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Abstract

Evolutionary, biological, and demographic processes combine to shape the variation observed
in populations. Understanding how these processes are expected to influence variation allows
us to infer past demographic events and the nature of selection in human populations. Forward
models such as the diffusion approximation provide a powerful tool for analyzing the distribution
of allele frequencies in contemporary populations due to their computational tractability and
model flexibility. Here, we discuss recent computational developments and their application to
reconstructing human demographic history and patterns of selection at new mutations. We also
reexamine how some classical assumptions that are still commonly used in inference studies fare
when applied to modern data. We use whole-genome sequence data for 797 French Canadian
individuals to examine the neutrality of synonymous sites. We find that selection can lead to
strong biases in the inferred demography, mutation rate, and distributions of fitness effects.
We use these distributions of fitness effects together with demographic and phenotype-fitness
models to predict the relationship between effect size and allele frequency, and contrast those
predictions to commonly used models in statistical genetics. Thus the simple evolutionary
models investigated by Kimura and Ohta still provide important insight into modern genetic
research.

The scope of human sequencing projects has grown rapidly in recent years to include hundreds
of thousands of samples from populations around the globe. Analyzing such data requires tools
that can handle large numbers of samples, take into account a wide range of demographic and
evolutionary scenarios, and make predictions about relevant statistical properties of the data. In
this review we focus on the distribution of frequencies of derived alleles in a population (also known
as the allele frequency spectrum or AFS). The simplicity of the statistic, coupled with its sensitivity
to demographic and evolutionary processes, has led to its wide use in genomic inferences, including
past population demography (Williamson et al., 2005; Gutenkunst et al., 2009), the distribution
of fitness effects for new mutations (Boyko et al., 2008; Kim et al., 2017; Huber et al., 2017), and
expected patterns of diversity in spatially expanding populations and tumors (Peischl and Excoffier,
2015; Fusco et al., 2016).

Given an evolutionary model, the expected AFS can be estimated through a diversity of meth-
ods. Individual-level, population-wide simulation is a conceptually straightforward choice, but until
recently simulations were limited to very short subsets of the genome or to very small populations.

1

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 23, 2018. ; https://doi.org/10.1101/375048doi: bioRxiv preprint 

https://doi.org/10.1101/375048
http://creativecommons.org/licenses/by-nc/4.0/


Diffusion approaches were introduced as an analytically and computationally tractable approach to
model the distribution of allele frequencies without the need to track individuals or alleles through
evolution. Following early work by Kolmogorov, Fisher, and Wright, the diffusion equation in the
context of population genetics was extensively studied by Kimura (1964), Ohta and Kimura (1971)
and contemporaries. Many classical results of population genetics trace their roots to the diffusion
approaches, including the expected distribution of allele frequencies in a population, the probability
and time to fixation of new mutations, and the evolution of linkage disequilibrium, e.g. (Kimura
and Crow, 1964; Kimura and Ohta, 1969; Hill and Robertson, 1968).

The 1980s brought about the rise of approaches based on coalescent theory, which traces lineages
backward in time and computes statistics through the expected branch lengths of the resulting trees.
The coalescent gained popularity due to its ease of implementation and speed of simulation, quickly
becoming a go-to simulation engine (Hudson, 2002). Recent advances allow for coalescent-based
simulations of neutral evolution with many samples, many populations, and large genomes (Kelleher
et al., 2016). However, genome-wide coalescent simulations are still limited to a narrow range of
selective scenarios.

Rapid improvements in algorithms and computational power over the past two decades led to
the resurgence of forward models, which allow for large-scale simulations with various selection
regimes. Together with genome-level simulations (Hernandez, 2008; Thornton, 2014; Haller and
Messer, 2017), the classical diffusion approximation found new life through numerical approaches
to compute the AFS for non-equilibrium multi-population demography, selection and dominance
(Gutenkunst et al., 2009; Lukic and Hey, 2012; Jouganous et al., 2017).

Here we discuss inference of demography and selection from the AFS and how these combine
to influence our predictions of the architecture of complex traits (e.g. epilepsy, height). We use
a large whole-genome sequenced cohort of French Canadians and data from The 1000 Genomes
Project Consortium (2015) to examine how assumptions commonly used in genome-wide inference
fare when applied to large cohorts. We consider in particular the assumption of neutrality at
synonymous sites, its effect on inferences of demography and distributions of fitness effects for new
mutations, and the relationship between variant frequency and effect size.

Inference from the AFS

Diffusion-based forward approaches often focus on modeling the distribution of allele frequencies
(AFS). Given a sample of size n = (n1, n2, . . . , np) haploid copies of the genome in p populations,
the frequency of the derived allele at a biallelic locus can be described as a vector i = (i1, i2, . . . , ip),
where ik ∈ {0, 1, ..., nk} is the number of derived alleles in population k. The AFS Φn(i) records
the number of variants whose derived allele has frequency i.

To perform inference given an observed AFS from sequencing data, a straightforward approach
is to (1) propose a parameterized model, such as historical demography with size changes, splits
and migrations, (2) compute the expected AFS under that model for a given parameter set, (3)
compare the expected and observed spectra to obtain the likelihood of those parameters, and repeat
(2) and (3) to optimize over model parameters and find the best fit to the data. These parameters
typically include mutation rates, population size parameters, migration rates and admixture events,
and selection and dominance. The optimization procedure may be carried out through standard
minimization algorithms, and a number of inference software include built-in composite-likelihood
based inference frameworks (Gutenkunst et al., 2009; Coffman et al., 2016; Jouganous et al., 2017;
Kamm et al., 2018). In this process, the expected AFS is often computed for a large number of
evolutionary histories, requiring efficient computation of the AFS.

2

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 23, 2018. ; https://doi.org/10.1101/375048doi: bioRxiv preprint 

https://doi.org/10.1101/375048
http://creativecommons.org/licenses/by-nc/4.0/


The diffusion approximation

The classical Wright-Fisher (WF) model describes the forward evolution of a biallelic locus in a
population ofN diploid individuals. The diffusion approach approximates allele frequency dynamics
under the discrete WF model by a continuous function φ(x, t), the density of loci with allele
frequencies x ∈ (0, 1) at time t. For a population of ancestral size N and relative size history

ν(t) = N(t)
N , population size-scaled selection coefficient γ = 2Ns, and dominance coefficient h, the

evolution of φ approximately follows the diffusion equation

∂φ

∂t
=

1

2ν(t)

∂2

∂x2
(x(1− x)φ)

− γ ∂
∂x

((h+ (1− 2h)x)x(1− x)φ) .

(1)

Under the infinite sites assumption (Kimura, 1969), new mutations continually introduce density
at frequency 1/(2Nν(t)) with rate proportional to mutation rate θ = 4Nu.

To compare with data from a finite sample of size n, we can then compute the expected sample
AFS Φn(i) by integrating φ(x, t) over allele frequencies assuming binomial sampling:

Φt
n(i) =

∫ 1

0
φ(x, t)

(
n

i

)
xi(1− x)n−i dx. (2)

Analytic solutions to Eq. 1 typically exist only for simple, steady-state models. Otherwise,
we must turn to numerical solutions. Gutenkunst et al. (2009) proposed to solve Eq. 1 by finite
differences, and their popular program ∂a∂i can compute the joint AFS for up to three populations
with population size changes, continuous migration, selection and dominance. ∂a∂i also implements
likelihood-based optimization package to perform inference on observed data. It is still commonly
used to infer demographic histories (e.g., (Hsieh et al., 2016; Mondal et al., 2016)) and patterns
of selection for new mutations (e.g., (Ragsdale et al., 2016; Kim et al., 2017; Huber et al., 2017)).
Spectral approaches for solving Eq. 1 have also been developed that handle up to four populations
(Lukic and Hey, 2012).

The standard diffusion approach and its numerical solution requires two approximations: (1) the
approximation of the discrete WF model as a continuous process, and (2) the numerical solution of
φ over a discrete grid (Gutenkunst et al., 2009) or with a truncated sum of polynomials (Lukic and
Hey, 2012). Even though the second approximation can in principle be overcome with sufficient
computational power, the first approximation can be challenged in very large cohorts (Bhaskar
et al., 2014). Evans et al. (2007) proposed a system of ODEs based on the moments of the AFS
to avoid the second of these approximations, though their approach leads to numerical instability
for large sample sizes. Furthermore, the moment equations only close under neutral evolution
– the system of ODEs is infinite under selection. Živković et al. (2015) proposed a truncation
approach to close this system of ODEs to simultaneously infer selection strength and recent growth
events in a single population with piecewise-constant demography. More recently, Jouganous et al.
(2017) proposed a related set of moment equations and moment closure strategy for the frequency
spectrum Φt

n that bypasses both diffusion approximations and allows for computation of the AFS
in up to five populations in models with selection and both infinite and finite genome models. This
is implemented in the software moments, which borrows heavily from ∂a∂i’s user interface and
optimization framework.

As is the case for all diffusion-based approaches, going beyond just a handful of populations
is difficult, because the number of entries in the frequency spectrum grows exponentially with the
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Figure 1: Sample trajectories and the AFS. (A) Neutral mutation trajectories starting from frequency
1/2 (above) and the associated diffusion approximation for their frequencies over time (frequency on vertical
axis, density on horizontal). While the expected frequency for a neutral mutation does not change over
time (equal probability to increase or decrease), variance due to finite population sizes leads to the eventual
fixation or loss of the allele. (B) Selected variants tend to increase when positively selected and decrease when
negatively selected. The diffusion approximation easily accounts for the effect of selection on the expected
distribution of allele frequencies. (C) Under the standard neutral model, mutations give rise to new variants
beginning with frequency 1/2N , which then segregate until they fix or are lost. The continual influx of new
mutations and constant size demography leads to a steady state distribution of allele frequencies. (D) The
variance of allele frequencies increases over time until the mutation is either fixed or lost in the population.
(E) The sample AFS. Negatively selected variants are lost more rapidly and skewed to lower frequency than
neutral variants.

number of populations and direct numerical approaches become computationally burdened. For
neutral demographic models with more than just a few populations, recent advances to coalescent-
based approaches allow for likelihoods to be computed over tens of populations in a tree-shaped
demography (i.e. no migration) (Kamm et al., 2017) or up to eight populations with pulse migration
events (Kamm et al., 2018) but for fewer samples per population that ∂a∂i or moments. In this
light, diffusion and coalescent approaches serve complementary roles for simulating and analyzing
genomic data, and there are ongoing efforts to improve computational methods for both.

Evolutionary inference and human history

Understanding the relative roles of demography and selection in shaping present-day diversity is
important from anthropological, evolutionary, and biomedical perspectives. To minimize the impact
of selection and focus on demography, a well-trodden approach is to focus on putatively neutral
sites (Gutenkunst et al., 2009; Gravel et al., 2011; Patterson et al., 2012; Kamm et al., 2018).

One question of particular interest is how modern humans spread across the globe, including
the timings of population splits and rates of migration between populations. The popular Out-
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Figure 2: Human demography inferred from the AFS. Comparison of (A) the synonymous joint AFS
between Yoruba and Han Chinese samples in the Thousand Genomes Project data and (B) the model as
expected under an inferred demographic history (C). (D) Comparison of synonymous AFS for four popula-
tions from the Thousand Genomes Project, each with ∼ 100 sampled individuals (2n ≈ 200). Populations
that experienced bottlenecks due to the Out-of-Africa range expansion harbor fewer low frequency variants,
though alleles with MAF≥ 20 are found at similar levels across populations. Recent exponential growth
has lead to a comparable numbers of singletons across populations. (E) AFS from the French Canadian
population. The synonymous AFS is skewed to lower frequencies relative to intergenic variants; this is likely
caused by at least some synonymous variants being under the effect of direct or linked selection. (F) A simple
demographic history for the French Canadian population fit to the intergenic (green) and synonymous (blue)
AFS in (E). The two histories are qualitatively similar, but inferred times and growth rates differ. Scaling
assumed Ne = 11, 293 and mean generation time of 29 years (Gravel et al., 2011). (G) Comparison of the
intergenic AFS and the expected AFS from the best fit demographic model in (F).

of-Africa model of human history was proposed by Gutenkunst et al. (2009) and its parameters
inferred using ∂a∂i (and further refined as more data has become available (Gravel et al., 2011;
Tennessen et al., 2012; Jouganous et al., 2017)). For example, Fig. 2C shows a demographic model
inferred from synonymous sites from the 1000 Genomes project data in a panel of world-wide
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populations (Yoruba from Nigeria (YRI), Utah residents of north-west European ancestry (CEU),
Han Chinese from Beijing (CHB), and Japanese from Tokyo (JPT)) by Jouganous et al. (2017). In
general, populations with non-African ancestry show reduced levels of overall diversity consistent
with an Out-of-Africa bottleneck and a relative excess of singletons suggesting recovery and recent
growth (Fig. 2D). This contemporary growth has been the subject of much recent investigation
(Gazave et al., 2014; Gao and Keinan, 2016), and increasing sample sizes provide insight into the
distribution of rare variants, which is particularly sensitive to recent demographic events. It is also
sensitive to negative selection which, just as population growth, increases the proportion of rare
variants (Fig. 1E).

Are synonymous variants a good proxy for neutrality?

Inferences on population growth have largely been constrained to “putatively neutral” synonymous
variation because exome capture technology made large datasets of high-quality exome data more
readily available than whole-genome data. However, the assumption of neutrality for synonymous
mutations may not be tenable, as selection at linked nonsynonymous variants may skew the syn-
onymous AFS (Messer and Petrov, 2013; Ewing and Jensen, 2016; Schrider et al., 2016; Cvijović
et al., 2018; Torres et al., 2018), and synonymous mutations may themselves be directly under
selection.

One obvious way to reduce selection-induced biases in demographic inferences is to focus on
variants that are less affected by selection, such as nonconserved intergenic regions far from genes.
For example, Gazave et al. (2014) identified a set of such putatively neutral regions which they
sequenced in 500 individuals of European ancestry to high coverage, and they inferred growth rates
higher than 3% per generation over the last ∼ 150 generations.

Using high-quality whole-genome sequence data, we are now able to directly compare intergenic
and synonymous AFS in a given cohort. We used intergenic regions identified as likely neutrally
evolving (Arbiza et al., 2012) (total length L ≈ 81.2 Mb), as well as autosomal protein coding
regions (L ≈ 33.8 Mb) to compare the AFS for nonconserved intergenic, synonymous, and non-
synonymous mutations in 797 French Canadian individuals (Fig. 2E, data details in Appendix).
If both intergenic and synonymous mutations are neutral, their frequency spectra should match
in proportion. However, the synonymous AFS is notably skewed to rare variants when compared
to the intergenic AFS. Because these data come from the same sequenced individuals with com-
parable coverage, we could conclude that either (1) some synonymous variants are directly under
negative selection, which skews the AFS to rare variants (Fig. 1E), or (2) selection at linked sites
(e.g. nonsynonymous or regulatory variants) is responsible for the skew of the AFS.

To quantify the impact of these differences on demographic inference, we considered a sin-
gle population demographic model for the French Canadian population fit to both intergenic and
synonymous data. The demography included an extended bottleneck followed by recent exponen-
tial growth (Fig. 2F), and we compared the inferred growth rates and times of onset of recent
growth. The best fit model from intergenic data had a growth rate of 0.52(±0.01)% beginning
20.3(±0.3) thousand years ago, while the model inferred from synonymous data had a growth rate
of 0.38(±0.03)% beginning 30.0(±1.3) thousand years ago. Even though both models are arguably
in qualitative agreement, biases induced by assumptions of neutrality were much larger than that
statistical uncertainties caused by the finite amount of data from the sequenced regions. Inference
of human demography would be better served by intergenic data, even if whole genome dataset
sizes pale in comparison to exome sequencing datasets.

The total number of variants in the AFS depends on the constant θL, where L is the total length
of sequence used to compute the AFS and θ = 4Neµ. If Ne can be estimated from external sources,
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AFS inference can be used to provide estimates of the mutation rate (Gravel et al., 2013; Kamm
et al., 2018). The coding mutation rate inferred from synonymous data, θcds = 0.000720±0.000025,
was far smaller than the rate inferred from intergenic data, θint = 0.00111 ± 0.00001, so that
µint/µcds = 1.53. Using the same value of Ne = 11, 293 as above, the per-base per-generation
mutation rates would be µcds = 1.59×10−8 and µint = 2.45×10−8, suggesting that direct or linked
selection can lead to substantial underestimation of the coding mutation rate.

Selection in human populations

The distribution of fitness effects for new mutations

A fundamental biological parameter determining the amount of deleterious variation in a population
is the distribution of fitness effects (DFE) of new mutations. Whereas some model organisms allow
for the determination of the DFE through mutagenesis and competition experiments (Firnberg
et al., 2014; Wrenbeck et al., 2017), this is impractical (and unethical) for many organisms. We
must turn to statistical approaches to infer fitness effects, but this requires the joint modeling of
demography, fitness and dominance coefficients. A typical approach first controls for drift by fitting
a demographic model to putatively neutral sites, and then fits a model including both drift and
a parameterized DFE to putatively functional variants (Boyko et al., 2008; Ragsdale et al., 2016;
Kim et al., 2017). Because exon data is readily available, the demographic model is often inferred
from synonymous variation, and the DFE inferred from nonsynonymous variation.

The distribution of fitness effects and the synonymous AFS

We observed above that in a sample of 797 French Canadian individuals, the AFS for synonymous
variants is skewed to low frequencies when compared to putatively neutral mutations from inter-
genic regions. This skew is likely caused by a combination of background selection from linked
nonsynonymous or regulatory sites (Ewing and Jensen, 2016; Cvijović et al., 2018) and selection
acting directly on synonymous variants. Here we’ll consider the two extreme scenarios (background
selection only and direct selection only), and discuss consequences for the distribution of fitness
effects, since this will provide us with a range of plausible DFEs.

In the background selection model, synonymous variation is assumed to be purely neutral so
the DFE is concentrated at 0. In the direct selection scenario, we can characterize the effect
of selection on synonymous variation by fitting a DFE for synonymous mutations by controlling
for demography with the intergenic AFS (which we assume to be neutral). Assuming the same
mutation rate in intergenic and coding regions and using the Kim et al. (2017) estimate for the
ratio µnon/µsyn = 2.31, we inferred a gamma distributed DFE (Fig. 3(C,E)). The majority of
synonymous mutations were inferred to be effectively neutral or only slightly deleterious, but under
this assumption around 10% of synonymous mutations have selection coefficients |s| ≥ 10−3 with
< 0.1% having |s| ≥ 10−2.

We can repeat the same analysis for nonsynonymous variation. In the background selection
scenario, nonsynonymous variants probably experience the same amount of background selection
as synonymous variants. Even though the frequency spectrum of synonymous variants is possibly
skewed by background selection, it can still be used as a control if we assume that the demographic
model fitted to the synonymous variants captures the effects of both demography and background
selection acting on coding regions. This is the most commonly used approach for estimating DFEs
for nonsynonymous variants (Ragsdale et al., 2016; Kim et al., 2017). In the direct selection case,
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Figure 3: Inference of the DFE for nonsynonymous mutations. Using synonymous and nonsynony-
mous SNPs from 108 Phase 3 Thousand Genomes Project Yoruba individuals, we (A) fit a single-population
demography to the synonymous AFS, and (B) inferred a gamma-distributed DFE (α = 0.14, β = 2590)
to the nonsynonymous AFS, in agreement with Kim et al. (2017). (C) The expected AFS from a gamma-
distributed DFE fit to synonymous variants in 797 French Canadian individuals (α = 0.14, β = 55), after
controlling for demography using intergenic loci (Fig. 2F,G). (D) The expected AFS from the DFE fit to
nonsynonymous variants in this same population using intergenic control. (E) Binned densities of selection
coefficients for new mutations for each inferred DFE. The inference of the DFE for French Canadian nonsyn-
onymous mutations is sensitive to the variants used to control for demography. Intergenic and synonymous
variants provide differing fits to the recent growth rate and time of growth onset, and the DFE we infer using
intergenic sites as a demographic control (α = 0.25, β = 699) suggests relatively fewer nonsynonymous mu-
tations are nearly neutral or slightly deleterious while relatively more are moderately to strongly deleterious,
compared to the DFE inferred using synonymous mutations as control (α = 0.17, β = 1050).

we simply infer the DFE on nonsynonymous variants by using the intergenic model as a control
(Fig. 3(C,E)).

The nonsynonymous DFEs inferred from both models differ in their expected distributions.
The mean |s| = 0.014 for the direct selection model vs. |s| = 0.0078 in the background selection
model, although the proportion of variants under strong selection (|s| ≥ 10−2) is reduced from 22%
to 19%. Resolving the relative contributions of background and direct selection on synonymous
variation will therefore be crucial in inferring the DFE – this will require the inclusion of linkage
disequilibrium in evolutionary models.
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Figure 4: Comparison of population genetic predictions and statistical genetics inferences.
Using the DFE inferred above from YRI data, we use the Uricchio et al. (2016) model to predict β2 as a
function of MAF (solid curves) for varying values of ρ (larger values of ρ imply lower levels of pleiotropy in
this model). We compare to the relationship β2 ∝ (f(1− f))α (dashed curves), the functional form assumed
by Speed et al. (2017) and Zeng et al. (2018), for three plausible values of α. For these particular models,
the predicted relationship from population genetics and assumptions from empirical studies notably differ.

Selection, effect sizes, and heritability estimates

Because selection and demography affect the distribution of neutral and deleterious variants, they
also shape the architecture of traits, that is, the number, frequency, and effect sizes of mutations
that contribute to variance in the trait in a population.

A commonly used model in statistical genetics supposes that a phenotype Y can be expressed
as a sum Y = Xβ + e of genetic contributions Xβ and environmental effects e. The SNP effect
sizes β and e are assumed to be drawn from normal distributions, and X is the genotype matrix.
For mathematical convenience (having to do with variance normalization of X), the variance of the
normal distribution is often assumed to vary with allele frequency, so that E[β2|f ] ∝ 1

f(1−f) . This
relationship has the desirable feature that variants with large effect sizes tend to be at low frequency,
as expected if functional mutations are deleterious, but its functional form is a rather arbitrary
consequence of mathematically convenient assumptions, rather than biological motivation.

These statistical models are used to predict SNP heritability (the proportion of genetic variance
that can be explained by variants tagged by a genotyping chip). For example, epilepsy is a highly
polygenic trait with many hundreds or potentially thousands of susceptibility loci, each of which
typically contributes to just a fraction of a percent to the heritability of the disease (Speed et al.,
2014). Using a prior where E[β2|f ] ∝ 1/(f(1− f)), Speed et al. (2014) estimated SNP heritability
at ∼ 26%, towards the lower range of values suggested by twin studies.

Recent studies have shown that this prior leads to biases in heritability estimates (Speed et al.,
2017). This bias may be reduced by binning variants by MAF, so that heritability is estimated
independently for each bin (Speed et al., 2017; Evans et al., 2018). While estimates that bin by
MAF provide more accurate estimates of heritability for variants across the AFS, they are more
computationally demanding and require larger datasets due to the large increase in parameters
that must be fit (Evans et al., 2018). For methods that do not stratify by MAF, better estimates
could be achieved by including a fudge factor α such that E[β2] ∝ (f(1 − f))α (Speed et al.,
2017; Zeng et al., 2018). Zeng et al. (2018) estimated α to range between −0.6 and 0 across a few
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dozen traits. This indicates the presence of natural selection, but weaker than under the common
α = −1 assumption. Allowing α to vary helps reduce the bias compared to fixing α = −1. But
does it correctly account for the relationship between effect size and allele frequency? To answer
this question, we need an evolutionary model tying evolution and the distribution of fitness effects,
which we discussed above, but also the relationship between variant fitness coefficients and effect
size.

If the trait of interest were reproductive fitness, then the distribution of fitness effects would
correlate perfectly with the distribution of effect sizes. Using the DFE inferred above for YRI
nonsynonymous variation, for example, we find the relationship between effect size and frequency
shown in Fig. 4 (ρ = 1), which departs notably from (f(1− f))α models.

In a complex trait such as epilepsy or height, s is unlikely to correlate perfectly with effect size
because of pleiotropy or simply because the effect of selection on the trait is absent or nonlinear.
Many models have been recently proposed in the hope of tying evolutionary models to GWAS
findings (Uricchio et al., 2016; Sanjak et al., 2017; Simons et al., 2018). Using the model from
Uricchio et al. (2016), together with our inferred demography and DFE, we find distributions of
effect sizes shown as solid lines on Fig. 4. They show a much greater difference in phenotypic
effects between common and rare variants but also flatter profiles for common variants compared
to (f(1− f))α models, leading to different predictions about the architecture of complex traits.

One possible innocuous reason for the discrepancy is that we considered two different classes of
sites: noncoding variants for the evolutionary model, and genome-wide diversity for the (f(1−f))α

empirical relationship. Yet, at least for nonsynonymous variants, allowing for α to vary in the
(f(1 − f))α model is not enough to capture the relationship between allele frequency and effect
size predicted by the Uricchio et al. (2016) model. Both models feature arbitrary choices that may
be completely wrong. Fortunately, we now have both the data and models to directly compare
predictions from statistical and evolutionary genetic models, and studies discussed in this section
have started to take advantage of them.

Conclusion: what can we learn from the AFS?

The distribution of allele frequencies is a simple summary statistic for genomic diversity. It is a
relatively smooth and monotonous function from which we are trying to extract a lot of information,
ranging from population sizes, split times, migration rates, the distribution of fitness effects, and the
relationship between trait effect sizes and fitness. Even though the AFS does contain information
about all these processes, there are more parameters to learn than data points, and this raises the
question of how much meaningful information can be extracted from the data.

This question has received considerable theoretical interest in the simplified context of inferring
population sizes from the AFS in a single, neutrally evolving population. An elegant theoretical
study by Myers et al. (2008) showed that distinct size change histories could lead to identical AFS,
no matter how large the sample size or number of markers studied. This presents a fundamental
problem for inference: if multiple demographic histories have the same expected AFS, how can we
be certain that our inferred demography has converged to the correct function? Since the Myers
et al. (2008) study, there has been back and forth regarding limits to inference when size histories
are constrained to biologically realistic models (Bhaskar and Song, 2014), placing bounds on the
convergence rates of inference from the AFS (Terhorst and Song, 2015), and limits to inference with
realistic data from a genome of finite length (Rosen et al., 2017; Baharian and Gravel, 2018). As
may be expected, ancient and pre-bottleneck histories are difficult to accurately reconstruct from
the AFS or other summaries of the data because of the lack of contemporary diversity originating
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from those epochs, and recent historical events are more tightly constrained by the data.
Similarly, any inference problem using genomic data is bound to have large regions of un-

certainty. If the space of allowed models is sufficiently large, parameter uncertainty will reveal
uncertain features of the model. However, it is easy to accidentally parameterize a model in a way
that masks uncertainties. Assuming neutrality, or smoothness of population histories, or a partic-
ular relationship between fitness and phenotype effects can forbid plenty of plausible evolutionary
scenarios. Yet additional model parameters come at considerable computation and interpretation
cost.

Of course, we don’t have a general solution to this conundrum, but there is a lot that we can
learn by building simple evolutionary models that describe the data well. Only by building layers
of simple models for demography, selection, and variant effect sizes were we able to compare results
coming from evolutionary and statistical genetics (and find that they disagree!). Thus old-school
diffusion-based approaches, taken together with forward simulations, coalescent approaches, and
empirical work on large cohorts, still have a lot to tell us about human genomic diversity.
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Appendix

Data

We extracted synonymous variants from the Phase 3 (2013-05-03) thousand genome annotation
VCFs, keeping only biallelic SNPs, for the YRI, CEU, CHB and JPT populations. If a SNP had
multiple annotations for different transcripts, we considered it synonymous only if every annotation
was synonymous. We similarly pulled nonsynonymous SNPs for the YRI individuals from this same
dataset, keeping any variant with a nonsynonymous annotations. Single population AFS were built
for each population, and we used the synonymous variants to build the four populations joint AFS
(Fig. 2).

797 French Canadian individuals from Quebec were sequenced to a minimum 30x coverage
genome wide. These individuals were combined cohorts of 400 epilepsy patients (198 are de-
posited with the accession code EGAS00001002825 (Monlong et al., 2018) and the rest are as
of yet unpublished) and 397 unrelated controls sequenced by the same center and platform as
part of the Canadian Epilepsy Network (CENet). We filtered out regions from the Thousand
Genomes Project strict mask and sites that were significantly out of Hardy-Weinberg equilibrium
(p < 0.001, χ2 test). We used intergenic regions identified by the neutral region explorer

(http://nre.cb.bscb.cornell.edu/nre/) (Arbiza et al., 2012), keeping variants at least 0.2
cM from known coding regions and regulatory elements and with background selection coefficient
B > 0.95.

To compare mutation rates, we used the inferred θ from demographic fits to both the intergenic
and synonymous AFS. For intergenic sites, we used the total length L = 81, 209, 832 to find the
per-base population-size scaled mutation rate. For synonymous sites, we used the total length of
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coding regions included in the analysis (Lcds = 33, 774, 350), accounting for alternative transcripts
and overlapping genes. We scaled Lcds by the ratio of expected synonymous to nonsynonymous
mutations across coding regions to obtain the effective Lsyn, µnon/µsyn = 2.31 (Kim et al., 2017).
This gives Lsyn = 10, 328, 617, which we used to estimate the coding mutation rate from synony-
mous data.

We used moments to fit demographic models to the full four population AFS and the single
population YRI and FRC frequency spectra. Moments was also used to generate the frequency
spectra used to fit DFEs to the YRI and FRC AFS. Confidence intervals were computed using a
parametric bootstrap from 1,000 resampled AFS and found using the Godambe Information Matrix
(Coffman et al., 2016).
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