
1 

 

LRScaf: Improving Draft Genomes Using Long Noisy Reads 

 2 

Mao Qin1,*, mqin@outlook.com 

Shigang Wu1, 495402193@qq.com 4 

Alun Li1, 343010781@qq.com 

Fengli Zhao1, zw301987@163.com 6 

Hu Feng1, fenghu01@126.com 

Lulu Ding1, lulu.ding1@outlook.com 8 

Yuxiao Chang1, changyuxiao@cass.cn 

Jue Ruan1,*, ruanjue@caas.cn 10 

 

1 Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute 12 

at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, 

China. 14 

 

* To whom correspondence should be addressed. 16 

 

 18 

 

 20 

 

 22 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 24, 2018. ; https://doi.org/10.1101/374868doi: bioRxiv preprint 

https://doi.org/10.1101/374868


2 

 

 

Abstract 24 

Background: The advent of Third Generation Sequencing (TGS) technologies opens the 

door to improve genome assembly. Long reads are promised to enhance the quality of 26 

fragmental draft assemblies constructed from Next Generation Sequencing (NGS) technologies. 

To date, a few of algorithms, i.e., SSPACE-LongRead, OPERA-LG, SMIS, npScarf, 28 

DBG2OLC, Unicycler, and LINKS, have been released that are capable of improving draft 

assemblies. However, hybrid assembly on large genomes is still challenging. 30 

Results: We develop a scalable and computationally efficient scaffolder, Long Reads 

Scaffolder (LRScaf), that is capable of boosting assembly contiguity to a large extent using 32 

long reads. In our experiment, our method significantly improves the contiguity of human draft 

assemblies, increasing the NG50 value of CHM1 from 127.5 Kb to 10.4 Mb using 20-fold 34 

coverage PacBio dataset and the NG50 value of NA12878 from 115.7 Kb to 17.4 Mb using 

35-fold coverage Nanopore dataset. The run time for the scaffolding procedure using LRScaf is 36 

the shortest in all cases of our experiment. Compared with the run time of SSPACE-LongRead, 

LRScaf is faster 300 times for S. cerevisiae and 2,300 times for D. melanogaster. The peak 38 

RAM of LRScaf, by contrast, is more efficient than LINKS in our test. For the rice case, the 

peak RAM of LINKS (877.72 Gb) is about 196 times higher than LRScaf. For the experiment 40 

of human assembly, the peak RAM of LINKS is beyond the capacity of system memory (1 Tb) 

whereas LRScaf takes 20.28 and 41.20 Gb on CHM1 and NA12878 datasets. 42 

Conclusions: The new method, LRScaf, yields the best or at least moderate contiguity and 

accuracy of scaffolds in the shortest run time compared with the state-of-the-art methods. 44 
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Furthermore, it offers a new opportunity for the hybrid assembly of large genomes. 

Keywords: Assembly, Scaffolding, SMRT, ONT, Long Reads,  46 

 

 48 

Background 

With the advent of Next Generation Sequencing (NGS) technologies, the genomics community 50 

has made significant contributions to de novo assembling genomes. Despite that many studies 

and tools are aimed at reconstructing NGS data into complete de novo assemblies of genomes, 52 

this goal is difficult to achieve because of intrinsic limitation of NGS data, i.e., read lengths are 

shorter than most of the repetitive sequences [1]. The existence of repeats makes it difficult to 54 

reconstruct complete genomes instead of generating a large set of contiguous sequences 

(contigs) even when the sequencing coverage is high [2]. Thus, attention is focused on the 56 

so-called genomic scaffolding procedure, which aims at reducing the number of contigs by 

using fragments of moderate lengths whose ends are sequenced (double-barreled data) [3,4]. 58 

Nevertheless, major genomic regions still hinder genomic assemblies because of, primarily, 

large-size repeat and low coverage. In response, Third Generation Sequencing (TGS) 60 

technologies have been developed. TGS sheds light on different alternatives to solve genome 

assembly problems by offering very long reads, e.g., the Single Molecule Real Time (SMRT) 62 

sequencing technology of Pacific Biosciences® (PacBio)delivers read lengths of up to 50 Kb [5] 

and the nanopore sequencing technology of Oxford Nanopore Technologies® (ONT) delivers 64 

read lengths which are greater than 800 Kb [6]. These long reads suffer from high sequencing 

error rates, however, which necessitates high coverage during the genome assembly [7]. In 66 
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addition, TGS technologies have a higher cost per base than NGS methods. Consequently, long 

reads are more commonly used for scaffolding draft assemblies generated from NGS data than 68 

for de novo assembly [8].  

The process of genome assembly is typically divided into two major steps. The first step is to 70 

piece overlapping reads together into contigs which is commonly done using the de Bruijn or 

overlap graph [1]. The second step is to assemble scaffolds, consisting of ordered sequences of 72 

oriented contigs with estimated distances between them. Scaffolding, which was first 

introduced by Huson [3], is a critical part of the genome assembly process, especially for NGS 74 

data. Yet, scaffolding is a research area that remains largely open because of the NP-hard 

complexity [9]. By using paired-end and/or mate-pair reads linking information, a number of 76 

standalone scaffolders, e.g. Bambus [4], MIP [10], Opera [11], SCARPA [12], SOPRA [13], 

SSPACE [14], BESST [15], and BOSS [16], have been developed. Nevertheless, a recent 78 

comprehensive evaluation showed that scaffolding was still computationally intractable and 

required better quality large insert-size pair read libraries than presently available [17]. As TGS 80 

technologies are likely to offer longer reads than the lengths of the most common repeats, these 

technologies are capable of drastically reducing and solving the complexity caused by repeats. 82 

Considered the pros and cons of NGS and TGS data, a hybrid assembly approach that 

assembled draft genomes using TGS data was proposed [18]. The core strategy of this approach 84 

is: 1) long reads are mapped onto the contigs using a long-read mapper (e.g. BLASR [19] or 

minimap [20,21]); 2) examining alignment information, long reads that span more than one 86 

contig are identified and their linking relationship is stored in a data structure; 3) the last step is 

to clean up the structure by removing redundant and error-prone links, calculate distances 88 
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between contigs, and build scaffolds using links information.  

Based on the hybrid assembly strategy, AHA [18] was the first standalone hybrid scaffolder 90 

and was part of the SMRT analysis software suite. As AHA was designed for small genomes 

and had limitations on the input data, it was not suitable for large genomes. To ensure that 92 

scaffolds were as contiguity as possible, AHA performed 6 iterations by default, thus increasing 

the run time. SSPACE-LongRead [22] produced the final scaffolds in a single iteration and, 94 

therefore, had a significantly shorter run time than AHA. Nevertheless, SSPACE-LongRead 

had somewhat lower assembly accuracy than AHA. Despite being designed for large 96 

eukaryotic genomes, SSPACE-LongRead was unpractical because of its intensive run time. 

LINKS [23] opened a new door to build linking information between contigs. The algorithm 98 

used the long interval nucleotide K-mer without computational alignment and reads correction 

step, but its memory usage was a concern. OPERA-LG [24] provided an exact algorithm for 100 

large and repeat-rich genomes. Its main limitation was that it required significant mate-pair 

information to constrain the scaffold graph and report an optimized result. OPERA-LG was not 102 

directly designed for TGS data, and to construct scaffold edges and link contigs together into 

scaffolds, OPERA-LG needed to be modified by simulated and grouped mate-pair relationship 104 

information from long reads. Recent studies, such as SMIS (Available from 

http://www.sanger.ac.uk/science/tools/smis), npScarf [25], DBG2OLC [26] and Unicycler [27], 106 

have been reported based on the hybrid assembly strategy. However, these tools have not been 

thoroughly assessed for different genome sizes, especially large genomes.  108 

Here we present a Long Reads Scaffolder (LRScaf) to improve draft genomes using TGS 

data. The input to LRScaf is given by a set of contigs and their alignments over SMRT or ONT 110 
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long reads. We compare our method with the state-of-the-art tools on real and synthetic datasets. 

All the methods tested improve the contiguity of pre-assembled genomes. Our method yields 112 

the best assembly metrics and contiguity for pre-assembled genomes of E. coli, S. cerevisiae, D. 

melanogaster, and H. sapiens. More importantly, however, our method consistently returns the 114 

most accurate scaffolds and has the shortest run time. Especially, LRScaf significantly 

improves the contiguity of human draft assemblies, increasing the NG50 value of CHM1 from 116 

127.5 Kb to 10.4 Mb using 20-fold coverage PacBio dataset and the NG50 value of NA12878 

from 115.7 Kb to 17.4 Mb using 35-fold coverage Nanopore dataset. We thus show that LRScaf 118 

is a valuable tool for improving draft assemblies in a cost-effective way. 

 120 

Results and discussion 

We performed in-depth analysis on five species, i.e., E. coli, S. cerevisiae, D. melanogaster, O. 122 

sativa, and H. sapiens, to test and compare the performance of LRScaf with that of SMIS, 

npScarf, DBG2OLC, Unicycler, SSPACE-LongRead, LINKS, and OPERA-LG. The details of 124 

datasets are provided in Table 1 and in the Methods section. The NGS datasets for E. coli and 

S. cerevisiae are real with 600 and 105 -fold coverages respectively, where the NGS datasets 126 

for D. melanogaster and O. sativa were synthesized using pIRS [28] with 50-fold coverage. 

The real reads for the two small genomes (E. coli and S. cerevisiae) were first cleaned and 128 

then used to construct draft assemblies using SOAPdenovo2 [29] and SPAdes [30]. The 

synthetic reads for the two large genomes (D. melanogaster and O. sativa) were directly used 130 

to build draft assemblies using SOAPdenovo2. The draft assemblies of two human lines 

CHM1 [31] and NA12878 [32] were used to test the performances of all scaffolders for large 132 
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genomes using the PacBio and Nanopore datasets. The statistics of draft assemblies are shown 

in Table 2. Results and assembly metrics obtained after the scaffolding procedure are 134 

displayed in Tables 3 and 4.  

 136 

Draft genome assemblies 

We used SPAdes to construct draft assemblies for two small genomes (E. coli and S. cerevisiae) 138 

with the “careful” parameter option. Draft assemblies for these two small genomes were also 

constructed using SOAPdenovo2. In addition, SOAPdenovo2 was used to construct draft 140 

assemblies for D. melanogaster and O. sativa, whose synthetic reads were available. We used 

the optimal k-mer values for the draft assemblies constructed by SOAPdenovo2 with 51 (E. 142 

coli), 59 (S. cerevisiae), 61 (D. melanogaster), and 73 (O. sativa). These values were selected 

based on assembled genome size, number of contigs, and genome contiguity.  144 

The statistics of draft assemblies for E. coli, S. cerevisiae, D. melanogaster, O. sativa, and 

H. sapiens are shown in Table 2. For E. coli, the draft-genome size obtained using 146 

SOAPdenovo2 is 4.6 Mb distributed over 728 contigs, yielding an assembled genome fraction 

of 98 % and an N50 value of 40.0 Kb. SPAdes yields a draft-assemblies size of 4.6 Mb with 242 148 

contigs, a genome fraction of 98 %, and an N50 value of 133.2 Kb. The draft-assemblies size 

generated by ABySS is 5.2 Mb with 69 contigs, a genome fraction of 110 %, and an N50 value 150 

of 177.6 Kb. For S. cerevisiae, the draft-genome size obtained using SOAPdenovo2 is 12.1 Mb 

with 6,961 contigs, providing a genome fraction of 99 % and an N50 value of 20.0 Kb. SPAdes 152 

generates a draft-assemblies size of 11.8 Mb with 2,254 contigs, yielding a genome fraction of 

97 % and an N50 value of 107.9 Kb. The draft-assemblies size constructed by Celera Assembly 154 
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is 15.0 Mb with 6,953 contigs, a genome fraction of 124 %, and an N50 value of 49.2 Kb. For D. 

melanogaster, the draft-assemblies size constructed by SOAPdenovo2 is 118.1 Mb with 45,480 156 

contigs, a genomic fraction of 98 %, and an N50 value of 111.0 Kb. The draft-genome size for 

O. sativa is 346.2 Mb and it contains 257,801 contigs, yielding a genomic fraction of 92 % and 158 

an N50 value of 19.0 Kb. The size of the draft genome of CHM1 is 2.8 Gb distributed over 

40,906 contigs, and it has a genomic fraction of 93 % and an N50 value of 140.0 Kb where the 160 

draft-assemblies size of NA12878 is 3.1 Gb with 858,918 contigs, yielding a genome fraction 

of 102 % and an N50 value of 179.8 Kb.  162 

The depth of coverage is an important factor in de novo genome assembly. The genome 

contiguity and completeness obtained are not only determined by the depth of coverage, 164 

however, but also by the method’s ability to overcome complex genome structures, e.g. 

repetitive regions. E. coli is the smallest genome and has the highest coverage (more than 166 

600-fold of NGS reads) among the genomes included in this study. However, the assembly 

contiguity is still fragmental. As the genome gets larger and more complex, draft assemblies 168 

become increasingly fragmental unless auxiliary technologies are included in the assembly 

process. Consequently, the inclusion of large insert-size mate-pair libraries, Hi-C [33], 170 

optical-mapping data [34] and long reads is important to overcome large repeats and to assist 

the scaffolding procedure. 172 

 

Scaffolding on SMRT long reads  174 

In this study, we used long reads of SMRT datasets for E. coli, S. cerevisiae, D. melanogaster, O. 

sativa, and H. sapiens to assess the performances of seven state-of-the-art scaffolders (i.e., 176 
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SSPACE-LongRead, LINKS, OPERA-LG, SMIS, npScarf, Unicycler, and DBG2OLC) and our 

LRScaf (See Table 1). The median lengths of SMRT long reads for 5 organisms are 8.7 Kb, 4.6 178 

Kb, 19.6 Kb, 3.4 Kb, and 1.6 Kb, respectively. And the longest reads are 41.3 Kb, 27.6 Kb, 33.6 

Kb, 24.4 Kb, and 208.6 Kb, respectively. The coverages of SMRT long reads are 20.1-fold (E. 180 

coli), 20.7-fold (S. cerevisiae), 18.9-fold (D. melanogaster), 11.7-fold (O. sativa), and 20.0-fold 

(H. sapiens). The distributions of read length show that the SMRT long reads approximate 182 

normal distributions (See Suppl. Fig. 1). The SMRT long reads of D. melanogaster were 

filtered for the FALCON assembler [35], which resulted in an increased average read length. 184 

QUAST [36] was used to assess draft assemblies after the scaffolding procedure. The released 

version 4.5 of QUAST was failed to assess human assemblies, and, therefore, we used the 186 

dev-5.0 version to evaluate the corresponding assembly metrics.  

All scaffolders reduce the number of contigs and improve assemblies contiguity (See Table 3 188 

and Suppl. Tables 1 and 2). Whereas SSPACE-LongRead, SMIS, Unicycler, and LRScaf 

reconstruct the genome for E. coli into a complete single chromosome, LINKS, OPERA-LG, 190 

npScarf, and DBG2OLC fail to do that. In addition, Unicycler significantly reduces the 

numbers of contigs. For the 1, 5, and 10 -fold coverages, the performances of scaffolders tested 192 

show similar results on the 20-fold coverage where the assemblies contiguity of 

SSPACE-LongRead, SMIS, Unicycler, and LRScaf are better than that of LINKS, OPERA-LG, 194 

npScarf, and DBG2OLC (See Suppl. Tables 1 and 2). For S. cerevisiae, the npScarf method 

yields the best NG50 value (665.8 Kb) and Unicycler generates the best NA50 value (284.1 Kb). 196 

SSPACE-LongRead, LINKS, OPERA-LG, npScarf, and LRScaf yield the longest sequence 

(1.0 Mb). For the 1, 5, and 10 -fold coverages, SSPACE-LongRead yields the best assemblies 198 
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contiguity (NG50) in 5 out of 6 cases and OPERA-LG, npScarf, and LRScaf yield the best 

NG50 in 1 out of 6 cases (See Suppl. Table 1). Based on draft assemblies generated by 200 

SOAPdenovo2 using 20-fold coverage, SSPACE-LongRead and LRScaf yield the best NG50 

and NA50 value respectively and generate the longest sequence (See Suppl. Table 2). For D. 202 

melanogaster, SSPACE-LongRead yields the best NG50 value (6.6 Mb) and LRScaf with 

BLASR produces the best NA50 value (5.2 Mb). SSPACE-LongRead and LRScaf construct the 204 

longest sequence of 19.6 Mb. For O. sativa, DBG2OLC significantly reduces the number of 

sequences and produces the best NG50 value (94.5 Kb) and NA50 value (64.9 Kb), and the 206 

longest sequence (794.7 Kb). SSPACE-LongRead is excluded from this assessment because it 

exceeds the 3 weeks’ run time limit. For H. sapiens CHM1, LRScaf with minimap2 yields the 208 

best NG50 value (10.4 Mb) and NA50 value (10.7 Mb,), and the longest sequence (45.0 Mb). 

The run time of SSPACE-LongRead, SMIS, and npScarf exceeds the time limit, and LINKS 210 

exceeds our system’s memory capacity of 1 Tb. Thus, these scaffolders are excluded from the 

test on the H. sapiens CHM1 genome. As evident from our experiments, the run time and the 212 

memory usage for these scaffolders become significant concerns for the large and complex 

genomes. DBG2OLC is recommended to use SparseAssembler (Available from: 214 

https://github.com/yechengxi/SparseAssembler) to construct draft assemblies for hybrid 

assembly. This might be the reason for the assembly genome size generated by DBG2OLC is 216 

smaller than what the other scaffolders yield, especially for the H. sapiens. To summarize, 

LRScaf yields the best or, at least, moderate assembly metrics when compared with other 218 

scaffolders on SMRT long reads. 

 220 
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Scaffolding on ONT long reads 

We used the ONT long reads datasets for E. coli, S. cerevisiae, and H. sapiens to assess the 222 

performances of scaffolders tested (See Table 4). Because of lack of NGS data, OPERA-LG 

and Unicycler were excluded from this assessment. For the two small genomes, the ONT 224 

long-reads datasets were published in LINKS, including 3 of E. coli (FULL, ALL and RAW 

datasets with 4.7, 34.0, and 66.5 -fold coverages, respectively) and 2 of S. cerevisiae 226 

(NANOCORR and RAW datasets with 43.6 and 198.2 -fold coverages). We used the H. sapiens 

NA12878 dataset with 35.0-fold coverage as the large genome for this test. The best median 228 

and longest length of reads are 6.1 Kb and 1.5 Mb respectively (See Table 1). The distributions 

of read length show that ONT long reads approximate bimodal distributions with a long tail 230 

(See Suppl. Fig. 2). The median length of ONT reads is approximately equal to that of SMRT, 

but the longest length of ONT reads is significantly longer than that of SMRT datasets. QUAST 232 

(Version 4.5) was used to assess draft assemblies and scaffolded assemblies for E. coli and S. 

cerevisiae. And QUAST (Dev-5.0 version) was used to evaluate the corresponding assembly 234 

metrics for H. sapiens. 

All scaffolders decrease the number of contigs and improve genome contiguity (See Table 4). 236 

The number of contigs for the E. coli draft assemblies is 69 with an NG50 value of 179.7 Kb. 

For the FULL dataset, LRScaf with BLASR yields the best NG50 value (921.6 Kb) and NA50 238 

value (485.2 Kb), and the longest sequence (1.1 Mb). SMIS generates the best NG50 value 

(992.2 Kb) and NA50 value (618.4 Kb), and the longest sequence (1.2 Mb) for the ALL dataset 240 

where LRScaf with BLASR yields similar performance (NG50: 922.5 Kb, NA50: 616.5 Kb, 

and the longest sequence 1.1 Mb). Whereas SMIS produces the best numbers for the RAW 242 
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dataset (NG50: 928.1 Kb, NA50: 879.1 Kb, and the longest sequence 1.2 Mb), LRScaf with 

BLASR yields very similar metrics. For S. cerevisiae, the number of contigs for the draft 244 

assemblies is 6,953 with an NG50 value of 58.8 Kb. For the NANOCORR dataset, the npScarf 

method yields the best NG50 value and the longest sequence (559.4 Kb and 1.5 Mb, 246 

respectively), and SMIS produces the best NA50 value (250.7 Kb). The npScarf scaffolder also 

produces the best metrics (NG50: 578.3 Kb, NA50: 250.0 Kb, and the longest sequencing 1.6 248 

Mb) for the RAW dataset. For the NA12878 dataset, LRScaf with minimap2 significantly 

improves the contiguity of the draft assemblies and yields the best NG50 and NA50 values 250 

(17.4 Mb and 13.6 Mb, respectively). LRScaf with BLASR produces the longest sequence 

(71.6 Mb). All the other scaffolders are similar to the assessment using the PacBio dataset and 252 

exceed either the time limit (3 weeks) or the memory capacity of system (1 Tb). In addition, 

DBG2OLC is not successful to scaffold draft assemblies generated by DISCOVAR. This is as 254 

expected where DBG2OLC is recommended to use SparseAssembler as its NGS Assembler for 

hybrid assembly. Compared with the results obtained using the SMRT datasets, none of the 256 

scaffolders could assemble E. coli into a single chromosome and the contiguity of S. cerevisiae 

is more fragmented. Although all scaffolders show certain improvement in our experiment, the 258 

application of the ONT data is still challenging. A recent study showed that the NA12878 

genome was assembled with an NG50 value of about 6.5 Mb using pure 35-fold ONT data [6]. 260 

Our experiments, however, show that it is possible to significantly improve assembly contiguity 

to 17.4 Mb where it is similar to the PacBio human case. To summarize, LRScaf yields either 262 

the best or similar assembly metrics using long reads of ONT compared with the other 

scaffolders. 264 
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Computational performance and accuracy analysis 266 

The assembly metrics are undoubtedly the most concerning matters to biologists and 

bioinformaticians. Nevertheless, from a practical point of view, the run time limits software 268 

applications. SSPACE-LongRead and OPERA-LG use BLASR as their default TGS mapper 

for construction of joints between contigs. The npScarf software uses BWA [37] as its default 270 

mapper. LINKS, SMIS, Unicycler, and DBG2OLC use its built-in algorithms to build joints 

between contigs. To enable a direct comparison with SSPACE-LongRead and OPERA-LG, our 272 

LRScaf supports BLASR. Nevertheless, it also supports a faster TGS mapper minimap 

(Versions 1 and 2), which enables a significant reduction for the total run time of the scaffolding 274 

procedure. LRScaf is the fastest scaffolder for all the cases using SMRT long reads. LRScaf 

reduces the run time more than 300 times compared with SSPACE-LongRead and more than 276 

3,900 times compared with Unicycler for S. cerevisiae (See Table 3). As the genome gets larger, 

the advantage of shorter run time becomes more important. In D. melanogaster, LRScaf is 278 

2,300 times faster than SSPACE-LongRead and 2,550 times faster than SMIS. In O. sativa, 

LRScaf is 1,276 times faster than SIMS. We have no number on how much LRScaf is faster 280 

than SSPACE-LongRead because the latter exceeds the time limit (3 weeks). For H. sapiens, 

SSPACE-LongRead, SMIS, and npScarf exceed the time limit (3 weeks). For the ONT datasets, 282 

LRScaf is also the fastest scaffolder. LRScaf is more than 131 times faster than 

SSPACE-LongRead on the FULL dataset for E. coli. As the dataset grows larger, the advantage 284 

becomes more significant. LRScaf is 714 times faster on the ALL dataset for E. coli, 603 times 

faster on the RAW dataset for E. coli, and 1,408 times on the RAW dataset for S. cerevisiae than 286 
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SSPACE-LongRead. LINKS skips the all-to-all alignment step and is faster than 

SSPACE-LongRead in all cases. Nevertheless, the memory usage of LINKS is of concern and it 288 

might be alleviated by further improvement of the data-structure. Although the peak RAM 

usage for LRScaf is higher than that of OPERA-LG on small genomes, our experiments show 290 

that the memory usage of LRScaf is practical even for large and complex genomes where the 

peak RAM for LRScaf is not over 30 Gb on CHM1 PacBio dataset and 80 Gb on NA12878 292 

ONT dataset.  

Reducing the number of misassemblies is important because misassemblies are likely 294 

misinterpreted as true genetic variations [38,39]. For the SMRT datasets, SSPACE-LongRead 

and LRScaf yield the fewest number of misassemblies (1) among the scaffolders based on draft 296 

assemblies for E. coli generated by SOAPdenovo2 (See Suppl. Table 2). Unicycler produces the 

fewest number of misassemblies for E. coli (1) and S. cerevisiae (17) based on draft assemblies 298 

constructed by SPAdes where LINKS and npScarf yields the maximum number of 

misassemblies for E. coli (13) and S. cerevisiae (105) respectively (See Table 3). LRScaf yields 300 

the fewest number of misassemblies for D. melanogaster (15) and O. sativa (455) where 

DBG2OLC and OPERA-LG produce the maximum number of misassemblies for D. 302 

melanogaster (2,393) and O. sativa (2,604) respectively (See Table 3). For H. sapiens, we have 

no number on how many the number of misassemblies for the other scaffolders because all of 304 

them are failed to scaffold the draft assemblies. For the ONT datasets, the draft assemblies for E. 

coli, S. cerevisiae, and H. sapiens contain 5, 19, and 336 misassembled contigs, respectively, 306 

and none of the scaffolders significantly increases the number of misassemblies (See Table 4). 

LRScaf with minimap2 outputs the fewest number of misassemblies on the E. coli, S. cerevisiae 308 
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(RAW data). LRScaf with minimap outputs the fewest number of misassemblies on H. sapiens. 

SMIS yields the fewest number of misassemblies for the S. cerevisiae NANOCORR dataset. 310 

SSPACE-LongRead yields the maximum number of misassemblies (147) on the RAW dataset 

for S. cerevisiae. In summary, LRScaf introduces a new strategy for keeping valid alignments 312 

(See Methods section) and produces fewer misassemblies than most of the other scaffolders. 

Moreover, LRScaf with minimap2 significantly reduces the run time of scaffolding procedure 314 

without increasing the number of misassemblies. Based on the SMRT and ONT performances, 

we recommend that LRScaf is used with BLASR on small genomes and with minimap on large 316 

genomes.  

 318 

Conclusion 

In this work, we present a novel program for scaffolding draft assemblies using noisy TGS long 320 

reads information and compare our algorithm with the previous methods. The majority of the 

draft assemblies constructed using NGS data is fragmented and influenced by repeats. The 322 

disadvantage of long reads is that they contain significantly more errors than first- and second- 

generation sequencing technologies. Nevertheless, we successfully use long reads to build links 324 

between contigs, overcome repetitive regions, and improve genome contiguity. We propose a 

new strategy to filter inaccurate alignments so that these false alignments do not propagate 326 

through the scaffolding process. For the assessments on SMRT long-read datasets covering 5 

organisms, our method shows significant improvements over the state-of-the-art scaffolders. 328 

The primary benefits of LRScaf over these scaffolders are that it yields the fewer number of 

misassemblies and reduces the run time, yet it retains the best or, at least, average assembly 330 
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metrics. These improvements are especially useful for large and complex genomes. For the 

assessments on ONT long-read datasets for 3 organisms, our method shows significant 332 

improvements over the previous algorithms. Our method keeps the best or, at least, average 

assembly metrics and the shortest run time. In addition, our method has the fewest number of 334 

misassemblies in most of the cases. As studied genomes keep getting larger and more complex, 

the run time and the memory usage for the analysis software are becoming increasingly 336 

important to biologists and bioinformaticians. Our method is designed with reduction of the run 

time and the memory usage in mind and is, thus, much faster than other scaffolders and requires 338 

only moderate memory usage. Identification of misassembled contigs is also important, 

however, because any misassembled sequences are propagated into the next step during 340 

biological analysis. Most state-of-the-art scaffolders lack functions for identification of 

misassembled contigs. In addition, misassemblies might be introduced during the scaffolding 342 

procedure. Consequently, to limit the number of misassembled scaffolds, our method 

incorporates a validation algorithm that checks the links information between contigs. As 344 

checking and correcting misassemblies from draft assemblies is important, we are planning to 

use long read information to achieve and integrate these functions in a future version of 346 

LRScaf. 

  In the past decade, worldwide collaboration has led to several projects, aiming at improving 348 

the understanding of species biology and evolution. Examples of such projects are the i5k [40], 

which provides the genomes of 5,000 species of insects, and the Bird 10,000 Genomes (B10K) 350 

[41]. However, a substantial fraction of genomes with short contiguity hinder downstream 

analysis. Our result shows that TGS data is capable of effectively improving draft assemblies 352 
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and LRScaf is a valuable tool for improving draft assemblies in a cost-effective way. 

 354 

Methods 

Alignment of TGS long reads 356 

LRScaf was designed to separate the mapping and scaffolding procedures. Hence, during the 

mapping procedure, we set the number of processes to 48 and kept the default values for all 358 

other parameters using BLASR and minimap (Version 1 and 2). LRScaf supports the default 

alignment format of these mappers. 360 

 

Validating alignment 362 

The high error rate is a serious disadvantage of TGS long reads. Thus, a large fraction of the 

alignments is incorrect and needs to be filtered out. We developed a validation model to validate 364 

each alignment (See Figure 1). The model partitioned each long read into three regions (R1, R2, 

and R3) separated by two points (P1 and P2). Considered the alignment start (S) and end (E) 366 

loci in the contig, there were six different combination sets in R, i.e., � � ��� �� �1, � �� �1�,

�� �� �1, � �� �2�, �� �� �1, � �� �3�, �� �� �2, � �� �2�, �� �� �2, � �� �3�,368 

�� �� �3, � �� �3��. We also defined the distal length of a contig to the start or end alignment 

loci as the over-hang length of the contig. Taken both the alignment region and the over-hang 370 

length into account, the valid alignment satisfied: 1) (S in R1, E in R1) with the right over-hang 

length not exceeding the constraints; 2) (S in R1, E in R2) with the right over-hang length not 372 

exceeding the constraints; 3) (S in R2, E in R2) with the two end over-hang length not 

exceeding the constraints; 4) (S in R2, E in R3) with the left over-hang length not exceeding the 374 
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constraints; 5) (S in R3, E in R3) with the left over-hang length not exceeding the constraints. 

An alignment was filtered out if a long read was entirely covered by a contig (S in R1, E in R3), 376 

i.e., the contig contained the long read. After this procedure, the remaining alignments were 

considered to be valid for the scaffolding procedure. 378 

 

Repeat identification 380 

Repetitive sequences complicate the genome assembly. Thus, such sequences were masked in 

our approach. First, based on the uniform coverage of TGS data, we identified and removed 382 

repeats by the coverage of reads. In the calculation of reads coverage, long reads that covered 

the entire contig were counted. Then we computed the mean coverage and the standard 384 

deviation among the set of contigs. Any contig coverage that was larger than the threshold 

coverage, which was set to ���� � 3 � �. �.��� , was considered to be a repeat and the 386 

corresponding contig was removed from the next step of the analysis. 

 388 

Constructing links and edges 

A long read may have multiple mappings because of repeats and high sequencing error rate. 390 

Figure 2 describes how links are built between contigs from the validated alignments. This 

process had two constraints on orientation and distance. Four strand combination sets S were 392 

used between contigs to constrain orientation, i.e., � � ���: ��, ��, �� � ��, ��,  ��: ��, ��,

��: ��, ��� . We defined the orientation between contigs as ���� , �	�  �  ��  ��� . The 394 

probability that the internal distance e between two contigs lies outside the range !��
 � 3 �

"�
 , ��
 � 3 � "�
# was less than 5%, because e approximately follows a normal distribution 396 
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$���
 , "�
�. If e lay outside the range !��
 � 3 � "�
 , ��
 � 3 � "�
#, it was considered to be 

abnormal and the linking information was removed. Any long reads linking a contig to itself at 398 

different loci were also removed. After validating two constraints on links between contigs, we 

introduced an edge to represent a bundle of links that jointed two contigs using quadruple 400 

parameters ���� , �	� � ��, ��
  %%%%%, "�
%%%%, &�. Here, n was the number of remaining links considered 

as the weight of the edge, ��
  %%%%% was the mean internal distance for the remaining links, "�
%%%% was 402 

the standard deviation of the internal distances for the remaining links, and o was the 

orientation strand between contigs. 404 

 

Graph construction and simplification 406 

In this step, LRScaf constructed a scaffold graph '�(, ��  similar to the string graph 

formulation. The vertex set V represented the end of the contigs and the edge set E represented 408 

the linkage implied by long reads between ends of two contigs with weight and orientation 

function assigned to each edge. The ends of each contig were annotated by their ID with a 410 

forward strand (+). Used this node concept, there were 4 types of edges in the graph, i.e., (+, +) 

joining the forward strands of both contigs, (+, -) joining the forward strand of the first contig 412 

with the reversed strand of the second contig, (-, +) joining the reversed strand of the first contig 

with the forward strand of the second contig, and (-, -) joining the reversed strands of both 414 

contigs. After the edges-construction step, we accounted for the majority of the sequencing 

errors by removing all the edges that had a lower number of long reads than the threshold value. 416 

Once the edges were cleaned and filtered, we constructed an assembly graph G. We only added 

an edge to G if neither of the two nodes comprising the edge was present in G. In some cases, G 418 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 24, 2018. ; https://doi.org/10.1101/374868doi: bioRxiv preprint 

https://doi.org/10.1101/374868


20 

 

contained some edges of transitive reduction, error-prone and tips. Thus, such edges were 

deleted and we got the final scaffold graph which we used for further analysis. 420 

 

Construction of scaffolds 422 

After the repeats identification and the graph simplification steps, most of the contigs were 

connected in linear stretches on the assembly graph. There were, however, some complex 424 

regions that required addition manipulation. We referred to a contig as a divergent node if it 

linked more than two nodes in the graph (Figure 3). We searched for unique nodes at the end of 426 

this complex region and got through this region if there were any long reads that joined two 

unique nodes. Otherwise, we stopped travelling the graph in the forward direction and switched 428 

to the reverse direction. Similarly, the search along the reverse direction of the graph stopped at 

the end of a linear stretch or at a divergent node. The process was then repeated using an 430 

unvisited node as the starting node. The procedure ended after traversing all the unvisited and 

unique nodes in the graph and outputted all linear paths. Finally, the gap-size between contigs 432 

was calculated. If the gap-size value was negative, the contigs were merged into a combined 

contig, and if the value was positive, a gap was inserted between the contigs (a gap was 434 

represented by one or more undefined ‘N’ nucleotides, depending on gap-size). 

 436 

Datasets 

All tested data were downloaded from published and released datasets (See Table 1). The NGS 438 

data of E. coli (EAR000206) and S. cerevisiae (SRR527545 and SRR527546) were 

downloaded from EBI and NCBI, respectively, where the NGS data of D. melanogaster and O. 440 
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sativa were simulated from their latest reference genome using pIRS (version 1.11) with 

parameters -x 50 and -c 0, respectively. The SMRT long reads datasets for 5 organisms were 442 

published by PacBio®: SRX669475 and SRX533603 for E. coli, SRX533604 for S. cerevisiae, 

SRX499318 for D. melanogaster, SRR3743363 for O. sativa, and SAMN02744161 for H. 444 

sapiens (CHM1). We selected the first 20-fold coverage of each SMRT dataset for 

comprehensively assessing all scaffolders and we chose 3 different coverages, i.e. 1, 5 and 10 446 

-fold, for 2 small genomes (E. coli and S. cerevisiae) to test all scaffolders performances on 

lower depths. For the long reads of the ONT dataset, datasets were referred to LINKS and H. 448 

sapiens (NA12878) with ONT-FULL (ERX708228) for E. coli, ONT-ALL (ERX708228) for E. 

coli, ONT-RAW (ERX708228) for E. coli, ONT-NANOCORR (SRP055987) for S. cerevisiae, 450 

ONT-RAW (SRP055987) for S. cerevisiae and PRJEB23027 for H. sapiens, respectively. 

 452 

Draft assembly procedure 

The draft genomes for E. coli, S. cerevisiae, D. melanogaster and O. sativa were constructed 454 

using SOAPdenovo2 taking genome size and contiguity into account. We use two subroutines 

for E. coli: 1) pregraph with –k 51 and –R parameters and 2) contig with –R parameter. We 456 

used two similar subroutines for S. cerevisiae: 1) pregraph with –k 29 and –R parameters and 

2) contig with –R parameter. The draft assemblies for D. melanogaster was also constructed 458 

using two subroutines: 1) pregraph with –k 61 and –R parameters and 2) contig with –R 

parameter. For O. sativa, we used the subroutine all with –K 63 –p 24 –d 1 –R –F. The two 460 

small genomes (E. coli and S. cerevisiae) were also assembled by SPAdes with the “careful” 

parameter. To assess the performances between LINKS and the other scaffolders on the ONT 462 
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long read, the draft assemblies for E. coli and S. cerevisiae were referred to LINKS. The H. 

sapiens CHM1 and NA12878 draft assemblies were from Steinberg et al. [31] and Weisenfeld 464 

et al. [32]. Table 2 lists the statistics for all of the draft assemblies.  

 466 

System 

All analysis was performed on a 1 Tb memory Linux machine with 48 CPUs incorporating 468 

Hyper-threading technology.  

 470 

Source code 

LRScaf is written in Java™ and is capable of running on all platforms including Linux, 472 

Windows, and Mac if Java Running Environment (JRE) was installed. The source code is 

available on GitHub (https://github.com/shingocat/lrscaf). We provide a packaged jar file 474 

which could be used straight out of the box and the compilation steps for advanced users. 

 476 

Additional file 

Additional file 1: Long Reads (< 30 Kb) Distribution of Pacific Biosciences® SMRT, and 478 

Additional file 2: Long Reads (<30 Kb) Distribution of Oxford Nanopore Technologies® 

nanopore. 480 

 

List of abbreviations 482 

BLASR: Basic Local Alignment with Successive Refinement; NGS: Next Generation 

Sequencing; TGS: Third Generation Sequencing; SMRT: Single Molecule Real Time; ONT: 484 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 24, 2018. ; https://doi.org/10.1101/374868doi: bioRxiv preprint 

https://doi.org/10.1101/374868


23 

 

Oxford Nanopore Technologies; LRScaf: Long Reads Scaffolder 
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 620 

Figure 1. A validating model of alignment. The P1 and P2 are the two points for breaking a long 

read into 3 regions (R1, R2, and R3). 622 

Figure 2. The construction of link using a long read lri and two contigs ci and cj. a) a basic 

schematic for a long read building link between contigs; b) the distance distribution of links. 624 

Figure 3. The schematic illustration for travelling complex region. 

Table 1. Descriptive statistics of datasets used for the comparative study. 626 

Table 2. The statistics of draft assembly for E. coli, S. cerevisiae, D. melanogaster, O. sativa, 

and H. sapiens. 628 

Table 3. The performances of scaffolders tested for E. coli, S. cerevisiae, D. melanogaster, O. 

sativa, and H. sapiens using PacBio long reads. 630 

Table 4. The performances of scaffolders tested for E. coli, S. cerevisiae, and H. sapiens using 

ONT long reads. 632 

Supplementary Table 1. The performances for E. coli and S. cerevisiae based on draft 

assemblies generated by SOAPdenovo2 and SPAdes using 1, 5, and 10 -fold coverages of 634 
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Table 1. Descriptive statistics of datasets used for the comparative study.
Organism TYPE Reads (#) Total bases (bp) Coverage Median (bp) Longest (bp) Source

E. coli Illumina 28,428,648 2,842,864,800 607.2 x 100 100 ERA000206
PacBio 9,291 93,994,356 20.1 x 8,712 41,331 SRX669475; SRX533603

ONT-Full
a 3,471 21,972,483 4.7 x 5,743 47,422 ERX708228

ONT-Alla 24,221 158,867,566 34.0 x 6,086 47,422 ERX708228

ONT-Raw
a 70,531 311,558,723 66.5 x 3,557 94,116 ERX708228

S. cerevisiae Illumina 6,801,728 1,268,786,706 105.1 x 202 202 SRR527545; SRR527546
PacBio 44,786 249,319,042 20.7 x 4,554 27,575 SRX533604

ONT-Nanocorr
a 88,218 526,588,732 43.6 x 5,512 72,879 SRP055987

ONT-Rawa 407,761 2,392,848,698 198.2 x 5,059 191,145 SRP055987

D. melanogaster Illumina 60,190,770 6,019,077,000 50.0 x 100 100 SYNTHESE
b

PacBio 127,403 2,271,687,745 18.9 x 19,577 33,581 SRX499318

O. sativa Illumina 186,622,748 18,662,274,800 50.0 x 100 100 SYNTHESEb

PacBio 1,284,129 4,354,429,905 11.7 x 3,391 24,405 SRR3743363
H. sapiens PacBio 10,245,649 59,999,995,767 20.0 x 1,569 208,628 SAMN02744161

ONT 15,599,452 114,380,310,980 35.0 x 4,569 1,537,349 PRJEB23027

Note: a refer to LINKS dataset; b Synthesized by using pIRS (version 1.11) with parameters -x 50 and -c 0.
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Table 2. Draft assembly statistics for E. coli , S. cerevisiae , D. melanogaster , O. sativa , and H. sapiens.
Organism Source Reference Length (bp) Chr. Assembled Length (bp) Fraction Contigs (#) N00 (bp) N50 (bp) N100 (bp)

E. coli SOAPdenovo2 4,681,865 1 4,598,322 0.98 728 164,235 40,009 52
SPAdes 4,579,398 0.98 242 264,985 133,189 56

ABySSa 5,160,631 1.10 69 358,719 177,636 493

S. cerevisiae SOAPdenovo2 12,071,326 16 12,063,232 0.99 6,961 146,672 19,567 60
SPAdes 11,754,316 0.97 2,254 451,383 107,906 56

Celera Assemblya 14,910,895 1.24 6,953 257,346 49,258 64

D. melanogaster SOAPdenovo2 120,381,546 6 118,065,428 0.98 45,480 902,599 111,033 62
O. sativa SOAPdenovo2 373,245,519 12 346,168,844 0.93 257,801 147,060 18,977 3

H. sapiens SRPRISM+ARGOb 2,996,426,293 23 2,781,084,252 0.93 40,906 1,009,096 140,502 199

DISCOVAR
c 3,068,057,564 1.02 858,918 1,380,479 179,783 201

Note: a refers to LINKS; b refers to [31]; c refers to [32].
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Table 3. The performances of scaffolders tested for E. coli , S. cerevisiae , D. melanogaster , O. sativa , and H. sapiens using PacBio long reads.

Organism Methods Sequences (#) Sum NG50 NA50 Longest Sequence Misassembles (#) CPU Time (min) Peak RAM (Gb)

E. coli SPAdes 242 4.6 Mb 133.2 Kb 132.9 Kb 264.0 Kb 2 196.28 0.02
SSPACE-LongRead 164 4.7 Mb 4.6 Mb 2.1 Mb 4.6 Mb 2 48.50 -
LINKS 183 4.6 Mb 0.4 Mb 0.2 Mb 1.3 Mb 13 9.40 20.01
OPERA-LG 176 4.7 Mb 1.5 Mb 1.2 Mb 2.1 Mb 4 361.79 0.01
SMIS 185 4.7 Mb 4.6 Mb 3.6 Mb 4.6 Mb 2 26.51 -
npScarf 134 4.7 Mb 2.5 Mb 1.6 Mb 1.3 Mb 9 4.49 1.71
Unicycler 1 4.6 Mb 4.6 Mb 2.7 Mb 4.6 Mb 1 7,378.72 3.28
DBG2OLC 4 4.2 Mb 1.3 Mb 0.6 Mb 1.6 Mb 4 2.32 0.17
LRScaf (BLASR) 173 4.8 Mb 4.6 Mb 2.6 Mb 4.6 Mb 2 1.74 1.80
LRScaf (minimap) 173 4.8 Mb 4.6 Mb 2.7 Mb 4.6 Mb 2 0.17 0.25
LRScaf (minimap2) 173 4.8 Mb 4.6 Mb 2.7 Mb 4.6 Mb 2 0.19 0.25

S. cerevisiae SPAdes 2,254 11.8 Mb 104.2 Kb 93.5 Kb 451.4 Kb 22 133.31 0.03
SSPACE-LongRead 2,012 12.1 Mb 510.4 Kb 196.6 Kb 1.0 Mb 75 108.05 -
LINKS 2,057 11.8 Mb 260.2 Kb 161.9 Kb 1.0 Mb 43 85.22 45.23
OPERA-LG 2,078 12.0 Mb 418.6 Kb 247.1 Kb 1.0 Mb 41 12.10 0.01
SMIS 2,115 11.9 Mb 416.3 Kb 263.9 Kb 0.9 Mb 32 41.68 -
npScarf 1,868 11.9 Mb 665.8 Kb 202.1Kb 1.0 Mb 105 12.45 2.45
Unicycler 62 11.5 Mb 326.1 Kb 284.1 Kb 0.8 Mb 17 1,459.92 5.80
DBG2OLC 38 7.5 Mb 172.2 Kb 174.5 Kb 0.7 Mb 24 16.90 0.42
LRScaf (BLASR) 2,063 12.7 Mb 440.0 Kb 260.9 Kb 1.0 Mb 38 9.27 1.16
LRScaf (minimap) 2,109 12.3 Mb 421.3 Kb 283.0 Kb 1.0 Mb 34 0.39 0.28
LRScaf (minimap2) 2,111 12.3 Mb 421.2 Kb 283.0 Kb 1.0 Mb 33 0.34 0.51

D. melanogaster SOAPdenovo2 45,480 118.1 Mb 107.8 Kb 111.0 Kb 902.6 Kb 0 23.15 43.00
SSPACE-LongRead 42,136 124.1 Mb 6.6 Mb 3.8 Mb 19.6 Mb 83 3,703.10 -
LINKS 42,976 119.0 Mb 0.3 Mb 0.3 Mb 1.4 Mb 480 766.27 675.37
OPERA-LG 42,543 123.5 Mb 3.7 Mb 2.6 Mb 19.2 Mb 211 130.21 0.12
SMIS 43,387 122.4 Mb 4.0 Mb 3.1 Mb 15.6 Mb 112 4,035.66 -
npScarf 41,657 120.9 Mb 5.1 Mb 0.3 Mb 11.8 Mb 1,515 37.20 15.26
DBG2OLC 715 143.3 Mb 5.0 Mb 1.7 Mb 11.3 Mb 2,393 132.20 4.30
LRScaf (BLASR) 43,116 124.4 Mb 5.4 Mb 5.2 Mb 19.6 Mb 15 32.19 1.46
LRScaf (minimap) 42,696 124.1 Mb 5.5 Mb 3.7 Mb 15.1 Mb 35 4.08 3.69
LRScaf (minimap2) 42,675 123.7 Mb 6.1 Mb 3.7 Mb 17.8 Mb 21 1.61 3.72

O. sativa SOAPdenovo2 257,770 346.2 Mb 17.2 Kb 19.0 Kb 147.1 Kb 45 206.92 147.23
SSPACE-LongRead TLE

b TLE TLE TLE TLE TLE TLE TLE

LINKS 242,206 351.0 Mb 47.3 Kb 47.7 Kb 424.5 Kb 535 1,272.45 877.72
OPERA-LG 234,910 357.5 Mb 79.1 Kb 62.8 Kb 684.2 Kb 2,604 391.24 0.37
SMIS 238,851 352.6 Mb 55.1 Kb 50.3 Kb 423.8 Kb 944 8,040.56 -
npScarf 245,140 347.0 Mb 63.8 Kb 50.1 Kb 553.8 Kb 2,198 87.58 6.50
DBG2OLC 5,759 331.3 Mb 94.5 Kb 64.9 Kb 794.7 Kb 659 338.11 10.18
LRScaf (BLASR) 240,136 365.2 Mb 60.5 Kb 54.9 Kb 482.1 Kb 734 117.76 4.09
LRScaf (minimap) 240,054 362.7 Mb 53.4 Kb 49.6 Kb 426.4 Kb 803 13.46 4.48
LRScaf (minimap2) 240,857 362.7 Mb 54.3 Kb 51.3 Kb 459.9 Kb 455 6.30 4.14

H. sapiens (CHM1)
d SRPRISM+ARGO 35,120 2.8 Gb 127.5 Kb 140.5 Kb 1.0 Mb 106 - -

SSPACE-LongRead TLE TLE TLE TLE TLE TLE TLE TLE
LINKS MLE

c MLE MLE MLE MLE MLE MLE MLE

SMIS TLE TLE TLE TLE TLE TLE TLE TLE
npScarf TLE TLE TLE TLE TLE TLE TLE TLE
DBG2OLC 3,932 1.2 Gb - 217.6 Kb 2.3 Mb 169 3,700.02 64.69

LRScaf (BLASR) 1,319 2.8 Gb 9.5 Mb 9.0 Mb 43.5 Mb 266 2,701.48 27.23
LRScaf (minimap) 1,697 2.8 Gb 5.2 Mb 5.3 Mb 26.0 Mb 371 169.20 23.91
LRScaf (minimap2) 1,426 2.8 Gb 10.4 Mb 10.7 Mb 45.0 Mb 292 47.49 20.28

Note: 
a 
is not available.

 b 
means that the run time is exceeded 3 weeks' time limit. 

c
 means that the memory usage is exceeded the capacity of system (1TB). 

d
 the assembly metrics

are computed by QUAST_dev_5.0. The best genomic assembly metrics are highlighted in Bold.
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Table 4. The performances of scaffolders tested for E. coli , S. cerevisiae , and H. sapiens  using Nanopore long reads.

Organism Methods Sequences (#) Sum NG50 NA50 Longest Sequence Misassembles (#) CPU Time (min) Peak RAM (Gb)

E. coli 
FULL

ABySS
a 69 5.2 Mb 179.7 Kb 146.9 Kb 358.7 Kb 5 -

b -

SSPACE-LongRead 47 5.2 Mb 226.7 Kb 204.3 Kb 628.4 Kb 6 19.77 -
LINKS 51 5.2 Mb 271.0 Kb 226.3 Kb 633.2 Kb 5 1.06 2.10
SMIS 38 5.2 Mb 638.8 Kb 357.9 Kb 951.2 Kb 5 247.62 -
npScarf 43 5.2 Mb 344.8 Kb 229.6 Kb 632.9 Kb 6 1.01 0.56
DBG2OLC 3 0.3 Mb - 188.5 Kb 206.8 Kb 0 4.76 0.13
LRScaf (BLASR) 30 5.2 Mb 921.6 Kb 485.2 Kb 1,054.7 Kb 6 0.57 0.28
LRScaf (minimap) 53 5.2 Mb 226.7 Kb 204.3 Kb 611.5 Kb 5 0.26 0.31
LRScaf (minimap2) 44 5.1 Mb 358.3 Kb 268.6 Kb 707.7 Kb 5 0.15 0.36

E. coli  
ALL SSPACE-LongRead 45 5.2 Mb 226.7 Kb 226.3 Kb 406.8 Kb 5 135.70 -

LINKS 43 5.2 Mb 294.0 Kb 226.3 Kb 633.2 Kb 5 6.78 14.23
SMIS 27 5.2 Mb 992.2 Kb 618.4 Kb 1,152.8 Kb 5 43.08 -
npScarf 33 5.2 Mb 454.2 Kb 344.7 Kb 838.1 Kb 8 5.18 1.22
DBG2OLC 4 0.5 Mb - 59.2 Kb 209.0 kb 1 5.58 0.13
LRScaf (BLASR) 20 5.0 Mb 987.4 Kb 616.9 Kb 1,147.7 Kb 5 1.27 0.36
LRScaf (minimap) 33 5.0 Mb 487.3 Kb 270.3 Kb 762.7 Kb 5 0.19 0.28
LRScaf (minimap2) 24 5.2 Mb 693.8 Kb 357.9 Kb 1,147.7 Kb 5 0.34 0.46

E. coli 
RAW SSPACE-LongRead 44 5.2 Mb 239.0 Kb 226.3 Kb 628.2 Kb 5 193.27 -

LINKS 48 5.2 Mb 267.0 Kb 205.5 Kb 633.2 Kb 5 12.26 21.94
SMIS 26 5.2 Mb 928.1 Kb 879.1 Kb 1.152.5 Kb 6 82.22 -
npScarf 28 5.2 Mb 762.8 Kb 616.8 Kb 1,146.8 Kb 6 12.65 2.06
DBG2OLC 3 0.2 Mb - 9.8 Kb 106. Kb 0 10.49 0.13
LRScaf (BLASR) 34 5.5 Mb 922.5 Kb 616.5 Kb 1,147.2 Kb 6 4.18 0.32
LRScaf (minimap) 35 5.2 Mb 358.3 Kb 270.3 Kb 610.4 Kb 6 0.32 0.35
LRScaf (minimap2) 36 5.2 Mb 445.1 Kb 357.9 Kb 922.6 Kb 5 0.32 0.29

S. cerevisiae  
NANOCORR

Celera Assembly
a 6,953 14.9 Mb 58.8 Kb 46.4 Kb 257.3 Kb 19 - -

SSPACE-LongRead 6,353 15.7 Mb 231.4 Kb 132.9 Kb 733.3 Kb 50 454.82 -
LINKS 6,651 15.1 Mb 235.5 Kb 110.6 Kb 623.1 Kb 55 50.25 51.73
SMIS 6,706 15.1 Mb 470.5 Kb 250.7 Kb 1,094.4 Kb 28 293.07 -
npScarf 6,649 15.1 Mb 559.4 Kb 219.9 Kb 1,474.2 Kb 65 7.23 3.26
DBG2OLC 75 8.4 Mb 139.2 Kb 143.1 Kb 490.8 Kb 76 20.76 0.48
LRScaf (BLASR) 6,338 15.3 Mb 231.4 Kb 137.7 Kb 761.5 Kb 39 4.95 0.46
LRScaf (minimap) 6,678 15.7 Mb 261.5 Kb 144.7 Kb 741.5 Kb 41 1.40 1.34
LRScaf (minimap2) 6,435 16.3 Mb 445.1 Kb 189.0 Kb 764.9 Kb 39 6.03 0.96

S. cerevisiae 
RAW SSPACE-LongRead 5,914 17.8 Mb 239.0 Kb 99.8 Kb 1,086.8 Kb 147 1,563.55 -

LINKS 6,680 15.0 Mb 231.8 Kb 159.7 Kb 737.2 Kb 26 98.64 153.46
SMIS 6,696 15.1 Mb 438.2 Kb 205.7 Kb 1,094.8 Kb 35 1,100.18 -
npScarf 6,629 15.1 Mb 578.3 Kb 250.0 Kb 1,566.3 Kb 48 369.20 8.57
DBG2OLC 215 13.0 Mb 465.7 Kb 155.0 Kb 1,230.4 Kb 30 111.55 0.48
LRScaf (BLASR) 6,347 15.6 Mb 318.9 Kb 199.7 Kb 750.8 Kb 29 29.29 0.37
LRScaf (minimap) 6,719 15.8 Mb 375.0 Kb 177.4 Kb 753.2 Kb 37 1.11 1.01
LRScaf (minimap2) 6,498 15.1 Mb 253.8 Kb 168.6 Kb 752.6 Kb 23 1.75 0.75

H. sapiens (NA12878)
e DISCOVAR 43,541 2.8 Gb 115.7 Kb 127.3 Kb 961.2 Kb 336 - -

SSPACE-LongRead TLE
c TLE TLE TLE TLE TLE TLE TLE

LINKS MLE
d MLE MLE MLE MLE MLE MLE MLE

SMIS TLE TLE TLE TLE TLE TLE TLE TLE
npScarf TLE TLE TLE TLE TLE TLE TLE TLE
DBG2OLC 10 29.3 Mb - - 16.6 Mb 0 5,483.93 69.84
LRScaf (BLASR) 2,412 2.9 Gb 16.5 Mb 11.7 Mb 71.6 Mb 856 1,323.26 41.20
LRScaf (minimap) 3,182 2.9 Gb 12.2 Mb 10.1 Mb 49.4 Mb 720 377.63 78.89
LRScaf (minimap2) 2,462 2.9 Gb 17.4 Mb 13.6 Mb 64.2 Mb 785 127.07 62.56

Note: 
a
 refers to LINKS dataset; 

b
 is not available. 

c
 means the run time is exceedd 3 weeks' time limit. 

d 
means that the memory usage is exceeded the capacity of system (1TB).

e
 the assembly metrics are computed by  QUAST_dev_5.0.The best genomic assembly metrics are highlighted in Bold.
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