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Abstract 22 

Cryo-EM now commonly generates close-to-atomic resolution as well as intermediate 23 

resolution maps from macromolecules observed in isolation and in situ. Interpreting 24 

these maps remains a challenging task due to poor signal in the highest resolution 25 

shells and the necessity to select a threshold for density analysis. In order to facilitate 26 

this process, we developed a statistical framework for the generation of confidence 27 

maps by multiple hypothesis testing and false discovery rate (FDR) control. In this 28 

way, 3D confidence maps contain separated signal from background noise in the form 29 

of local detection rates of EM density values. We demonstrate that confidence maps 30 

and FDR-based thresholding can be used for the interpretation of near-atomic 31 

resolution single-particle structures as well as lower resolution maps determined by 32 

subtomogram averaging. Confidence maps represent a conservative way of 33 

interpreting molecular structures due to minimized noise. At the same time they 34 

provide a detection error with respect to background noise, which is associated with 35 

the density and particularly beneficial for the interpretation of weaker cryo-EM 36 

densities in cases of conformational flexibility and lower occupancy of bound 37 

molecules and ions to the structure.  38 
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1. Introduction 39 

Cryo-EM based structure determination has undergone remarkable technological 40 

advances over the last several years leading to a sudden multiplication of near-atomic 41 

resolution structures (Patwardhan, 2017). Before these transformative changes, only 42 

highly regular specimens such as helical or icosahedral viruses were resolved at such 43 

detail (Unwin, 2005; Sachse et al., 2007; Zhang et al., 2008; Yonekura et al., 2003; 44 

Yu et al., 2008; Ge & Zhou, 2011). With the advent of direct electron detectors 45 

(McMullan et al., 2016) and simultaneous improvements in image processing software 46 

(Scheres, 2012b; Lyumkis et al., 2013; Punjani et al., 2017), smaller, less regular and 47 

more heterogeneous single-particle specimens became amenable to be routinely 48 

imaged below 4 Å resolution (Bai et al., 2013; Li et al., 2013; Liao et al., 2013). 49 

Recently, the highest resolution structures have become available at ~2 Å resolution  50 

(Merk et al., 2016; Bartesaghi et al., 2018; 2015) and sub-4 Å structures below 100 51 

kDa from images obtained with and without an optical phase plate have been resolved 52 

(Merk et al., 2016; Khoshouei et al., 2017). These studies established the technical 53 

routines for determining atomic models of structures that were previously thought to 54 

be impossible to be resolved by cryo-EM or any other technique (Bai et al., 2015; Galej 55 

et al., 2016; Fitzpatrick et al., 2017; Gremer et al., 2017). Electron tomography is the 56 

visualization technique of choice for more complex samples including the cellular 57 

environment. Due to the poor signal-to-noise ratio (SNR) individual tomograms suffer 58 

from substantial noise artifacts. In case tomograms contain identical molecular units 59 

they can be averaged by orientationally aligning particle volumes (Briggs, 2013). 60 

Recently, with the increase of data quality and improved image processing routines, 61 

this approach also yielded near-atomic resolution maps from HIV capsid (Schur et al., 62 

2016). 63 

 64 

The resulting reconstructions regardless of whether they originate from single-particle 65 

and subtomogram averaging are inherently limited in resolution and suffer from 66 

contrast loss at high resolution (Rosenthal & Henderson, 2003). In the raw 67 

reconstructions, the high-resolution features are barely visible as the amplitudes follow 68 

an exponential decay described by the B-factor quantity that combines effects of 69 

radiation damage, imperfect detectors, computational inaccuracies and molecular 70 
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flexibility. The Fourier shell correlation (FSC) is the accepted procedure to estimate 71 

resolution (Saxton & Baumeister, 1982; van Heel et al., 1982; Rosenthal & Henderson, 72 

2003) and can be compared with a given spectral signal-to-noise ratio (SSNR) 73 

(Penczek, 2002). Consequently, B-factor compensation by sharpening is essential 74 

and common practice. Sharpening is combined with signal-to-noise weighting to limit 75 

the enhancement of noise features (Rosenthal & Henderson, 2003). Based on 76 

sharpened maps, atomic models are built and further improved by real-space or 77 

Fourier-space coordinate refinement (Adams et al., 2010; Murshudov, 2016). This 78 

process is particularly challenging at resolutions between 3 and 5 Å commonly 79 

achieved in cryo-EM. Recently, we proposed a method to sharpen maps by using local 80 

radial amplitude profiles computed from refined atomic models (Jakobi et al., 2017). 81 

This method facilitates interpretation of densities with resolution variation, but also 82 

requires the prior knowledge of a starting atomic model with correctly refined atomic 83 

B-factors. Despite this advance, a more general approach is needed at the initial 84 

stages of density interpretation in particular in the absence of prior model information. 85 

Tracing of amino acids derived from the primary structure as well as placing non-86 

protein components into density maps remains a laborious and time-consuming task. 87 

In particular, the EM density contains a large dynamic range of gray values for which 88 

only a small percentage of voxels is relevant for the interpretation using isosurface-89 

rendered thresholded representations. In practice, the process of choosing a threshold 90 

is helped by the empirical recognition of binary density features matching those of 91 

expected protein features at the given resolution. Therefore, it would be desirable to 92 

have more robust density thresholding methods at hand to reduce subjectivity and 93 

provide statistical guidance in deciding which map features are considered significant 94 

with respect to background noise. 95 

 96 

Extracting significant information from noisy data is a common problem in many fields 97 

of science. The simplest approach is based on thresholding corresponding to multiples 98 

of a standard deviation σ from an expected mean value. The experimental values are 99 

only considered significant when above and rejected as noise when below this 100 

threshold. In X-ray crystallography and cryo-EM, this σ-approach is commonly applied 101 

to the determined maps and σ-thresholds are often reported when isosurface 102 
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renderings of the density are displayed. In EM maps in particular, the σ-levels reported 103 

for interpretation are not universal and will be chosen by the interpreter as they vary 104 

from structure to structure between 1 and 5 multiples of σ and often to a smaller extent 105 

within the structure. The reason for the observed variation is that the high-resolution 106 

amplitudes of density peaks are very weak and can be compromised by noise after 107 

sharpening. In statistical theory, it has been recognized that the simple σ-method 108 

tends to increase the probability of declaring significance erroneously with larger 109 

number of tests (Miller et al., 2001), which is referred to as the multiple testing problem. 110 

To account for this effect, the probability of correct detection could be increased by 111 

controlling the false discovery rate (FDR) (Benjamini & Hochberg, 1995). This 112 

statistical procedure has been applied to noisy images in astronomy (Miller et al., 113 

2001) and to time recordings of brain magnetic resonance images (Genovese et al., 114 

2002) to better discriminate signal from noise.  115 

 116 

Due to the low SNRs of cryo-EM maps at high resolution, separating signal from noise 117 

remains a daunting task. At present, the visualization and interpretation of the density 118 

requires experience of the operator and thus relies on subjectively chosen isosurface 119 

thresholds. As sharpening procedures also amplify noise alongside the high-resolution 120 

signal, a more robust assessment of the statistical significance of those features by a 121 

particular detection error is desirable. Here, we propose to apply the statistical 122 

framework of multiple hypothesis testing by controlling the FDR to cryo-EM maps. The 123 

resulting maps we refer to as confidence maps represent the FDR of a per-voxel basis 124 

and allow the separation of signal from noise background. Confidence maps provide 125 

complimentary information to EM densities from single-particle reconstructions and 126 

subtomogram averaging as they allow detection of particularly weak features based 127 

on statistical significance measures.   128 

 129 

2. Methods 130 

2.1. Statistical framework 131 

In order to overcome limitations in interpreting density features with respect to 132 

significance, we apply multiple hypothesis testing using FDR control to cryo-EM maps. 133 

In this workflow, we estimate the noise distribution from the background of a 134 
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sharpened cryo-EM map, apply subsequent statistical hypothesis testing for each 135 

voxel and control the FDR (Fig. 1a). For the background noise, we assume a Gaussian 136 

distribution or if required an empirical density distribution where the mean and variance 137 

of the noise is estimated from four independent density cubes outside the particle 138 

density along the central x, y and z axes (Fig. 1b). Subsequently, these estimates are 139 

used to obtain upper bounds to assess signal from the particle with respect to 140 

background noise (see Appendix). In addition, we assume that cryo-EM density to be 141 

interpreted is of positive signal (see Results). Therefore, statistical hypothesis tests 142 

are carried out by one-sided testing. To account for the total number of voxels and the 143 

dependency between voxels, p-values are further corrected by means of a FDR 144 

control procedure according to Benjamini and Yekutieli (Benjamini & Yekutieli, 2001). 145 

The FDR-adjusted p-values (or q-values) of each voxel are directly interpretable as 146 

the maximum fraction of voxels that have been mistakenly assigned to signal over the 147 

background.  148 

 149 

As q-values of the respective voxels provide a well-established detection measure, we 150 

further explored its use for density presentation and thresholding. Based on the FDR, 151 

we inverted the map values to the positive predictive value (PPV) by PPV = 1 – FDR. 152 

When the map is thresholded at PPV of 0.99, at least 99% of the binarized voxels are 153 

truly positive density signal within the map, corresponding to a FDR of 1%. We term 154 

these maps confidence maps, referring to the fact that PPVs serve as a measure of 155 

the confidence by which we can discriminate signal from the noise. These confidence 156 

maps can then be visualized like usual cryo-EM maps with common visualization 157 

software, with the difference that the threshold for visualization is now given by 1–FDR 158 

rather than the density potential.  159 

 160 

2.2. Simulations  161 

The simulated images were 400x400 pixels in size. The scaled grid was generated by 162 

adding two orthogonal two-dimensional cosine waves with a period of 5 pixels, where 163 

all values smaller than zero were set to 0, and multiplying the sum by a factor of 0.5 164 

in order to scale the maximum to 1. The scaled grid was 200x200 in size and 165 

embedded in the center of the 400x400 image. Gaussian distributed noise with a mean 166 
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of 0 and given variance of 0.01 (Fig. 1c), 0.1 (Fig. S1a) or 1.33 (Fig. S1b), 167 

respectively, was added to the grid image. Mean and variance for the multiple testing 168 

procedure were estimated outside the scaled grid and the FDR-procedure was carried 169 

out as described. Simulations were implemented in MATLAB (Mathworks Inc.).                170 

2.3. Software 171 

The algorithm is implemented in Python, based on NumPy (Walt et al., 2011) and the 172 

mrcfile I/O library (Burnley et al., 2017). Local resolutions were calculated using 173 

ResMap (Kucukelbir et al., 2014). The software is available at 174 

https://git.embl.de/mbeckers/FDRthresholding. Figures were prepared with UCSF 175 

Chimera (Pettersen et al., 2004). 176 

 177 

3. Results 178 

3.1. FDR-based hypothesis testing yields improved signal detection in 179 

simulations 180 

In order to evaluate the principal performance of the proposed method on simulated 181 

data, we prepared a two-dimensional grid of continuous density waves (Fig. 1c, left). 182 

We added white noise to a series of test images containing SNRs between 3.9 and 183 

0.3 as they occur in high-resolution shells of 3D reconstructions when the FSC curve 184 

drops from 0.67 up to 0.143 often reported as the resolution cutoff. First, we generated 185 

a test image with a SNR of 1.2 and noted that in the power spectrum computed from 186 

the simulated noise images, signal from high-resolution features cannot be detected 187 

although being present in the noise-free power spectrum (Fig. 1c, right). The 188 

detection of these high-resolution features, however, can be recovered from the 189 

corresponding confidence images that we generated as described above, even at 190 

SNRs ranging between 3.9 and 0.3 (Fig. S1a-b). When comparing images 191 

thresholded at conventional 3.0σ levels with confidence images thresholded at a PPV 192 

of 0.99 or FDR of 0.01 (from here on referred to as 1% FDR), we note that FDR-193 

controlled thresholding allows more faithful detection of weak density features closer 194 

to noise levels. In this way, the density transformation to confidence images minimizes 195 

false positive detection of pixels and improves the peak precision as adjacent noise 196 

peaks are suppressed (Fig. S2).  197 

 198 
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3.2. Choice of positive density model with Gaussian background noise 199 

Although the model of Gaussian noise is often used to approximate background noise 200 

in cryo-EM images and maps (Sigworth, 1998; Scheres, 2012a; Kucukelbir et al., 201 

2014; Vilas et al., 2018), it is important to analyze actual maps to better understand 202 

deviations from this assumption. For this purpose, we analyzed a total of 32 deposited 203 

cryo-EM densities from 2 to 8 Å resolution and compared the empirical cumulative 204 

density function (CDF) with the ideal Gaussian CDF (Fig. S3a). It is apparent that all 205 

of them follow the ideal Gaussian CDF closely. For each map, we assessed normality 206 

by Anderson-Darling hypothesis testing (Anderson & Darling, 1954) and found that 207 

75% and 87.5 % of the maps do not significantly deviate from normality when 208 

conservative thresholds corresponding of 1% and 0.1% Family Wise Error Rates 209 

(FWER) are chosen (Fig. S3b). One of the reasons for the observed deviations from 210 

an idealized Gaussian distribution is a result of the 3D reconstruction procedure. In 211 

principle, when truly aligned images containing white Gaussian noise are combined 212 

by linear inversion, the obtained 3D volume will also have Gaussian distribution. In 213 

practice, in cases when uncertainties reside on the 5 orientation parameters, 214 

background noise is not necessarily Gaussian distributed. Moreover, resulting 3D 215 

reconstructions will contain local correlations, i.e. “colored noise”. Therefore, we 216 

analyzed the resulting noise of 3D reconstructions generated from pure noise images 217 

with even angular sampling. The resulting amplitude spectrum shows that it differs 218 

from pure white noise due to correlations between adjacent pixels (Fig. S3c, left). 219 

Furthermore, variances estimated for each voxel from 900 reconstructions show that 220 

they can be approximated uniform over the central sphere (Fig. S3c, right). 221 

 222 

For the map of EMD-6287, which according to the Anderson-Darling test deviates 223 

strongly from normality, we generated a confidence map using the Gaussian and the 224 

empirical CDF. We inspected these confidence maps (Fig. S3d) and find that the 225 

visual agreement between the two maps is very high. To highlight potential 226 

differences, we computed a difference map between the two confidence maps created 227 

by the two approaches and observe no systematic variation when deviation from 228 

normality is assumed. Therefore, for interpreting confidence maps, small deviations 229 

from normality do not appear to have practical limitations. In order to rule out any 230 
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potential unforeseen effects when maps deviate more strongly, we routinely 231 

implemented the monitoring the degree of deviation from ideal Gaussian CDF. For 232 

instance when the deviation of the empirical CDF from the Gaussian CDF exceeds 233 

0.01, referring to the fact that p-values deviate by more than 1 %, can optionally use 234 

the empirical CDF for the generation of confidence maps. 235 

 236 

The second assumption of the proposed confidence map assumes that protein gives 237 

rise to positive density in cryo-EM maps. When inspecting EM density maps, it is 238 

evident that not all signal present in the map is positive. Therefore, we analyzed 239 

whether significant negative densities can be detected in confidence maps generated 240 

from inverted densities. Indeed the confidence maps from negative densities reveal 241 

significant signal in regions between protein density often in a spatially complementary 242 

way (Fig. S4a left). Using the independently determined X-ray structure of the 20S 243 

proteasome (PDB code 1PMA), we tested whether negative density coincides with the 244 

atomic model. Overall, negative density has only a very small 2.5 % overlap with 245 

atoms, which is close to the predicted false discovery rate of 1 % (Fig. S4b). When 246 

using positive density, however, we find that a large fraction of 60 % of the PDB atoms 247 

are found in the 1 % FDR contoured confidence map and 10% of that volume is 248 

occupied by modelled atoms. In conclusion, we show that negative density presents 249 

significant signal in cryo-EM maps, however, that only a very small fraction is occupied 250 

by atoms. The largest fraction of negative densities are found next to positive protein 251 

density most likely due to the fact that the molecular density is lower than in the particle 252 

surrounding solvent area. Based on this analysis and our objective to identify those 253 

voxels that arise from protein density, we include the restraint of testing for positive 254 

signal into the generation of confidence maps and include an additional option to test 255 

for negative signal. 256 

 257 

3.3. Confidence maps from near-atomic resolution maps separate signal from 258 

background suited for molecular structure interpretation 259 

In order to assess the potential of confidence maps for the interpretation of cryo-EM 260 

densities, we applied the algorithm to the near-atomic resolution map of TMV 261 

determined at a resolution of 3.35 Å (EMD 2842) (Fromm et al., 2015). Variances 262 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 23, 2018. ; https://doi.org/10.1101/374546doi: bioRxiv preprint 

https://doi.org/10.1101/374546
http://creativecommons.org/licenses/by/4.0/


 

 10 

could be estimated reliably outside the helical rod from a range of different window 263 

sizes from 10 to 30 voxels using the cryo-EM density (Fig. S5). To generate the 264 

confidence map, we transformed the cryo-EM density to p-values and subsequently 265 

to confidence maps in an equivalent manner to the simulated confidence images 266 

above. Next, we inspected a longitudinal TMV section through the four helical bundle 267 

of the coat protein and compared the confidence map with the cryo-EM density (Fig. 268 

2a and b). The confidence map revealed backbone traces that contain values close 269 

to 1 corresponding to the helical pitch of the LR helix. They clearly stand out with 270 

respect to background noise that is suppressed towards values of 0. The associated 271 

histogram of the confidence map revealed a strong peak beyond 0.99 PPV or below 272 

1 % FDR separating signal over background and thresholding 5.7 % of voxels within 273 

the density. In the case of the deposited cryo-EM map, the subjectively fine-tuned and 274 

recommended 1.2 σ threshold also yielded a recognizable outline of helical pitch 275 

contours while detecting only 3.7 % of voxels from the density. In analogy to 276 

isosurface-rendered cryo-EM densities, confidence map exhibit recognizable 277 

structural details, such as the α-helical pitch and many side chains of the central 278 

helices (Fig. 2c). When applying a lower FDR of 0.01 %, polypeptide density becomes 279 

discontinuous and smaller density features disappear. When going to higher FDR 280 

thresholds such as 10 %, noise starts to be included in the density. At the 281 

recommended 1 % FDR threshold, the appearance of noise is minimal and well 282 

controlled in confidence maps. This is in contrast to cryo-EM densities, where the 283 

appearance of noise is very sensitive to small changes in threshold level in particular 284 

at lower σ. In fact, the recommended 1.2 σ contour includes only 52 % of the atoms of 285 

the model whereas the 1 % FDR threshold contour already contains 73 % with 286 

minimized noise. In order to include the same amount of atoms in a contour, a 287 

threshold of 0.7 σ would be required, which at the same time will lead to a noticeable 288 

increase of obstructing noise. Furthermore, we also examined two additional 289 

confidence maps from EMDB model challenge targets determined at near-atomic 290 

resolution: 20S proteasome (Campbell et al., 2015) and γ-secretase (Bai et al., 2015) 291 

(Fig. S6a and S6b). These confidence maps confirm the previous observation that 292 

when displayed at FDR levels of 1 %, they provide structural details at near-atomic 293 

resolution while effectively separating signal from noise. 294 
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 295 

3.4. Confidence maps provide a map detection error with respect to 296 

background noise 297 

When confidence maps are generated from cryo-EM densities, the main aim of the 298 

approach is to determine a voxel-based confidence measure of molecular density 299 

signal with respect to background noise. In principle, the confidence measure could 300 

also be interpreted as a broader error estimate of the EM map referring to the rate of 301 

falsely discovered of voxels. The error, however, as it arises from a cryo-EM 302 

experiment is a comprehensive quantity, which results from multiple contributions in 303 

the form of the solvent scattering, detector noise as well as computational sources of 304 

alignment and reconstruction algorithms in addition to variation of signal by multiple 305 

molecular conformations and radiation damage effects (Frank & Liu, 1995; Penczek 306 

et al., 2006). Estimating the complete series of error contributions including signal 307 

variation is currently not possible in the context of common cryo-EM collection 308 

schemes. Therefore, the most straightforward way of estimating noise is measuring 309 

the variance of the map solvent area. This variance mainly captures errors as they 310 

arise from detector noise and solvent scattering while neglecting contributions of 311 

computation and local molecular variations. Detector noise can be considered to be 312 

distributed uniformly over the 3D reconstruction whereas solvent scattering distribution 313 

will not be uniform as pure solvent noise next to the particle is higher when compared 314 

with solvent noise projected through the particle due to solvent displacement and 315 

variations of water thickness in the particle view (Penczek, 2010). Consequently, 316 

measuring noise in the solvent area of cryo-EM maps, will lead to an effective 317 

overestimation of noise and therefore to an underestimation of confidence (see 318 

Appendix Proposition 1). Although these deviations from a uniform Gaussian noise 319 

model do not allow absolute error determination, in practice estimating solvent 320 

variance can be used as conservative upper bounds for error rates without including 321 

errors arising from computation and molecular variation. In conclusion, the error as it 322 

arises from confidence maps should be considered a map detection error with respect 323 

to background noise that can assist in the interpretation of cryo-EM densities. 324 

 325 
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3.5. Robustness of FDR-controlled density transformation  326 

In order to test the robustness of the approach, we systematically assessed the effects 327 

of the required input on the resulting confidence map. First, we tested the influence of 328 

severely underestimating noise for confidence map generation by using the 1/2 or 3/4 329 

of the determined variance of the 20S proteasome densities (Fig. S6c). The resulting 330 

confidence maps displayed at 1 % FDR revealed excessive declaration of background 331 

as signal, which poses a principal risk for over-interpretation. This principal risk, 332 

however, is less relevant, when the here proposed variance measurements outside 333 

the particle is used as we tend to overestimate noise (see above and Appendix 334 

Proposition 1). Therefore, we tested the effect of overestimating the variance by 1.25, 335 

2 and 8 fold and generated confidence maps according to the defined procedure. The 336 

resulting confidence maps show the disappearance of map features at the 1 % FDR 337 

threshold only when the variance is severely overestimated by a factor of 8 but for 338 

small overestimations is hardly noticeable in the map appearance. Another important 339 

noise-related parameter prior to the proposed procedure is the applied sharpening 340 

level. Therefore, we tested a series of B-factors from 0 to -250 Å2 applied to the 20S 341 

proteasome maps and converted them into confidence maps. First, with increasing 342 

negative B-factors the corresponding confidence maps displayed at 1 % FDR show 343 

loss of features due to the drop in relative significance. This is in contrast to cryo-EM 344 

densities that become severely over-sharpened and density features are dominated 345 

by noise (Fig. S6d). Second, when under-sharpened maps are used for noise 346 

estimation, maps will contain only low-resolution features lacking high-resolution detail 347 

at the respective significance level in analogy to cryo-EM densities. Therefore, when 348 

over-sharpened maps are used for noise estimation, confidence maps inherently avoid 349 

enhancement of noise features that could be mistakenly interpreted as signal. 350 

Although noise estimation is important for the procedure, tests show that smaller 351 

variance overestimation does not have a noticeable effect on map interpretation of 1 352 

% FDR confidence maps. In conclusion, confidence maps represent a conservative 353 

way of displaying maps at defined significance while avoiding the problem of over-354 

sharpening, which represents a principal benefit over visualization of σ-thresholded 355 

sharpened EM densities. 356 

 357 
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3.6. Confidence maps facilitate detection of weak density features 358 

In order to evaluate further molecular details of the confidence map, we inspected 359 

more ambiguous density features of the TMV map. Peripheral density at lower and 360 

higher radius of the virus was notoriously difficult to interpret in previous works (Fromm 361 

et al., 2015; Sachse et al., 2007; Namba & Stubbs, 1986). For these regions, we found 362 

that there are well-defined features present in the 1% FDR confidence maps. Densities 363 

of the coat protein for loops Q97 – T103 located at the inner radius and T153 – G155 364 

at the outer radius are not present in the respective EM map, but clearly traceable in 365 

the 1% FDR confidence map (Fig. 2d, center). In addition, side-chain density for K53 366 

contacting the adjacent subunit was found to be clearly significant while being 367 

discontinuous in the original map (Fig. 2d, bottom left). Based on confidence maps, 368 

readjustment of side-chain rotamers was possible, illustrated for example by 369 

significant density for R61, which suggests a realignment of R61 to form stabilizing 370 

interactions with aromatic W152 (Fig. 2d, bottom right). The presented examples of 371 

TMV illustrate that confidence maps represent an alternative for density display, which 372 

can help in the process of molecular feature detection. Although threshold adjustments 373 

in cryo-EM maps can also help model interpretation in ambiguous regions and 374 

enhance weak density features, they also amplify noise features and increase the risk 375 

of noise fitting.  376 

 377 

We also tested cases of more heterogeneous densities such as the V-ATPase SidK 378 

complex (EMD-8724), which was determined at 6.8 resolution (Zhao et al., 2017). 379 

First, the deposited EM map contains very weak density of the bacterial effector SidK 380 

EM density due to low occupancy and flexible motion. The corresponding confidence 381 

map of the V-ATPase SidK complex reveals that the SidK density is not significant as 382 

continuous density when thresholded at 1% FDR as it is too noisy for further analysis 383 

(Fig. S7a). Below in section 3.8, we will deal with cases of local resolution and SNR 384 

variation that can be accommodated by a locally adjusted FDR procedure. Second, 385 

we analyzed confidence maps from three conformational states generated by 3D 386 

classification (EMD-8724, EMD-8725, EMD-8726). The generated confidence maps 387 

thresholded at 1 % FDR of state 1, 2 and 3 confirm previous observations using EM 388 

maps (Fig. S7b). Taken together, confidence maps provide an inherent significance 389 
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level associated with the density and minimize false positive noise detection. In this 390 

way, confidence maps can guide atomic model interpretation of cryo-EM density maps 391 

in particular in density regions of ambiguous quality. 392 

 393 

3.7. Confidence maps from subtomogram averages  394 

We further explored whether structures determined at lower resolution may also 395 

benefit from the approach. For this purpose, we examined the in situ determined sub-396 

tomogram average of the HeLa nuclear pore complex computed from 8 pore particles 397 

at 90 Å resolution (Mahamid et al., 2016). The deposited map clearly shows 398 

continuous densities for the cytoplasmatic and inner ring molecules whereas density 399 

below and above the pore is noisy when visualized at a threshold of 2.0 σ (Fig. 3a). 400 

The corresponding the 1% FDR confidence map shows continuous features of the ring 401 

structure with minimized noise, which makes interpretation straightforward. In order to 402 

generate a confidence map for a subtomogram average structure, care must be taken 403 

in identifying areas of noise devoid of any signal in order to estimate the noise variance 404 

reliably (Fig. S8a). The same tomograms recorded from lamella of HeLa cells also 405 

yielded a subtomogram average of ER-associated ribosomes. The ribosome structure 406 

itself could be determined at 35 Å at the membrane with weak density below the 407 

membrane ascribed to a translocon-associated protein complex and an 408 

oligosaccharyltransferase (Mahamid et al., 2016). The corresponding densities can 409 

only be visualized at low thresholds corresponding to 0.8 σ while increasing the 410 

amount of background noise and hampering molecular interpretation (Fig. 3b). The 1 411 

% FDR confidence maps, however, display the additional protein complexes in the 412 

absence of noise. In this case, the confidence map discriminates between specific 413 

association of the TRAP complex and the looser association of ribosomes within the 414 

polysome assembly. Further, we examined deposited and confidence maps of the 23 415 

Å resolution nuclear pore structure determined by subtomogram averaging (Appen et 416 

al., 2015) (Fig. 3c). While the overall densities look very similar, we focused our 417 

comparison on ambiguous density assignment of the linker region of Nup133. 418 

Presence of density in the 1% FDR confidence maps confirms the continuity of this 419 

density stretch and the author’s interpretation of placing the Nup133 linker region 420 

connecting the N-terminal β-propeller and C-terminal α-helical domain (Fig. 3c, upper 421 
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right). In addition, we identified additional densities in the connecting densities 422 

between the inner and nuclear as well as the inner and the cytoplasmic ring (Fig. 3c, 423 

bottom). Both densities are not visible at the recommended σ-threshold of 2.1 but 424 

they are reliably displayed in the 1% FDR confidence map. Taken together, confidence 425 

maps generated from lower resolution subtomogram averages as well as from near-426 

atomic resolution reconstructions assist in the density interpretation by separating 427 

signal with respect to background noise. 428 

 429 

3.8. Confidence maps benefit from local SNR adjustment in cases of 430 

resolution variation 431 

After establishing the usefulness for maps covering a range of resolutions, we wanted 432 

to further explore how FDR-controlled confidence maps cope with large resolution 433 

differences within a single map. For this purpose, we analyzed the very high-resolution 434 
2.2 Å map of β-galactosidase (β-gal) (EMD2984) (Bartesaghi et al., 2015) in more 435 

detail as it covers resolution ranges from 2.1 to 3.8 Å. In order to reveal high-resolution 436 

details in the center of the map, high sharpening levels were required and 437 

consequently less well resolved parts in the periphery of the map resulted in over-438 

sharpened densities. When we applied our method to the cryo-EM density volume, we 439 

found the 1% FDR confidence to be well defined in the center of the map but fading 440 

out for large parts of the periphery in support of the B-factor test series on the 20S 441 

proteasome (Fig. S8c). We reasoned when resolution differs across the map as a 442 

consequence of molecular flexibility and computational errors, the SNR will vary in 443 

correspondence. To compensate for these effects, noise levels can be adjusted in 444 

cryo-EM maps by applying local low-pass filtrations in Fourier space according to local 445 

resolutions (Cardone et al., 2013). Consequently, a local variance can be estimated 446 

for each voxel by applying the same low-pass filter to the background noise windows 447 

(Fig. S9a). Application of this procedure followed by the FDR control yield a more 448 

evenly distributed 1% FDR confidence map including the β-gal periphery (Fig. 4a, b 449 

top). At the same time, side chain details such as holes in aromatic rings can be 450 

resolved at the same significance level as exemplified for W585 in analogy to the 451 

appropriately filtered density (Fig. 4a, b bottom). Closer inspection of the cryo-EM 452 

density shows that we did not observe density for the peripheral loops of the β-gal 453 
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complex at the 4.5 σ-threshold but clearly detected continuous loop density at a FDR 454 

of 1% of the resolution-compensated confidence map (Fig. 4c, left and right). These 455 

observations show that the statistical power of the procedure can be improved, i.e. the 456 

amount of missed signal can be reduced in cases non-uniform noise levels, while still 457 

controlling the FDR by incorporation of local resolution information (see Appendix for 458 

detailed discussion). 459 

 460 

We recently introduced a local map sharpening tool for cryo-EM maps based on 461 

refined atomic B-factors (Jakobi et al., 2017). When refined atomic coordinates are 462 

available, the concept of resolution-compensated confidence maps based on adjusted 463 

variances derived from local resolution filtering can be easily extended by scaling the 464 

radial amplitude falloff of the noise window against the local reference model for 465 

estimating the resulting local noise levels (Fig. S9b). In order to directly compare 466 

confidence maps generated by different filtering or scaling approaches, we focused 467 

on the inspection of the peripheral regions of the β-gal enzyme as the densities are 468 

weak in particular for loops extending from the particle. When we compared the 469 

confidence map of this region generated using the local resolution filtering with the 470 

original confidence map, we confirm the observation that adjustments according to 471 

local resolutions improve the density connectivity (Fig. S10a, b). When we used the 472 

local amplitude scaling approach, we obtained a confidence map with improved 473 

density coverage when compared with the original confidence map but less coverage 474 

when using local resolution filtering (Fig. S10b, c). In combination, when local variance 475 

is estimated based on local amplitude scaling and filtering, we find optimal coverage 476 

of density and the atomic model (Fig. S10d). Another example from the EMDB model 477 

challenge is the TRPV1 channel determined at 3.4 Å resolution (EMD5578) (Liao et 478 

al., 2013). The structure contains a well-defined transmembrane region and a more 479 

flexible cytoplasmic domain that is less well resolved. The application of locally 480 

adjusted SNRs to the confidence map yields a map with well interpretable density 481 

including molecular details (Fig. 4d and 4e). In analogy to the examples above, the 482 

cytoplasmic domain is only visible at lower thresholds than the core of the protein. The 483 

1 % FDR confidence map captures all density occupied by the protein including the 484 

more flexible regions at the cytoplasmic domain. The example of the TRPV1 channel 485 
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confirms the observation of β-gal that local resolution differences need to be taken into 486 

account for correct generation of confidence maps. When maps exhibit strong local 487 

variation of noise due to molecular flexibility and computational errors, local variances 488 

can be estimated based on local resolution measurements or on local sharpening 489 

procedures and yield well-interpretable confidence maps at a single FDR threshold.  490 

 491 

3.9. Confidence maps confirm detection of bound molecules  492 

The majority of near-atomic resolution maps obtained by cryo-EM are in the resolution 493 

range between 3 and 4.5 Å. Although main-chain and large side-chain density can 494 

often be modeled reliably, smaller side chains and ordered non-protein components 495 

such as water molecules and ions are inherently difficult to model at these resolutions 496 

and pose the risk of noise fitting. Therefore, we investigated whether confidence maps 497 

can help to mitigate this problem and inspected a putative Mg2+ site coordinated by 498 

E416, E461, H418 and three additional H2O molecules inside of the β-gal enzyme. 499 

We rigidly placed of the Mg2+ ion and coordinated water molecules based on the 1.6 500 

Å resolution X-ray crystal structure (Wheatley et al., 2015) (PDB 4ttg) and superposed 501 

them onto the deposited EM density map. The map at lower 3.5 σ threshold shows 502 

convincing density for only two out three water molecules. (Fig. 5a top left). In 503 

contrast, the 1% FDR confidence map based on local variance estimation reveals 504 

distinct density peaks for all three suspected H2O molecules (Fig. 5a top right). 505 

Furthermore, β-gal had been imaged in the presence of the small molecule inhibitor 506 

PETG. Locating and conformational modeling of the ligand remains challenging due 507 

to flexibility and lower occupancy (Fig. 5a bottom left). Ligand placement is facilitated 508 

using confidence maps, with density well resolved for the complete small molecule 509 

inhibitor (Fig. 5a bottom right). The confidence density confirms previous re-510 

refinement of the inhibitor position and conformation (Jakobi et al., 2017). In addition, 511 

we also tested whether detection of smaller ions can be facilitated by confidence 512 

maps. For this purpose, we turned again to the TRPV1 channel and inspected the 513 

density surrounding G643 known as the selectivity filter for the ions passing the 514 

channel. The deposited map reveals a density peak in the symmetry center that is 515 

compatible with a small ion. In support, the confidence map also shows a density peak 516 

at the same position supporting the presence of an ion with a confidence of 1 % FDR 517 
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(Fig. 5b bottom right). In correspondence, there are multiple cryo-EM structures 518 

reporting putative ion densities along an array of carbonyl forming an inner cavity of 519 

the channel (Lee & MacKinnon, 2017; McGoldrick et al., 2018). Closer inspection of 520 

the γ-secretase complex reveals significant density for a membrane-embedded 521 

phosphatidylcholine (PC) lipid molecule. In order to detect the two PC acyl chains, the 522 

deposited EM map requires thresholding at two different σ-levels of 4 and 5 523 

presumably due to differences in chain mobility (Fig. 5c). In contrast, the 524 

corresponding 1% FDR confidence map encompasses most of the density of two acyl 525 

chains without the need of threshold adjustments. In conclusion, confidence maps 526 

from cryo-EM structures possess minimized noise and can be directly used to evaluate 527 

the significance of density features to be present by providing a map detection error 528 

that e.g. 1 % of the peaks are expected to be falsely discovered. Using complementary 529 

information for the interpretation of cryo-EM structures will help to reduce subjectivity 530 

involved in the process of density interpretation. 531 

 532 

4. Discussion 533 

In the current manuscript, we introduced FDR-based statistical thresholding of cryo-534 

EM densities as a complementary tool for map interpretation. This approach is used 535 

successfully in other fields of image processing sciences (Genovese et al., 2002). 536 

Based on a total of five near-atomic resolution EM maps from the EMDB model 537 

challenge (http://challenges.emdatabank.org), one intermediate resolution (6.8 Å) 538 

structure and three subtomogram averages in the resolution range between 90 and 539 

23 Å, we showed that using 1% FDR confidence maps are well suited for detailed 540 

molecular feature detection and result in better confidence in particular for assignment 541 

of weak structural features. Although for all maps different σ-levels ranging between 1 542 

and 5 could be used for the interpretation of relevant cryo-EM map features, 543 

confidence maps thresholded at a common 1 % FDR level show consistent 544 

interpretability of molecular features for these maps. The advantage of confidence 545 

maps is that they effectively separate signal from a background noise estimate by 546 

assigning a confidence scale from 0 to 1 and at 1 % FDR. This way they show 547 

consistent inclusion of signal while minimizing noise. In contrast, for cryo-EM densities 548 

small changes of the isosurface σ-threshold can have severe consequences for the 549 
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interpretability of molecular features and bear the risk of mistakenly including noise. 550 

Therefore, confidence maps and associated FDR thresholds provide a common and 551 

conservative thresholding criterion for the interpretation of cryo-EM maps.  552 

 553 

Included in the algorithm is a direct assessment of the signal significance with respect 554 

to background noise associated with particular density features visible in cryo-EM 555 

maps, which adds an additional objectivity to reporting of ambiguous density features. 556 

Based on these properties, high-resolution confidence maps will be helpful in initial 557 

atomic model building when no or little atomic reference structures are available and 558 

for assessment of critical details such as side chain conformations and non-protein 559 

molecules in the density. The use of these maps will improve the quality of initial 560 

atomic models before launching real-space or reciprocal atomic coordinate refinement 561 

(Murshudov, 2016; Adams et al., 2010), which should proceed with sharpened or 562 

alternatively model-based sharpened maps as refinement targets (Jakobi et al., 2017). 563 

The molecular interpretation based on confidence maps is not limited to maps of close-564 

to-atomic resolution as we demonstrated its benefit for cases of intermediate 565 

resolution single-particle and subtomogram averaging with three maps ranging in 566 

resolution from 7 – 90 Å. In these cases, the interpretation of an unassigned density 567 

using a confidence level is a beneficial property in particular in the absence of atomic 568 

model information.  569 

 570 

We also showed that the generation of confidence maps is a robust procedure. From 571 

the sharpened cryo-EM density, we compute the CDF from the solvent background, 572 

which in most cases can be approximated by a Gaussian distribution. In addition, we 573 

assume protein density to be positive as the overwhelming majority of determined 574 

atoms density resides in positive density. Moreover, we find that the region selected 575 

for noise estimation is critical as it has to contain pure noise devoid of signal. We found 576 

this particularly important for generating confidence maps from subtomogram 577 

averages with particle boundaries less well defined. Generally, when estimating 578 

background noise outside the particle, we tend to overestimate noise due to smaller 579 

ice thickness in particle regions. Smaller deviations from noise estimation show little 580 

effect on the conversion to confidence maps (Fig. S6b). We show that when 581 
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suboptimally sharpened input maps are used to generate confidence maps, the 582 

operator avoids the common risk of mistakenly interpreting noise as signal in over-583 

sharpened cryo-EM densities. In contrast, confidence maps generated from over-584 

sharpened input maps will only result in insufficient declaration of density signal, which 585 

is an important safety feature. Once noise is estimated, the procedure of generating 586 

confidence maps is statistically clearly defined (Benjamini & Hochberg, 1995; 587 

Benjamini & Yekutieli, 2001) and does not contain any free parameters to optimize. 588 

Only in cases of substantial resolution variation due to molecular flexibility and 589 

computational errors, it may be required to locally adjust SNRs by including prior 590 

information through local resolution filtering. More sophisticated approaches such as 591 

amplitude scaling can also be used in cases where atomic reference structures are 592 

available. Adjusting FDR control based on prior information is routinely implemented 593 

in other applications of statistical hypothesis testing (Chong et al., 2015; Ploner et al., 594 

2006). With the manuscript, we provide a program that requires a 3D volume as input 595 

and allows specification of the location of density windows used for noise estimation. 596 

The presented implementation including local resolution filtration is computationally 597 

fast, taking from 30 s to 2 min on a Xeon Intel CPU for the maps produced in this 598 

manuscript. 599 

 600 

We presented several cases in our simulation and EMDB maps where confidence 601 

maps displayed weak structural features more clearly while minimizing the occurrence 602 

false positive pixels (Figures 1–5). This is a particularly useful property of confidence 603 

maps. Weak densities close to inherent noise levels are present in most cryo-EM maps 604 

and they result as a consequence of the molecular specimen as well as from the 605 

applied computational procedures. For example, they can originate from side chain 606 

mobility in the form of multiple rotamers or side-chain specific radiation damage 607 

(Fromm et al., 2015; Allegretti et al., 2014; Bartesaghi et al., 2014). In addition, ligands 608 

including small organic compounds or larger protein complex components may have 609 

lower occupancy or partial flexibility {Zhao:2017hi}. In many complexes, peripheral 610 

loops exposed to the solvent tend to have larger molecular flexibility than the core of 611 

the protein (Hoffmann et al., 2015). We showed that thresholding confidence maps 612 

yield higher voxel detection rates than thresholding in common cryo-EM densities. We 613 
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believe that is a result of the fact that the human operator prefers to recommend a 614 

more conservative σ-threshold to avoid excessive inclusion of noise while as a 615 

consequence one misses out on signal. Using confidence maps, this type of noise can 616 

be suppressed and as a result more reliable signal can be interpreted. 617 

 618 

With the increasing number of near-atomic resolution cryo-EM structures, the process 619 

of building atomic models has become increasingly important but remains time-620 

consuming and labor-intense. Confidence maps can assist the user throughout this 621 

process. In X-ray crystallography, multiple complementary maps are being used 622 

routinely in the process of model building. Real-space model building and optimization 623 

is typically performed using maximum likelihood-weighted 2mFo–DFc, assisted by 624 

mFo–DFc difference map used to highlight errors in the model. Various forms of omit 625 

maps computed from phases of models in which a selection of atoms (e.g. a ligand) 626 

has been omitted are used to confirm the presence of ligand and ambiguous density.  627 

Similarly, confidence maps display a complementary aspect of cryo-EM maps in 628 

helping to reduce ambiguity in density interpretation of e.g. weakly bound ligands, 629 

alternative side-chain rotamers, conformationally heterogeneous structures including 630 

incomplete or flexible parts of the complex. It is evident that confidence maps would 631 

not be suitable for model refinement, as they do not discriminate the scattering mass 632 

of different atoms or relative uncertainties of atomic positions. These properties are 633 

usually modelled by atomic electron form factors and atomic displacement factors 634 

(atomic B-factors). However, owing to the increased precision of density peaks and 635 

noise suppression, it is perceivable that confidence maps could be used to guide 636 

positional coordinate refinement if implemented as a peak searching procedure. In 637 

addition, defined confidence values for density stretches should also be useful and 638 

potentially beneficial for automated model building approaches. Interpreting cryo-EM 639 

densities by means of an atomic model is often the final step of a cryo-EM experiment. 640 

In practice, atomic models are even used as a validation tool to examine density 641 

features for side chains at expected positions. One of the key advantages of the here 642 

proposed confidence maps is that they can be generated without prior knowledge of 643 

an atomic model. As the conversion of cryo-EM densities to FDR controlled maps is a 644 

conceptually simple and computationally straightforward, confidence maps could be 645 
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routinely consulted for providing complementary information of statistical significance 646 

during the intricate process of interpreting ambiguous densities in cryo-EM structures 647 

resulting from molecular flexibility or partial occupancy. 648 
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5. Appendix 667 

5.1. Statistical model 668 

For each voxel in the reconstructed 3D volume, where the voxels are indexed with 669 
i,j,k, the intensity 𝑋",$,% is modeled as 670 

 671 
𝑋",$,% = µ",$,% 	+ 	𝜖",$,%									(1), 672 

 673 
with 𝜖",$,% a real valued random variable representing the background noise with mean 674 

µ.,",$,% ∈ ℝ and variance s",$,%1 ∈ ℝ2.
 and where µ",$,% ∈ ℝ is the true intensity as 675 

observed without background noise.  676 
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We developed an algorithm by means of multiple hypothesis testing, that controls the 677 

maximum amount of false positive signal in the map, i.e. the FDR with respect to 678 

background noise. First, we limit the tested voxels to the reconstruction sphere and 679 

voxels located outside of a diameter larger than the box size are disregarded as they 680 

arise from a smaller subset of averaged images than the voxels inside. Second, we 681 

focus on the detection of voxels with positive deviations from background noise (see 682 

section 3.2). In addition, voxels that contain significant signal are affected by further 683 

sources of noise like flexibility, incomplete binding of ligands and structural 684 

heterogeneity, leading to intensity variations of the signal. Consequently, these 685 

sources lead to an increase of the variance for these voxels as part of incoherent 686 

signal, which we do not consider here as it is going beyond the scope of detecting 687 

signal beyond background. Background noise of experimental cryo-EM data, however, 688 

poses principal challenges to the statistician, as it can result in non-uniform 689 

distributions across the map: although background noise variances from images of 690 

uniform noise over the pixels can be assumed uniform over the central sphere (Fig. 691 

S3c right), background noise outside the particle is higher when compared with 692 

background noise affecting the particle itself due to solvent displacement and 693 

variations of relative ice thickness at the particle (Penczek et al., 2006). Therefore, 694 

estimating noise in the solvent region outside the particle could lead to an 695 

overestimation of the actual influence of the background noise on the particle (see 696 

section 3.4). Although this may cause several problems for comprehensive 697 

probabilistic modelling, these estimates can be interpreted as conservative bounds for 698 

the signal significance of the particle over background noise. For this reason, we use 699 

multiple hypothesis testing in order to calculate these upper bounds for detection 700 

errors of false positive rates, as we prove in Proposition 1. In cases when alternative 701 

noise estimates are available, they can be supplied as additional input to the 702 

procedure in order to generate confidence maps. 703 

 704 

For each voxel a 𝑧-test is carried out, which identifies significant deviations from 705 

background noise. The value of the test statistic 𝑍 at each voxel is then given as 706 

 707 

𝑧",$,% =
56,7,89µ:,6,7,8

s6,7,8
								 2 , 708 
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 709 
where 𝑥",$,% ∈ ℝ is the reconstructed mean intensity at the respective voxel. We are 710 

testing for true intensity µ",$,% higher than 0, thus the null and alternative hypotheses 711 

for each voxel become 712 

 713 
𝐻.:		µ",$,% = 	0									 3  . 714 

	𝐻A:		µ",$,% > 0																	                   715 

 716 
The null hypothesis 𝐻. states that the true intensity µ",$,% at the respective voxel is 0, 717 

i.e. no signal beyond background noise, while the second hypothesis 𝐻A states the 718 

deviation towards higher values. Testing for deviations towards negative values, i.e. 719 

negative densities, is easily accomplished in this setting by multiplying the normalized 720 
map intensities 𝑧",$,%with –1, leading to a left-sided test procedure. Both options can 721 

be chosen by the user.   722 

Under the null hypothesis 𝐻. and by approximating the background noise with a 723 

Gaussian distribution (Kucukelbir et al., 2014; Vilas et al., 2018), the test statistic 𝑍 724 

follows a standard Gaussian distribution. The p-values in our procedure are then 725 

calculated as 726 

 727 

𝑝",$,% = 	
𝑃 	𝑍",$,% ≥ 𝑧",$,%	 𝐻.	) = 1 −F	 𝑧",$,% ,								if						𝑥",$,% ≥ 	µ
1,																																																																											if						𝑥",$,% < µ

			 4 , 728 

 729 
with 𝑍",$,% being the random variable representing the test statistic at voxel i,j,k, 𝑧",$,% 730 

the particular realization, µ the background noise as estimated from the solvent area  731 

and the cumulative distribution function F()	 of the standard Gaussian distribution. 732 

Alternatively, p-values can also be calculated in a non-parametric way without any 733 

assumptions about the underlying background noise distribution by simply replacing 734 

the cumulative distribution function F()	of the standard Gaussian distribution with the 735 

empirical cumulative distribution function 𝐹() estimated from the sample of 736 

background noise, given as 737 

 738 
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𝐹 𝑡 = MNOPQR	ST	QUQOQMVW	"M	VXQ	WYOZUQ	[	V
VSVYU	MNOPQR	ST	QUQOQMVW	"M	VXQ	WYOZUQ

,					𝑡 ∈ ℝ							(5). 739 

 740 

This allows the complete procedure to be carried out without any distribution 741 

assumptions. However, comparisons show that the background noise can be well 742 

approximated with a Gaussian distribution even in the tail areas, which are most 743 

important for the calculation p-values (see section 3.2, Fig. 1b and S3a). The 744 

respective method for p-value calculation, i.e. non-parametric or with Gaussian 745 

assumption, can be chosen by the user. All presented cases in the manuscript, if not 746 

stated differently, were calculated with the assumption of Gaussian distributed 747 

background noise. Note, the here defined p-values differ only marginally from the p-748 

values commonly used for one-sided testing in a way that for all voxels with intensities 749 
smaller than the expected mean noise level µ. their value is here set to one. This 750 

definition allows the control of the FDR in the more general setting of allowed 751 

overestimated mean and variance (see Proposition 1).       752 

 753 

5.2. Multiple testing correction 754 

The respective hypothesis tests are applied to each voxel in the 3D volume. To 755 

account for the multiple testing problem with up to more than a million tests, we choose 756 

to control the FDR. Control in this context is meant in giving upper bounds for the 757 

occurring error. The FDR is defined as the expected amount of false rejections, i.e. 758 

 759 

𝐹𝐷𝑅 ∶= 	 𝔼 a
abc

,							if		𝑉 + 𝑅	 ≠ 0
											0,														if			𝑉 + 𝑅 = 0

										 6 , 760 

 761 

with 𝑉 ∈ ℕ. the number of false rejections, 𝑅 ∈ ℕ. the number of true rejections and 762 

𝔼() denotes the expectation value. Due to dependencies between hypotheses at 763 

voxels close to each other, we choose the Benjamini-Yekutieli procedure (Benjamini 764 

& Yekutieli, 2001), giving an FDR-adjusted p-value for each voxel, which are often 765 

referred to as q-values. To describe the adjustment of p-values according to Benjamini 766 

and Yekutieli in more detail and for the ease of notation, we will now use a sequence 767 

of voxels from the map and denote the number of hypotheses, i.e. tested voxels, with 768 
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𝑚. The p-values 𝑝", 𝑖 = 1,… ,𝑚 are then sorted, from small to large, resulting in sorted 769 
p-values 𝑝("), 𝑖 = 1,… ,𝑚. q-values are then calculated as 770 

 771 

𝑞(") = min
"[%[O

𝑝(%)
O
%
	𝛾 											 7 , 772 

 773 

with 𝑚 the number of hypotheses, 𝑘 a running index and 𝛾 = A
U

O
UqA . By recognizing 774 

the correct index in the sequence of voxels for each index 𝑖 , 𝑖 = 1,… ,𝑚 in the sorted 775 

array and subsequent conversion into the 3D volume, we can assign each voxel 776 

position 𝑖, 𝑗, 𝑘 its corresponding q-value. In order to interpret the resulting map, the q-777 

value for each voxel then gives the minimal FDR that has to be imposed at the 778 

thresholding in order to call the respective voxel a significant deviation from the 779 
background. The final value associated with voxel i,j,k, 𝑞′",$,%, is then calculated as  780 

 781 

𝑞′",$,% = 1 − 𝑞",$,%									 8 , 782 

 783 
where 𝑞",$,% is the q-value at the voxel indexed with i,j,k. Thus, visualization of the map 784 

at a value of 0.99 corresponds to a maximal FDR of 1%, or a minimal PPV of 99%, 785 

and therefore means that from all the visible voxels at this threshold, a maximum of 786 

1% are expected to be background noise. 787 

 788 

Next, we show that the presented procedure with p-values as defined above controls 789 

the FDR even in the case of overestimated background noise, i.e. by using the 790 

possibly overestimated background noise estimates from the solvent area in Equation 791 

(2) for all voxels. 792 

 793 

Proposition 1: 794 

Consider Gaussian distributed random variables representing the background noise 795 

at all voxels 𝑖, 𝑗, 𝑘 in the 3D map with true mean µ.,",$,% ∈ ℝ and variance s",$,%1 ∈ ℝ2.. 796 

Moreover, let µ ≥	µ.,",$,%	and 𝜎1 ≥ s",$,%
1 ,µ ∈ ℝ, 𝜎1 ∈ ℝ2. for all i,j,k, the overestimated 797 

background noise parameters. Then 𝑞v,w,% ≥ 𝑞",$,%, where 𝑞v,w,% corresponds to the q-798 
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value as defined in Equation (7) and calculated with our procedure with parameters 799 

µ, 𝜎1, and 𝑞",$,% the q-value, as obtained with the true parameters µ.,",$,% and s",$,%1 .   800 

 801 

Proof:  802 

In order to prove the statement, we will now recapitulate the algorithm and prove the 803 

inequality at all necessary steps. We start showing that the true p-value at voxel 804 
position 𝑖, 𝑗, 𝑘,		𝑝",$,%, is smaller when compared with the p-value 𝑝v,w,% calculated from 805 

the overestimated background noise parameters using Equation (4). In other words, 806 
we want to show that 𝑝",$,% ≤ 𝑝v,w,% or equivalent to that, 𝑝v,w,% − 𝑝",$,% ≥ 0. If 𝑥",$,% <807 

	µ	,	then the statement is trivial, because 𝑝v,w,% = 1 and 𝑝",$,% ≤ 1, which is a general 808 

property of p-values.  809 
For 𝑥",$,% ≥ 	µ, considering Equations (2) and (4), it follows:    810 

   811 

𝑝v,w,% − 𝑝",$,% = 	1 −
1
2 (1+erf(

𝑥",$,% −	µ
2	s

))	–	1 +
1
2 (1+erf(

𝑥",$,% −	µ.,",$,%
2s",$,%

))=	812 

−
1
2 erf(

𝑥",$,% −	µ
2	s

)	+
1
2 erf(

𝑥",$,% −	µ.,",$,%
2s",$,%

)				 9 .	 813 

 814 

As the error function erf() is monotonically increasing, it is sufficient to show that 815 
56,7,89	µ:,6,7,8

1s6,7,8
≥ 56,7,89	µ

1	s . Because  𝑥",$,% − µ ≥ 0 and thus also 𝑥",$,% − µ.,",$,% ≥ 0, as well as 816 

s ≥ s",$,%, we have       817 

 818 
56,7,89	µ0,𝑖,𝑗,𝑘

1s𝑖,𝑗,𝑘
− 56,7,89	µ

1	s
=

(56,7,89µ0,𝑖,𝑗,𝑘)s9(56,7,89µ)s

1ss𝑖,𝑗,𝑘
≥

(56,7,89µ0,𝑖,𝑗,𝑘)s9(56,7,89µ)s

1ss𝑖,𝑗,𝑘
=819 

9µ0,𝑖,𝑗,𝑘bµ s

1ss𝑖,𝑗,𝑘
≥ 0		(10), 820 

 821 
where in the last inequality it was used that µ ≥ µ.,",$,% and s ≥ s",$,% > 0. This gives 822 

the desired result of 𝑝v,w,% ≥ 𝑝",$,%.    823 

Recapitulating the calculation of q-values in Equation (7) together with the conversion 824 

of the 3D volume to a sequence, it follows: 825 
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 826 

𝑞(Y) = min
Y[%[O

𝑝 %
O
%
	𝛾 ≤ min

Y[%[O
𝑝 %

O
%
	𝛾 = 		 𝑞 Y 	, 𝑎 = 1,… ,𝑚										 11 , 827 

 828 

with 𝑚 the number of hypotheses, 𝑘 a running index and 𝛾 = A
U

O
UqA . This gives the 829 

desired result:  830 

 831 
𝑞v,w,% ≥ 𝑞",$,%												 12 .            832 

� 833 

 834 

As the Benjamini-Yekutieli procedure controls the FDR when using true parameters, 835 

our procedure (i.e. Benjamini-Yekutieli applied to the modified p-values) will give a 836 

more conservative estimate of the FDR (as shown in Proposition 1). Therefore, our 837 

algorithm controls the FDR sufficiently well by giving an upper conservative bound for 838 

the FDR. Thus, Propostion 1 states that even in the setting of non-uniform background 839 

noise with higher noise levels in the region of background noise estimation, the FDR 840 

is controlled and thus robust in the sense that the maximum FDR is still guaranteed. 841 

Furthermore, it has to be mentioned that estimates of the background noise levels are 842 

not the only factor contributing to FDR estimation. Both the number voxels as well as 843 

their dependencies within the map have an important influence and are considered in 844 

the FDR-adjustment. This makes the generation of confidence maps even with 845 

severely overestimated background noise parameters a powerful procedure (Fig. S6), 846 

where powerful is used here in its statistical sense of decreasing the error of missing 847 

true signal. However, the power of the procedure can be even increased, i.e. the 848 

amount of true missed signal reduced while controlling the FDR, by including 849 

information about local resolutions, cutoffs in reciprocal space where no signal is 850 

expected beyond, while, at the same time, controlling the FDR.  851 

 852 

5.3. Testing with local filtering 853 

In the presence of extreme resolution variation, using uniformly sharpened and filtered 854 

maps will lead to confidence maps of insufficient representation of features in both 855 

areas of either lower than the average B-factor or higher than the average B-factor. 856 
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Therefore, in the next two sections, we will show how noise levels can be locally 857 

adjusted and subsequently estimated by inclusion of local resolution information as 858 

well as atomic B-factors and how this can be used to increase the power to detect 859 

weaker features while controlling the FDR. Local filtration of EM maps according to 860 

the local resolution (Cardone et al., 2013) has been shown to be a powerful approach 861 

as it leads to local reductions of background noise. These variations of noise levels 862 

between different voxels at different resolutions from local filtering, can be also 863 

accounted for in the generation of confidence maps. For each voxel, a map duplicate 864 

volume is filtered at the corresponding resolution and the noise distribution estimated 865 

from the solvent area outside the particle. This procedure results in three 3D maps, 866 

the estimates of local variances of the background noise at each voxel after local 867 

filtration, the estimates of local means of the background noise at each voxel after 868 

local filtration and the locally filtered map. These three maps are subsequently used 869 

for the testing procedure. Thus, the value of the test statistic (2) is calculated by 870 

   871 

𝑧",$,% =
𝑥𝑖,𝑗,𝑘−µ𝑖,𝑗,𝑘

s𝑖,𝑗,𝑘
								(13), 872 

 873 
where 𝑥",$,% ∈ ℝ is the intensity of the locally filtered map at voxel 𝑖, 𝑗, 𝑘 and µ",$,% ∈ ℝ 874 

and s",$,% ∈ ℝ2. are the local mean and standard deviation estimate of the background 875 

noise at the respective voxel. All subsequent steps of the algorithm remain identical 876 

as well as the validity of Proposition 1. 877 

  878 

5.4. Testing with local amplitude scaling 879 

As for the local filtration, local amplitude scaling gives rise to varying noise levels at 880 

different voxels. In order to obtain both mean and variance estimates for each voxel 881 

after local amplitude scaling, a duplicate window outside the particle containing pure 882 

noise is scaled according to the rolling window used in local amplitude scaling for each 883 

voxel, i.e. the amplitudes of the Fourier transform of the box containing pure noise at 884 

frequency s, denoted as 𝐹MS"WQ(𝑠), are multiplied with a frequency dependent 885 

sharpening factor 𝑘 𝑠 ∈ ℝ�., which is consequently given as 886 

 887 
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𝑘 𝑠 = 	
𝐹𝑠ℎ𝑎𝑟𝑝𝑒𝑛𝑒𝑑 𝑠

𝐹𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑠
,								if		𝐹SPWQR�Q� 𝑠 ≠ 0

		0,																												if		𝐹SPWQR�Q� 𝑠 = 0	
			 14 , 888 

 889 
where 𝐹WXYRZQMQ�(𝑠) ∈ ℝ�. and 𝐹SPWQR�Q�(𝑠) ∈ ℝ�. are rotationally averaged amplitudes 890 

of the Fourier transform at frequency s given at the respective rolling window for the 891 

sharpened and the observed experimental map, respectively. The noise distribution is 892 

then estimated from the scaled noise sample. In analogy to the case of locally filtered 893 

maps, this procedure results again in three 3D maps of estimated means, variances 894 

and intensities of the locally sharpened map for each voxel that can be incorporated 895 

with Equation (13) in the testing procedure. Proposition 1 remains valid. 896 

 897 

 898 
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 1012 
Fig. 1. False discovery rate (FDR) analysis of cryo-EM maps. 1013 

(a) Left. Flowchart of confidence map generation: the cryo-EM map is converted to p-1014 

values and finally FDR controlled. Right. Slice views through a cryo-EM map of 20S 1015 

proteasome (EMD6287) depicted at the respective stages of the algorithm (blue 1016 

boxes) on the left. Note, the strong increase in contrast when the sharpened map is 1017 

converted to the confidence map. (b) Left. Estimation of the background noise from 1018 

windows (red) outside the particle. Right. Histograms (top. probability in linear scale, 1019 

bottom. probability in log-scale) of the background window together with the probability 1020 

density function of the estimated Gaussian distribution. (c) Evaluation of the algorithm 1021 

on a simulated 2D density grid. The upper right quadrant of images in real space (left 1022 

column) together with the corresponding power spectrum in the Fourier domain (right 1023 

column) are displayed. Density grid with added normally distributed noise at a signal-1024 

to-noise ratio of 1.2 leads to loss of contrast at high resolution. Confidence maps 1025 

recapitulate these high-resolution features (arrows), showing that high-resolution 1026 

signal is detected with high sensitivity. FDR thresholding at 1 % recovers a similar 1027 

binary grid in comparison with 3σ-thresholding while minimizing noise contributions 1028 

while minimizing detected noise (zoomed insets).  1029 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 23, 2018. ; https://doi.org/10.1101/374546doi: bioRxiv preprint 

https://doi.org/10.1101/374546
http://creativecommons.org/licenses/by/4.0/


 

 35 

	1030 

	1031 
Fig. 2. Confidence maps separate signal from noise for molecular density 1032 

interpretation. 1033 

(a) Left. Confidence map with longitudinal section through TMV coat protein displayed 1034 

indicating α-helical pitch of LR helix. Lower half shows the chosen contour at 1 % FDR 1035 

in blue with 5.7 % of voxels detected. Right. Corresponding histogram of confidence 1036 

map with signal separated above 0.99 PPV (1 % FDR). (b) Left. Same section as in 1037 

(a) from cryo-EM density and the recommended threshold contoured at 1.2 σ in gray 1038 

with 3.7 % of voxels detected. Right. Corresponding histogram of cryo-EM density with 1039 

thresholded values displayed in gray. (c) Isosurface rendered of thresholded 1040 

confidence maps at 0.01 %, 1 % and 10 % FDR (left, center left, center right) shown 1041 
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in blue and sharpened cryo-EM density with 1.2σ threshold (right) in gray from TMV 1042 

(EMD2842). Shown are helix A86 – D77 (top), quarter cross section (bottom left) and 1043 

side view (bottom right) of TMV map. (d) Detailed analysis of TMV density. Slice view 1044 

through TMV rod with zoomed inset for inner and outer radii density (top). K53 side 1045 

chain density (left) and molecular environment of R61 side chains (right) at 0.7, 1.2 σ 1046 

threshold and at 1 % FDR confidence map.  1047 

 1048 
Fig. 3. Confidence maps from subtomogram averages 1049 

(a) Nuclear pore structure at 90 Å (EMD 8055) from 8 pore particles: cryo-EM map at 1050 

2.0σ threshold (left, gray) and confidence map at 1 % FDR threshold (right, blue). 1051 

Note, the confidence map minimizes appearance of noise. (b) ER-associated 1052 
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ribosome structure at 35 Å resolution (EMD 8056) in two side views at 0.8σ threshold 1053 

(left) and 1 % FDR confidence map (right). Note, in confidence maps weaker densities 1054 

assigned to peripheral protein complexes TRAP and OST (arrows) can be easily 1055 

visualized in the absence of noise. (c) Nuclear pore structure at 23 Å resolution (EMD 1056 

3103) comparing cryo-EM map at 2.1σ threshold (left) and 1 % FDR confidence map 1057 

(right). Comparison of map pairs for Nup133 linker density (top right), densities located 1058 

between inner and nuclear ring (bottom left) and inner and cytoplasmic ring (bottom 1059 

right). In contrast to sharpened cryo-EM maps at 2.1σ threshold, confidence maps 1060 

show consistently densities at the connections between the inner and outer rings at 1 1061 

% FDR threshold (arrows). 1062 
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 1063 
Fig. 4. Confidence maps benefit from local SNR adjustment based on local 1064 

resolution. 1065 

(a) β-galactosidase (EMD 2984) locally filtered cryo-EM map left (gray) displayed at 1066 

4.5σ threshold and (b) confidence map (blue) including signal-to-noise adjustment 1067 

based on local resolution at 1% FDR threshold (right) in side view and cross section. 1068 

High resolution features like E304 – E398 and holes in aromatic rings W585 in the 1069 

3.5/4.5 σ-thresholded cryo-EM map (a) in comparison with the 1% FDR confidence 1070 

map (b). (c) Comparison of density features from peripheral loop regions not covered 1071 

by density in the locally filtered cryo-EM map (left) compared with the 1% FDR 1072 
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confidence map that shows densities for the respective loops. (d) TRPV1 (EMD5778) 1073 

side view (top) with zoom-in to peripheral cytoplasmic domain density (bottom) 1074 

comparing LocScale density displayed at 5σ threshold (left) and 1 %FDR confidence 1075 

map. (e) Detailed density stretch A594 – L585 (top) and transmembrane helix S5 1076 

including S4-S5 linker (bottom) comparing LocScale density and 1 % FDR confidence 1077 

map.  1078 

 1079 
Fig. 5. Confidence maps confirm localization of non-protein components. 1080 

(a) β-galactosidase (EMD 2984) with 3.5/4.5 σ-thresholded cryo-EM map (left, center, 1081 

gray) and 1 % FDR thresholded confidence map (right, blue): Mg2+ ion coordinated by 1082 

E461, E416, H418 and 3 H2O molecules (top). Density of bound PETG ligand the 1083 

3.5/4.5 σ-thresholded cryo-EM map and in the 1% FDR confidence map (bottom). (b) 1084 

TRPV1 channel (EMD 5778) with 5 σ-thresholded cryo-EM map (left) and 1 % FDR 1085 

thresholded confidence map (right): selectivity filter formed by carbonyls of symmetry-1086 
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related G643 residues. The presence of a putative ion is supported by the confidence 1087 

map. (c) γ-secretase (EMD 3061) with 4σ and 5σ-thresholded cryo-EM map (left) and 1088 

1 % FDR thresholded confidence map (right): The confidence map reveals density for 1089 

both acyl chains of phosphatidyl choline at a single threshold. 1090 

 1091 
Fig. S1. Comparison of σ and FDR thresholding of simulated density grids with 1092 

varying signal-to-noise ratios. 1093 

Thresholding with simulated density grids at signal-to-noise ratios and variance of (a) 1094 

3.9 (0.01) and (b) 0.3 (1.33), respectively. The same simulations as in Fig. 1c are 1095 
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repeated with lower and higher variances of the background noise. At low signal-to-1096 

noise ratio, the 1% FDR thresholding is devoid of false positives whereas conventional 1097 

3σ-thresholding approach yields many false positive pixels (zoomed inset). 1098 

 1099 
Fig. S2. Effect of σ and FDR thresholding on 1D density profiles. 1100 

One-dimensional stacked plots of grid density with noise-free original (top), at signal-1101 

to-noise ratio of 1.2 (center) and confidence map (bottom). The noisy density grid is 1102 

thresholded at 3σ and the confidence map is thresholded at 1 % FDR. Conventional 1103 

3σ-thresholding yields higher rates of false positives and some imprecise peak 1104 

positions (arrows).  1105 
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 1106 
 1107 

Fig. S3. Analysis of normality of cryo-EM densities. 1108 

(a) Left. Overlay of 32 cumulative density functions (CDF) derived from the above 1109 

EMDB entries with ideal Gaussian CDF in black. Right. Zoomed inset to better 1110 

highlight small differences. (b) 32 map entries are assessed with respect to normality 1111 

according to the Anderson-Darling test, significance thresholds are displayed 1.0 and 1112 

0.1 % respectively. (c) Left. Rotational power spectrum of a 3D reconstruction of white 1113 

noise images in comparison with pure white noise spectrum. Right. Slice through 3D 1114 

volume of variances estimated from 900 independent reconstructions from Gaussian 1115 

white noise images with similar uniform orientations together with a histogram of the 1116 
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estimated variances, showing that background noise can be assumed uniform over 1117 

the central sphere in the reconstructed volume. (d) Cross-sectional view of confidence 1118 

maps generated of EMD6287 using Gaussian and empirical CDF. Difference map 1119 

between 1 % FDR binarized confidence maps in the respective image slice. 1120 

 1121 
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Fig. S4. Analysis of positive and negative densities using confidence maps. 1122 

(a) Overlay of 1% FDR positive (blue) and negative (red) confidence maps from 1123 

original and inverted densities of EMD3061 (top) and EMD6287 (bottom) respectively. 1124 

(b) Comparison of detected signal with corresponding atomic models by determining 1125 

the fraction of overlap of atoms with volume and fraction of volume with atoms as a 1126 

function of threshold for negative (left), positive (center) confidence maps and cryo-1127 

EM maps (right), respectively. 1128 

 1129 
Fig. S5. Effect of window size on estimated variance. 1130 

Estimated variance is stable with increasing window size from 5 to 30 voxels for a 1131 

series of EMD entries. 1132 

 1133 
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Fig. S6. Confidence maps and effect of incorrect noise estimation. 1135 

(a) 20S proteasome map (EMD 6287) comparison of 1% FDR density (left) and 3σ-1136 

thresholded map (right). Shown are molecular details from I173 – R180 (top), slice 1137 

view (bottom left) and side view (bottom right) of density. (b) γ-secretase map (EMD 1138 

3061) comparison of 1% FDR confidence map and 5σ-thresholded map. (c) Six 1139 

confidence maps of 20S proteasome (EMD-8267) including magnified inset based on 1140 

incorrect variance estimation: 1st and 2nd left noise is underestimated by 0.5 and 0.75 1141 

times the variance (σ2). In comparison with the correctly estimated noise (3rd), they 1142 

show excessive noise features declared as signal at 1 % FDR. When noise is 1143 

overestimated, which is more likely for cryo-EM maps, confidence maps are quite 1144 

insensitive to changes in map appearance. For multiples like 1.25σ2 and 2σ2 no 1145 

apparent density changes become visible (4th and 5th) unless strong overestimation 1146 

like 8σ2 (6th) leads to disappearance of map features at a 1 % FDR threshold. (d) When 1147 

applying a series of B-factors to the 3D reconstruction of the 20S proteasome map, 1148 

we see that with higher B-factors, sharpened EM densities become dominated by 1149 

noise whereas corresponding confidence maps displayed at 1 % FDR show 1150 

disappearance of significant features thereby avoids over-interpreting noise features.  1151 

 1152 

 1153 

 1154 

 1155 

 1156 

 1157 

 1158 

 1159 

 1160 
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 1161 
Fig. S7. Confidence maps of compositionally and conformationally 1162 

heterogeneous complexes. 1163 

(a) Confidence map of yeast V-ATPase with Legionella pneumophila effector SidK 1164 

(EMD8724) at 1% FDR (left) together with a zoom on the flexible domains of SidK 1165 

(right). The confidence map shows significant density for the flexible domains, 1166 

however, not as continuous density. (b) Slices through confidence maps of 3D 1167 

classified cryo-EM maps. Different rotational states can be resolved in the confidence 1168 

maps.   1169 

 1170 
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 1172 
Fig. S8. Noise estimation in subtomogram averages. 1173 

Gray-scale density slices with red windows for the voxel region used for variance 1174 

estimation: (a) EMD 8055: nuclear pore from HeLa cells by FIB-SEM, (b) EMD 8056: 1175 

ER-associated ribosomes, (c) EMD3103: 23 Å resolution nuclear pore subtomogram 1176 

average. 1177 

 1178 
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 1179 
Fig. S9. Variance adjustment based on local resolution and local amplitude 1180 

profile.  1181 

(a) Adjusting the local signal-to-noise ratio based on local resolution measurements: 1182 

for each voxel, the background windows are filtered according to the local resolution 1183 

at the respective voxels in order to estimate the noise levels of each voxel in the locally 1184 

filtered map. (b) In analogy, local sharpening is applied to background noise in order 1185 

to estimate resulting local noise distributions. 1186 

 1187 
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 1188 
 1189 

Fig. S10. Effect of local variance adjustments on confidence maps   1190 

β-galactosidase (EMD 2984) cryo-EM map at 3.0σ threshold (left, gray) and 1 % FDR 1191 

confidence map based on different post-processing methods (right, blue). Global 1192 

sharpening with uniform filtering, local filtering based on local resolution 1193 

measurements, local sharpening and the combination of local sharpening with local 1194 

filtering were compared. Confidence maps were generated with local noise estimate 1195 
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based on local resolution measurement, locally scaled window from a model reference 1196 

structure and the combination of both, which in this case shows the best preservation 1197 

of molecular density with respect to confidence. 1198 

 1199 
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