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Abstract

Mitochondrial DNA (mtDNA) is useful to assist with identification of the source of a bio-

logical sample, or to confirm matrilineal relatedness. Although the autosomal genome is much

larger, mtDNA has an advantage for forensic applications of multiple copy number per cell,

allowing better recovery of sequence information from degraded samples. In addition, biological

samples such as fingernails, old bones, teeth and hair have mtDNA but little or no autosomal

DNA. The relatively low mutation rate of the mitochondrial genome (mitogenome) means that

there can be large sets of matrilineal-related individuals sharing a common mitogenome. Here

we present the mitolina simulation software that we use to describe the distribution of the

number of mitogenomes in a population that match a given mitogenome, and investigate its

dependence on population size and growth rate, and on a database count of the mitogenome.

Further, we report on the distribution of the number of meioses separating pairs of individuals

with matching mitogenome. Our results have important implications for assessing the weight of

mtDNA profile evidence in forensic science, but mtDNA analysis has many non-human applica-

tions, for example in tracking the source of ivory. Our methods and software can also be used

for simulations to validate models of population history in human or non-human populations.
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Author Summary1

The maternally-inherited mitochondrial DNA (mtDNA) represents only a small fraction of the hu-2

man genome, but mtDNA profiles are important in forensic science, for example when a biological3

evidence sample is degraded or when maternal relatedness is questioned. For forensic mtDNA4

analysis, it is important to know how many individuals share a mtDNA profile. We present a5

simulation model of mtDNA profile evolution, implemented in open-source software, and use it to6

describe the distribution of the number of individuals with matching mitogenomes, and their matri-7

lineal relatedness. The latter is measured as the number of mother-child pairs in the lineage linking8

two matching individuals. We also describe how these distributions change when conditioning on9

a count of the profile in a frequency database.10

Introduction11

Human mitochondrial DNA (mtDNA) has long been a useful tool to identify war casualties and12

victims of mass disasters, the sources of biological samples derived from crime scenes or to confirm13

matrilineal relatedness [1, 2, 3]. The autosomal genome is much larger and has higher discriminatory14

power, but the mitochondrial genome (mitogenome) has multiple copies per cell, allowing better15

recovery of sequence information from degraded samples [1, 3], including ancient DNA [4, 5]. In16

addition, some biological samples such as fingernails, old bones, teeth and hair have mtDNA but17

little or heavily degraded autosomal DNA.18

It has now become widely feasible to sequence all 16,569 mitogenome sites as part of a forensic19

investigation [6, 7, 8]. For autosomal short tandem repeat (STR) profiles, there are two alleles per20

locus and because of the effects of recombination, the alleles at distinct loci are treated as inde-21

pendent, after any adjustments for sample size, coancestry and direct relatedness [9]. In contrast,22

the maternally-inherited mitogenome is non-recombining, behaving like a single locus at which23

many alleles, or haplotypes, can arise. Due to finite population size and relatedness, the variation24

in mitogenomes in any extant population is greatly restricted compared with what is potentially25

available given the genome length. Whereas a match of two mitogenomes without recent shared26

ancestry is in effect impossible, there can be large sets of individuals sharing the same mitogenome27

due to matrilineal relatedness that is distant compared with known relatives but much closer than28
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is typical for pairs of individuals in the population.29

This limited variation has important implications for the use of mtDNA to help identify indi-30

viduals or establish relatedness. A match between the mtDNA obtained from bones found under31

a Leicester UK carpark and a living matrilineal relative of the former King of England, Richard32

III, played an important role in establishing the bones as those of the king. However, in contrast33

with popular reports of genetic evidence “proving” the identification, the mtDNA evidence was not34

decisive, contributing a likelihood ratio (LR) of 478 towards an overall LR of 6.7 million in favour35

of the identification [10]. Although that mitogenome was at the time unobserved in the available36

databases, its observation in both the skeleton and a contemporary individual meant that it was37

expected to exist in hundreds and perhaps thousands of others. The public interest in the story led38

to multiple matches being subsequently observed in contemporary individuals, raising the question39

of how many humans alive today share this “royal” mitogenome?40

We recently addressed similar questions for paternally-inherited Y chromosome profiles [11].41

Forensic Y profiles focus on a few tens of STR loci, but these can have a combined mutation rate as42

high as 1 per 7 generations [11, 12], much higher than the mutation rate for the entire mitogenome,43

for which estimates range up to around 1 per 70 generations (see Materials and Methods). We44

showed that the high mutation rate of Y profiles has dramatic consequences for evaluating weight45

of evidence. For example, males with matching Y profiles are related through a lineage of up to46

a few tens of meioses. Further, the number of males with a matching Y profile varies only weakly47

with population size, and since the population size relevant to a forensic identification problem48

is typically unknown, it follows that the concept of a match probability that can be useful for49

autosomal DNA profiles is of little value for Y profiles.50

Because of the lower mutation rate for the mitogenome, the situation is less extreme for mtDNA51

profiles than for Y profiles. Here we describe the distribution of the number of individuals with52

the same mitogenome as a randomly-chosen individual under three demographic scenarios and two53

mitogenome mutation models, finding that the number is typically of the order of hundreds rather54

than the tens that share a Y profile. The number of mitogenome matches is consequently more55

sensitive to demographic factors than is the case for Y profiles, but it remains a small fraction56

of the population relevant to a typical crime scenario. As we did previously for Y profiles, we57

also describe the conditional distributions given database frequencies for the observed mitogenome,58
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assuming that the database is randomly sampled in the population. We show for example that a59

mitogenome that is unobserved in a large database can nevertheless exist in hundreds of individuals60

in the population. We also show that individuals sharing a mitogenome are related, typically within61

up to a few hundred meioses, which is much more distant than recognised relationships but still62

much closer than the relatedness of random pairs of individuals in a large population. Therefore63

the matching individuals may not be well-mixed in the population so that database statistics can64

be an unreliable guide to the number of matching individuals in the population.65

Results66

See Materials and Methods for details of our two mutation models, based on [13] and [14], and67

three demographic scenarios which we denote 1.2M growth, 1.2M constant and 300K constant.68

As for Y profiles, it is difficult to rigorously check our simulation models against empirical69

databases because real-world databases often result from informal sampling schemes that are far70

from random samples. They are often drawn from a much larger population than is relevant to71

a specific crime scenario, and sometimes from a number of different administrative regions such72

as states. However, broad-brush comparisons are useful and for this purpose we identified a US73

Caucasian database of 263 mitogenomes [15], which includes 259 distinct haplotypes, a very high74

level of diversity (259/263 = 98%) that reflects sampling from many US states. All our simulated75

databases of size 263 show less haplotype diversity than this database, but those under the 1.2M76

constant model come close (Figs 1 and A1). We also considered an Iranian database [16] of size 35277

with 315 distinct haplotypes (89% diversity). This total included several distinct ethnic identities:78

Persians (181, 91% diversity), Qashqais (112, 84% diversity) and Azeris (22, 100% diversity). The79

simulated databases of size 352 under the 1.2M growth and 300K constant models show mtDNA80

diversity close to that of the Iranian database.81

Low mitogenome diversity has been reported in three Philippines ethnic groups with 39, 43 and82

27 mitogenomes yielding a diversity of 51%, 58% and 81% [17], which may reflect low population83

size and isolation. These lower levels of diversity may be appropriate in some forensic contexts,84

and would require different demographic models from those presented here.85

For both mutation schemes, Fig. 2 (black curves, which are the same in each row) shows the86

cumulative distribution of the number of mitogenomes in the live population matching that of the87

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 7, 2018. ; https://doi.org/10.1101/374686doi: bioRxiv preprint 

https://doi.org/10.1101/374686


DB size 263 DB size 352

Öve
rst

i
Rieu

x

Öve
rst

i
Rieu

x

280

300

320

340

220

230

240

250

260

Mutation scheme

C
ou

nt

Source
Derenko et al. (2013)

Just et al. (2015)

Population size
1.2M growth

1.2M const.

300K const.

Figure 1: Comparison of simulated with US and Iranian databases.

Boxplots show the distribution of the number of distinct haplotypes arising

from 2,500 random databases of sizes 263 and 351 obtained under our three

demographic and two mutation models. The horizontal reference lines show

the numbers of distinct haplotypes in US [15] and Iranian [16] databases of

those sizes. See Fig. A1 for distributions of the numbers of singletons and

doubletons.

Mutation scheme

Rieux [14] Översti [13]

Demographic scenario 50% 95% 99% 50% 95% 99%

1.2M growth 387 3,835 7,361 295 2,869 5,603

1.2M const. 177 761 1,148 152 661 1,006

300K const. 193 859 1,293 149 675 1,085

Table 1: Estimated quantiles of the number of matching individuals.

Key quantiles of the unconditional distributions (black curves of Fig. 2).
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Figure 2: Cumulative distributions of the number of matching indi-

viduals. Black lines show unconditional distributions. Coloured lines show the

distributions conditional on m matching mitogenomes in a reference database

of size n, for up to five values of m (see legend for colour codes) and three values

of n (one per row). Quantiles of the distributions shown in the middle column

are given in Tables 2 and A3 for the mutation models of [13] and [14], respec-

tively. See text for references to additional tables for the other demographic

scenarios.
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PoI (person of interest). The distributions (see Table 1 for quantiles) are similar for the 1.2M and88

300K constant models (middle and right columns), with the number of sequence matches with the89

PoI almost always < 1,000, but for 1.2M growth model some PoI have > 5,000 matches.90

These distributions are altered by conditioning on an observation of m matches in a randomly-91

sampled database of size n (Fig. 2, coloured curves). For the largest database we now see a clear92

difference between the two constant-size populations. For example m = 10 represents 0.1% of the93

database, consistent with 300 matches in the smaller population, a value that is well supported by94

the unconditional distribution and so the conditional distribution is centred around 300. However,95

0.1% of the larger population is 1,200, which is not supported by the unconditional distribution and96

so the conditional distribution is shifted towards lower values, with most support between about97

600 and 1,200. There is a similar effect for the m = 10 conditional distribution in the 1.2M growth98

population (note the different x-axis scale).99

Estimated quantiles for the solid curves in the middle column of Fig. 2 are given in Table 2.100

For the other two demographic scenarios under the Översti mutation scheme [13], see Table A1101

(300K constant) and Table A2 (1.2M growth). Corresponding quantiles for the Rieux mutation102

scheme [14] are given in Table A3 (1.2M constant), Table A4 (300K constant) and Table A5 (1.2M103

growth).104

The number of meioses separating individuals with matching mitogenomes ranges up to a few105

hundred, and is almost never > 500 (Fig. 3). This is close to unrelated for most practical purposes,106

but random pairs of individuals are very unlikely to be related within 1,000 meioses, and so pairs107

with matching mitogenomes are much more closely related than average pairs of individuals. Key108

quantiles for the distributions of matching pairs are given in Table 3. As a guide for comparison,109

a coalescent theory approximation [18] for the mean numbers of meioses separating a random pair110

are 100K and 400K for our small and large constant-size populations, respectively.111

Discussion112

Empirical mitogenome databases do not in practice represent random samples from a well-defined113

population, so that detailed comparisons with our simulation models are not meaningful. However,114

we have verified here that the haplotype diversity generated by our simulation models is broadly115

comparable with that observed in two real databases from large populations.116
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Quantile 50% 95% 99%

Unconditional 152 661 1,006

n = 100 / m = 0 150 649 989

n = 1,000 / m = 0 129 559 852

n = 10,000 / m = 0 54 233 357

n = 100 / m = 1 361 1,016 1,487

n = 1,000 / m = 1 312 878 1,255

n = 10,000 / m = 1 130 367 514

n = 100 / m = 2 581 1,414 1,727

n = 1,000 / m = 2 497 1,181 1,580

n = 10,000 / m = 2 208 487 655

n = 1,000 / m = 5 1,058 1,751 1,853

n = 10,000 / m = 5 439 813 1,007

n = 10,000 / m = 10 820 1,353 1,625

Table 2: Estimated quantiles of the number of matching individuals

under the mutation scheme of [13]. Distributions shown in Fig. 2, middle

column. m denotes the observed count of the haplotype in a database of size n.

See text for references to additional tables for the other demographic scenarios.

In our related paper on Y profile matching [11], we showed that because of the high mutation117

rates of contemporary Y profiles, the numbers of males with Y profile matching a PoI (person of118

interest) are low, typically up to a few tens, and that this number is little affected by population119

size or growth. Moreover the clusters of matching males are related within a few tens of meioses120

and so are unlikely to be randomly distributed in the population relevant to a typical crime scene.121

We argued that it was therefore not appropriate to report a match probability (a special case of122

the likelihood ratio) to measure the weight of evidence, even though likelihood ratios are central to123

the evaluation of autosomal DNA profiles.124

In the present paper we have shown that the situation for mtDNA evidence is intermediate125

8

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 7, 2018. ; https://doi.org/10.1101/374686doi: bioRxiv preprint 

https://doi.org/10.1101/374686


0.00

0.25

0.50

0.75

1.00

0 500 1,000 1,500
Number of meioses between individuals

C
um

ul
at

ive
 p

ro
ba

bi
lit

y

Population size
1.2M growth

1.2M const.

300K const.

Mutation scheme
Översti et al. (2017)

Random pair

Rieux et al. (2014)

Figure 3: Number of meioses between pairs of individuals. The dotted

lines correspond to random pairs of individuals, the solid and dashed lines are

for pairs observed to have matching mitogenomes. See Table 3 for quantiles.

between Y and autosomal profiles. Because the whole-mitogenome mutation rate is an order of126

magnitude smaller than the mutation rate for contemporary Y profiles, the number of individuals127

matching a PoI is correspondingly larger, and varies more with demography. The unconditional128

distribution (Table 1) is very similar for the two constant-size populations that differ in size by129

a factor of four, but for the growing population the median number of matches is about twice130

as big. As for the case of Y profiles, our simulation-based approach can easily take into account131

information from a frequency database, although this requires the assumption that the database is132

a random sample from the population, which is rarely the case in practice.133

The mitolina software that we have presented here can be used to inform the evaluation of134

the weight of mtDNA evidence in forensic applications, similar to our recommended approach to135

presenting Y-profile evidence: simulation models are used to obtain a conservative estimate of the136

number of individuals sharing the evidence sample mitogenome, with conditioning on a database137
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Mutation scheme

Rieux [14] Översti [13]

Demographic scenario 50% 95% 99% 50% 95% 99%

1.2M growth 46 294 434 37 262 377

1.2M const. 27 177 304 23 155 266

300K const. 29 198 341 23 154 272

Table 3: Estimated quantiles of the number of meioses between pairs

of individuals with matching mitogenome. Quantiles of the distributions

shown in Fig. 3 (solid and dashed curves).

frequency if available. Current methods for evaluating mtDNA evidence rely directly on a database138

count of the observed mitogenome [3], and are affected by poor representativeness of the databases,139

and its limited informativeness when there are many rare mitotypes. Our approach can also make140

use of a database count of the haplotype, but this information is used to adjust an unconditional141

distribution and so is less sensitive to the database size and sampling scheme.142

Limitations of our analysis include the range of demographic scenarios that we can consider,143

and the difficulty in assessing which demographic scenario is appropriate for any specific crime.144

Our assumption of neutrality is unlikely to be strictly accurate [19], nor our assumption of a145

generation time of 25 years, constant over generations. We used two mutation rate schemes [13, 14]146

based on phylogenetic estimates, as no pedigree-based mutation rates were available for the entire147

mitogenome. Some discrepancy has been noted between the two estimation methods [20], and148

the rate may have changed over time [21]. If contemporary pedigree-based mutation rates become149

available we could improve our mutation model, but that would not address mutation rate changes150

over time. We have not here addressed the case of mixed mtDNA samples or heteroplasmy (multiple151

mitogenomes arising from the same individual).152

While we have focussed our examples on human populations because of the important role of153

the mitogenome in human identification and relatedness testing, with appropriate modifications154

of the demographic model, mitolina and the methods described here can be used for non-human155

applications of mtDNA. Examples include tracking the source of ivory [22], other areas of wildlife156
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forensics [23] and inferences about the demographic histories of natural populations [24].157

Materials and Methods158

Mitogenome mutation models159

Rieux et al. 2014 [14] Översti et al. 2017 [13]

Region # sites (L,U) # sites (L,U)

HVS1 + HVS2 698 (56.40, 100.76) 1,122 (31.23, 72.53)

PC1 + PC2 7,565 (1.43, 2.34) 7,565 (2.92, 6.00)

PC3 3,776 (6.42, 10.19) 3,776 (4.80, 10.53)

rRNA + tRNA 4,031 (1.89, 3.17) 4,031 (2.35, 5.75)

Mitogenome 16,070 (2.16, 11.64) 16,494 (2.40, 13.84)

Table 4: Mutation rates per site and per 107 generations. L and U

denote lower and upper bounds of a 95% highest posterior density interval.

The values here are 25 times the per-year rates of [14, 13], because we assume

25-year generations

We simulated the mitogenome as a binary sequence subject to neutral mutations, using the160

rates estimated by both Rieux et al. (2014) [14] and Översti et al. (2017) [13], shown in Table 4.161

They both partitioned the mitogenome into four regions: hypervariable 1+2 (HVS1 + HVS2),162

protein coding codon 1+2 (PC1 + PC2), protein coding codon 3 (PC3), and ribosomal-RNA +163

transfer-RNA (rRNA + tRNA). However, the HVS1 + HVS2 region of [14] consisted of 698 sites164

whereas that of [13] had 1,122 sites, although their total mutation rate estimates for the region are165

similar.166

Population simulations167

We simulated populations of mitogenomes under three demographic scenarios. Two constant-size168

Wright-Fisher populations, of 50K and 200K females per generation, were simulated for 1,200 gen-169

erations. The third scenario started with a constant female population size of 10,257 for 1,000170
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generations, followed by growth at a rate at 2% per generation over 150 generations to reach a171

final generation with 200K females. Following [11], individuals in the final three generations are172

considered to be “live”, and in those generations males were also simulated making total live pop-173

ulation sizes of 300K, 1.2M and 1.2M. All the females in any generation had the same distribution174

of offspring number (no between-female variation in reproductive success).175

We assigned mitogenomes to the founders randomly with replacement from a US Caucasian176

database of 263 mitogenomes (259 distinct haplotypes, see Fig. 1) [15], coding each site as 0 if it177

matched the rCRS reference sequence [8], and 1 otherwise. Each mother-child transmission was178

subject to mutation, which changed a 0 to a 1, and vice versa. The same mutation rate was assigned179

to each site within each region, sampled from a normal distribution with 95% interval from Table 4.180

The mean whole-mitogenome mutation rate per generation was 0.0135 for [13] and 0.0110 for181

[14], or about 1 mutation per 74 generations and 1 per 90 generations, respectively. Therefore,182

following one line of descent over 1,200 generations, the expected numbers of mutations to affect183

the mitogenome are 16.3 using [13] and 13.2 using [14]. The probabilities that there is any site184

affected by two mutations and so reverts to its original state during those 1,200 generations are185

0.024 and 0.033, respectively.186

We simulated five population under each of the three demographic scenarios. For each popula-187

tion simulation and both mutation models, we conducted five replicates of the sequence evolution188

process: assigning sequences to the founders and then mutations at each meiosis. Thus, for each189

mutation model and demographic scenario, 25 live populations of mitogenomes were created. In190

each live population, a PoI (person of interest) was randomly drawn 10,000 times, and we recorded191

how many live individuals had the same mitogenome as the PoI. Thus, a total of 5 × 5× 10K =192

250K PoIs were sampled for each mutation and demography combination. Further, for 10% of the193

PoI, the number of meioses between the PoI and each matching individual was recorded.194

Following the methodology of [11], in addition to the unconditional distribution of the number195

of mitogenome matches between a PoI and another live individual, we use importance sampling196

reweighting to approximate the distribution conditional on observing the PoI mitogenome m times197

in a database of size n, assumed to have been chosen randomly in the population.198

Software to perform these simulations is implemented in the open-source R packages mitolina199

[25, 26], based on Rcpp [27], and malan [28], previously used for Y profile simulations [11].200
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Supplementary Material293

Quantile 50% 95% 99%

Unconditional 149 675 1,085

n = 100 / m = 0 138 624 989

n = 1,000 / m = 0 86 380 585

n = 10,000 / m = 0 18 79 121

n = 100 / m = 1 351 1,030 1,469

n = 1,000 / m = 1 211 605 859

n = 10,000 / m = 1 44 124 173

n = 100 / m = 2 568 1,360 1,573

n = 1,000 / m = 2 343 816 1,103

n = 10,000 / m = 2 71 165 221

n = 1,000 / m = 5 745 1,418 1,573

n = 10,000 / m = 5 148 275 345

n = 10,000 / m = 10 280 450 533

Table A1: Approximate quantiles of the number of matching individu-

als. Key quantiles of the distributions shown in Fig. 2 for the mutation scheme

of Översti [13], and for the 300K constant demographic scenario.
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Quantile 50% 95% 99%

Unconditional 295 2,869 5,603

n = 100 / m = 0 268 2,524 4,655

n = 1,000 / m = 0 161 1,134 2,126

n = 10,000 / m = 0 46 231 375

n = 100 / m = 1 1,548 6,042 9,108

n = 1,000 / m = 1 661 2,556 3,665

n = 10,000 / m = 1 130 406 588

n = 100 / m = 2 3,246 9,108 10,561

n = 1,000 / m = 2 1,372 3,683 5,340

n = 10,000 / m = 2 223 569 782

n = 1,000 / m = 5 3,567 7,168 9,177

n = 10,000 / m = 5 534 1,038 1,302

n = 10,000 / m = 10 1,084 1,762 2,140

Table A2: Approximate quantiles of the number of matching individu-

als. Key quantiles of the distributions shown in Fig. 2 for the mutation scheme

of Översti [13], and for the 1.2M growth demographic scenario.
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Quantile 50% 95% 99%

Unconditional 177 761 1,148

n = 100 / m = 0 174 744 1,114

n = 1,000 / m = 0 146 627 956

n = 10,000 / m = 0 56 244 375

n = 100 / m = 1 416 1,154 1,627

n = 1,000 / m = 1 352 981 1,364

n = 10,000 / m = 1 137 386 543

n = 100 / m = 2 658 1,528 2,136

n = 1,000 / m = 2 558 1,297 1,725

n = 10,000 / m = 2 219 514 686

n = 1,000 / m = 5 1,154 2,151 2,293

n = 10,000 / m = 5 463 856 1,061

n = 10,000 / m = 10 862 1,364 1,639

Table A3: Approximate quantiles of the number of matching individu-

als. Key quantiles of the distributions shown in Fig. 2 for the mutation scheme

of Rieux [14], and for the 1.2M constant demographic scenario.
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Quantile 50% 95% 99%

Unconditional 193 859 1,293

n = 100 / m = 0 176 784 1,190

n = 1,000 / m = 0 99 432 676

n = 10,000 / m = 0 18 81 124

n = 100 / m = 1 440 1,222 1,605

n = 1,000 / m = 1 242 702 982

n = 10,000 / m = 1 45 128 179

n = 100 / m = 2 704 1,517 1,827

n = 1,000 / m = 2 391 932 1,228

n = 10,000 / m = 2 73 169 226

n = 1,000 / m = 5 836 1,507 1,818

n = 10,000 / m = 5 151 285 355

n = 10,000 / m = 10 290 458 545

Table A4: Approximate quantiles of the number of matching individu-

als. Key quantiles of the distributions shown in Fig. 2 for the mutation scheme

of Rieux [14], and for the 300K constant demographic scenario.
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Quantile 50% 95% 99%

Unconditional 387 3,835 7,361

n = 100 / m = 0 339 3,242 5,662

n = 1,000 / m = 0 182 1,291 2,342

n = 10,000 / m = 0 47 237 386

n = 100 / m = 1 2,004 7,697 11,463

n = 1,000 / m = 1 756 2,875 4,164

n = 10,000 / m = 1 133 415 608

n = 100 / m = 2 4,027 11,275 14,221

n = 1,000 / m = 2 1,544 4,133 5,579

n = 10,000 / m = 2 228 586 806

n = 1,000 / m = 5 3,926 7,799 9,608

n = 10,000 / m = 5 552 1,057 1,332

n = 10,000 / m = 10 1,095 1,779 2,134

Table A5: Approximate quantiles of the number of matching individu-

als. Key quantiles of the distributions shown in Fig. 2 for the mutation scheme

of Rieux [14], and for the 1.2M growth demographic scenario.
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Figure A1: Comparison of simulated with US and Iranian databases.

The distribution of the numbers of singletons, doubletons and distinct haplo-

types in 2,500 random databases of sizes 263 and 351 obtained under our three

demographic and two mutation models. The horizontal reference lines are from

[15, 16]. [16] does not provide number of singletons and doubletons, but these

numbers (286 and 24, respectively) were obtained directly from the authors.
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