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Abstract  27 

We make countless choices every day to achieve desirable outcomes. While we often have perfect control 28 

over the outcomes of our choices, sometimes control remains low. Here, we investigate the effect of high 29 

vs low control over choice outcomes on the neural coding of outcome valuation and the implementation 30 

of the means to achieve these outcomes. In a value-based decision-making task, reward outcomes were 31 

either contingent on trial-by-trial choices between two different tasks (high control), or were unrelated 32 

to these choices (low control). Using fMRI, multivariate pattern analysis, and model-based neuroscience 33 

methods, we identified reward representations in a large network including the striatum, dorso-medial 34 

prefrontal cortex (dmPFC) and parietal cortex. These representations were amplified when rewards were 35 

contingent on subjects’ choices. The means to achieve these outcomes were assessed by identifying brain 36 

regions encoding tasks during a preparation / maintenance phase, and results highlighted the role of both 37 

the dmPFC and parietal cortex in this process.  Importantly, outcome contingency did not affect neural 38 

coding of tasks. This suggests that controlling choice outcomes selectively affects the neural coding of 39 

these outcomes, but has no effect on the means to reach them. Overall, our findings highlight the role of 40 

the dmPFC and parietal cortex in processing of value-related and task-related information, linking 41 

motivational and control-related processes in the brain. These findings inform current debates on the 42 

interaction of motivational and cognitive control processes.    43 
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Introduction  44 

Making decisions is an integral part of our life. Most of these choices are value-based, i.e. they are made 45 

with expected outcomes in mind. Value-based choices are made in separate stages: we first evaluate all 46 

options, and then select the option with the highest subjective value (Domenech et al., 2018). After 47 

implementing the chosen behavior (Rubinstein et al., 2001), predicted and experienced outcomes are 48 

compared, and prediction errors are computed (Matsumoto et al., 2007; Daw et al., 2011; Collins et al., 49 

2017). This dopamine-mediated learning signal (Schultz, 2016) indicates the need to update our internal 50 

models of action-outcome contingencies (O’Reilly et al., 2013), which then leads to an adaption of future 51 

behavior.  52 

This process is modulated by various properties of choice outcomes, e.g. their magnitude (Doya, 2008). 53 

However, one crucial aspect has received little attention in the past: to which degree our choices directly 54 

control possible outcomes. Clearly, whether or not we believe our choices to directly cause their outcomes 55 

affects decision-making considerably. If we know that a specific behavior predictably leads to a desired 56 

outcome (e.g. hitting a light switch to light up a room), we will choose it more often (Mobbs et al., 2013). 57 

If we know that our behavior and desired outcomes are only weakly correlated (e.g. refreshing your 58 

Facebook timeline), or not correlated at all, we might not prioritize any specific behavior. Despite this fact, 59 

previous research largely focused on high vs low control over behavior (i.e. classical research on agency, 60 

Sperduti et al., 2011), but not on high vs low control over its outcomes.  61 

In principle, varying degrees of control of choice outcomes can affect two key processes: outcome 62 

valuation and the implementation of chosen behavior. Some previous research in non-human primates 63 

demonstrated that control over choice outcomes indeed affects valuation processes in the brain. Choice-64 

contingent rewards elicit different responses in the caudate (Izquierdo et al., 2004)  and anterior cingulate 65 

cortex (Chudasama et al., 2013), as compared to non-contingent rewards (see also Elliott et al., 2004). 66 

Importantly, one might expect similar effects on neural representations of the chosen behavior as well. 67 
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This is due to the simple fact that in order to receive any reward, choosing a behavior is not enough, we 68 

need to implement it as intended first. One might expect chosen behaviors to be shielded more strongly 69 

against interference if outcomes are contingent on them (Dreisbach and Wenke, 2011), as not performing 70 

the behavior as intended is potentially costly. For non-contingent outcomes the need for shielding is 71 

lower, as e.g. executing the wrong behavior has no effect on received outcomes (see Waskom et al., 2014 72 

for a related argument, but Botvinick and Cohen, 2014). Previous work demonstrated that 73 

implementation of chosen actions, which includes their maintenance and execution, is supported by a 74 

brain network including the frontopolar (Soon et al., 2013), lateral prefrontal and parietal cortex (Zhang 75 

et al., 2013; Wisniewski et al., 2016; Loose et al., 2017). Some initial evidence suggests that rewarding 76 

correct performance indeed enhances neural task representations (Etzel et al., 2016), but this work did 77 

not address the issue of varying degrees of control over choice outcomes.  78 

Here, we report an experiment investigating the effects of control over choice outcomes on value-based 79 

decision making. We used a value-based decision task to assess the effects of reward contingency (choice-80 

contingent vs. non-contingent rewards) on valuation and, more importantly, on choice implementation. 81 

For this purpose, we used a combination of multivariate pattern analysis (MVPA, Haynes, 2015) and 82 

model-based neuroscience methods (Forstmann and Wagenmakers, 2015). We first hypothesized that 83 

reward contingency affects the neural coding of outcome values in humans, as it does in non-human 84 

primates (Izquierdo et al., 2004; Chudasama et al., 2013). We further assessed whether implementation 85 

of chosen behavior (i.e. coding of chosen tasks) is similarly affected by contingency. We hypothesized that 86 

the lateral prefrontal cortex, and especially the parietal cortex to play a key role in the implementation of 87 

chosen behavior. The parietal cortex represents chosen tasks and actions (Wisniewski et al., 2016; 88 

Domenech et al., 2018), subjective stimulus and action values (Sugrue, 2004; Kahnt et al., 2014), as well 89 

as associations between choice options and their outcomes (Wisniewski et al., 2015a). Using MVPA, we 90 
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tested whether task representations in these brain regions were enhanced when rewards were choice-91 

contingent vs when they were not.  92 

Materials and Methods 93 

 94 

Figure 1. Experimental paradigm. A. Trial structure. Each trial started with the cue ‘choose’ presented on 95 
screen. After a variable delay, the task screen was presented for a fixed duration. Reward feedback was 96 
presented subsequently after each trial. All trials were separated by variable inter trial intervals. B. Tasks. 97 
Subjects were instructed to identify the visual object presented on screen, and press a corresponding 98 
colored button. The object-category to color mappings are depicted here. Note that the specific mappings 99 
were counterbalanced across subjects. Which task was implemented in each trial was chosen freely by 100 
the subjects. C. Reward contingencies. In contingent (RC) trials, one task always yielded a high reward 101 
with a higher probability (80%) than the other task (20%). Which specific task was currently the high-102 
reward task depended on the current task-reward-mapping, which changed according to a probabilistic 103 
reversal learning procedure (see Materials and Methods for more details). In non-contingent (NCR) trials, 104 
the chance to receive a high and low reward were equal, irrespective of the chosen task. 105 
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Participants 106 

A total of 42 subjects participated in this experiment (20 males, 21 females, 1 other). The average age was 107 

22.6 years (min = 18, max = 33 years), 41 subjects were right-handed, one was left-handed. All subjects 108 

had normal or corrected-to-normal vision and volunteered to participate. Subjects gave written informed 109 

consent and received between 45€ and 55€ for their participation. The experiment was approved by the 110 

local ethics committee. Seven subjects showed excessive head movement in the MR scanner (>4mm) and 111 

were excluded. All reported analyses were thus performed on a sample of 35 subjects. Despite the fact 112 

that the multivariate analyses performed in this experiment (see below for details) show notoriously small 113 

effects (Bhandari et al., 2018), we believe to have sufficient statistical power with the given sample size.  114 

Experimental Design 115 

The experiment was programmed using PsychoPy (version 1.85.2, psychopy.org, RRID:SCR_006571, 116 

Peirce, 2007)). In each trial, subjects were free to choose between two different tasks, and could either 117 

earn a high or a low reward for correct performance. The paradigm is described in more detail below.  118 

Trial structure 119 

Each trial started with the presentation of a fixation cross centrally on-screen for 300ms (Figure 1 A). This 120 

was followed by the presentation of a choice cue, the word ‘CHOOSE’, for 600ms. This cue instructed 121 

subjects to freely choose one of the two tasks to perform in this trial. After a variable delay period (2000-122 

6000ms, mean delay duration = 4000ms), the task screen was presented for a total of 3000ms. In this 123 

experiment, we used the same tasks as (Wisniewski et al., 2015b), in order to better compare current 124 

results to this previous experiment on value-based decision-making. The task screen consisted of a visual 125 

object presented centrally on screen (Figure 1 B). This object was picked pseudo-randomly out of a pool 126 

of 9 different objects in 3 categories: musical instruments, furniture, means of transportation. Below, 4 127 

colored squares were presented (magenta, yellow, cyan, gray), with the square positions being mapped 128 

onto 4 buttons, operated using the left and right index and middle fingers. Subjects were given the option 129 
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to choose which of two stimulus-response-mappings to apply to the presented object. For instance, in 130 

task ‘X’, means of transportation were associated with the magenta, furniture with the yellow, and 131 

musical instruments with the cyan button. In task ‘Y’, means of transportation were associated with the 132 

cyan, furniture with the magenta, and musical instruments with the yellow button. Thus, depending on 133 

the chosen task and the presented object, one of the colored buttons was correct for each task, and 134 

subjects were instructed to react as quickly and accurately as possible. Here, we use the term task to 135 

describe a specific link between stimuli and responses, and we do not claim that the cognitive processes 136 

required to perform both tasks differed substantially. We inferred subjects’ choices from their responses. 137 

Note, that the grey button was never task-relevant and was merely included to balance left and right hand 138 

responses. Furthermore, the mapping of the colored buttons on screen was pseudo-randomized in each 139 

trial, preventing subjects from preparing a specific motor response before the onset of the task screen. 140 

The specific stimulus-response-mappings called task X and task Y were counter-balanced across subjects. 141 

Subsequently to the task-screen presentation, subjects were given trial-by-trial reward feedback, by 142 

presenting either an image of a 1€ coin (high reward), a 10€cent coin (low reward), or a red circle (no 143 

reward). The feedback was presented for 400ms. After a variable inter-trial-interval (4000-14000ms, 144 

geometrically distributed, mean duration = 5860ms), the next trial began.  145 

Reward conditions 146 

Subjects were rewarded for correct performance on every trial. There were a total of two different reward 147 

conditions: contingent rewards (CR) and non-contingent rewards (NCR). In the NCR condition, the chosen 148 

reward in each trial was determined randomly. Irrespective of the chosen task, subjects had a 50% chance 149 

of receiving a high and a 50% chance of receiving a low reward (Figure 1 C). Subjects were instructed to 150 

choose tasks randomly in this condition, by imagining flipping a coin in their head in each trial (Zhang et 151 

al., 2013). In the CR condition, subjects performed a probabilistic reward reversal-learning task, similar to 152 

(Hampton and O’Doherty, 2007). In each trial, one task led to a high reward with an 80% and a low reward 153 
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with a 20% probability (high-reward task, HR). These probabilities were reversed for the other task (low-154 

reward task, LR), e.g., in a specific trial, task X might be the HR task, while task Y might be the LR task. 155 

Subjects were unaware which of the two tasks was the HR task, and needed to learn this from the reward-156 

feedback provided after each trial. Once they chose the HR task on 3 consecutive trials, the mapping of 157 

rewards onto tasks reversed with a chance of 25% on each subsequent trial, e.g., whereas before task X 158 

was the HR and task Y the LR task, now task X was the LR and task Y the HR task. Again, subjects were 159 

unaware of this change in reward-contingencies, and needed to learn when such a switch occurred from 160 

the reward-feedback provided at the end of each trial.     161 

At the end of the experiment, 15 trials were chosen randomly, and whichever reward was earned in these 162 

trials was paid out as a bonus payment to the subjects. One half of these trials was chosen from CR trials, 163 

the other from NCR trials, which was communicated to the subjects in order to ensure that both 164 

conditions are equally salient. Thus, subjects were motivated to maximize the reward in CR trials, choosing 165 

the HR task as often as possible. Given that rewards were randomly chosen in NCR trials, they had no 166 

influence over the earned reward in this condition.  167 

This reward manipulation was chosen to manipulate the degree of control subjects had over the outcome 168 

of their choices. In CR trials subjects made choices that were directed at earning as much money as they 169 

could, by learning the changing reward contingencies and thus controlling reward outcomes. In NCR trials, 170 

subjects were unable to control outcomes through their choices, as there were no contingencies to learn. 171 

This allowed us to assess effects of control over outcomes on valuation and implementation processes. A 172 

second important reason for manipulating reward ‘relevance’ instead of reward presence (as in Etzel et 173 

al., 2016), was that this allowed us to assess specific reward effects on valuation and implementation 174 

processes. When contrasting choices in which subjects could earn a reward, with choices in which no 175 

reward is present (e.g. Libet et al., 1983; Soon et al., 2008), any difference between these conditions might 176 

arise from unspecific processes merely correlated with the presence of reward, like attentional or motor 177 
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preparation (Kahnt et al., 2014). This is mainly because strong differences in expected outcomes 178 

immediately trigger these preparatory processes selectively in rewarded trials. In contrast, when rewards 179 

are always present, but only sometimes contingent on choices, reward expectations are much more 180 

similar across conditions. In fact, if a subject chose tasks randomly in all trials, the expected value would 181 

be identical in both reward conditions. Thus, only specific reward-related effects, like the fact that reward 182 

outcomes are a relevant factor for making choice only in CR trials, can explain potential differences 183 

between CR and NCR trials.  184 

Design  185 

Subjects performed 5 identical runs of this experiment, with 60 trials each. Each run contained 2 blocks 186 

with CR and 2 blocks with NCR trials. The length of each block was between 10 and 14 trials, and all trials 187 

were all separated by a long and variable ITI. CR and NCR blocks alternated and block order was 188 

counterbalanced across runs for each subject. Each block started with either ‘Contingent block now 189 

starting’ or ‘Non-contingent block now starting’ presented on screen for 5000ms. This mixed blocked and 190 

event-related design minimized cross-talk and interference between the reward conditions, and allowed 191 

us to estimate cleaner neural signals.  192 

Each run also contained 20% (n=12) catch trials. In these trials, subjects were externally cued which task 193 

to perform, by presenting the words ‘TASK X’ or ‘TASK Y’ instead of the ‘CHOOSE’ cue. The delay between 194 

cue and task execution was 1000ms in these trials. Catch trials were included to prevent subjects from 195 

choosing all tasks in a block at its beginning. For instance, in an NCR block, subjects could theoretically 196 

decide upon a whole sequence of tasks at the beginning of that block (e.g. X,X,X,Y,X,Y,Y,X,...), and then 197 

only implementing that fixed sequence in each trial. In order to encourage subjects to make a conscious 198 

choice in each individual trial, catch trials were included. These trials would frequently disrupt any planned 199 

sequence of task choices, making such a strategy less feasible. In order to increase the salience of these 200 
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catch trials, subjects always received a high reward for correct performance. Catch trials were excluded 201 

from all analyses.  202 

Furthermore, we ensured that the reward condition was not correlated with any other design variable 203 

(target stimulus, delay duration, button mapping, ITI duration), in order to ensure that estimated neural 204 

signals were not confounded. Lastly, multivariate pattern analyses can be biased if signal estimates are 205 

not based on trials which are IID. Thus we ensured that conditions of the previous trial were not predictive 206 

of the current trial, to make each trial as independent of all other trials as possible.  207 

Training session 208 

Subjects were familiarized with the task in a separate training session outside the MR scanner, lasting 209 

about 1h10min. Subjects first learned to perform the two tasks, were then instructed about the reward 210 

conditions and lastly performed 3 runs of the full experiment (as described above). This training session 211 

was performed to minimize learning effects during the MR session, which can be detrimental to 212 

multivariate pattern analyses. Training sessions were scheduled between 1-5 days before the MR session. 213 

Just before the start of the MR session, subjects performed 10 trials of the task in the MR scanner, in order 214 

to familiarize themselves with the novel environment. These trials were not analyzed.  215 

Additional measures 216 

After completing the MR session, subjects filled in multiple questionnaires. They answered custom 217 

questions (e.g., How believable were the instructions? How different were the reward conditions? How 218 

difficult was making a choice between the two tasks? How difficult was performing the two tasks? Was 219 

one task more difficult than the other? At which point in time did you choose the task to perform in each 220 

trial?), and the following questionnaires: behavioral inhibition / activation scale (BISBAS, Carver and 221 

White, 1994), need for cognition (NFC, Cacioppo et al., 1984), sensitivity to reward / punishment (SPSRQS, 222 

Torrubia et al., 2001), and impulsivity (BIS11, Patton et al., 1995). We also acquired pupil dilation data 223 
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while subjects performed the experiment in the MR scanner. Pupil dilation data is not the focus of the 224 

current paper, and is not reported.  225 

Image acquisition 226 

fMRI data was collected using a 3T Magnetom Trio MRI scanner system (Siemens Medical Systems, 227 

Erlangen, Germany), with a standard thirty-two-channel radio-frequency head coil. A 3D high-resolution 228 

anatomical image of the whole brain was acquired for co-registration and normalization of the functional 229 

images, using a T1-weighted MPRAGE sequence (TR = 2250 ms, TE = 4.18 ms, TI = 900 ms, acquisition 230 

matrix = 256 × 256, FOV = 256 mm, flip angle = 9°, voxel size = 1 × 1 × 1 mm). Furthermore, a field map 231 

was acquired for each participant, in order to correct for magnetic field inhomogeneities (TR = 400 ms, 232 

TE1 = 5.19 ms, TE2 = 7.65 ms, image matrix = 64 x 64, FOV = 192 mm, flip angle = 60°, slice thickness = 3 233 

mm, voxel size = 3 x 3 x 3 mm, distance factor = 20%, 33 slices). Whole brain functional images were 234 

collected using a T2*-weighted EPI sequence (TR = 2000 ms, TE = 30 ms, image matrix = 64 × 64, FOV = 235 

192 mm, flip angle = 78°, slice thickness = 3 mm, voxel size = 3 x 3 x 3 x mm, distance factor = 20%, 33 236 

slices). Slices were orientated along the AC-PC line for each subject.  237 

Statistical Analysis  238 

Data Analysis: Behavior  239 

All behavioral analyses were performed in R (RStudio version 1.1.383, RRID:SCR_000432, 240 

www.rstudio.com). We first characterized subjects’ performance by computing error rates and reaction 241 

times (RT). We tested for potential effects of reward condition on error rates using a Bayesian two-sided 242 

paired t-tests (using ttestBF from the BayesFactor package in R). Error trials, and trials with RTs <300ms 243 

were removed from the data analysis. In order to identify potential effects of task and reward condition 244 

on RTs, we performed a Bayesian repeated measures ANOVA (using anovaBF from the BayesFactor 245 

package in R). This ANOVA included the factors task (X, Y) and reward (CR, NCR), and outputs Bayes Factors 246 
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(BF) for all main effects and interaction terms. We did not expect tasks to strongly affect RTs, but did 247 

expect RTs to be lower in the CR condition, as compared to the NCR condition.  248 

The Bayesian hypothesis testing employed here allows quantifying the evidence in favor of the alternative 249 

hypothesis (BF10) and the null hypothesis (BF01), allowing us to conclude whether we find evidence for 250 

or against a hypothesized effect, or whether the current evidence remains inconclusive (Rouder, 251 

Speckman, Sun, Morey, and Iverson, 2009). Unfortunately, in classical frequentist hypothesis testing we 252 

are unable to provide evidence for the null hypothesis in a similar way (Wagenmakers, 2007). In line with 253 

previous research (e.g. Andraszewicz et al., 2015; Mertens and De Houwer, 2016), we considered BFs 254 

between 1 and 0.3 as anecdotal evidence, BFs between 0.3 and 0.1 as moderate evidence, and BFs smaller 255 

than 0.1 as strong evidence against a hypothesis. BFs between 1 and 3 were considered as anecdotal 256 

evidence, BFs between 3 and 10 as moderate evidence, and BFs larger than 10 as strong evidence for a 257 

hypothesis. Although our conclusions are based solely on the BFs, we also provide frequentists statistical 258 

test outcomes for the interested reader.  259 

Given that subjects were free to choose between the two tasks, some subjects might have shown biases 260 

to choosing one of the two tasks more often (although that would not have led to a higher overall reward, 261 

if anything biases should lower overall rewards). In order to quantify biases, we computed the proportion 262 

of trials in which subjects chose task X, separately for the CR and NCR conditions, and tested whether this 263 

value differed from 50% using a two-sided Bayesian t-test. The output BF was interpreted in the same way 264 

as in the previous analysis.   265 

Choices in CR trials were assessed two-fold. First, we quantified how well subjects performed the 266 

probabilistic reversal learning task. If subjects were reliably able to determine which of the two tasks was 267 

currently the HR task, they should have chosen that task more often than expected by chance (50%). Thus 268 

the proportion of HR task choices in CR trials is our main measure of how successful subjects were in 269 

performing the task. This measure was compared to chance level using a one-sided Bayesian t-test. 270 
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Furthermore, we expected the proportion of HR choices to be higher in CR, than in NCR trials (where it 271 

should be 50%). This was tested using a paired one-sided Bayesian t-test.  272 

Second, we assessed whether subjects were able to learn and update reward contingencies in the reversal 273 

learning task. Reinforcement learning (RL) theory suggest that such learning can take place by comparing 274 

received rewards with expected rewards, which are computed from the reward history (Sutton and Barto, 275 

1990; Collins et al., 2017). Discrepancies between actual and expected rewards (reward prediction errors, 276 

RPE) are thought to signal surprise in the brain and to guide adjustment of behavior (Daw and Doya, 2006), 277 

a process which relies on dopaminergic signals in the midbrain (Pessiglione et al., 2006; Schultz, 2016). 278 

Here, we fitted a RL model to the choice data of each subject (separately for CR and NCR trials) in order 279 

to assess the learning process. Fitted RL models used simple delta-rule learning (as implemented in the 280 

rlfit package in Matlab, https://github.com/jmxpearson/rlfit). For each task choice c the expected reward 281 

Q(c) was learned from the reward history by comparing the expected and observed rewards at trial t: 282 

𝑄𝑡+1(𝑐) = 𝑄𝑡(𝑠) + 𝛼 𝑋 𝛿𝑡 283 

with  𝛿𝑡 = 𝑟𝑡 − 𝑄𝑡(𝑐) being the RPE, and 𝛼 being the learning rate. Choices were generated following a 284 

softmax choice function (as implemented in the rlfit package). The parameters were fitted over n = 10 285 

iterations, with random starting values in each iteration. Learning rates were fitted with constraints [0, 1]. 286 

In order to assess the model fit, we also estimated a ‘null’ model for each subject. In this model, we again 287 

estimated expected outcomes and RPEs using the same algorithm described above, only fixing the 288 

learning rate to 0. The null model thus assumed that subjects do not learn changing reward contingencies, 289 

and we expected our RL model to outperform this null model. Model fit was assessed using the AIC and 290 

BIC (Burnham and Anderson, 2004). We also assessed an alternative ‘hybrid’ model, in which learning 291 

rates are allowed to vary on a trial-by-trial basis, instead of being fixed for each subject (Bai et al., 2014). 292 

It has been argued that such a model better captures behavior in probabilistic reversal learning tasks. In 293 
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our experiment the simple delta-rule learning model outperformed the more complex hybrid model (as 294 

assessed using AIC and BIC), and results from the hybrid model were not assessed further.  295 

For each subject, the learning rate was extracted from the best-fitting model. We expected learning rates 296 

to be higher in CR than in NCR trials. In CR trials, the specific reward contingencies changed frequently, 297 

and thus subjects needed to update their contingency representations frequently as well. The learning 298 

rate in CR trials was also expected to correlate with successful task performance (% high reward choices), 299 

given that the reversal learning task can only be performed well if the represented reward contingencies 300 

change over time. In NCR trials, we expected learning rates to be low and uncorrelated with choice 301 

performance, because reward outcomes were randomly chosen and there were no contingencies to learn.  302 

Choices in NCR trials were assessed by testing whether subjects were able to choose tasks randomly in 303 

these trials. For this purpose, we computed the distribution of run lengths for each subject, i.e., the 304 

number of trials subjects chose to consecutively perform the same task. If subjects chose tasks randomly, 305 

this distribution can be expected to follow an exponential distribution (cf. Arrington and Logan, 2004; 306 

Soon et al., 2008). The average run length was computed for each subject, separately for CR and NCR 307 

trials, and compared to the expected run length under random choice behavior. We expected subjects to 308 

show longer runs in CR than in NCR trials, given that the probabilistic reward reversal learning task 309 

encourages subjects to perform the same task repeatedly. This was again tested using a one-sided 310 

Bayesian t-test.  311 

Data Analysis: fMRI 312 

fMRI data analysis was performed using Matlab (version R2014b 8.4.0, RRID:SCR_001622, The 313 

MathWorks) and SPM12 (RRID:SCR_007037, www.fil.ion.ucl.ac.uk/spm/software/spm12/). Raw data was 314 

imported according to BIDS standards (RRID:SCR_016124, http://bids.neuroimaging.io/). In order to 315 

assess which brain regions contained information about reward outcomes and task choices, raw data was 316 

unwarped, realigned and slice time corrected. It was then entered into a first level general linear model 317 
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analysis (GLM, Friston et al., 1994), and subsequently into a multivariate pattern analysis (MVPA, Cox and 318 

Savoy, 2003; Kriegeskorte et al., 2006; Haxby, 2012; Haynes, 2015). In order to assess which brain regions 319 

represented reward-learning signals, raw data was unwarped, realigned, slice time corrected, normalized, 320 

and smoothed. It was then entered into a GLM, adding reward prediction errors as a regressor. Results 321 

were analyzed using a mass-univariate approach. Full details of the analyses can be found below.  322 

Neural processing of reward 323 

Multivariate decoding of reward outcomes 324 

In a first step, we assessed whether we can replicate previous findings demonstrating contingency effects 325 

on reward processing (Tricomi et al., 2004). For this purpose, we estimated a GLM for each subject. For 326 

each of the 5 runs we added regressors for each combination of reward value (high vs low) and 327 

contingency (CR vs NCR). All regressors were locked to the feedback onset, the duration was set to 0. 328 

Regressors were convolved with a canonical haemodynamic response function (as implemented in 329 

SPM12). Estimated movement parameters were added as regressors of non-interest to this and all other 330 

GLMs reported here. 331 

Baseline decoding: In a next step, we performed a decoding analysis on the parameter estimates of the 332 

GLM. A support-vector classifier (SVC, see Cox and Savoy, 2003; Mitchell et al., 2004; Kamitani and Tong, 333 

2005), as implemented in The Decoding Toolbox (Hebart et al., 2014), was used using a fixed regularization 334 

parameter (C = 1).  We performed searchlight decoding (Kriegeskorte et al., 2006; Haynes et al., 2007), 335 

which looks for information in local spatial patterns in the brain and makes no a prior assumptions about 336 

informative brain regions. A sphere with a radius of 3 voxels was defined around each measured voxel, 337 

and parameter estimates for high rewards (both in CR and NCR trials), and for low rewards (again, both in 338 

CR and NCR trials) were extracted within that sphere, separately in each run. 4 out of 5 runs were used to 339 

train the SVC to distinguish the neural patterns of high and low rewards. Classifier performance was then 340 

tested on the remaining, independent run. This procedure was repeated until each run was left out once, 341 
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resulting in a 5-fold cross-validation and countering potential problems with overfitting. Mean prediction 342 

accuracy was calculated across all folds and written into the center voxel of the sphere. This was repeated 343 

for each measured voxel in the brain, resulting in a 3D accuracy map. These maps were computed for each 344 

subject, normalized to a standard space (Montreal Neurological Institute template as implemented in 345 

SPM12), and smoothed (Gaussian kernel, FWHM = 6mm) in order to account for potential differences in 346 

information localization across subjects. Group analyses were performed using a random effects model 347 

on the accuracy maps, using voxel-by-voxel t-tests against chance level (50%). The chance level was 348 

subtracted from all reported accuracy values. A statistical threshold of p<0.0001 (uncorrected) at the voxel 349 

level, and p<0.05 (family-wise error corrected) at the cluster level was applied to all analyses. This 350 

threshold is sufficient to rule out inflated false-positive rates in fMRI analyses (Eklund et al., 2016). Any 351 

regions surpassing this threshold were used as masks for the following decoding analyses (an approach 352 

previously used by Loose et al., 2017). One might argue that identifying strong, outcome-related signals 353 

using a method as sensitive as MVPA is trivial. But please note that we are not mainly interested in 354 

identifying reward-related signals per se, but rather focus on their modulation through outcome 355 

contingency, which is much more interesting. The baseline reward decoding is likely partly driven by 356 

underlying univariate signal differences, and we do not claim that results reflect differences in response 357 

patterns only. We chose to run this analysis as described to ensure we can compare results especially with 358 

the task-related analyses. We will base our conclusions mainly on comparing differences between the 359 

baseline and other analyses (see below), so this comparison does not constitute a case of double dipping. 360 

Lastly, this analysis is sensitive to differences in outcome value, but might possibly also identify brain 361 

regions related to unspecific preparatory (e.g., attentional) processes. Although preparatory processes 362 

should be identical in CR and NCR trials, due to the fact that the same high and low rewards were given in 363 

both conditions, we cannot fully exclude such effects either if subjects were generally more motivated to 364 
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perform CR than NCR trials. The underlying cause of any observed effects remain differences in reward 365 

outcomes however.   366 

Differences in reward outcome coding: Although the baseline decoding analysis should have the maximum 367 

power to detect any outcome-related brain regions, results do not allow us to conclude whether outcome 368 

processing differed between CR and NCR trials. For this purpose, we repeated the decoding analysis, now 369 

only using CR trials, and only NCR trials, respectively. If contingent rewards indeed enhance encoding of 370 

reward outcomes in the brain, we should see higher accuracies in the CR than in the NCR decoding 371 

analysis. Please note, that we only used half the number of trials as before, thus considerably reducing 372 

the signal-to-noise ratio in these analyses. We thus expected lower statistical power and smaller effects. 373 

Similarities in in reward outcome coding: Previous work demonstrated that not all brain regions show a 374 

contingency-related modulation of value signals (Elliott et al., 2004), and we thus tested whether some 375 

brain regions encoded reward outcomes invariantly across the contingency conditions. We trained a 376 

classifier to discriminate between high and low reward outcomes in the CR condition, and tested its 377 

performance in the NCR condition, and vice versa. This resulted in two accuracy maps per subject, which 378 

were averaged and then entered into a group analysis just like in the previous analyses. Importantly, only 379 

brain regions where patterns do not differ across both contingency conditions will show above-chance 380 

accuracies in this analysis. This so-called cross classification analysis can be used to identify brain regions 381 

in which outcome representations are invariant with respect to the contingency manipulation employed 382 

here (see also Kaplan et al., 2015), thus providing positive evidence for contingency-invariant coding of 383 

reward outcomes.   384 

Neural correlates of reward-learning signals 385 

While the previous analyses investigated the neural correlates of processing the hedonic value of reward 386 

outcomes, here, we directly assessed whether reward-learning signals are affected by reward 387 

contingency. Reward prediction errors (RPE) act as learning signals in our reversal learning task 388 
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(Matsumoto et al., 2007; Daw et al., 2011). They indicate the need to update the internal model of the 389 

current task-reward associations (e.g. task X = high reward task). In order to identify brain regions 390 

encoding this important reward signal, we used a model-based fMRI approach (O’Doherty et al., 2007; 391 

Forstmann and Wagenmakers, 2015). In model-based fMRI, a computational model fitted to behavioral 392 

data is used to construct regressors, which are then used to estimate GLMs on fMRI data. This approach 393 

links brain and behavior in a mechanistic framework and has been used successfully in a number of 394 

different settings (for an overview see Forstmann and Wagenmakers, 2015). We used the reinforcement 395 

learning models fitted to the behavioral data, and computed trial-by-trial RPEs from the best fitting model 396 

of each subject. We then estimated two separate GLMs, one for CR trials and one for NCR trials, on 397 

normalized and smoothed raw data. For each of the 5 runs, we added one regressor (duration = 0) locked 398 

to the onset of the feedback screen of each trial. Prediction errors should be strongest at this point in 399 

time. We added the trial-by-trial RPEs as a parametric modulator, allowing us to identify brain regions 400 

correlating with RPE signals. As before, regressors were convolved with a canonical haemodynamic 401 

response function. For each subject, a t-contrast map was computed to identify regions reflecting RPEs. 402 

These maps were then entered into a group level random effects analysis (within-subjects ANOVA with 403 

the factor contingency (CR, NCR)) in order to identify brain regions where prediction errors were 404 

modulated by reward contingency. Results were thresholded at p < 0.001 (uncorrected) at the voxel level, 405 

p <0.05 (FWE corrected) at the cluster level. 406 

Multivariate decoding of tasks 407 

All analyses described above aimed at assessing effects of reward contingency on reward processing. Now, 408 

we turn to also test whether any such potential effects could be demonstrated on the implementation of 409 

chosen behavior in the brain. For this purpose, we assessed which brain regions encoded the chosen tasks. 410 

Two GLMs were estimated for each subject, one modelling task-related brain activity at the time of 411 

decision-making, and one modelling activity during a subsequent maintenance phase. It has been shown 412 
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that formation and maintenance of intentions rely on partly dissociable brain networks (Bunge et al., 413 

2003; Gilbert, 2011), and our design allowed us to estimate independent signals related to both epochs 414 

as they were separated by a variable inter-trial-interval.  415 

In the first GLM (GLMmaintenance), for each of the 5 runs we added regressors for each combination of chosen 416 

task (task X, task Y) and reward contingency (CR, NCR). All 4 regressors were locked to the cue onset, the 417 

duration was set to cover the whole delay period. Please note that due to the jittered delay period 418 

duration, the modelled signals were dissociated from the task execution and feedback presentation. 419 

These boxcar regressors were then convolved with a canonical haemodynamic response function. This 420 

model is highly similar to the model used in  (Wisniewski et al., 2016), where subjects were also free to 421 

choose one of two different tasks in each trial, making current results highly comparable to this previous 422 

study. In sum, this model estimated task-specific brain activity during intention maintenance, i.e. while 423 

subjects had to represent their intention to perform a specific chosen task, without yet being able to 424 

prepare a specific motor response. A second GLM was estimated (GLMdecisiontime), in order to extract task-425 

specific brain activity at the time subjects made their choice which of the two tasks to perform. Note that 426 

although the cue suggested that subjects should make a task choice at that point in time, there is no strong 427 

way of controlling the exact point in time at which choices were made. In fact, choices could have been 428 

made earlier than the presentation of the choice cue. It has been shown before that under free choice 429 

conditions, subjects choose a task as soon as all necessary information to make a choice is available 430 

(Hampton and O’Doherty, 2007; Wisniewski et al., 2015b). In this experiment, this time point is the 431 

feedback presentation of the previous trial. At this point, subjects can judge whether they e.g. chose the 432 

HR or LR task and determine which of the two tasks to perform in the next trial. We used this approach 433 

successfully in a previous experiment (Wisniewski et al., 2015b), again making current results highly 434 

comparable with these previous findings. All further task decoding analyses were performed on both 435 

GLMs.  436 
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Baseline decoding: The task decoding analyses followed the same logic as the reward outcome analyses 437 

described above. We first performed a searchlight decoding analysis (radius = 3 voxels, C = 1), contrasting 438 

parameter estimates for tasks X and Y in all trials (CR and NCR combined). This analysis has the maximum 439 

power to detect any brain regions containing task information, which can be notoriously difficult 440 

(Bhandari et al., 2018). Resulting accuracy maps were normalized, smoothed (6mm FWHM), and entered 441 

into a random effects group analysis (t-test vs chance level, 50%). Results were thresholded at p<0.001 442 

(uncorrected) at the voxel level, and p<0.05 (family-wise error corrected) at the cluster level. Again, 443 

regions surpassing this threshold were used to define functional regions-of-interest for the following 444 

decoding analyses (see Loose et al., 2017).  445 

Differences in task coding: In order to assess whether task coding is modulated by reward contingency, 446 

we repeated the decoding analysis separately for CR and NCR trials.  If contingent rewards indeed increase 447 

task shielding in the brain, we should see higher accuracies in the CR than in the NCR decoding analysis. 448 

This effect should be especially pronounced if both tasks are similar and easily confused, which is the case 449 

in our experiment. Please note, that we again only used half the number of trials as before, reducing the 450 

signal-to-noise ratio in these analyses. We thus expected lower statistical power and smaller effects.  451 

Similarities in task coding: Some previous work suggests that tasks are encoded in a context-invariant 452 

format in the brain (Zhang et al., 2013; Wisniewski et al., 2016), and we directly tested whether this was 453 

also true in this experiment. Using a cross-classification (xclass) approach, we trained a classifier on CR 454 

trials and then tested it on NCR trials (and vice versa). And brain regions showing above chance decoding 455 

accuracies in this analysis provides positive evidence of task coding that is invariant with respect to 456 

contingent vs non-contingent reward outcomes. Please note that this analysis also ensures that task-457 

related signals are not confounded by potential differences in e.g. cognitive load or expected reward 458 

across the CR and NCR conditions, as classifiers are trained and tested only within one contingency 459 

condition. 460 
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Region of interest analyses: We also assessed task information in a number of a priori defined regions of 461 

interest (ROI). First, we attempted to replicate results from one of our previous experiments (Wisniewski 462 

et al. 2015). There, the dmPFC has been found to encode task choices at the time of decision-making. We 463 

extracted this functional ROI, and tested whether we could replicate the finding in this independent and 464 

larger sample. Although the overall design differed considerably (e.g. 3 vs 2 tasks, changing reward 465 

outcomes vs changing task difficulty), both studies used the same object-categorization task. Second, two 466 

previous experiments found task information to be maintained in the fronto-parietal cortex in a context 467 

invariant fashion (Loose et al. 2017; Wisniewski et al. 2016). In one paper, task coding was invariant with 468 

respect to freely chosen vs. externally cued tasks (Wisniewski et al. 2016), while in the other paper, task 469 

coding was invariant with respect to high vs. low control demands (Loose et al. 2017). If we were to show 470 

that the regions identified in these two experiments also encode tasks invariantly across reward 471 

contingency conditions, that would provide additional evidence for general, context invariant task coding 472 

in the fronto-parietal cortex. We thus extracted functional ROIs from both papers (Wisniewski et al. 2016: 473 

left parietal cortex, left PFC, Brodman area 8; Loose et al. 2017: left parietal cortex, left PFC), and tested 474 

this hypothesis in this independent data-set. For all ROIs defined, we extracted accuracy values for all 475 

voxels within the ROI, which were then averaged. One-sided Bayesian t-tests across subjects were 476 

performed to assess whether they were above chance.  477 

Control analyses: In order to further corroborate the reliability of our results, we performed a number of 478 

control analyses. It has been pointed out before, that RT effects might partly explain task decoding results 479 

(Todd et al., 2013), although others were unable to show any such effects (Woolgar et al., 2014; 480 

Wisniewski et al., 2015b). Given that we expected RTs to differ across reward conditions, we decided to 481 

conservatively control for RTs effects. First, we repeated the GLM estimation, only adding reaction times 482 

as an additional regressor of non-interest. We then repeated the main decoding analyses, and tested 483 
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whether accuracy values differed significantly. If RTs indeed explain our task decoding results, we should 484 

see a reduction in decoding accuracies when RT effects were regressed out of the data.  485 

Furthermore, it is possible that some subjects exhibit excessive error rates or have a strong bias to choose 486 

one task more often than the other. High error rates might decrease the signal-to-noise ratio and thus 487 

affect observed results. Very strong choice biases might have a similar effect, in extreme cases subjects 488 

might have performed only one of the two tasks in a given run (although this was unlikely). In order to 489 

ensure that we had enough trials to estimate each regressor, we first excluded subjects with excessively 490 

high error-rates (more than 1.5*IQR above average), and then excluded subjects with strong choice biases 491 

(more than 1.5*IQR above average). We then tested whether each regressor in all remaining subjects 492 

could be estimated from at least 6 trials. If a regressor could only be estimated from fewer trials, that run 493 

was excluded from the analysis. Subjects in which more than 1 run was thusly excluded were altogether 494 

excluded from the analysis. These criteria were highly similar to the criterion used in (Wisniewski et al., 495 

2015b), which proved an effective control. After excluding these subjects, we repeated the main analyses 496 

on the remaining subjects and tested whether they differed from the analysis including all subjects.  497 

Two further control analyses were performed to confirm the validity of the decoding procedure used. 498 

First, we performed a ROI decoding analysis on a brain region that is not related to task-performance in 499 

any way, expecting accuracies to be at chance level. We chose the primary auditory cortex for this 500 

purpose, defined using the WFU_pickatlas tool (https://www.nitrc.org/frs/?group_id=46, RRID: 501 

SCR_007378). Second, we tested whether our chance level was indeed 50%, or whether it was biased. For 502 

this purpose, we performed a permutation analysis (as implemented in the Decoding Toolbox). We 503 

repeated the baseline decoding analysis 1000 times for each subject, only randomly assigning the test 504 

labels in each of the 1000 permutations. A null distribution was calculated from these permutations 505 

separately for each subject, and the mean accuracy value of the null distribution served as an empirical 506 

estimate of the chance level. In order to test whether the estimated chance level deviated from 50%, we 507 
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performed a two-sided Bayesian t-test. Additional exploratory analyses were performed to assess possible 508 

correlations between behavioral measures, questionnaires, and fMRI results (Figure 2–1).  509 

Results 510 

Behavioral results 511 

We first assessed the effects of tasks (X, Y) and reward condition (CR, NCR) on error rates and reaction 512 

times (RT). The average error rate across all subjects was 5.89% (SEM = 0.74%). Thus, subjects were able 513 

to perform the task accurately. There was no evidence for an effect of reward condition on error rates 514 

(Bayes Factor (BF10) = 0.88, t(34) = 1.96, p = 0.06). Error trials were removed from all further analyses. A 515 

repeated-measures ANOVA on the reaction times (RT) including the factors task and reward condition 516 

revealed no main effect of reward (BF01 = 31.95, F(1,34) = 0.38, p = 0.53, Figure 2 A). This is likely due to 517 

the fact that subjects had a long time to prepare the execution of the task, which minimized potential 518 

contingency-related differences in RTs. There was a strong main effect of task however (BF10 > 150, 519 

F(1,34) = 3.78, p = 0.05), with task X (RTX = 1415ms, SEM = 29ms) being faster than task Y (RTY = 1467ms, 520 

SEM = 35ms). Please note, that this cannot be simply due to a difficulty difference between the two S-R-521 

mappings called task X and task Y, as the specific S-R-mappings were counter-balanced across subjects. 522 

Given the long delay phase, subjects should have had enough time to prepare both tasks well, and we 523 

were somewhat surprised to see this RT difference. This results might reflect the encoding sequence in 524 

the learning phase. Subjects might have learned the S-R-mapping labelled X first, and then learned the S-525 

R-mapping labelled Y second. If the second task is mainly encoded by how it differs from the first, this 526 

might lead to a RT difference (see also Lien et al., 2005). There was no evidence for an interaction between 527 

task and reward (BF10 = 0.26, F(1,34) = 6.63, p = 0.01).  528 

We then assessed whether subjects showed choice biases towards one of the two tasks, which might 529 

indicate stable preferences for specific tasks and might in turn affect fMRI analyses (see below). In order  530 
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 531 

Figure 2. Behavioral Results. A. Reaction Times (RT). The bar graph depicts the average reaction times for 532 
each combination of task and reward condition. Contingent (CR) trials are shown in black, non-contingent 533 
(NCR) trials are shown in grey. The violin plot depicts the RT distributions of the same data. B. Choice run 534 
length. This plot depicts the distribution of run lengths (the number of consecutive trials in the same task). 535 
Data from CR trials is shown in black, data from NCR trials is shown in grey. The expected distribution if 536 
choices were completely random is depicted in light grey. All error bars depict the SEM. C. Correlation of 537 
learning rate and success. Learning rates were extracted form a fitted RL model. Success was measured 538 
as % HR task choices. In CR trial, subjects who learned the changing reward contingencies quickly, were 539 
more successful. In NCR, no such correlation was observed. Each dot represents one subject, and linear 540 
functions were fitted to the data (lines). Further information on correlations between performance and 541 
additional questionnaire measures can be found in Supplementary Figure 1.  542 
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to quantify any potential choice biases, we computed the percentage of task X choices for both reward 543 

conditions separately. Subjects chose task X in 52.14% (SEM = 1.44%) of the CR trials, and 52.29% (1.72%) 544 

of the NCR trials. These values did not differ from 50% in the CR condition (BF10 = 0.48, t(34) = 1.47, p = 545 

0.14), and NCR condition (BF10 = 0.40, t(34) = 1.32, p = 0.19). There was also no difference between the 546 

two reward conditions (BF01 = 5.45, t(34) = 0.14, p = 0.88), indicating that subjects did not exhibit strong 547 

choice biases in this experiment.  548 

Next, we measured subjects’ success in solving the reversal learning task presented in CR trials, by 549 

computing the percentage of high-reward (HR) task choices for each subject. If they were unable to learn 550 

which of the two tasks was the HR task, this value should be 50%. Higher values indicate increasing success 551 

in performing the reversal learning task. We hypothesized that subjects chose HR tasks more often in CR, 552 

as compared to NCR trials. Subjects chose the HR task in 56.40% (SEM = 1.15%) of the CR trials, which was 553 

above chance level (BF10 >150, t(34) = 5.56, p < 0.001). They chose the HR task in 49.47% (SEM = 0.84%) 554 

of the NCR trials, which did not differ from the chance level (BF01 = 4.59, t(34) = 0.62, p = 0.53). 555 

Importantly, we found strong evidence for our hypothesis that subjects chose HR tasks more often in the 556 

CR, than in the NCR condition (BF10 > 150, t(34) = 5.44, p < 0.001). These findings demonstrate that 557 

subjects indeed chose tasks strategically in the CR condition, in order to maximize their reward outcome.  558 

We then described the learning process in the CR trials in more details by fitting a reinforcement learning 559 

(RL) model (Sutton and Barto, 1990, see Materials and Methods for more details) to the choice data of 560 

each subject, and extracting the estimated learning rate (α). We expected subjects to show high learning 561 

rates in CR trials, reflecting the fact that subjects frequently needed to update which of the two tasks 562 

yielded higher reward outcomes. We compared fitted models in both CR and NCR trials to a null model, 563 

in which the learning rate was fixed to 0, assuming that subjects never learned about the reward 564 

contingencies in this experiment. Model fit was assessed using the AIC and BIC (Burnham and Anderson, 565 

2004). As expected, the RL model provided a better fit to the data than the null model in both CR trials 566 
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(AICRL_CR=129.97, AICNULL_CR=159.54, BICRL_CR=132.71, BICNULL_CR=159.54), as well as NCR trials 567 

(AICRL_NCR=158.70, AICNULL_NCR=158.90, BICRL_NCR=132.71, BICNULL_NCR=158.90). Given that reward 568 

contingencies changed frequently in the CR trials, we expected learning rates to be higher in CR than in 569 

NCR trials. We found strong evidence in favor of this hypothesis (αCR: mean = .78, median = .96, sd = .33, 570 

min/max = <.001/1; αNCR: mean = .36, median = .06, sd = .41, min/max = <.001/1; BF10 > 150, t(34) = 4.63, 571 

p < 0.001). We then correlated estimated learning rates with successful task performance (% HR task 572 

choices), again using a Bayesian framework for correlation estimation (using bayes.cor.test form the 573 

BayesianFirstAid package in R). Specifically, we estimated the probability of the correlation being above 0 574 

(p(r>0)), and also estimated 95% credible intervals (95% CI), which indicates the range of values within 575 

which the correlation falls with a 95% probability. If this interval did not include 0, we interpreted the 576 

correlation as either positive or negative. The estimated learning rate in CR trials was indeed correlated 577 

with successful task performance (% HR task choices), r = .44 (95% CI = [.026, .74], p(r>0) = .97, Figure 2 578 

C), linking our computational modelling more closely to behavior. As a control analysis, we also correlated 579 

learning rate in NCR with proportion of HR task choices in NCR trials. As expected, we found no correlation, 580 

r=-.12 (95% CI = [-.46, .21], p(r>0) = .21). Classically estimated correlations confirmed these results, r = .56, 581 

p < 0.001, and r = -.12, p = 0.46, respectively. These results indicate that successful subjects were able to 582 

learn about changing reward contingencies more quickly, and also demonstrate that subjects treated both 583 

reward conditions differently.  584 

Lastly, in NCR trials we expected subjects to choose tasks randomly, as their choices had no effect on 585 

reward outcomes (see Materials and Methods for more details). In order to test this, we computed the 586 

run length for each subject, i.e. the average number of consecutive trials in the same task (Arrington and 587 

Logan, 2004). The average run length was then compared to the expected theoretical distribution if 588 

choices were fully random (Figure 2 B). The average run length in NCR trials was 1.95 trials (SEM = 0.07 589 

trials), which did not differ from the expected ‘random-choice’ run length (BF01 = 4.85, t(34) = 0.52, p = 590 
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0.60). Subjects in this experiment thus did not exhibit repetition bias, which has been reported previously 591 

for free-choice tasks (Arrington and Logan, 2004). The average run length in CR trials was 2.54 trials (SEM 592 

= 0.08 trials), which was longer than in NCR trials (BF10 >150, t(34) = 5.91, p < 0.001), demonstrating that 593 

subjects stayed longer in the same task. This is a viable strategy in the reversal-learning task they 594 

performed. Once they identified which was the HR task, repeatedly performing that task maximized 595 

reward outcomes.  596 

Reward-related brain activity 597 

Multivariate decoding of reward outcome values 598 

One of our main goals was to assess whether reward contingency affects valuation processes in the brain. 599 

In a first analysis, we aimed to extend previous findings demonstrating an effect of reward contingency 600 

on the processing of its hedonic value (Elliott et al., 2004). For this purpose, identified brain regions 601 

encoding outcome values (high vs low) at the time of feedback presentation. We found an extensive 602 

network to encode outcome values including subcortical brain regions, as well as large parts of the 603 

prefrontal and parietal cortex (Figure 3 A). Please note that this contrast might not only capture specific 604 

reward value signals, it might also reflect effects caused by differences in reward outcomes, like attention 605 

or motor preparation. We explicitly assessed whether reaction times affected outcome coding (see Todd 606 

et al., 2013), and found no effect (Figure 3-1). Subsequently, we assessed whether these outcome signals 607 

were modulated by reward contingency, hypothesizing that contingent rewards showed stronger 608 

decoding results than non-contingent rewards. For this purpose, we repeated the decoding analysis 609 

described above, now separately for CR and NCR trials, respectively. The two resulting accuracy maps 610 

were entered into a within-subjects ANOVA, and a contrast was computed identifying brain regions with 611 

higher accuracies in CR than in NCR trials. Using small-volume correction (p < 0.001 uncorrected, p < 0.05 612 

FWE corrected), we assessed which of the brain regions identified in the baseline analysis also showed 613 

stronger value coding for contingent rewards. We found the striatum, bilateral lateral PFC, dACC, anterior 614 
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medial PFC, and IPS to show stronger reward value coding for contingent rewards, as compared to non-615 

contingent rewards. In a last step, we directly assessed whether there were brain regions that encoded 616 

reward values in a contingency-invariant fashion, using a cross-classification approach. Here, we trained 617 

a classifier to distinguish high from low rewards only on CR trials, and then tested its performance on NCR 618 

trials, and vice versa. This allowed us to identify brain regions in which outcome values are encoded 619 

invariantly across the two contingency conditions, i.e. where neural patterns do not differ across 620 

contingency conditions (Kaplan et al., 2015). We found the striatum, lateral and medial PFC, dACC, and 621 

IPS to encode rewards in a contingency invariant form. This pattern of results suggests that the neural 622 

code for different reward values did not change across contingency conditions, yet value signals were still 623 

stronger in CR than in NCR trials. This is compatible with an increased gain or amplification of value 624 

representations through contingency (Figure 3 B), where representations do not change but become more 625 

separable in neural state space (see Waskom et al., 2014 for a similar argument).   626 
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 627 

Figure 3: Reward-related brain activity. A. Multivariate decoding of reward outcome value. Above: 628 
baseline decoding. Depicted are regions that encoded the value of reward outcomes (high vs. low). The 629 
regions identified were used as masks for the following analyses. Results are displayed at p < 0.05 (FWE 630 
corrected). Middle: regions with a stronger coding of reward value in contingent (CR) than in non-631 
contingent (NCR) trials. Below: regions encoding reward values in similar formats in both contingency 632 
conditions, as tested using a cross-classification (xclass) analysis. We also repeated this analysis, explicitly 633 
controlling for the effect of reaction times, and results can be found in Supplementary Figure 2. B. 634 
Amplification vs change of format of neural coding. Most regions identified in A showed both stronger 635 
decoding in CR trials, and similar formats across both contingency conditions. This is compatible with an 636 
amplification or gain increase of neural codes. In the middle, a hypothetical example of a pattern decoding 637 
is depicted. High reward trials are depicted as blue, low reward trials as orange dots. The classifier fits a 638 
decision boundary to separate the two distributions. If this code changes between the two contingency 639 
conditions (left), decoding is still possible at similar accuracy levels as before, but a classifier trained on 640 
NCR trials will be unsuccessful in classifying CR trials. If this code is amplified in the CR condition however 641 
(right), the same classifier can will be successful in both conditions. Accuracies increase, as the two 642 
distributions become more separable. C. Brain regions correlating with reward prediction error signals (in 643 
both CR and NCR trials).  644 
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Learning signals: Reward prediction errors 645 

In the previous analysis, we assessed which brain regions directly encoded different reward outcomes in 646 

individual trials. We now turn to identifying brain regions supporting reward-based learning processes 647 

across multiple trials. We used the fitted RL models (see above) to extract trial-by-trials reward prediction 648 

errors (RPEs), which signal the need to adapt one’s behavior (O’Reilly et al., 2013). Following a model-649 

based neuroscience approach (Forstmann and Wagenmakers, 2015), we identified brain regions in which 650 

activity correlated with RPEs. These learning signals should be strongest at the time of decision-making 651 

(in our case the reward feedback presentation, see Materials and Methods for more details), and we 652 

found the left parietal cortex and anterior medial PFC to correlate with RPEs in CR trials (Figure 3 C). In 653 

NCR trials, we found anterior cingulate and anterior medial prefrontal cortex to encode RPEs. We 654 

statistically assessed the difference between these two results, using a within-subjects ANOVA with the 655 

factor ‘model’ (2 levels). We found no significant differences (p < 0.001 (uncorrected) at the voxel level, p 656 

<0.05 (FWE corrected) at the cluster level), and thus decided to combine both conditions to increase 657 

statistical power. Running the same analysis over all trials (CR and NCR) again revealed the left parietal 658 

cortex (overlapping with the region identified in Analysis 1), ACC and anterior medial PFC, but also the 659 

precuneus. These regions thus signal discrepancies between expected and received rewards during 660 

feedback presentation, indicating the need to adapt behavior in the subsequent trial.  661 

These brain regions could either signal general surprise, as RPEs are the difference between expected and 662 

received rewards (O’Reilly et al., 2013). They could also signal the need to update an internal model of 663 

our environment. Our findings are more in line with the former option. Any region signaling the need to 664 

update the internal model of the environment should be specifically involved only in CR trials (where 665 

updating is required), and not in NCR trials (where updating is not needed). In order to test this, we 666 

identified subjects that only showed high learning rates in CR and low learning rates in NCR trials (n=19). 667 

For these subjects, prediction errors only signaled the need to update their internal model. Results 668 
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showed that for this subset of subjects, only the anterior medial PFC correlated with RPEs (p < 0.001 669 

uncorrected at the voxel, and p < 0.05 FWE corrected at the cluster level). This seems to suggest that the 670 

anterior medial PFC was involved in model updating, while the left parietal cortex and precuneus signaled 671 

general surprise. Given that the sample size was considerably smaller in this analysis, results should be 672 

interpreted with caution however.   673 

Multivariate decoding of tasks  674 

Baseline decoding analysis: The previous analysis demonstrated that reward contingency indeed affected 675 

the neural processing of the hedonic value of reward outcomes, and possibly also related learning signals. 676 

In the following analysis we assessed whether these effects propagated to the implementation of chosen 677 

behavior, i.e. the coding of chosen tasks as well. For this purpose, we first estimated a GLM modelling 678 

task-related neural activity during the maintenance of chosen tasks, from the onset of the ‘choose’ cue to 679 

the onset of the task execution screen. (see Materials and Methods for more details, and Haynes et al. 680 

(2007) for a similar approach). During this time, subjects needed to maintain their intention to perform 681 

one of the two tasks. We performed a searchlight decoding analysis contrasting task X and task Y, 682 

combining both CR and NCR trials in order to maximize the power to detect any brain regions containing 683 

task information (see Loose et al., 2017 for a similar approach). Please note that during this time subjects 684 

cannot prepare specific motor responses yet, but they can use this time to retrieve the current S-R-685 

mapping. We found two brain regions to contain task information, the left posterior parietal cortex (mean 686 

accuracy = 4.61%, SEM = 0.65%), spanning over the midline into the right parietal cortex, and the right 687 

anterior middle frontal gyrus (aMFG, mean accuracy = 4.66%, SEM = 0.89%, see Figure 4 A, Table 1). 688 

Interestingly, the parietal cluster identified in this analysis partly overlapped with the parietal cluster 689 

found to encode reward prediction errors in the previous analysis, suggesting that the left parietal cortex 690 

is involved in both reward-learning and task processing. 691 
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 692 

Figure 4: Task coding. A. Task coding during maintenance. Results from the baseline decoding analysis are 693 
depicted above. Two clusters passed the significance threshold, one in the parietal cortex, and one in the 694 
right anterior MFG. These two clusters were then used as ROIs, and accuracies were extracted for the 695 
contingent (CR), non-contingent (NCR), and cross-classification (xclass) task decoding analyses. Results 696 
can be seen below. Above the boxplots, Bayes factors (BF10) of a t-test vs. chance level are shown. Please 697 
note, that we do not report BF10 for the baseline analysis, as this analysis was used to define the ROIs, 698 
and running additional statistical tests on this data would constitute double dipping. B. Task coding at the 699 
time of decision-making. Above the ROI in the right dmPFC used in this analysis from Wisniewski et al. 700 
(2015) is depicted. This study demonstrated that the right dmPFC encodes tasks at the time of decision-701 
making. The box plot depicts results from our data in this ROI, for all four analyses performed (baseline, 702 
CR, NCR, xclass). We largely replicate these previous findings. The dissociation plot depicts a double 703 
dissociation between two ROIs (right dmPFC, as defined using data from Wisniewski et al., 2015, and the 704 
left parietal cortex, as defined using data from Wisniewski et al., 2016), and two time points in the trial 705 
(time of decision-making, maintenance). It can be seen that the dmPFC only encodes tasks at the time of 706 
decision-making, while the left parietal cortex only encodes tasks during the maintenance phase. All error 707 
bars represent SEM. C. Overlap with previous results. Results from the current study (red) are overlain on 708 
previous findings from Wisniewski et al. 2016 (blue), and Loose et al. 2017 (green). All results are based 709 
on task decoding analyses (searchlight decoding, radius = 3 voxels, C = 1, chance level = 50%), albeit with 710 
different specific tasks being contrasted in each study. Despite this fact, all three studies find task 711 
information around the intraparietal sulcus. Findings in the PFC are less consistent. We further assessed 712 
task information encoded throughout the multiple-demand network, results can be found in 713 
Supplementary Figure 3. 714 
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Table 1: Baseline task decoding 715 

         MNI coordinates (peak) 

Brain region Side Cluster size Mean accuracy (SEM) X Y Z 

parietal cortex Bilateral 2427 4.61% (0.65%) -10 -60 60 

anterior MFG Right 955 4.66% (0.89%) 32 58 18 

Results are shown for a statistical threshold of p<0.001 (uncorrected) at the voxel level and p<0.05 (FWE 716 

corrected) at the cluster level.  717 

 718 

Differences in task coding: In a next step, we assessed whether tasks were encoded with a higher accuracy 719 

in CR, than in NCR trials, similar to what we found for reward outcomes. Previous research demonstrated 720 

higher decoding accuracies in rewarded, as compared to non-rewarded tasks (Etzel et al., 2016). We built 721 

functional ROIs from the two regions identified in the baseline analysis, and extracted the average 722 

accuracy values for the task decoding analyses performed on CR trials only, and NCR trials only. Please 723 

note that these two analyses use only half as many trials as the baseline analysis, and the signal-to-noise-724 

ratio can be expected to be lower. We found no task information in the parietal cortex in these two 725 

analyses (CR: 1.29%, SEM = 0.91%, BF10 = 1.06, t(34) = 1.59, p = 0.06; NCR: 1.73%, SEM = 1.44%, BF10 = 726 

0.64, t(34) = 1.23, p = 0.11), and found no evidence for stronger task coding in CR than in NCR trials (BF10 727 

= 0.16, t(34) = 0.09, p = 0.53). A similar pattern of results was found in the right aMFG (CR: 1.79%, SEM = 728 

1.37%, BF10 = 0.85, t(34) = 1.44, p = 0.07; NCR: 0.48%, SEM = 1.35%, BF10 = 0.22, t(34) = 0.25, p = 0.40; 729 

CR > NCR: BF10 = 0.40, t(34) = 0.84, p = 0.20). Thus, we find no evidence for an effect of reward 730 

contingency on task representations, despite the fact that behavior clearly differed between the two 731 

reward conditions, and that contingency has been found to modulate the coding of reward outcomes. In 732 

order to assess whether the lack of evidence for differences in task coding might stem from a lack in 733 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 14, 2019. ; https://doi.org/10.1101/375642doi: bioRxiv preprint 

https://doi.org/10.1101/375642
http://creativecommons.org/licenses/by/4.0/


34 
 

statistical power, we performed an additional control analysis. We again performed two separate task 734 

decoding analysis, only using high reward and low reward trials (instead of CR and NCR trials), respectively. 735 

We then tested whether decoding accuracies differed between these two conditions. Importantly, this 736 

analysis has a similar statistical power, as the same number of trials is used. And indeed, we found task 737 

coding to differ between these two conditions even at the whole brain level (p < 0.001 uncorrected at the 738 

voxel, and p < 0.05 FWE corrected at the cluster level). Please note that this comparison might confound 739 

effects of reward value with attentional processes. Nevertheless, this shows that our analysis approach is 740 

able to identify differences in task coding in this dataset, although it fails to do so for our reward 741 

contingency manipulation.  742 

Similarities in task coding: We also directly tested whether task representations were invariant across the 743 

two reward conditions, using a cross-classification approach. We trained a classifier to distinguish tasks in 744 

CR trials, and tested its performance in NCR trials, and vice versa. In this analysis, accuracies can only be 745 

above chance if task coding is invariant across both conditions. Results indicate than both the parietal 746 

cortex (4.03%, SEM = 0.76%, BF10 > 150), as well as the right aMFG (3.71%, SEM = 1.16%, BF10 = 49.39) 747 

show this type of contingency-invariant task coding. We further tested whether accuracies in the cross-748 

classification differed from the baseline accuracies, finding moderate evidence for an absence of any 749 

differences (parietal cortex BF01 = 4.34, t(34) = 0.71, p = 0.47, aMFG BF01 = 3.94, t(34) = 0.84, p = 0.40). 750 

These results thus show that the parietal cortex and aMFG encode tasks using a general, reward-751 

contingency-invariant format.  752 

ROI analyses and replications: We also tested for task information in several a-priori ROIs, taken from two 753 

previous experiments (Loose et al. 2017, Wisniewski et al. 2016), which tested for effects of cognitive 754 

control, and free choice on task coding, respectively. Both previous studies found the left parietal cortex 755 

to be involved in context-invariant task coding, and we thus set out to replicate these previous results 756 

here. We extracted the ROIs reported in these two studies, and extracted decoding accuracies in each of 757 
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these ROIs, for all 4 analyses performed here (baseline, CR, NCR, xclass). We were able to replicate Loose 758 

and colleagues’ left parietal results (baseline BF10 = 133.69, t(34) = 3.89, p < 0.001; CR BF10 = 0.68, t(34) 759 

= 1.23, p = 0.10; NCR BF10 = 0.54, t(34) = 1.11, p = 0.13; xclass BF10 = 33.17, t(34) = 3.33, p = 0.001). 760 

Although somewhat weaker, we also replicated their right parietal results (baseline BF10 = 8.49, t(34) = 761 

2.72, p = 0.004; CR BF10 = 0.77, t(34) = 1.37, p = 0.08; NCR BF10 = 0.14, t(34) = 0.28, p = 0.61; xclass BF10 762 

= 8.10, t(34) = 2.70, p = 0.005). However, we were unable to detect task information in left PFC (baseline 763 

BF10 = 0.49, t(34) = 1.03, p = 0.15; CR BF10 = 0.21, t(34) = 0.23, p = 0.40; NCR BF10 = 0.44, t(34) = 0.93, p 764 

= 0.17; xclass BF10 = 0.29, t(34) = 0.54, p = 0.29), which is in line with the original paper, where PFC findings 765 

were also somewhat less robust. Additionally, we were able to replicate Wisniewski and colleagues’ left 766 

parietal finding (baseline BF10 = >150, t(34) = 4.20, p < 0.001; CR BF10 = 0.80, t(34) = 1.40, p = 0.08; NCR 767 

BF10 = 0.47, t(34) = 1.00, p = 0.16; xclass BF10 = 87.28, t(34) = 3.72, p < 0.001), as well as left BA8 (baseline 768 

BF10 = 9.3, t(34) = 2.77, p = 0.004; CR BF10 = 0.39, t(34) = 0.83, p = 0.20; NCR BF10 = 0.36, t(34) = 0.76, p 769 

= 0.22; xclass BF10 = 3.09, t(34) = 2.22, p = 0.16), but not the left PFC (baseline BF10 = 0.59, t(34) = 1.17, 770 

p = 0.12; CR BF10 = 0.37, t(34) = 0.78, p = 0.21; NCR BF10 = 0.16, t(34) = 0.15, p = 0.56; xclass BF10 = 0.38, 771 

t(34) = 0.81, p = 0.21). Thus, three studies with similar overall designs but considerable differences in the 772 

specific tasks used consistently find invariant task coding in the parietal, but not in the prefrontal cortex.  773 

Furthermore, Wisniewski et al. 2015 found task information at the time of decision-making in the right 774 

dorso-medial PFC (Figure 4 B). In order to replicate this finding, we repeated all 4 task decoding analysis, 775 

only looking at the time of decision-making instead of intention maintenance (which was the reward 776 

feedback presentation in this experiment, see Materials and Methods for more details). The right dmPFC, 777 

as identified by Wisniewski and colleagues, was found to encode tasks also in the current study (baseline 778 

3.76%, SEM = 1.07%, BF10 = 51.27, t(34) = 3.51, p < 0.001, Figure 4 B). This was despite the fact that there 779 

were considerable differences in the overall experimental design of these two studies (e.g. 2 class vs. 3 780 

class decoding, changing reward outcomes vs. changing task difficulty). We found anecdotal evidence for 781 
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contingency-invariant task coding in this region (xclass 2.03%, SEM = 0.98%, BF10 = 2.35, t(34) = 2.07, p = 782 

0.02), although the baseline and xclass analyses did not differ (BF10 = 1.64, t(34) = 1.63, p = 0.11). 783 

Interestingly, the dmPFC was also found to encode reward outcome values, with its outcome signal being 784 

amplified by our contingency manipulation (Figure 3 A). This region thus simultaneously encoded both 785 

reward outcomes and the choices informed by these outcomes, highlighting its role in linking value to 786 

intention processing in the brain. Additionally, we found a double dissociation in task coding between the 787 

right dmPFC and left parietal cortex (Figure 4B), with the former only encoding tasks at the time of 788 

decision-making, and the latter only encoding tasks during intention maintenance. Please note that due a 789 

jittered inter-trial-interval, the decision-time and intention maintenance could be investigated 790 

independently. This dissociation was assessed statistically by performing an ANOVA on the accuracy 791 

values, using the factors ‘time in trial’ (time of decision vs intention maintenance) and ‘ROI’ (right dmPFC 792 

vs left parietal cortex). We found moderate evidence for a time x ROI interaction (BF10 = 5.39, F(1,34) = 793 

10.49, p = 0.04). Furthermore, the right dmPFC only encoded tasks at the time of decision (BF10 = 51.27, 794 

t(34) = 3.51, p < 0.001), but not during intention maintenance (BF10 = 0.68, t(34) = 1.28, p = 0.10). The left 795 

parietal cortex only encoded tasks during intention maintenance (BF10 > 150, t(34) = 4.20, p < 0.001), but 796 

not at time of decision (BF10 = 0.19, t(34) = 0.09, p = 0.46). This double dissociation thus suggests a 797 

temporal order of task processing in the brain, with the medial PFC transiently encoding chosen tasks at 798 

the time of decision-making, and the left parietal cortex then maintaining that information until the tasks 799 

can be executed. Lastly, we also assessed task information throughout the multiple demand network 800 

(Duncan, 2010; Woolgar et al., 2015), and found tasks to be encoded in a contingency-invariant format 801 

(Figure 4-1). 802 

Control analyses: In order to provide further support for our main results, we decided to perform a 803 

number of additional control analyses. First, we controlled for potential effects of RTs on task decoding 804 

results. It has been pointed out before, that task information in the brain can at least partly be explained 805 
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through RT effects (Todd et al., 2013). Although others have found no such effects (Woolgar et al., 2014), 806 

we decided to conservatively control for RT effects nonetheless, especially given that we found RT 807 

differences between tasks (see above). We thus repeated the task decoding analyses, only first regressing 808 

RT-related effects out of the data. We used the parietal and aMFG ROIs defined in the baseline analysis 809 

and tested whether task information was still present after controlling for potential RT effects. We still 810 

found the parietal cortex to encode tasks (4.61%, SEM = 0.65%, BF10 > 150, t(34) = 6.99, p < 0.001), and 811 

also found the task coding to be reward-invariant (4.03%, SEM = 0.76%, BF10 > 150, t(34) = 5.24, p < 812 

0.001). The same was true for the aMFG (4.66%, SEM = 0.89%, BF10 > 150, t(34) = 5.19, p < 0.001; and 813 

3.71%, SEM = 1.16%, BF10 = 23.38, t(34) = 3.18, p = 0.001; respectively). Results in the baseline and xclass 814 

analysis were equal in both regions, BFs10 >= 3.24, ts(34) < 0.67, ps > 0.25. These results thus mirror the 815 

main analysis above, showing that RT-related variance cannot explain task decoding results in our 816 

experiment.  817 

Although overall error rates were low and choice biases were largely absent, it was still possible that 818 

individual subjects showed excessively high error rates or strong choice biases, affecting task decoding 819 

results. The influence of individual subjects should be relatively small given our large sample size, but we 820 

still repeated the main analyses, excluding subjects with excessively high error rates and excessively 821 

strong choice biases. Additionally, we excluded subjects in which regressors could not be estimated from 822 

a sufficient number of trials (see Materials and Methods for more details). Using these highly conservative 823 

exclusion criteria, we removed an additional 12 subjects from the sample, leading to a sample size of 23 824 

subjects. Even though statistical power was considerably lower because of the smaller sample size, we 825 

were still able to detect task information in the parietal cortex (5.20%, SEM = 0.79%, BF10 >150, t(22) = 826 

6.54, p < 0.001), which was again reward-invariant (3.81%, SEM = 0.96%, BF10 = 96.61, t(22) = 3.93, p < 827 

0.001), and the same was true for the aMFG (5.03%, SEM = 1.09%, BF10 >150, t(22) = 4.60, p < 0.001, and 828 
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3.71%, SEM = 1.39%, BF10 = 7.34, t(22) = 2.66, p = 0.006, respectively). Therefore, neither error rates, nor 829 

choice biases can explain the reported task decoding results.  830 

In order to validate the decoding procedure, we also extracted task decoding accuracies from a region not 831 

involved in performing this task, the primary auditory cortex. As expected, we found accuracies not to 832 

differ from chance level in this region (-0.36%, SEM = 0.93%, BF01 = 7.22, t(34) = 0.38, p = 0.64), showing 833 

that the task decoding analysis was not biased towards positive accuracy values. Lastly, we empirically 834 

estimated the chance level of our decoding analysis using permutation tests, in order to rule out a biased 835 

chance level. The estimated chance level was 49.98%, which did not differ from the theoretical chance 836 

level of 50% (BF01 > 150, t(34999) = 0.41, p = 0.67). Thus, comparing our decoding accuracies against a 837 

chance level of 50% was valid.  838 

Discussion  839 

Here, we investigated the effects of control over choice outcomes on outcome valuation and choice 840 

implementation. Subjects performed a probabilistic reward reversal learning task, in which they had 841 

control over the outcomes of their choices. They also performed a free choice task with non-contingent 842 

reward outcomes, in which outcomes were not under their direct control. Although we found reward 843 

contingency to modulate outcome valuation, we found no effects on choice implementation. 844 

Furthermore, we found two main brain regions to be crucial for encoding tasks and reward outcomes: the 845 

right dmPFC and the left parietal cortex (around the IPS). The dmPFC was found to encode chosen tasks 846 

at the time of decision-making, and simultaneously encoded reward outcome values, emphasizing its role 847 

in linking value-related with intentional control processes.  While the parietal cortex encoded reward-848 

prediction errors at the time of decision-making, it encoded chosen tasks during a subsequent 849 

maintenance phase. We found a double dissociation between both regions, with the dmPFC encoding 850 

tasks only at the time of decision-making, and the parietal cortex only during intention maintenance.  851 
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Control over choice outcomes affects outcome valuation but not choice implementation  852 

Much previous research on the effects of reward motivation on cognition investigated the effects of 853 

reward prospect (Jimura et al., 2010; Dreisbach and Fischer, 2012). These findings demonstrated that 854 

positive reinforcement improves cognition, as compared to no reinforcement at all. However, an equally 855 

important and often overlooked property of reinforcement is the degree of control we have in reaching 856 

it. Sometimes, an action will cause outcomes in a fairly clear way (e.g. hitting a light switch), other times, 857 

that link will be less close (e.g. refreshing your Facebook timeline). Previous work on non-human primates 858 

has shown that the strength of such action-outcome contingencies modulates the neural processing of 859 

reward outcomes (Izquierdo et al., 2004; Chudasama et al., 2013). Our results show that this is also true 860 

in humans (see also Tricomi et al., 2004), and that neural representations of outcome values (and 861 

correlated processes) are amplified by reward contingency. Although somewhat weaker, evidence for 862 

reward learning signals points in the same direction. This is in line with predictions from gain-theories of 863 

motivation. It has been suggested that rewards increase the gain of subcortical dopaminergic neurons 864 

(Tobler et al., 2005), making them more sensitive to changes in rewards (see also Ikeda and Hikosaka, 865 

2003; Thurley et al., 2008). We directly demonstrate such gain increases, in subcortical dopaminergic 866 

regions and beyond.  867 

Importantly, in order for this value signal to lead to actual rewards, chosen behavior has to be 868 

implemented as intended first (see also Ruge et al., 2010). One might thus expect contingency to lead to 869 

stronger task shielding and coding (Dreisbach and Wenke, 2011), as the costs of confusing the two highly 870 

similar tasks are potentially high. However, we found no evidence for such effects. On the contrary, we 871 

found evidence for a similar or invariant coding of tasks across both contingency conditions. This finding 872 

informs current debates on the nature of task coding in the brain (Wisniewski, 2018). On the one hand, 873 

some have argued for flexible task coding especially in the fronto-parietal cortex (Woolgar et al., 2015; 874 

Qiao et al., 2017), often based on the multiple-demand network theory (Duncan, 2010). This account 875 
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predicts that task coding should be stronger when task demands are high (Woolgar et al., 2015), or when 876 

correct performance is rewarded (Etzel et al., 2016). Despite our efforts to replicate these findings in our 877 

data-set, we found no evidence for an influence of reward contingency on task coding. This was despite 878 

the fact that behavior differed between these conditions and that value-related signals were affected by 879 

reward contingency. One might argue that our analysis had insufficient statistical power to detect true 880 

effects, though we believe this to be unlikely. First, we decided to have a relatively large sample size 881 

(n=35). Second, additional control analyses showed that other analyses, matched for statistical power, do 882 

show significant results.  883 

On the other hand, others have argued that the same task representations could be used in multiple 884 

different situations (i.e. ‘multiplexing’ of task information), and that this allows us to flexibly react to novel 885 

and changing demands (Botvinick and Cohen, 2014). Multiplexing predicts that task information should 886 

be invariant across different contexts (Levine and Schwarzbach, 2017), which has been shown previously 887 

(Zhang et al., 2013; Wisniewski et al., 2016; Loose et al., 2017). Here, we replicate and extend these 888 

findings, by showing that tasks are encoded in an outcome-contingency-invariant format in frontal and 889 

parietal brain regions, strengthening the idea of multiplexing of task information in the brain. One possible 890 

alternative explanation for this finding might be that subjects were highly trained in performing the two 891 

tasks, and were at their performance ceiling. This might make a modulation of task coding too small to 892 

detect. Although we cannot fully exclude this interpretation, we want to point out that contingency did 893 

have robust effects on behavior. Also, most related previous experiments trained their subjects, those 894 

that found effects (Woolgar et al., 2015; Etzel et al., 2016) and those that did not (Wisniewski et al., 2016). 895 

We thus believe this alternative explanation to be unlikely. Overall, our task decoding results are in line 896 

with the idea of multiplexing of task information in the brain. Future research will have to test more 897 

directly which environmental conditions lead to multiplexing of task information in the brain, and which 898 

do not.  899 
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The roles of dmPFC and parietal cortex in value-related and task-related processes  900 

The dmPFC is a key region for decision-making in dynamic environments. It is supports effort-based 901 

foraging choices (Wisniewski et al., 2015b), and here we extend this finding by showing its involvement in 902 

a different task with different outcomes (reward reversal learning). The dmPFC is important for cognitive 903 

control, supporting rule and action selection (Rowe et al., 2008), working memory (Taylor et al., 2004), 904 

and processing uncertainty (Volz et al., 2003). It has further been associated with valuation processes, 905 

anticipating both positive and negative outcomes (Jensen et al., 2003; Knutson et al., 2003), and encoding 906 

reward prediction errors (Vassena et al., 2014). In this experiment, we demonstrated that the dmPFC is 907 

specifically involved in encoding tasks only at the time at which a choice is made, other regions later 908 

maintain that choice outcome until it can be executed. We also demonstrated the dmPFC to encode 909 

outcome values at the same time. Please note that we do not claim this value signal to only represent the 910 

magnitude of reward outcomes, it might also represent related processes (e.g. attention). Nevertheless, 911 

the cause of this effect are different outcome values, and this highlights the importance of dmPFC in 912 

linking valuation to strategic decision-making, providing an explanation to how it might support goal-913 

directed behavior (Viard et al., 2011).  914 

The second key region identified in this experiment was the left parietal cortex, especially around the IPS. 915 

This brain region encodes prediction errors (Daw and Doya, 2006; Matsumoto et al., 2007; Katahira et al., 916 

2015), which might signal model updating (Behrens et al., 2007; Walton et al., 2007; Rutledge et al., 2010). 917 

Alternatively, it has been suggested that the parietal cortex signals surprise, and does not reflect model 918 

updating (O’Reilly et al., 2013). Our findings are more in line with surprise signaling, the only brain region 919 

possibly involved in model updating in our experiment was the anterior medial PFC (see also (Braem et 920 

al., 2013). The parietal cortex is also a key region for cognitive control (Ruge et al., 2009), and working 921 

memory (Christophel et al., 2017). It is part of the multiple demand network (Duncan, 2010; Fedorenko 922 

et al., 2013), a set of brain regions characterized by their high flexibility to adapt to changing demands. 923 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 14, 2019. ; https://doi.org/10.1101/375642doi: bioRxiv preprint 

https://doi.org/10.1101/375642
http://creativecommons.org/licenses/by/4.0/


42 
 

Previous work on non-human primates demonstrated that the prefrontal cortex flexibly switches between 924 

representing different control-related information within single trials (Sigala et al., 2008; Stokes et al., 925 

2013). Our results show that the parietal cortex in humans exhibits similar flexibility. It switches between 926 

encoding control-related and value-related variables within single trials. This provides compelling 927 

evidence for the flexibility of the parietal cortex in adapting to rapidly changing task demands. In the 928 

future, it will be interesting to assess whether and how the parietal cortex links value-related and control-929 

related variables. Given its involvement in foraging behavior (Sugrue, 2004), the previous choice and 930 

outcome history likely affects current choice representations in this brain region. Future experiments will 931 

shed more light on how exactly our choice history shapes our current choices. 932 

Conclusion 933 

In this experiment, we assessed whether controlling outcomes affects outcome valuation and choice 934 

implementation in the brain. By comparing choices that are informed by expected outcomes as well as 935 

choices that are not, we linked largely parallel research on ‘free choice’ (Libet et al., 1983) and value-936 

based decision-making (Hampton and O’Doherty, 2007), which has been long overdue. While we found 937 

strong effects on outcome valuation, we found no such effects on choice implementation. Our results 938 

further highlight the importance of both the dmPFC and parietal cortex in bridging valuation and executive 939 

processes in the brain. Both regions have been involved in processing task choices and their reward 940 

outcomes, flexibly switching between encoding value-related and task-related information.    941 
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Supplementary Material 1144 

 1145 

Supplementary Figure 1: Correlation analysis. An additional exploratory analysis was performed to 1146 

correlate performance, questionnaire measures, and decoding accuracies (baseline task decoding, from 1147 

the parietal cortex cluster). Depicted are all pairwise correlations between % high reward choices in CR 1148 

trials (successCR), % high reward chocies in NCR trials (successNCR), motor impulsivity (BIS11motor), 1149 

attentional impulsivity (BIS11att), non-planning impulsivity (BIS11nonpl), behavioral inhibition (BIS), 1150 

behavioral approach (BAS), need for cognition (NFC), sensitivity to reward (SR), sensitivity to punishment 1151 

(SP), and decoding accuracies in the baseline task decoding analysis in the parietal cortex (%acc). The plot 1152 

was generated using the corrplot package in R. 1153 

Despite this descriptive approach, we also tested the strength of these correlations in a Bayesian 1154 

framework (using bayes.cor.test form the BayesianFirstAid package in R). Although our conclusions are 1155 

based on this correlation analysis, we also report classically estimated correlations and corresponding p-1156 

values for the interested reader. We expected successful performance to be correlated with higher need 1157 

for cognition, lower impulsivity, and higher sensitivity to reward. We also expected task coding to be 1158 

related to task performance, with better performance related to higher accuracies. Higher accuracies 1159 

could also be related to lower impulsivity, higher sensitivity to reward, and higher need for cognition. 1160 

Successful performance was correlated with impulsivity, as measured using the BIS11, r = -.34 (95%CI = [-1161 

.62 -.024]; classical estimation r = -.33, p = 0.052), with impulsive subjects being less successful in 1162 
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performing the reversal learning task. The BIS11 further splits impulsivity into three components: 1163 

attentional, motor, and non-planning impulsivity. The observed correlation was mostly driven by motor 1164 

impulsivity (r = -.45, 95%CI = [-.70 -.15]; r = -.47, p = 0.004), but not by non-planning (r = -.19, 95%CI = [-1165 

.52 .14]; r = -.20, p = 0.24) or attentional impulsivity (r = -.11, 95%CI = [-.45 .02]; r = -.11, p = 0.51). There 1166 

was no correlation of success with either sensitivity to reward (r = .04, 95%CI = [-.29 .38]; r = .06, p = 0.71), 1167 

or the need for cognition (r = .26, 95%CI = [-.07 .56]; r = .26, p = 0.11), despite the fact the need for 1168 

cognition seems to be associated with reward decision-making (Sandra and Otto 2018). A qualitatively 1169 

similar pattern was evident for decoding accuracies, extracted during intention maintenance from the 1170 

parietal cortex. Correlations with impulsivity (r = -.27, 95%CI = [-.57 .07]; r = -.32, p = 0.053), sensitivity to 1171 

reward (r = -.04, 95%CI = [-.38 .31], r = .17, p = 0.30), and need for cognition (r = .09, 95%CI = [-.24 .41]; r 1172 

= -.24, p – 0.16) were at least similar numerically to the correlations with task success. Given that the 1173 

evidence was somewhat weaker in this analysis, results should be interpreted with care however. Overall, 1174 

task performance and to a lesser degree decoding accuracies seem to be most strongly related to 1175 

impulsivity, and not to sensitivity to reward or need for cognition. This unexpected link to impulsivity 1176 

should be addressed directly in future research. 1177 

Sandra, D.A., & Otto A.R. (2018) Cognitive Capacity Limitations and Need for Cognition Differentially 1178 

Predict Reward-Induced Cognitive Effort Expenditure. Cognition, 172: 101–6.  1179 
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 1181 

Supplementary Figure 2. Controlling RT-effects in reward outcome coding. We repeated the reward 1182 

outcome decoding analysis, using a similar first-level GLM to estimate signals (4 regressors: each 1183 

combination of high vs low reward, contingent vs non-contingent reward, locked to feedback onset). 1184 

Additionally, we added regressors of non-interest capturing RT-related variance in the data. The rest of 1185 

the analysis was identical to the reward outcome decoding analysis presented in the main body of the 1186 

text. Results from the reward outcome decoding analysis (red), and the same analysis with RT-related 1187 

effects regressed out of the data (blue) are depicted. As can be seen, the overlap between both analyses 1188 

is substantial. Results depicted at p < 0.05 (FWE, corrected at the voxel level). This indicates that 1189 

controlling for RT did not strongly alter our results.  1190 
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 1191 

Supplementary Figure 3. Task information in the multiple demand (MD) network. Depicted are task 1192 

decoding results in the bilateral functional ROIS provided by Fedorenko, Duncan, & Kanwisher (2013), 1193 

specifically the anterior insula (aINS), cerebellum, inferior frontal gyrus pars opercularis (IFGop), 1194 

intraparietal sulcus (IPS), middle frontal gyrus (MFG), pre-central gyrus (precG), supplementary and pre-1195 

supplementary motor area (SMA/preSMA), as well as thalamus. Averaging across all MD regions, we 1196 

found strong evidence for the presence of task information (2.23%, SEM = 0.61%, BF10 = 69.08, t(34) = 1197 

3.63, p < 0.001, Figure 1). We then tested whether accuracies were higher in CR trials than in NCR trials, 1198 

using the same analysis as used for the regions identified in the main task decoding analysis. We found no 1199 

evidence for a higher accuracy in CR, as compared to NCR trials (BF10 = 0.37, t(34) = 0.68, p = 0.24). 1200 

Furthermore, we found task coding to be contingency-invariant, using a cross-classification approach 1201 

(2.02%, SEM = 0.67%, BF10 = 14.52, t(34) = 2.97, p = 0.002). Accuracies in the baseline and cross-1202 

classification analysis did not differ (BF10 = 5.11, t(34) = 0.40, p = 0.68). This suggests that the MD network 1203 

encodes tasks in a contingency-invariant fashion, and shows that the current context does not affect task 1204 

coding in the MD network. This is despite the clear effects contingency has on the coding of reward 1205 

outcomes.  1206 

Looking at individual MD regions, we found task information in the aINS (2.25%, SEM = 1.00%, BF10 = 1207 

3.23, t(34) = 2.24, p = 0.01), IPS (2.83%, SEM = 0.72%, BF10 = 131.02, t(34) = 3.88, p < 0.001), MFG (2.44%, 1208 
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SEM = 0.90%, BF10 = 8.26, t(34) = 2.71, p = 0.005), precentral gyrus (2.48%, SEM = 0.87, BF10 = 9.86, t(34) 1209 

= 2.79, p = 0.004), but not in the cerebellum (0.85%, SEM = 0.90%, BF10 = 0.44, t(34) = 0.94, p = 0.17), 1210 

IFGop (2.11%, SEM = 1.02%, BF10 = 2.31, t(34) = 2.06, p = 0.02) SMA/preSMA (1.48%, SEM = 1.07%, BF10 1211 

= 0.77, t(34) = 1.37, p = 0.08), and thalamus (0.58%, SEM = 1.06%, BF10 = 0.29, t(34) = 0.54, p = 0.29). 1212 

None of these regions showed a higher accuracy in CR than in NCR trials (BFs10 <= 0.60, ts(34) < 1.19, ps 1213 

> 0.12). However, in all of those regions the accuracy in the baseline and xclass analyses was equal (BFs10 1214 

>= 3.47, ts(34) < 1.00, ps > 0.32). In sum, we did not find our reward manipulation to affect task coding in 1215 

the MD network. We did find contingency-invariant task information in this network however. Also, not 1216 

all parts of the MD network seemed to be encoding tasks in our experiment.  1217 

Fedorenko E, Duncan J, Kanwisher N. 2013. Broad domain generality in focal regions of frontal and 1218 

parietal cortex. P Natl Acad Sci USA. 110:16616–16621.  1219 
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