ungerleider et50

al. 2002; Doyon and Benali 2005) are known to occur within the initial training session,51

as well as during the offline consolidation phase, the latter being characterized by a52

functional “reorganization” of the nervous system structures supporting this type of53

procedural memory function (Rasch and Born 2008; Born and Wilhelm 2012; Albouy et al.54

2013b; Bassett et al. 2015; Dudai et al. 2015; Fogel et al. 2017; Vahdat et al. 2017). More55

specifically, MSL practice is known to activate a cortical, associative striatal and cerebellar56

motor network which is assisted by the hippocampus during the initial “fast-learning”57

phase (Albouy et al. 2013b). Yet, when approaching asymptotic behavioral performance58

after longer practice, activity within the hippocampus and cerebellum decreases while59

activity within the sensorimotor striatum increases (Doyon et al. 2002), both effects60

conveying the transition to the “slow-learning” phase. The same striatal regions are61

reactivated during sleep spindles (Fogel et al. 2017) contributing to the progressive62

emergence of a reorganized network (Debas et al. 2010; Vahdat et al. 2017), which is63

further stabilized when additional MSL practice extending over multiple days is separated64

by consolidation periods (Lehéricy et al. 2005).65

A critical issue typically overlooked by previous MSL neuroimaging research using GLM-66

based activation contrasts, however, is that learning-related changes in brain activity do67

reflect the temporal evolution of recruited processes during blocks of practice, only some68

of which may be specifically related to plasticity induced by MSL. For instance, increases in69

activity could not only signal a greater implication of the circuits specialized in movement70

sequential learning per se, but could also result from the inherent faster execution of71

the motor task. Likewise, a decrease in activity could either indicate some form of72

optimization and greater efficiency of the circuits involved in executing the task (Wu et73

al. 2004), or could show the reduced recruitment of non-specific networks supporting74

the acquisition process. Therefore, even with the use of control conditions to dissociate75

sequence-specific from non-specific processes (Orban et al. 2010), the observed large-76

scale activation differences associated with different learning phases do not necessarily77

provide direct evidence of plasticity related to the processing of a motor sequence-specific78

representation (Berlot et al. 2018). Furthermore, it is also conceivable that these plastic79

changes could even occur locally without significant changes in the GLM-based regional80
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activity level. Finally, in most studies investigating the neural substrate mediating the81

consolidation process of explicit MSL, the neural changes associated with this mnemonic82

mechanism are assessed by contrasting brain activity level of novice participants between83

their initial training and a delayed practice session, Therefore, they measure not only84

plasticity for sequence-specific (e.g. optimized chunks), but also task-related expertise85

(e.g. habituation to experimental apparatus, optimized execution strategies, attentional86

processes). The latter expertise is notably observed when participants practice two87

motor sequences in succession and the initial performance during sequence execution is88

significantly better for the subsequent than for the first sequence.89

To address these specificity limitations, multivariate pattern analysis (MVPA) has been pro-90

posed to evaluate how local patterns of activity are able to reliably discriminate between91

stimuli or evoked memories of the same type over repeated occurrences, hence allowing92

to test information-based hypotheses that GLM contrasts cannot inquire (Hebart and93

Baker 2017). In the MSL literature, only a few studies have used such MVPA approaches to94

identify the regions that specialize in processing the representation of learned motor se-95

quences (Wiestler et al. 2011; Wiestler and Diedrichsen 2013; Kornysheva and Diedrichsen96

2014; Nambu et al. 2015; Yokoi et al. 2017). These studies, however, mainly focused on97

extensively practiced sequences over multiple training sessions across multiple days. For98

instance, in a recent study covering dorsal cerebral cortices only (Wiestler and Diedrichsen99

2013), cross-validated classification accuracy wasmeasured separately on activity patterns100

evoked by the practice of trained and untrained sets of sequences. The authors showed101

that the extended training increased sequence discriminability in a network spanning102

bilaterally the primary and secondary motor as well as parietal cortices. In another study103

(Nambu et al. 2015) that aimed to analyze separately the preparation and execution of se-104

quential movements, representations of extensively trained sequences were identified in105

the contralateral dorsal premotor and supplementary motor cortices during preparation,106

while representations related to the execution were found in the parietal cortex ispilater-107

ally, the premotor and motor cortices bilaterally as well as the cerebellum. In both studies,108

the regions carrying sequence-specific representations overlapped only partly with those109

identified using GLM-based measures, hence illustrating the fact that coarser differences110

in activation between novel and trained sequences does not necessarily provide evidence111

of plasticity for sequential information. However, the classification-based measures they112

used may have biased their parametric statistical results by violating both the normality113

assumption and theoretical null-distribution (Allefeld et al. 2015; Combrisson and Jerbi114

2015; Jamalabadi et al. 2016; Varoquaux 2017) and may have thus been suboptimal in115

detecting representational changes (Walther et al. 2016).116

As a part of a larger research program, the present study aimed to address both the117

critical issues overlooked by previous research investigating the early phases of MSL118

consolidation with GLM-based approach described above, as well as the limitations119

encountered when using classifier-based MVPA methods. Specifically, we employed a120

recently developed MVPA approach (Nili et al. 2014) that is unbiased and more sensitive121

to continuous representational changes (Walther et al. 2016), such as those that occur122

in the early stage of MSL and consolidation (Albouy et al. 2013c). Our experimental123

manipulation allowed to isolate sequence-specific plasticity, by extracting patterns evoked124

through practice of both consolidated and new sequences at the same level of task125
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expertise and by computing this novel multivariate distance metric using a searchlight126

approach over the whole brain in order to cover cortical and subcortical regions critical127

to MSL. Based on theoretical models (Albouy et al. 2013b; Doyon et al. 2018) derived128

from imaging and invasive animal studies, we hypothesized that offline consolidation129

following training would induce greater cortical and striatal as well as weaker hippocampal130

sequence-specific representations.131

Results132

To investigate changes in the neural representations of motor sequences occurring during133

learning, young healthy participants (n=18) practiced two 5-element sequences of finger134

movements (executed through button presses) separately on two consecutive days. On135

the third day, participants were required to execute again the same two sequences, then136

considered to be consolidated, together with two new 5-element untrained sequences.137

This practice session consisted in 64 pseudo-randomly ordered short blocks split in two138

runs, with 16 blocks of each sequence. All four sequences were executed using their139

non-dominant left hand while functional MRI data was acquired.140

Behavioral performance141

We analyzed the behavioral performance related to the four different sequences using a142

repeated-measure mixed-effects model. As expected, new sequences were performed143

more slowly (� = .365, SE = 0.047, p < .001) and less accurately (� = −0.304, SE = 0.101, p <144

.001) than the consolidated ones. Significant improvement across blocks was observed145

for new sequences as compared to consolidated sequences in term of change of speed146

(� = −0.018, SE = 0.002, p < .001), thus showing an expected learning curve visible in147

fig. 1. Yet accuracy did not show significant improvement (� = 0.014, SE = 0.010, p = 0.152)148

likely explained by the limited precision of this measure that ranges discretely from 0 to149

5. By contrast, the consolidated sequences did not show significant changes in speed150

(� = −0.006, SE = 0.005, p = 0.192) nor accuracy (� = −0.006, SE = 0.057, p = 0.919), the151

asymptotic performances being already reached through practice and the consolidation152

process.153
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Figure 1. Correct sequence durations (average and standard error of the mean) across the MVPA
task blocks.

Importantly, there were also no significant differences between the two consolidated se-154

quences in term of speed (� = 0.031, SE = 0.026, p = 0.234) and accuracy (� = −0.030, SE =155

0.111, p = 0.789), nor between the two new sequences speeds (� = 0.025, SE = 0.045, p =156

0.577) and accuracies (� = −0.245, SE = 0.138, p = 0.076).157

A common distributed network for sequence representation irre-158

spective of learning stage159

From the preprocessed functional MRI data we extracted patterns of activity for each160

block of practice, and computed a cross-validated Mahalanobis distance (Nili et al. 2014;161

Walther et al. 2016) using a Searchlight approach (Kriegeskorte et al. 2006) over brain162

cortical surfaces and subcortical regions of interest. Such multivariate distance, when163

positive, demonstrate that there is a stable difference in activity patterns between the164

conditions compared, and thus reflect the level of discriminability between these condi-165

tions. To assess true patterns and not mere global activity differences, we computed this166

discriminability measure for sequences that were at the same stage of learning, thus sepa-167

rately for consolidated and new sequences. From the individual discriminability maps, we168

then measured the prevalence of discriminability at the group level, using non-parametric169

testing with a Threshold-Free-Cluster-Enhancement approach (TFCE) (Smith and Nichols170

2009) to enable locally adaptive cluster-correction.171

To extract the brain regions that show discriminative activity patterns for specific sequence172

during both learning stages, we then submitted these separate group results for the173

consolidated and new sequences to a minimum-statistic conjunction. A large distributed174

network (fig. 2) displayed significant discriminability, including the primary visual, as well175

as the posterior parietal, primary and supplementary motor, premotor and dorsolateral176

prefrontal cortices.(see the statistical maps for each learning stage separately in the177

Supplementary material (fig. S1,fig. S2).178
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Figure 2. Group searchlight conjunction of new and consolidated sequences discriminability maps
(z-score thresholded at p < .05 TFCE-cluster-corrected) showing a large distributed cortical network
showing sequence disciminative patterns at both learning stages; Regions of interest with

Freesurfer colors: Acc.:Accumbens; Pt.:Putamen; Caud.:Caudate; Pal.:Pallidum; vDC:ventral

Diencephalon; Am.:Amygdala; Hc.:Hippocampus; Thal.:Thalamus; Cb.:Cerebellum; BS:brain-stem

Reorganization of the distributed sequence representation after179

memory consolidation180

In order to evaluate the reorganization of sequence representation undergone by con-181

solidation at the group level, the consolidated and new sequence discriminability maps182

from all participants were submitted to a non-parametric pairwise t-test with TFCE. To183

ascertain that a greater discriminability in one stage versus the other was supported by a184

significant level of discriminability within that stage, we then calculated the conjunction of185

the contrast maps with the consolidated and new sequences group results, respectively186

with the positive and negative contrast differences (fig. 3).187

Discriminability between the consolidated sequences was significantly higher than that188

between the new sequences in bilateral sensorimotor putamen, thalamus and anterior189
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insula, as well as in the ispilateral cerebellar lobule IX, posterior cingulate and parietal190

cortices, and contralaterally in the lateral and dorsal premotor, supplementary motor,191

frontopolar and dorsolateral prefrontal cortices in addition to cerebellar Crus I. By con-192

trast, the pattern dissimilarity was higher for the new sequences in bilateral hippocampi193

as well as the body of the caudate nuclei, subthalamic nuclei, and cerebellar Crus II194

ipsilaterally. Although striatal activity patterns differentiating newly acquired sequences195

were found in contralateral putamen (fig. S1), this discriminability was significantly larger196

for consolidated sequences in sensorimotor regions of the putamen bilaterally.197
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Figure 3. Conjunction of group searchlight contrast (paired t-test) between consolidated and new
sequences discriminability maps and separate group discriminability maps for new and

consolidated sequences (z-score thresholded at p < .05 TFCE-cluster-corrected) showing a
reorganization of the distributed memory trace between these two stages; Acc.: Accumbens;

Pt.:Putamen; Caud.:Caudate; Pal.:Pallidum; vDC:ventral Diencephalon; Am.:Amygdala;

Hc.:Hippocampus; Thal.:Thalamus; Cb.:Cerebellum; BS:brain-stem
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Discussion198

In the present study, we aimed to identify the brain networks whose activity patterns199

differentiate between representations of multiple motor sequences during their exe-200

cution in different phases of learning (newly learned vs consolidated). Using an MVPA201

approach, we considered that stable local patterns of activity could be used as proxy for202

the specialization of neuronal circuits supportive of the efficient retrieval and expression203

of sequential motor memory traces. To investigate the differential pattern strength, we204

computed novel unbiased multivariate distance and applied robust permutation-based205

statistics with adaptive cluster correction.206

A distributed network for the representation of finger motor se-207

quence208

Our results provide evidence for an extended network of brain regions that shows re-209

liable discrimination of sequence-specific activity patterns for both the consolidated210

and novel sequences. At the cortical level, we found a network encompassing the sup-211

plementary motor and premotor areas as well as posterior parietal cortices bilaterally212

and contralateral somatosensory motor cortex. These findings are consistent with ear-213

lier MVPA investigations (Wiestler and Diedrichsen 2013; Nambu et al. 2015). Indeed,214

similar discriminative power of motor sequence representations within the ipsilateral215

premotor and parietal cortices has previously been described (Wiestler and Diedrichsen216

2013; Waters-Metenier et al. 2014; Waters et al. 2017), notably when the non-dominant217

hand is used for fine dexterous manual skills. Interestingly, we also found significant218

neural representations for both learning stages in the contralateral primary motor and219

somatosensory (M1/S1) cortices, more specifically around the hand knob area (Yousry220

et al. 1997) for which finger somatotopy is measurable using fMRI (Ejaz et al. 2015). The221

latter results suggest that these primary cortical regions play a critical role in building222

experience-related motor sequence memory traces. Yet such an interpretation must be223

taken with caution, as it has recently been reported that the capacity to discriminate224

between sequences based upon signals from these regions could simply be due to the225

stronger activity evoked by the first finger press in the sequence, and not to activity from226

the whole finger sequence (Yokoi et al. 2017). Yet although conjectural, we do not believe227

that such an effect can explain our pattern of results because, while the newly learned228

sequences began with different fingers, both consolidated sequences were discriminated229

despite the fact that the first finger presses were the same. Finally, while being located230

around the hand knob, the spatial extent of the M1/S1 representation in our study was231

smaller compared to that found by Wiestler and Diedrichsen (2013). This may be due,232

however, to differences in our design, notably in the uninterrupted repetition of the motor233

sequence during practice, and in the fact that none of our sequences engaged the thumb,234

which has a more distinctive M1/S1 cortical representation than the individual fingers235

(Ejaz et al. 2015).236

The conjunction of new and consolidated sequences discriminability maps further re-237

vealed that a common cortical processing network, including non-motor primary and238

associative regions, carries sequential information across learning stages, that can orig-239

inate from visually presented instruction and short-term-memory to motor sequence240
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production. Herein, the visual occipital cortices, likely reflecting processing of the visual241

stimuli as low-level visual mapping of shapes (Miyawaki et al. 2008; Pilgramm et al. 2016),242

as well as the ventro-temporal regions, known to support higher level Arabic number243

representation (Shum et al. 2013; Peters et al. 2015) were found to discriminate between244

sequences in both stages of learning (fig. 2). The dorsolateral prefrontal cortex (DLPFC),245

which also exhibited pattern discriminability, was suggested previously to process the246

sequence spatial information in working memory, preceding motor command (Robertson247

et al. 2001). In fact, we believe that the cognitive processing required in our task, implying248

notably to switch between sequences, to maintain them in working memory and to inhibit249

competing ones, could have magnified this frontal associative representation in our study.250

In sum, the regions found to carry sequence information regardless of the learning phase251

in the present study show some overlap with the network known to be implicated in MSL,252

such as primary and secondary motor cortices, as typically revealed in activation-based253

studies (Doyon et al. 2009b; Dayan and Cohen 2011; Hardwick et al. 2013). However,254

we also found significant representations in the occipital, temporal and insular cortices.255

This discrepancy can be attributable to the shift from an activation-based inference to256

one based on the presence of sequential information in activity patterns, but also by the257

recruitment of additional regions for the processing of this information in stimuli and its258

maintenance in working memory required by the task.259

Cortico-subcortical representational reorganization underlying260

memory consolidation following MSL261

By contrasting the maps of multivariate distances for consolidated and newly acquired262

sequences, we identified the networks that reveal increased versus decreased discrim-263

inability of sequential representations in the early stages of the MSL consolidation (fig. 3).264

At the cortical level, we found that the contralateral premotor and bilateral parietal regions265

showed a stronger representation for consolidated sequences. This pattern likely reflects266

that the tuning of these neural populations to coordinated movements is consolidated267

early after learning (Pilgramm et al. 2016; Makino et al. 2017; Yokoi et al. 2017), as268

was previously observed when contrasting sequence that underwent a longer training269

to new ones (Wiestler and Diedrichsen 2013). Importantly, no significant changes in270

representational magnitude were found in the contralateral primary somatosensory271

cortex after consolidation. This is in line with the fact that M1 representational geometry272

has been shown to be strongly shaped by ecological finger co-activations (Ejaz et al.273

2015), and to be resistant to extensive training of a sequence built on a new co-activation274

structure (Beukema et al. 2018). While the role of the motor cortex in MSL is undeniable,275

its plasticity in consolidation is still debated (Omrani et al. 2017) . In fact, recent results276

revealed that after a M1 insult or even rapidly after M1 inactivation, a trained motor skill277

can still be expressed (Kawai et al. 2015; Bollu et al. 2018) arguing for its complementary,278

redundant and partially independent representation in subcortical regions.279

Interestingly, significant differences at the subcortical level were found in bilateral puta-280

men and more specifically in their sensorimotor regions. This is consistent with findings281

from activation studies that reported increased functional activity after consolidation in282
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this structure (Debas et al. 2010, 2014; Albouy et al. 2013b; Fogel et al. 2017; Vahdat et283

al. 2017). Significant representational changes were also found in the bilateral thalami,284

and could reflect the relay of information between the cortex and cerebellum, striatum or285

spinal regions (Doyon et al. 2009a; Haber and Calzavara 2009). Finally, representation286

changes were detected in the cerebellum, including ipsilateral Lobule IX, shown to corre-287

late with sequential skill performance (Orban et al. 2010; Tomassini et al. 2011) as well as288

contralateral Crus II which connectivity with prefrontal cortex is thought to support motor289

functions (Ramnani 2006). However, no significant difference was observed in Lobule V of290

the cerebellum that is known to carry finger somatotopic representations (Wiestler et al.291

2011) and to show global activation during practice (Doyon et al. 2002).292

Concurrently with the representational increase in the above-mentioned network, we293

found only a few disparate regions that showed decreased sequence discrimination,294

namely the caudate nuclei, subthalamic nuclei and cerebellar Crus II ipsilaterally as295

well as bilateral hippocampi. Hippocampal activation in early learning has formerly296

been hypothesized to support the temporary storage of novel explicitly acquired motor297

sequence knowledge and to contribute to the reactivations of the distributed network298

during offline periods and sleep in particular. Yet such contribution of the hippocampus299

has been shown to be progressively disengaging afterward (Albouy et al. 2013b), and300

thus our results are consistent with the idea of the hippocampus playing a transient301

supportive role in early MSL, notably in encoding sequential information (Davachi and302

DuBrow 2015). Our findings of a differential implication of dorsomedial and dorsolateral303

striatum in sequence representation during learning and expression of a mastered skill304

specifies the changes in activity in these regions in the course of MSL described by earlier305

studies (Lehéricy et al. 2005; François-Brosseau et al. 2009; Jankowski et al. 2009; Reithler306

et al. 2010; Corbit et al. 2017; Fogel et al. 2017; Kupferschmidt et al. 2017). Indeed,307

our results uncover that this shift in activity purports a genuine reorganization of circuits308

processing sequence-specific information, similar to what was reported at the neuronal309

level in animals (Miyachi et al. 2002; Costa et al. 2004; Yin et al. 2009).310

While our results show that the topology of the network representing motor sequential311

information differs between consolidated and newly acquired memory traces, the present312

study was not designed to investigate the information-content of hippocampal, striatal or313

cerebellar sequence representations. These were previously assessed at cortical level for314

finger sequences (Kornysheva and Diedrichsen 2014; Wiestler et al. 2014) as well as for315

larger forearm movements (Haar et al. 2017). However, the hypothesized extrinsic and316

intrinsic skill encoding in the respective hippocampal and striatal systems (Albouy et al.317

2013a) remains to be assessed with a dedicated experimental design similar to that used318

by Wiestler et al. (2014) to investigate such representations at the cortical level.319

Importantly, our study investigated the change in neural substrates of sequence repre-320

sentation after limited training and following sleep-dependent consolidation. This is in321

contrast to previous investigations that studied sequences trained intensively for multiple322

days (Nambu et al. 2015) and compared their discriminability to that of newly acquired323

ones (Wiestler and Diedrichsen 2013). Therefore, in our study, the engagement of these324

representations for expressing the sequential skill may further evolve, strengthen or325

decline locally with either additional training or offline memory reprocessing supported326

in part by sleep.327
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Methodological considerations328

To limit the level of difficulty and the duration of the task, only four sequences were329

performed by participants, two consolidated and two newly acquired. This low number330

of sequence per condition could be a factor limiting the power of our analysis, as only331

a single multivariate distance is assessed for each of these conditions. Moreover, ini-332

tial training sessions of the consolidated sequences were each comprised of a single333

sequence performed in blocks longer than in the present task, designed for multivari-334

ate investigation. The current task, by requiring additional cognitive resources (such as335

instruction processing, retention in working memory, switching and inhibition of other se-336

quences), could have triggered some novel learning for the consolidated sequences. This337

seems unlikely however, as this was not reflected in performance changes throughout338

the task. The switching component could partly explain the pattern of results found here,339

as shifting between overlapping sets of motor commands has been shown to further340

implicate the dorsal striatum in collaboration with the prefrontal cortex (Monchi et al.341

2006).342

Another potential limitation relates to the fact that the present representational analysis343

disregarded the behavioral performance. Nevertheless, the chained non-linear relations344

between behavior, neural activity and BOLD signal were recently established to have345

limited influence on the representational geometry extracted from Mahalanobis cross-346

validated distance in primary cortex, sampled across a wide range of speed of repeated347

finger-presses and visual stimulation (Arbuckle et al. 2018). Therefore, despite behavioral348

variability and potential ongoing evolution of the memory trace, we assumed that the349

previously encoded motor sequence engrams were nevertheless retrieved during this350

task as supported by the significant differences in activity pattern discriminability and the351

persistent behavioral advantage observed for the consolidated sequences.352

Finally, our results also entail that it is possible to investigate learning-related representa-353

tional changes in a shorter time-frame and with less extended training than what was354

investigated before (Wiestler and Diedrichsen 2013; Nambu et al. 2015), including in355

subcortical regions where neuronal organization differs from that of the cortex. The356

use of a novel multivariate distance could have contributed to obtain these results by357

achieving increased sensitivity and statistical robustness (Walther et al. 2016).358

Conclusion359

Our study shows that the consolidation of sequential motor knowledge is supported360

by the reorganization of newly acquired representations within a distributed cerebral361

network. We uncover that following learning, local activity patterns tuned to represent362

sequential knowledge are enhanced not only in extended cortical areas, similarly to those363

shown after longer training (Wiestler and Diedrichsen 2013), but also in dorsolateral stria-364

tum, thalamus and cerebellar regions. Conversely, a smaller network showed a decrease365

of sequence specific patterned activation after consolidation, occurring specifically in366

dorsomedial striatum that supports cognitive processing during early-learning (Doyon et367

al. 2018) as well as in the hippocampus which carries explicit encoding of motor sequen-368

tial extrinsic representation (Albouy et al. 2013b; King et al. 2017) and play a significant369
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role in the offline reprocessing. Despite discrepancies with GLM-based activity changes370

observed previously, the results of our novel representational approach corroborate their371

interpretations that the differential plasticity changes in the latter regions subtend MSL372

consolidation (Albouy et al. 2015). Importantly, these results reveal for the first time in373

humans that such changes are determined by the local implementation of distributed374

neural coding of sequential information. Yet such consolidation-related representational375

changes need to be further investigated through exploration of the dynamic mechanism376

mediating this sleep-dependent mnemonic process, which is known to reorganize pro-377

gressively the cerebral network by repeatedly reactivating the memory trace (Fogel et al.378

2017; Vahdat et al. 2017; Boutin et al. 2018).379

Materials and methods380

Participants381

Right-handed young (n = 34, 25 ± 6.2yr.) healthy individuals (19 females), recruited by382

advertising on academic and public website, participated in the study. Participants were383

excluded if they had a history of neurological psychological or psychiatric disorders,384

scored 4 and above on the short version of Beck Depression Scale (Beck et al. 1961), had385

a BMI greater than 27, smoked, had an extreme chronotype, were night-workers, had386

traveled across meridians during the three previous months, or were trained as musician387

or professional typist for more than a year. Their sleep quality was subjectively assessed,388

and individuals with score to the Pittsburgh Sleep Quality Index questionnaire (Buysse et389

al. 1989) greater or equal to 5, or daytime sleepiness Epworth Sleepiness Scale (Johns390

1991) score greater than 9, were excluded.391

Participants included in the study were also instructed to abstain from caffeine, alcohol392

and nicotine, to maintain a regular sleep schedule (bed-time 10PM-1AM, wake-time 7AM-393

10AM) and avoid taking daytime nap for the duration of the experiment. In a separate394

screening session, EEG activity was also recorded while participants slept at night in a395

mock MRI scanner and gradients sounds were played to both screen for potential sleep396

disorders and test their ability to sleep in the experimental environment; 18 participants397

were excluded for not meeting the criterion of a minimum of 20min. in NREM2 sleep.398

After this last inclusion step, their sleep schedule was assessed by analyzing the data399

obtained from an actigraph (Actiwatch 2, Philips Respironics, Andover, MA, USA) worn on400

the wrist of the non-dominant hand for the week preceding as well as during the three401

days of experiment, hence certifying that all participants complied to the instructions.402

Among the 34 participants, one did not show within-session improvement on the task,403

two didn’t sleep on the first experimental night, three were withdrawn for technical404

problems, one did not show up on first experimental session, one presented novel MRI405

contraindication. Thus, among the 26 participants that completed the research project, a406

group of 18 which, by design, followed the appropriate behavioral intervention for the407

present study, were retained for our analysis.408

All participants provided written informed consent and received financial compensation409

for their participation. This study protocol was approved by the Research Ethics Board410
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of the “Comité mixte d’éthique de la recherche - Regroupement en Neuroimagerie du411

Québec” (CMER-RNQ).412

Procedures and tasks413

The present study was conducted over 3 consecutive evenings and is part of an experi-414

ment that aimed to investigate the neural substrates mediating the consolidation and415

reconsolidation of motor sequence memories during wakefulness and sleep that will be416

reported separately. On each day, participants performed the experimental tasks while417

their brain activity was recorded using MRI. Their non-dominant hand (left) was placed on418

an ergonomic MRI-compatible response pad equipped with 4-keys corresponding to each419

of the fingers excluding the thumb.420

On the first day (D1), participants were trained to perform repeatedly a 5-element se-421

quence (TSeq1: 1-4-2-3-1 where 1 indicate the little finger and 4 the index finger). The422

motor sequence was performed in blocks separated by rest periods to avoid fatigue.423

Apart for a green or a red cross displayed in the center of the screen, respectively in-424

structing the participants to execute the sequence or to rest, there were no other visual425

stimuli presented during the task. Participants were instructed to execute the sequence426

repeatedly, and as fast and accurately as possible, as long as the cross was green. They427

were then instructed to rest for the period of 25 sec. as indicated by the red cross. During428

each of the 14 practice blocks, participants performed repeatedly 12 motor sequences429

(i.e. 60 keypresses per block). In case participants made a mistake during sequence430

production, they were instructed to stop their performance and to immediately start431

practicing again from the beginning of the sequence until the end of the block. After432

completion of the training phase, participants were then administered a short retention433

test about 15min later, which consisted of a single block comprising 12 repetitions of434

the sequence. Then the participants were scanned with concurrent EEG and fMRI for435

approximately two hours while instructed to sleep.436

On the second day (D2), participants were first evaluated on the TSeq1 (1 block retest) to437

test their level of consolidation of the motor sequence, and were then trained on a new438

sequence (TSeq2: 1-3-2-4-1) which was again performed for 14 blocks of 12 sequences439

each, similarly to TSeq1 training on D1. Again, they were then scanned during sleep while440

EEG recordings were simultaneously acquired.441

Finally, on the third day (D3), participants first performed TSeq1 for 7 blocks followed by 7442

blocks of TSeq2, each block including 12 repetitions of the sequence or 60 keypresses.443

Following this last testing session, participants were then asked to complete an experi-444

mental task (here called MVPA task) specifically designed for the current study, similar445

to a previous study that investigated sequence representation by means of multivariate446

classification (Wiestler and Diedrichsen 2013). Specifically, participants performed short447

practice blocks of 4 different sequences, including TSeq1 and TSeq2 that were then con-448

solidated, as well as two new finger sequences (NewSeq1: 1-2-4-3-1, NewSeq2: 4-1-3-2-4).449

In contrast to Wiestler and Diedrichsen (2013), however, all four sequences used only450

four fingers of the left-hand, excluding the thumb. Also, as for the initial training, se-451

quences were instead repeated uninterruptedly and without feedback, in order to probe452

the processes underlying automatization of the skill.453

13 of 28

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2018. ; https://doi.org/10.1101/376053doi: bioRxiv preprint 

https://doi.org/10.1101/376053
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

Each block was composed of an instruction period of 4 seconds during which the se-454

quences to be performed was displayed as a series of 5 numbers (e.g. 1-4-2-3-1), that455

could easily be remembered by the participant. The latter was then followed by an execu-456

tion phase triggered by the appearance of a green cross. Participants performed 5 times457

the same sequence (or a maximum of 25 key-presses), before being instructed to stop458

and rest when the red cross was displayed.459

The four sequences were assigned to blocks such as to include all possible successive460

pairs of the sequences using De-Bruijn cycles (Aguirre et al. 2011), thus preventing the461

systematic leakage of BOLD activity patterns between blocks in this rapid design. As462

a 2-length De-Bruijn cycle of the 4 sequences has to include each sequence 4 times,463

this yielded a total of 16 blocks. In our study, two different De-Bruijn cycles were each464

repeated twice in two separate scanning runs separated by approximately 5 minutes of465

rest, hence resulting in a total of 64 blocks (4 groups of 16 practice blocks for a total of 16466

blocks per sequence). The blocks were synchronized to begin at a fixed time during the467

TR of the fMRI acquisition.468

Behavioral statistics469

Using data from the MVPA-task, we entered the mean duration per block of correctly470

performed sequences into a linear mixed-effect model with a sequence learning stage471

(new/consolidated) by block (1-16) interaction to test for difference in their performance472

level, as well as the evolution during the task, with sequences and blocks as random473

effects and participants as the grouping factor. The same model was run with the number474

of correct sequences as the outcome variable. Two other models were also used on475

subsets of data to test separately if there was any significant difference in performance476

(speed and accuracy) between the two consolidated sequences and between the two new477

sequences. Full models outputs are reported in supplementary materials.478

MRI data acquisition479

MRI data were acquired on a Siemens TIM Trio 3T scanner with two different setups. The480

first used a 32-channel coil to acquire high-resolution anatomical T1 weighted sagittal481

images using a Multi-Echo MPRAGE sequence (MEMPRAGE; voxel size=1mm isometric;482

TR=2530ms; TE=1.64,3.6,5.36,7.22ms; FA=7; GRAPPA=2; FoV=256 × 256 × 176mm) with the483

different echoes combined using a Root-Mean-Square (RMS).484

Functional data were acquired with a 12-channel coil, which allowed to fit an EEG cap to485

monitor sleep after training, and using an EPI sequence providing complete cortical and486

cerebellum coverage (40 axial slices, acquire in ascending order, TR=2160ms;FoV=220 ×487

220 × 132mm, voxel size=3.44 × 3.44 × 3.3mm, TE=30ms, FA=90, GRAPPA=2). Following task488

fMRI data acquisition, four volumes were acquired using the same EPI sequence but with489

reversed phase encoding to enable retrospective correction of distortions induced by B0490

field inhomogeneity.491
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MRI data preprocessing492

High-resolution anatomical T1 weighted images were preprocessed with Freesurfer (Dale493

et al. 1999; Fischl et al. 1999, 2008) to segment subcortical regions, reconstruct cortical494

surfaces and provide inter-individual alignment of cortical folding patterns. Pial and495

grey/white matter interface surfaces were downsampled to match the 32k sampling of496

Human Connectome Project (HCP) (Glasser et al. 2013). HCP subcortical atlas coordinates497

were warped onto individual T1 data using non-linear registration with the Ants software498

(Avants et al. 2008; Klein et al. 2009).499

A custom pipeline was then used to preprocess fMRI data prior to analysis and relied on500

an integrated method (Pinsard et al. 2018) which combines slice-wise motion estimation501

and intensity correction followed by the extraction of BOLD timecourses in cortical and502

subcortical gray matter. This interpolation concurrently removed B0 inhomogeneity503

induced EPI distortion estimated by the FSL Topup tool using the fMRI data with reversed504

phase encoding (Andersson et al. 2003) acquired after the task. BOLD signal was further505

processed by detecting whole-brain intensity changes that corresponded to large motion,506

and each continuous period without such detected event was then separately detrended507

to remove linear signal drifts.508

Importantly, the fMRI data preprocessing did not include smoothing, even though the509

interpolation inherent to any motion correction was based on averaging of values of510

neighboring voxels. This approach was intended to minimize the blurring of data in order511

to preserve fine-grained patterns of activity, with the resolution of relevant patterns being512

hypothetically at the columnar scale.513

Multivariate Pattern Analysis514

Samples515

Each block was modeled by two boxcars, corresponding to the instruction and execution516

phases respectively, convolved with the single-gamma Hemodynamic Response Func-517

tion. Least-square separate (LS-S) regression of each event, which have been shown to518

provide improved activation patterns estimates for MVPA (Mumford et al. 2012), yielded519

instruction and execution phases beta maps for each block that were further used as520

MVPA samples.521

Cross-validated multivariate distance522

Similarly to Wiestler and Diedrichsen (2013) and Nambu et al. (2015), we aimed to uncover523

activity patterns that represented the different sequences performed by the participants.524

However, instead of calculating cross-validated classification accuracies, we opted for a525

representational approach by computing multivariate distance between activity patterns526

evoked by the execution of sequences, in order to avoid ceiling effect and baseline drift527

sensitivity (Walther et al. 2016). In the current study, we computed the cross-validated528

Mahalanobis distance (Nili et al. 2014; Diedrichsen et al. 2016; Walther et al. 2016), which529

is an unbiased metric that uses multivariate normalization by estimating the covariance530

from the GLM fitting residuals and regularizing it through Ledoit-Wolf optimal shrinkage531
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(Ledoit and Wolf 2004). This distance, which measures discriminability of conditions, was532

estimated separately for pairs of sequences that were in a similar acquisition stage, that533

is, for the newly acquired and consolidated sequences.534

Searchlight analysis535

Searchlight (Kriegeskorte et al. 2006) is an exploratory technique that applies MVPA536

repeatedly on small spatial neighborhoods covering the whole brain while avoiding high-537

dimensional limitation of multivariate algorithms. Searchlight was configured to select538

for each gray-matter coordinate their 64 closest neighbors as the subset of features for539

representational distance estimation. The neighborhood was limited to coordinates in540

the same structure (hemisphere or region of interest), and proximity was determined541

using respectively Euclidian and geodesic distance for subcortical and cortical coordinates.542

The extent of the searchlight was thus kept to such a local range to limit the inflation of543

false positive or negative results (Etzel et al. 2012, 2013).544

Statistical testing545

To assess statistical significance of multivariate distance and contrasts, group-level Monte-546

Carlo non-parametric statistical testing using 10000 permutations was conducted on547

searchlight distance maps with Threshold-Free-Cluster-Enhancement (TFCE) correction548

(Smith and Nichols 2009). The statistical significance level was set at p < .05 (with confi-549

dence interval ±.0044 for 10000 permutations) with a minimum cluster size of 10 features.550

TFCE enabled a locally adaptive statistics and cluster size correction that particularly fitted551

our BOLD sampling of sparse gray-matter coordinates, as well as the large differences in552

the sizes of the structures that were investigated.553

The MVPA analysis was done using the PyMVPA software (Hanke et al. 2009) package with554

additional development of custom samples extraction, cross-validation scheme, efficient555

searchlight and multivariate measure computation, optimally adapted to the study design556

and the anatomy-constrained data sampling.557
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Supplementary materials571

Behavioral linear mixed-effect model outputs572

Test for differences in speed as mean duration to perform a correct se-573

quence per block574

575

mean_seq_duration ~ seq_new * blocks + (blocks+sequences | participants)576

==========================================================================================577

Model: MixedLM Dependent Variable: mean_seq_duration578

No. Observations: 1146 Method: REML579

No. Groups: 18 Scale: 0.0368580

Min. group size: 62 Likelihood: 165.9658581

Max. group size: 64 Converged: Yes582

Mean group size: 63.7583

------------------------------------------------------------------------------------------584

Coef. Std.Err. z P>|z| [0.025 0.975]585

------------------------------------------------------------------------------------------586

Intercept 1.269 0.076 16.790 0.000 1.121 1.417587

seq_new[T.True] 0.365 0.047 7.776 0.000 0.273 0.457588

blocks -0.006 0.005 -1.304 0.192 -0.016 0.003589

seq_new[T.True]:blocks -0.018 0.002 -7.403 0.000 -0.023 -0.013590

Intercept RE 0.132 0.246591

Intercept RE x sequences[T.NewSeq2] RE -0.004 0.051592

sequences[T.NewSeq2] RE 0.007 0.021593

Intercept RE x sequences[T.TSeq1] RE -0.039 0.098594

sequences[T.NewSeq2] RE x sequences[T.TSeq1] RE 0.001 0.024595

sequences[T.TSeq1] RE 0.025 0.056596

Intercept RE x sequences[T.Tseq2] RE -0.038 0.092597

sequences[T.NewSeq2] RE x sequences[T.Tseq2] RE 0.001 0.023598

sequences[T.TSeq1] RE x sequences[T.Tseq2] RE 0.023 0.049599

sequences[T.Tseq2] RE 0.022 0.048600

Intercept RE x blocks RE -0.005 0.010601

sequences[T.NewSeq2] RE x blocks RE 0.000 0.002602

sequences[T.TSeq1] RE x blocks RE 0.002 0.005603

sequences[T.Tseq2] RE x blocks RE 0.002 0.004604

blocks RE 0.000 0.001605

==========================================================================================606
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Test for differences in accuracy as the number of correct sequences over607

the 5 repetitions in a block608

609

num_correct_seq ~ seq_new * blocks + (blocks+sequences | participants)610

==========================================================================================611

Model: MixedLM Dependent Variable: num_correct_seq612

No. Observations: 1152 Method: REML613

No. Groups: 18 Scale: 0.6018614

Min. group size: 64 Likelihood: -1409.7169615

Max. group size: 64 Converged: No616

Mean group size: 64.0617

------------------------------------------------------------------------------------------618

Coef. Std.Err. z P>|z| [0.025 0.975]619

------------------------------------------------------------------------------------------620

Intercept 4.691 0.079 59.215 0.000 4.536 4.846621

seq_new[T.True] -0.304 0.101 -3.003 0.003 -0.503 -0.106622

blocks -0.006 0.057 -0.101 0.919 -0.117 0.106623

seq_new[T.True]:blocks 0.014 0.010 1.434 0.152 -0.005 0.034624

Intercept RE 0.002 0.021625

Intercept RE x sequences[T.NewSeq2] RE -0.003 0.019626

sequences[T.NewSeq2] RE 0.016 0.028627

Intercept RE x sequences[T.TSeq1] RE -0.005 0.022628

sequences[T.NewSeq2] RE x sequences[T.TSeq1] RE 0.019 0.032629

sequences[T.TSeq1] RE 0.026 0.047630

Intercept RE x sequences[T.Tseq2] RE -0.004 0.025631

sequences[T.NewSeq2] RE x sequences[T.Tseq2] RE 0.017 0.042632

sequences[T.TSeq1] RE x sequences[T.Tseq2] RE 0.027 0.058633

sequences[T.Tseq2] RE 0.034 0.089634

Intercept RE x blocks RE -0.001 0.021635

sequences[T.NewSeq2] RE x blocks RE 0.001 0.016636

sequences[T.TSeq1] RE x blocks RE 0.002 0.018637

sequences[T.Tseq2] RE x blocks RE 0.002638

blocks RE 0.038639

==========================================================================================640
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Test for differences in speed and accuracy between the new sequences641

642

mean_seq_duration ~ sequences*blocks + (1|participants)643

======================================================================644

Model: MixedLM Dependent Variable: mean_seq_duration645

No. Observations: 571 Method: REML646

No. Groups: 18 Scale: 0.0655647

Min. group size: 30 Likelihood: -76.5056648

Max. group size: 32 Converged: Yes649

Mean group size: 31.7650

----------------------------------------------------------------------651

Coef. Std.Err. z P>|z| [0.025 0.975]652

----------------------------------------------------------------------653

Intercept 1.630 0.071 22.931 0.000 1.490 1.769654

sequences[T.NewSeq2] 0.025 0.045 0.558 0.577 -0.063 0.113655

blocks -0.023 0.003 -7.157 0.000 -0.030 -0.017656

sequences[T.NewSeq2]:blocks -0.005 0.005 -1.174 0.241 -0.015 0.004657

groups RE 0.073 0.102658

======================================================================659

660

num_correct_seq ~ sequences*blocks + (1|participants)661

======================================================================662

Model: MixedLM Dependent Variable: num_correct_seq663

No. Observations: 571 Method: REML664

No. Groups: 18 Scale: 0.6209665

Min. group size: 30 Likelihood: -689.3501666

Max. group size: 32 Converged: Yes667

Mean group size: 31.7668

----------------------------------------------------------------------669

Coef. Std.Err. z P>|z| [0.025 0.975]670

----------------------------------------------------------------------671

Intercept 4.553 0.102 44.450 0.000 4.353 4.754672

sequences[T.NewSeq2] -0.245 0.138 -1.772 0.076 -0.517 0.026673

blocks -0.007 0.010 -0.728 0.467 -0.027 0.012674

sequences[T.NewSeq2]:blocks 0.028 0.014 1.936 0.053 -0.000 0.056675

groups RE 0.018 0.017676

======================================================================677
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Test for differences in speed and accuracy between the consolidated se-678

quences679

680

mean_seq_duration ~ sequences*blocks + (1|participants)681

====================================================================682

Model: MixedLM Dependent Variable: mean_seq_duration683

No. Observations: 575 Method: REML684

No. Groups: 18 Scale: 0.0222685

Min. group size: 31 Likelihood: 226.1710686

Max. group size: 32 Converged: Yes687

Mean group size: 31.9688

--------------------------------------------------------------------689

Coef. Std.Err. z P>|z| [0.025 0.975]690

--------------------------------------------------------------------691

Intercept 1.256 0.057 21.949 0.000 1.144 1.368692

sequences[T.TSeq2] 0.031 0.026 1.191 0.234 -0.020 0.082693

blocks -0.008 0.002 -4.023 0.000 -0.011 -0.004694

sequences[T.TSeq2]:blocks -0.000 0.003 -0.165 0.869 -0.006 0.005695

groups RE 0.053 0.125696

====================================================================697

698

num_correct_seq ~ sequences*blocks + (1|participants)699

====================================================================700

Model: MixedLM Dependent Variable: num_correct_seq701

No. Observations: 575 Method: REML702

No. Groups: 18 Scale: 0.4050703

Min. group size: 31 Likelihood: -569.8356704

Max. group size: 32 Converged: Yes705

Mean group size: 31.9706

--------------------------------------------------------------------707

Coef. Std.Err. z P>|z| [0.025 0.975]708

--------------------------------------------------------------------709

Intercept 4.694 0.081 58.093 0.000 4.535 4.852710

sequences[T.TSeq2] -0.030 0.111 -0.267 0.789 -0.248 0.188711

blocks -0.012 0.008 -1.414 0.157 -0.028 0.004712

sequences[T.TSeq2]:blocks 0.014 0.012 1.207 0.228 -0.009 0.036713

groups RE 0.006 0.010714

====================================================================715
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Representational distance maps716
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Figure S1. Group searchlight map of cross-validated Mahalanobis distance between the two new
sequences (z-score thresholded at p < .05 TFCE-cluster-corrected)
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Figure S2. Group searchlight map of cross-validated Mahalanobis distance between the two
consolidated sequences (z-score thresholded at p < .05 TFCE-cluster-corrected)
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