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SUMMARY 

Blood vessel formation by angiogenesis is critical for tissue development, homeostasis 

and repair, and is frequently dysregulated in disease[1-3]. Angiogenesis is triggered by 

vascular endothelial growth factor receptor-2/3 (VEGFR) signalling, which induces 

motile endothelial cell (ECs) tip identity[4,5]. Tip cells lead new branching vessels, but 

also coordinate collective EC movement by repressing tip identity in adjacent ECs via 

Delta-Like 4 (DLL4)-Notch-mediated down-regulation of VEGFR activity[6-13]. Hence, 

angiogenesis is driven by lateral inhibition-mediated competition of ECs for migratory 

status. Recent work reveals that temporal modulation of this DLL4-Notch-mediated 

lateral inhibition circuit fundamentally shapes both normal and pathological 

angiogenesis[14-17]. However, the core regulatory network defining the timing and 

dynamics of EC decision-making is unclear. Here, by integrating computational 

modeling with in-vivo experimentation, we uncover a unique ultrasensitive switch that 

temporally defines EC lateral inhibition and ultimately determines the timing, 

magnitude and robustness of angiogenic responses. We reveal that positive-feedback to 

Vegfr via the atypical tetraspanin, tm4sf18, amplifies Vegfr activity and expedites EC 

decision-making in-vivo. Moreover, this Tm4sf18-mediated positive-feedback confers 

robustness to angiogenesis against changeable environmental conditions by invoking 

bistable-like behavior. Consequently, mutation of tm4sf18 in zebrafish delays motile EC 

selection, generates hypoplastic vessels, sensitizes ECs to fluctuations in pro-angiogenic 

signal and disrupts angiogenesis. We propose that positive-feedback transforms the 

normally protracted process of lateral inhibition into a quick, adaptive and robust 

decision-making mechanism, suggestive of a general framework for temporal 

modulation of cell fate specification in development and disease. 
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RESULTS AND DISCUSSION 

Biphasic temporal control of angiogenesis by the Vegfr-Notch axis. 

To ensure appropriate angiogenic responses, excessive induction of tip identity is repressed 

by DLL4-Notch-mediated lateral inhibition[6-13]. During this process, VEGFR activation 

promotes up-regulation of the Notch ligand DLL4 in emerging tip cells, which trans-activates 

Notch in neighboring cells. Elevated Notch activity promotes down-regulation of VEGFR-2/3 

function, rendering laterally-inhibited cells less responsive to VEGF signal (Figure 1A)[6-13]. 

As such, DLL4-Notch coordinates collective movement of sprouting EC populations, and loss 

of Notch results in EC hyper-sprouting in-vivo. However, we have little-to-no understanding 

of the underlying temporal features of these decision-making processes. Indeed, lateral 

inhibition is considered relatively slow, taking upwards of 6 h to complete multiple cycles of 

gene expression needed to amplify initially small differences in input signal[14,16-19], which 

is seemingly incompatible with the rapid dynamic changes in EC state, identity and behavior 

observed in angiogenesis[20,21]. 

To define the timing of EC decision-making in-vivo, we probed the dynamics of lateral 

inhibition-mediated motile EC selection during zebrafish intersegmental vessel (ISV) 

angiogenesis. Live-cell imaging of ISV sprouting in Tg(kdrl:nlsEGFP)zf109 zebrafish embryos 

revealed that lateral inhibition defines a tight temporally restricted selection window that 

robustly generated two motile ECs per vessel by 24 hours post fertilisation (hpf; Figure 1B-

1C). Importantly, Notch signalling critically closed the window, as in the absence of dll4 the 

rate of EC selection did not initially change, but simply continued unstopped (Figure 1C-1D). 

Unexpectedly, Vegfr levels determined the number of ECs selected within the window, as loss 

of flt1 to enhance Vegfr signalling increased the number of ECs selected to sprout, but all 

were selected within the normal temporal window (Figure 1C). Likewise, the opposite was 

observed upon brief low-dose inhibition of Vegfr signalling with less cells selected in the time 
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frame (Figure 1C). As we cannot interrogate the signalling dynamics occurring during the 

selection time window in vivo, we utilized the well validated computational Memagent-Spring 

(MSM) model of Vegf-Notch selection to simulate and predict how cells collectively compete 

within the DA prior to sprouting[22-24] (see Methods). Using exactly the model parameters 

as previously published, a single early time window could indeed be found that remarkably 

exhibited exactly matching phenomena as seen in vivo (Figure S1A-S1D), where Vegf-

inhibited conditions (vegf=0.038) selected fewer ECs and flt1 knockdown conditions 

(Vsink=8) selected more (see methods for full description of these model parameters). 

Monitoring of signalling dynamics in simulations confirmed that Vegf levels determined the 

number of selected ECs by modulating the speed of selection within this time window with 

the model interestingly predicting this is due to the control conditions being suboptimally slow 

at selecting within this short time window compared to flt1 KD (Fig 1C).  

Importantly, differences in Vegfr-dependent selection rates were not associated with 

differential EC proliferation (Figure. 1E), although a later switch to Notch-dependent mitosis 

was revealed by dll4 knockdown. Moreover, proliferation had minimal effect on overall EC 

numbers, with both the initial rate of Vegfr-dependent EC induction and Notch-dependent 

closure of the selection window being the primary determinants of vessel cellularity (Figure 

1F). Hence, we reveal that temporal control of angiogenesis is distinctly biphasic, involving 

(1) Vegfr-level-dependent selection of motile EC numbers, then (2) termination of further 

selection by Dll4-Notch (Figure 1G). 

 

Positive-feedback temporally regulates lateral inhibition network dynamics 

The abrupt switch-like nature of the EC selection window at 24 hpf (Figure. 1C) suggested 

network ultrasensitivity, whereby a distinct threshold of Vegfr signalling both commits ECs 

for motile selection and triggers lateral inhibition. Hence, fluctuating Vegfr levels would 
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determine the magnitude of EC selection by dictating how many ECs achieve threshold levels 

(Figure 1H). Such ultrasensitive responses are frequently driven by positive-feedback loops 

that amplify signal outputs to promote switch-like dynamics[25,26], but despite the 

recognized role of Notch-mediated negative-feedback in angiogenesis, the function/identity 

of positive-feedback modulators remains elusive. Using our previously validated ordinary 

differential equation (ODE) mathematical model of DLL4-Notch-mediated lateral 

inhibition[16], which permits rigorous, mathematical interrogation of the bifurcation 

dynamics in this system, we probed the ability of positive-feedback to modulate the 

thresholding of EC lateral inhibition. In this model, two adjacent un-patterned ECs compete 

for selection as either a VEGFR-active DLL4-expressing tip cell or Notch-active laterally 

inhibited cell using the well-established VEGFR-DLL4-Notch negative-feedback loop 

(Figure 1I). We created a parameter P (see Methods) that creates a positive-feedback 

interaction whereby VEGFR increases the level/activity of an additional factor that positively 

feeds back to activate more VEGFR. Using previously defined reaction parameters [16,27-

29], we revealed that increasing levels of positive-feedback amplified small differences in 

VEGFR activity between coupled ECs to drive rapid reciprocal VEGFR/Notch activation, 

even at low VEGFR levels normally incapable at driving EC sprouting (Figure1J-1K and S1E-

S1F). Hence, positive-feedback decreases the threshold of VEGFR activity required to induce 

motile EC selection and increases the speed of EC decision-making by invoking ultrasensitive 

switch-like behavior during lateral inhibition.   

 

Vegfr-induced expression of tm4sf18 promotes positive-feedback 

To support in silico observations we expanded upon our previous transcriptomic study [30] to 

identify putative positive-feedback regulators of Vegfr by defining genes transcriptionally 

activated by Vegfr and repressed by Notch signaling in zebrafish ECs (Figure 2A). Of only 
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10 candidate Vegfr/Notch-regulated transcripts we identified h2.0-like homeobox-1 (hlx1), a 

known transcriptional target of Vegfr activity in-vivo [30-32] and the atypical tetraspanin 

transmembrane 4 L6 family member 18 (tm4sf18). TM4SF family proteins are known 

membrane-associated adaptors that ligand-independently activate receptor tyrosine kinase 

activity[33,34]. Moreover, TM4SF1, the human homologue of tm4sf18 (Figure S2), is known 

to modulate EC motile behavior in-vitro[35,36]. Hence, tm4sf18 represents an ideal candidate 

positive-feedback modulator of EC motile identity. The highly dynamic nature Vegfr/Notch-

regulated expression of tm4sf18 was validated via qPCR upon inhibition of Vegfr signaling 

and dll4 knockdown (Figures 2B-2C), indicating that tm4sf18 transcription may be tightly 

restricted to sprouting EC populations (Figure 2D). This was confirmed following 

characterization of the spatiotemporal pattern of tm4sf18 expression during zebrafish 

development. During early ISV sprouting from 22 to 26 hpf, tm4sf18 expression was almost 

exclusively restricted to sprouting ISVs (blue brackets in Figure 2E) and was excluded from 

adjacent non-angiogenic vascular tissues, such as the dorsal aorta (DA). Importantly, the 

absence of tm4sf18 in cloche (clos5) mutants that lack endothelial tissues[37] confirmed 

expression in sprouting ECs (Figure 2F). Moreover, tm4sf18 expression was ectopically 

expanded to non-angiogenic tissues upon dll4 knockdown, demonstrating a tight association 

with EC sprouting potential (Figure 2F). Indeed, rapid repression of tm4sf18 was observed 

following fusion of adjacent ISVs to form the dorsolateral anastomotic vessel (DLAV) and 

subsequent termination of Vegf-induced angiogenic behavior (red brackets in Figure 2E). 

Hence, expression of tm4sf18 is dynamically modulated by the Vegfr-Notch axis and is tightly 

spatiotemporally restricted to sprouting ECs in-vivo.  

To define tm4sf18 as a putative temporal modulator of Vegfr/EC signaling in-vivo, we used 

both TALEN and CRISPR/Cas9-mediated gene editing to introduce frame-shift mutations 

into the long (exon-1) or both long and short (exon-2) isoforms of tm4fsf18, respectively 
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(Figure 2G). Importantly, the amplitude of Vegfr signaling in sprouting ECs was unaffected 

by tm4sf18 exon-1 and exon-2 mutation (data not shown), indicating that in the absence of 

Tm4sf18 ECs can still achieve Vegfr activity thresholds sufficient to drive EC motile 

selection. However, the temporal dynamics of Vegfr signaling were significantly perturbed in 

homozygous embryos (Figure 2H-2L). To test this, firstly Vegfr activity was fully blocked in 

ECs of sprouting ISVs that had already emerged from the dorsal aorta upon incubation of 

embryos for 3 h with the Vegfr inhibitor, ZM323881. Full disruption of Vegfr activity by 

ZM323881 was confirmed by a lack of immunoreactivity for pErk (Figure 2I-2L), a well-

established readout for Vegfr signaling in sprouting ECs [22,38,39]. Moreover, disruption of 

pErk was specific to ECs, as levels remained unchanged in neighboring neuronal cells (Figures 

2I-2J). Inhibitor was then washed out and recovery of EC pErk levels were monitored over 

the next 4 h. Quantification of pErk in sprouting tip ECs revealed that normal levels were 

recovered after just 2 h in both control and tm4sf18+/- heterozygous mutant embryos (Figure 

2I, 2K). However, recovery of Vegfr-mediated pErk stalled after 1 h of recovery and was 

significantly disrupted in tm4sf18-/- homozygous mutants (Figure 2J, 2L). Hence, consistent 

with a functional role as a positive-feedback modulator of Vegfr activity, expression of 

tm4sf18 amplifies EC signaling in-vivo and temporally modulates acquisition of high 

thresholds of Vegfr-dependent pErk. 

 

Tm4sf18 promotes EC selection and appropriate cellularity of sprouting vessels 

To define the functional role of Tm4sf18-mediated positive-feedback in EC decision-

making in-vivo we quantified the rate of EC selection during ISV sprouting to reveal a 

significant reduction in tm4sf18-/- homozygous embryos (Figure 3A). These observations were 

consistent with model predictions that in the absence of positive-feedback, fewer ECs 

achieved the Vegfr selection threshold within a defined selection window (Figure 1J-K, S1E-
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F). In parallel, we noted that resulting hypocellular ISVs in tm4sf18-/- homozygous embryos 

were often shorter (Figure 3B), an observation that was confirmed upon quantification of EC 

tip (cell 1) and stalk (cell 2) movement (Figure 3C-3D). This phenotype was reliant on 

mutation of both short and long Tm4sf18 isoforms, as exon1 homozygous mutant embryos 

were unaffected (Figure S3A), and was not due to indirect differences in ISV morphology 

(Figure S3B). Importantly, disruption of ISV extension did not appear to be a consequence of 

reduced EC motility, as movement of emerging tm4sf18-/- homozygous ECs was initially 

indistinguishable from wild type and stalling was only observed later in development (Figure 

3C-3D). Strikingly, we observed a near-identical phenotype upon disruption of EC 

proliferation using hydroxyurea/aphidicolin[39,40] (HU/Ap; Figure 3E), suggesting common 

underlying defects. Although HU/Ap did not disrupt EC motile selection (Figure S3C; unlike 

loss of tm4sf18) and mutation of tm4sf18 did not disrupt EC proliferation (Figure 3F; unlike 

HU/Ap) both tm4sf18 mutation and HU/Ap did generate very similar reductions in ISV 

cellularity (Figure 3G-3H). Moreover, quantification of tip EC motility in ISVs containing 1, 

2 and 3 or more ECs revealed that this cellularity critically determines vessel extension (Figure 

3I). Indeed, consistent with the average number of ECs per ISV in tm4sf18-/- mutants 

(approximately two; Figure 3H), ECs lacking Tm4sf18 on average display the normal 

extension of cells in hypocellular vessels (Figure. 3I). Likewise, wild type and HU/Ap-treated 

tip ECs display movements consistent with the average cellularity of vessels in these 

conditions (Figure S3D). Consequently, both tm4sf18-/- mutation and HU/Ap-treatment 

significantly perturbs the supply of ECs to form the DLAV (Figures 3J-3K). Hence, Tm4sf18 

modulates lateral inhibition-dependent selection of ECs that critically determines the 

cellularity of vessels, which in turn determines the rate of extension of sprouting vessels. 
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Tm4sf18-mediated positive-feedback temporally modulates EC decision-making 

Our observations indicated that Tm4sf18 amplifies Vegfr activity to determine the number of 

ECs that achieve selection threshold. We therefore reasoned that Vegfr inhibition would 

severely disrupt EC selection in tm4sf18-/- homozygous mutants, as ECs would no longer be 

able to achieve selection threshold in the absence of positive-feedback-mediated amplification 

of Vegfr signaling. To test this, we blocked EC Vegfr activity with low-dose inhibitor to 

putatively force ECs to be reliant on positive-feedback amplification of Vegfr activity. Indeed, 

upon Vegfr inhibition, not only was the emergence of the first selected ECs now greatly 

delayed in tm4sf18-/- homozygous mutants (Figure 4A-4B), this treatment also generated a 

large delay to the EC selection window (Figure 4B), independent of any effects on EC 

proliferation (Figure 4C). Hence, when Vegfr activity is limiting, Tm4sf18-mediated positive-

feedback is critical to ensure timely EC selection and temporally defines the dynamics of EC 

lateral inhibition-mediated EC decision-making.  

 

Positive-feedback generates lateral inhibition network robustness 

A core feature of positive-feedback is that it contributes to the establishment of bistable 

networks, which in turn can confer robustness on cell state transitions by employing 

hysteresis[25,26]. This reinforces robust cell identity decisions by ensuring that lower input 

signal levels are required to maintain an active cell state than were needed to drive the initial 

state transition. Further extension of the ODE modeling revealed that increasing levels of 

positive-feedback (as provided by Tm4sf18) generated such hysteretic dynamics during 

Vegfr-Notch-mediated lateral inhibition in silico (Figure 4D). However, the range of values 

that generated bistability was narrow (Figure 4E), which may potentially explain why the 

temporal dynamics of lateral inhibition are also severely disrupted in tm4sf18+/- heterozygous 

mutants upon Vegfr inhibition (Figure 4B). To test these computational predictions that 
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Tm4sf18-mediated positive-feedback could promote robustness of selected EC identity to 

variation in inductive signal, we waited until after ECs were selected for branching, i.e. already 

in ISV sprouts (>22 hpf), and hence already above selection thresholds of Vegfr activity. Then 

we determined the robustness of signaling to increasing concentrations of Vegfr inhibitor for 

3h. In wild type and tm4sf18+/- heterozygous embryos, Vegfr signaling was highly robust to 

partial inhibition of Vegfr, with no significant reduction in pErk levels observed upon 

incubation with 40 nM and 80 nM ZM323881 (Figures 4F-4G). In contrast, Vegfr signaling 

was no longer protected in tm4sf18-/- homozygous mutant embryos and pErk levels were 

significantly disrupted upon incubation of embryos with low dose inhibitor. Hence, as 

predicted in silico (Figure 4D-4E), Tm4sf18-mediated positive-feedback generates signal 

robustness reminiscent of a bistable network and buffers Vegfr signaling output to maintain 

robust angiogenic responses, despite fluctuations to input signal (Figure 4H). 

 

Conclusions 

Using an integrated in silico and in-vivo approach we provide evidence that Tm4sf18- 

mediated positive-feedback generates an ultrasensitive switch that directs the timing and 

robustness of angiogenesis. Recent work demonstrates that such temporal control of EC lateral 

inhibition ultimately defines the topology of vascular networks, with faster rates of tip EC 

selection dramatically increasing vessel network density[14]. As such, it will be critical to 

determine if Tm4sf18-mediated control of Vegfr activity and lateral inhibition underpin such 

modulation of vessel branch density in more complex vascular beds. Moreover, observations 

that positive-feedback confers robustness against fluctuations in Vegfr activity indicates that 

human TM4SF genes may be exploited in therapeutic contexts. For example, abnormally high 

levels of VEGFR signaling were recently shown to drive synchronous oscillations of Dll4 in 

neighboring EC, underpinning a switch from normal EC communal branching behavior to the 
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pathological vessel expansion associated with human retinopathies[15]. Disruption of 

positive-feedback would significantly increase the threshold of VEGFR activity required to 

switch vessels to abnormal expansion, putatively blocking progression to synchronous 

oscillatory dynamics and defining a novel therapeutic approach to normalize branching. 

Likewise, disruption of positive-feedback could increase the potency of existing VEGFR-

targeting anti-angiogenic anti-cancer therapeutics by reducing the concentration of compound 

required to block functional angiogenesis. This is especially pertinent considering that a key 

complication of current anti-angiogenic therapeutics is the dose-limiting side-effects 

encountered with such drugs[40]. Overall, our observations reveal that the relatively slow 

dynamics of lateral inhibition-mediated cell fate decisions can be transformed into quick, 

adaptive and robust decision-making processes by simply incorporating positive-feedback. 

Excitingly, this study suggests a new general mechanism for temporal adaptation of collective 

cell fate decisions by positive feedback. 
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Figure Legends 

Figure 1. Temporal control of angiogenesis by Vegfr-Notch and positive-feedback. (A) 

Illustration of the VEGFR-DLL4-Notch lateral inhibition feedback loop between two ECs 

competing for tip selection. Following lateral inhibition, VEGFR activity increases in cell 2 

whereas Notch activity increases in cell 1. (B-F) Time-lapse images of sprouting ISVs in 

control (B) and dll4 knockdown (D) Tg(kdrl:nlsEGFP)zf109 embryos from around 19 hours 

post-fertilisation (hpf). Brackets indicate dividing cells. Nuclei are pseudocolored. 

Quantification of the number of ECs selected to branch into ISVs (C), percentage of ECs that 

undergo proliferation (E) and total number of ECs per ISV (F) in control, dll4 knockdown, 

flt1 knockdown and SU5416-treated embryos. (G) Illustration of the biphasic nature of EC 

motile selection in control embryos and upon dll4 or flt1 knockdown. (H) Putative role of a 

VEGFR-regulated bipotential switch in modulation of the temporal dynamics of EC motile 

selection. (I) Outline of the signaling interactions underpinning construction of the 2-cell ODE 

mathematical model. Blue arrow indicates lateral inhibition between cells. Green and red 

arrows indicate positive- and negative-feedback via VEGFR, respectively. HE refers to the 

combined effects of Notch-induced expression of the transcriptional repressors, HES, HEY 

and HER (see Methods for more details). (J-K) Plots of DLL4 levels in coupled cells following 

model simulations using varying levels of positive-feedback. Depending on their final level 

of DLL4, cells were assigned as having acquired either high VEGFR activity and stable tip 

identity (high levels DLL4; blue arrowhead; J) or high Notch activity and repressed tip identity 

(low levels DLL4; red arrowhead; K). Blue and red dashed lines represent max and min DLL4 

thresholds for stable tip identity and repressed tip identity, respectively. Increasing levels of 

positive-feedback consistently reduced the threshold of Vegfr activity required for fast tip cell 

patterning. Error bars: mean ± SEM. *P<0.05, two-way ANOVA test. Scale bars, 25 µm. See 

also Figure S1. 
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Figure 2. Tm4sf18 is a positive-feedback modulator of Vegfr signaling dynamics. (A) 

Fold change in transcript levels of the indicated genes following inhibition of Vegfrs (2.5 µM 

SU5416), Notch (100 µM DAPT) or both from 22 to 30 hpf. GFP-positive ECs were isolated 

from inhibitor-treated Tg(kdrl:nlsEGFP)zf109 embryos by flow cytometry prior to 

transcriptome profiling. (B) Fold change in tm4sf18, kdrl, flt4 and dll4 transcript levels by 

qPCR in embryos incubated with SU5416 for the indicated periods of time. SU5416 rapidly 

down-regulates tm4sf18 expression. (C) Fold change in tm4sf18 and kdrl transcript levels by 

qPCR upon dll4 knockdown. In the absence of Dll4-Notch signaling tm4sf18 expression was 

significantly up-regulated. (D) Illustration of proposed regulation of tm4sf18 expression in 

sprouting ECs. (E) Lateral views of sprouting intersegmental vessels (ISVs) in 

Tg(kdrl:GFP)s843 embryos (left panels) or WT embryos following whole-mount in situ 

hybridization analysis of tm4sf18 expression (right panels) at the indicated developmental 

stages (DA, dorsal aorta; DLAV, dorsolateral anastomotic vessel; Blue brackets indicate 

nascent ISVs; Red brackets indicate anastomosed ISVs; arrows indicate tm4sf18-expressing 

ISVs). (F) Whole-mount in situ hybridization analysis of tm4sf18 expression in clos5 mutant 

embryos or WT embryos upon dll4 knockdown. (G) Illustration of lesions introduce into the 

tm4sf18 genomic loci by TALEN/CRISPR-mediated gene editing. A 19 bp deletion of tm4sf18 

exon 1 and a 16 bp deletion / 2 bp insertion of exon 2 were generated using TALENs and 

CRISPR/Cas9, respectively. Genomic target sites for the TALENs, gRNA target site and PAM 

sequence are indicated by blue, red and green highlights, respectively. (H) Strategy for 

assessing Vegfr signaling dynamics in-vivo. Vegfr signaling was first blocked upon incubation 

of embryos with 0.3 µM ZM323881 for 3 h prior to inhibitor washout for 0, 0.5,1, 2 and 4 h 

and pErk staining. (I-L) Lateral views of pErk immunostaining in ISV ECs of control (I) or 

tm4sf18-/- homozygous mutant (J) Tg(kdrl:nlsEGFP)zf109 embryos at 0 and 2 h after inhibitor 

washout and quantification of pErk fluorescence intensity, in tm4sf18+/- heterozygous (K) or 
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tm4sf18-/- homozygous (L) mutant embryos. Arrowheads in I indicate pErk in neuronal cells. 

Error bars: mean ± SEM. *P<0.05, two-tailed t test. Scale bars, 100 µm (E) 25 µm (I-J). See 

also Figure S2. 

 

 

Figure 3. Tm4sf18 regulates lateral inhibition-mediated selection of motile ECs. (A) 

Quantification of the number of ECs selected to branch into ISVs of wild-type, tm4sf18+/- 

heterozygous and tm4sf18-/- homozygous mutant embryos. (B) Time-lapse images of 

sprouting ISVs in wild type (B) and tm4sf18-/- homozygous mutant (C) Tg(kdrl:nlsEGFP)zf109 

embryos from around 19 hpf. Brackets indicate dividing cells. Nuclei are pseudocolored. (C-

E) Quantification of the dorsal movement of tip (cell 1) or stalk (cell 2) ECs in wild type, 

tm4sf18+/- heterozygous mutant (C), tm4sf18-/- homozygous mutant (D) or 5-

hydroxyurea/aphidocolin (HU/Ap)-treated embryos (E). (F-H) Quantification of the 

percentage of ECs that undergo proliferation (F), total number of ECs per ISV (G) and 

distribution of ISV cellularity (H) in wild type, tm4sf18+/- heterozygous mutant, tm4sf18-/- 

homozygous mutant and HU/Ap-treated embryos. (I) Quantification of the dorsal movement 

of tip ECs in ISVs consisting of 1, 2 and 3 or more ECs and comparison with the motility of 

tip ECs in tm4sf18-/- homozygous mutant embryos. (J) Quantification of the number of ECs 

that reach the DLAV position in wild type, tm4sf18+/- heterozygous mutant, tm4sf18-/- 

homozygous mutant and HU/Ap-treated embryos. (K) Illustration of the phenotypic 

consequences of disrupting EC motile selection or proliferation on ISV extension. Error bars: 

mean ± SEM. *P<0.05, two-way ANOVA or two-tailed t test. Scale bars, 25 µm. See also 

Figure S3. 
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Figure 4. Tm4sf18 defines the timing and robustness of EC decision-making. (A) Time-

lapse images of sprouting ISV ECs in either control or tm4sf18-/- homozygous mutant 

Tg(kdrl:nlsEGFP)zf109 embryos from 20 hpf. Embryos were incubated with 40 nM ZM323881 

from 18 hpf onward. Nuclei of sprouting ECs emerging from the DA are pseudocolored. (B-

C) Quantification of the number of ECs selected to branch (B) and the percentage of ECs that 

undergo proliferation (C) in 40 nM ZM323881-treated wild type, tm4sf18+/- heterozygous 

mutant and tm4sf18-/- homozygous mutant embryos. (D) ODE modelling of the impact of the 

level of positive-feedback between Tm4sf18 and VEGF (P) on network bistability. When 

there is no positive-feedback, ECs are not able to switch to an active steady state (high DLL4) 

even when surrounding VEGF is increased. With increasing P, there is a bistable switch in 

EC state with increasing surrounding VEGF; but at very high P values, there is no bistable 

switch with ECs remaining in an active state with changing VEGF. (E) Two-parameter 

bifurcation plot with changing VEGF and changing P values. Region inside the cusp (i.e. 

green shaded portion) represents values that are bistable in EC active state with changing 

values of P and VEGF. Everything outside this narrow belt is monostable. (F) Lateral views 

of sprouting ECs in ISVs of control and tm4sf18-/- homozygous mutant Tg(kdrl:nlsEGFP)zf109 

embryos immunostained for pErk. Prior to fixation, embryos were incubated with DMSO or 

40 nM ZM323881 from 22 hpf for 3 h. (G) Quantification of pErk fluorescence intensity in 

wild type, tm4sf18+/- heterozygous mutant and tm4sf18-/- homozygous mutant embryos 

following incubation with DMSO and increasing concentrations of ZM323881. Upon tm4sf18 

mutation, Vegfr signaling levels were not robust to subtle Vegfr inhibition. (H) Putative role 

of positive-feedback-generated hysteretic dynamics in the control of VEGFR signal levels and 

robustness in angiogenesis. Error bars: mean ± SEM. *P<0.05, two-way ANOVA or two-

tailed t test. Scale bars, 25 µm. 
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Methods 

Zebrafish strains and husbandry. Establishment and characterization of the cloche (clos5) 

mutant, Tg(kdrl:GFP)s843 and Tg(kdrl:nlsEGFP)zf109 lines have been described elsewhere 

[37,41,42]. Embryos and adults were maintained under standard laboratory conditions as 

described previously [22] and were approved by the University of Manchester Ethical Review 

Board and performed according to UK Home Office regulations.  

 

Time-lapse imaging. Confocal microscopy of live Tg(kdrl:nlsEGFP)zf109 embryos was 

performed as previously [22,30]. Briefly, embryos were mounted in 1% low-melt agarose in 

glass bottom dishes, which were subsequently filled with media supplemented with 0.0045% 

1-Phenyl-2-thiourea and 0.1% tricaine. Embryos were imaged using a 20x dipping objectives 

on a Zeiss LSM 700 confocal microscope. Embryos were maintained at 28°C and stacks were 

recorded at every 0.3 h. Tracking of cell motility was performed in ImageJ using the manual 

tracking plugin. All cell tracking recordings were normalized at each time point relative to the 

position of the dorsal aorta to account for any dorsal or ventral drift of embryos during 

imaging.  

 

Morpholino oligonucleotide (MO) injections. To knock down gene expression, embryos 

were injected at the one-cell stage with 5 ng control MO, 5 ng dll4 MO or 3 ng of flt1 MO. 

MO sequences were:  

5’- CCTCTTACCTCAGTTACAATTTATA -3’ (control) 

5’- ATATCGAACATTCTCTTGGTCTTGC – 3’ (flt1) [43] 

5’- GTTCGAGCTTACCGGCCACCCAAAG -3’ (dll4) [6]. 

All MOs were purchased from Gene Tools. 
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Pharmacological treatments. Embryos were manually dechorionated and incubated with 

compounds from 22 hpf (unless otherwise stated). The following compounds were used in this 

study: SU5416 (2.5 µM), ZM323881 (40 nM, 80 nM and 160 nM), 5-hydroxyurea (150 µM) 

and aphidicolin (20 mM). 

 

Simulations with the memAgent-spring model (MSM). The MSM model has been well 

validated against in vivo mouse and zebrafish ISV data in previous studies of collective cell 

dynamics during of Vegf-Notch-mediated tip cell selection, so it made a good choice for 

simulating the dynamics within the time window observed in vivo. In this model, the 

endothelial cell outer membrane is represented at a subcellular level by a collection of 

individual computational agents (`memAgents') connected by springs following Hooke's law, 

which represents the actin cortex beneath. The MSM allows subcellular level rules to generate 

localized responses of individual memAgents on the cell surface and complex cell shape 

changes during cell migration. 

 

Model initialization and parameterization: The model was initialized with 8 cells in a row, 

one per vessel cross section (See Fig S1D), representing a collection of endothelial cells in the 

DA competing to sprout into the ISV space above (represented very simply here as just a fixed 

vegf gradient extending into the y axis above the horizontal row of cells). All parameters were 

kept the same as previously published[14,27,44] except those being varied to match the 

experimental conditions here, described below.  

 

The model was run 100 times for a maximum of 200 timesteps under a range of vegf and flt1 

inhibition conditions to see if a single early time window during selection might also generate 

fewer or more cells being selected by those times as seen in vivo for some values of the 
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respective vegf perturbation conditions. VEGF – vegfr activation (𝑉"′) of the vegfr (V) in a 

given memAgent m in the model is encapsulated by equation 1 (fully described in[44]) below:  

 

𝑉"$ = 𝑉&'()𝑉"𝑀+,+/𝑉"./ ∑ 𝐸(. 𝑉𝐸𝐺𝐹56
(78        (1) 

 

Where, Vsink (normally set to 9) is a fixed value which acts as a sink (mimicking flt1) reducing 

the amount of available VEGF in the 26 neighbouring environmental grid sites (En.VEGF) 

surrounding that memAgent m (as the model runs on the 3D gridded lattice) for binding to its 

main vegf receptors Vm (only the main receptor V is able to trigger cell migration and Dll4 

upregulation in the cells). Mtot is the total number of memAgents currently comprising the cell, 

and Vmax is the maximum number of receptors the cell can have. This is the only equation that 

was varied here, by simply reducing the levels of VEGF (to model vegf inhibition) and Vsink 

(to model flt1 loss) respectively. 

 

ODE model construction & simulation. Interaction between two ECs at the growing end of 

the angiogenic front have been captured using coupled ordinary differential equations and the 

2-cell model previously described [16]. Reactions for the ordinary differential equations of 

the 2-cell model were written following mass-action kinetics. Details of model construction, 

list of ODEs, reaction equations and parameters can be found in [16]. Positive-feedback 

between VEGF and a VEGF-induced/activated factor (P) is captured using the equation; 

    𝑉 = 𝑉 ∗ (1 + 𝑘6 ∗ 𝑃() 
 

where 𝑘6	is the positive-feedback rate of P production and n captures the non-linearity of 

signaling between VEGF (V) sensing and P. Model simulations were performed using 

ODE15s solver in MATLAB2013b (www.mathworks.com). All steady state analysis of the 
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ODE model was carried out using the AUTO bifurcation toolbox in XPPAUT 

(http://www.math.pitt.edu/~bard/xpp/xpp.html). 

 

Isolation of zebrafish ECs and transcriptome analyses. Flow cytometry-mediated isolation 

of zebrafish ECs was performed as previously [30]. Briefly, Tg(kdrl:GFP)s843 embryos were 

dissected and trunks collected in ice cold Ca2+/Mg2+-free Hank’s buffered salt solution 

(HBSS), washed four times in 1 ml ice cold Ca2+/Mg2+-free HBSS and dissociated in 2 ml 

TrypLE (Invitrogen) at 27.5° C for 30 min with regular agitation. Dissociation was inactivated 

upon addition of 100 µl fetal bovine serum (FBS). Dissociated cells were subsequently 

isolated by centrifugation, re-suspended in 5 ml Ca2+/Mg2+-containing HBSS (with 5% FBS) 

and passed through 40 µm filters. ECs were collected upon re-centrifugation of dissociated 

cells, re-suspension in 0.5 ml Ca2+/Mg2+-containing HBSS (with 5% FBS) and FACS isolation 

of the kdrl:GFP-positive cell population directly into lysis buffer. Total RNA was isolated 

using the RNAqueous-Micro kit (Ambion). Complementary DNAs were amplified, labeled 

with Cy3 (from DMSO-treated embryos) or Cy5 (chemical-treated embryos) and hybridized 

to the Agilent Zebrafish Gene Expression Microarray (V2) by Mogene Lc. The extracted data 

were normalized and quality controlled using GeneSpring GX software (Agilent). All probes 

with a green processed signal below 100 were considered as background. 

 

Quantitative real-time PCR (qPCR). Zebrafish embryo or HUVEC cDNA samples were 

diluted to a concentration of 50 ng/µl with dH20. Each qPCR reaction was prepared in 

triplicate in a 48 or 96-well plate with each well consisting of 0.2 µM each forward and reverse 

primer, 50ng cDNA and SYBR Green Mastermix (Applied Biosystems). Reactions were run 

on an Eco Real-Time PCR System (Illumina) or Step One Plus Real-time PCR System 

(Applied Biosystems) alongside negative controls. qPCR data was analyzed by the ΔΔCT 
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method and expression normalized to b-actin and ef1a (zebrafish) or GAPDH (human). A 

relative quantification of gene expression was then determined using the formula 2-ΔΔCT. 

Primers used for qPCR amplification were: 

zebrafish β actin forward: 5’-CGAGCTGTCTTCCCATCCA-3’  

zebrafish β actin reverse: 5’-TCACCAACGTAGCTGTCTTTCTG-3’ [45] 

zebrafish dll4 forward: 5’-TGGCCAGTTATCCTGTCTCC-3’ 

zebrafish dll4 reverse: 5’-CTCACTGCATCCCTCCAGAC-3’ [46] 

zebrafish ef1α forward: 5’-CTGGAGGCCAGCTCAAACAT-3’ 

zebrafish ef1α reverse: 5’-ATCAAGAAGAGTAGTACCGCTAGCATTAC-3’ [45] 

zebrafish flt4 forward: 5’-CTGTCGGATTTGGATTGGGA-3’ 

zebrafish flt4 reverse: 5’-GGTGGACTCATAGAAAACCCATTC-3’ [47] 

zebrafish kdrl forward: 5’-ACTTTGAGTGGGAGTTTCATAAGGA-3’ 

zebrafish kdrl reverse: 5’-TTGGACCGGTGTGGTGCTA-3’ [47] 

zebrafish tm4sf18 forward: 5’-CTGGATACTGCTTCCTGATCTC-3’ 

zebrafish tm4sf18 reverse: 5’-CAAACAGATACCGTCCCTCAT-3’ 

 

Cloning of tm4sf18 and whole-mount in situ hybridization. The zebrafish tm4sf18 in-situ 

hybridization construct was generated by PCR amplification of the tm4sf18 ORF from cDNA 

and cloning of this fragment into pCR-Blunt II-TOPO (Invitrogen). For probe generation, 

pCR-Blunt II-TOPO tm4sf18 was linearized with EcoRV at 37°C for 3 h and T7 was used for 

transcription. For whole-mount in situ hybridization, embryos were fixed in 4% 

paraformaldehyde (PFA) overnight at 4°C and processed as described previously [48]. 

 

Phylogenetic analysis. For phylogenetic analysis of the TM4SF1/4/18 protein family, the 

NCBI Reference Sequences of TM4SF1, TM4SF4, TM4SF18 proteins of each species were 
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used respectively: human (Homo sapiens; NP_055035.1, NP_004608.1, NP_620141.1), 

mouse (Mus musculus;	 NP_032562.1, NP_663514.2), chicken (Gallus gallus; 

NP_001264407.1, XP_001234023.1, XP_001234069.1), turtle (Pelodiscus sinensis; 

XP_006115992.1, XP_006115993.1, XP_006115991.1), frog (Xenopus tropicalis; 

XP_002937372.1, NP_988958.1, XP_002937374.1), medaka (Oryzias latipes; 

XP_004068091.1, XP_004068090.1), zebrafish (Danio rerio; NP_001003489.1, 

NP_001038487.2), fugu (Takifugu rubripes; XP_003974429.1, UniProt H2VCB8), tetraodon 

(Tetraodon nigroviridis; CAF90631.1, CAF90632.1) and elephant shark (Callorhinchus milii; 

XP_007900629.1). Human TM4SF5 protein (NP_003954.2) was used as an out-group for our 

phylogenetic analysis. 

The TM4SF1/4/18 amino acid sequences from all 10 species were aligned using 

Clustal X2 [49]. The sequences were then manually trimmed of all sites that were not 

unambiguously aligned. Phylogenetic analysis of amino acid sequences was first performed 

using NL method implemented in ClustalX2, with outputs displayed using TreeView [50]. 

Confidence in the phylogeny was assessed by bootstrap re-sampling of the data. For ML tree, 

the JTT model of protein evolution was used in RAxML [51] with the proportion of invariable 

sites and gamma parameter estimated from the data, four categories of between-site rate 

variation; 100 bootstraps were used in the primary ML tree (final ML optimization likelihood: 

-4945.841564). 

 

Gene editing. TALENs were designed and constructed to target exon 1 of zebrafish tm4sf18 

using online tools (https://tale-nt.cac.cornell.edu/node/add/talen) and as previously described 

using the Golden Gate method [52]. The target sequences chosen for the forward and reverse 

TALENs were 5’–TGTGCTCTACAGGATTTGCC-3’ and 5’-

GCCCTGGTCCCTCTCGCCA-3’, respectively. 100 pg of both forward and reverse TALEN 
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mRNA was co-injected into the single cell of zebrafish embryos. At around 24-72 hpf, 

genomic DNA was extracted from individual embryos and somatic lesions confirmed by high 

resolution melt (HRM) using Meltdoctor HRM Mastermix (Applied Biosystems) and the 

following primers:  

tm4sf18 TALEN forward 5’-CTGTTTTCTCCCCCACACAC-3’ 

tm4sf18 TALEN reverse 5’-TACTCACAGCCAGACCACCA-3’ 

The CRISPR target site within exon 2 of tm4sf18 (5’-CCTGTGTGTTCCTGGGAATG-3’) 

was identified as previously[53]. gRNA and nls-zCas9-nls RNA were generated as previously 

[54]. 30-100 ng of gRNA and 100-150 ng of nls-zCas9-nls RNA were co-injected into single 

cell stage embryos mixed with a phenol red tracer. At around 24-72 hpf, genomic DNA was 

extracted from individual embryos and somatic lesions confirmed by HRM (as above) using 

the following primers:  

tm4sf18 CRISPR forward 5’- CATCAGTCTTTGCAGCGAGA -3’ 

tm4sf18 CRISPR reverse 5’- TGTAGCATATCCCAACACTCAC -3’ 

 

pErk immunostaining. Whole-mount immunostaining for pErk was performed as previously 

[22]. Briefly, Tg(kdrl:nlsEGFP)zf109 embryos were fixed in PFA overnight prior to washing in 

100% MeOH, incubation with 3% H202 in MeOH on ice for 60 min and further 100% MeOH 

washes. Embryos were then stored at -20°C for 2 days in MeOH before equilibration with 

PBT (PBS, 0.1% Tween-20) washes and cryoprotected in 30% sucrose in PBT overnight at 

4°C. The next day embryos were equilibrated in PBT, incubated with 150 mM Tris-HCl (pH 

9.0) for 5 min and then heated to 70°C for 15 min. Embryos were then washed with PBT and 

then twice with dH2O for 5 min. Water was then removed prior to addition of ice-cold acetone 

for 20 min at -20°C. Acetone was removed prior to PBT washes, one TBST (TBS, 0.1% 

Tween-20, 0.1% Triton X-100) wash and incubation overnight at 4°C with block solution 
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(TBST, 1% BSA, 10% goat serum). The next day embryos were then incubated with anti-

phospho-ERK1/2 antibody (1:250, Cell Signaling; #4370) in blocking buffer overnight at 4°C. 

Washes in TBST at room temperature were followed by a wash in Maleic buffer (150 mM 

Maleic acid, 100 mM NaCl, 0.001% Tween-20, pH 7.4) for 30 min. Embryos were then 

blocked in 2% blocking reagent (Roche) in Maleic buffer for 3 h at room temperature prior to 

incubation with goat anti-rabbit IgG-HRP (1:1000) in 2% blocking reagent in Maleic buffer 

overnight at 4°C. Embryos were then washed in Maleic buffer and then PBS at room 

temperature prior to incubation with 50 µl amplification diluent with 1 µl Tyramide-Cy3 

(Perkin Elmer) for 3 h at room temperature in the dark. Embryos were finally washed over 

several days in TBST at room temperature. Levels of pErk were quantified as the mean nuclear 

Cy3 fluorescence intensity using ImageJ. 

 

Statistics. All statistical analyses were performed using GraphPad Prism 6.0 or Microsoft 

Excel software. Statistical significance was assessed using either unpaired two-tailed Student's 

t-tests or two-way ANOVA tests.  Results are presented as mean ± S.E.M. All experiments 

were repeated at least three times. For all analyses P<0.05 was considered statistically 

significant. 
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Supplemental Information. 

 

Figure S1. VEGFR signaling and positive-feedback define the magnitude and timing 

of tip EC selection in vivo, related to Figure 1. (A-B) MSM modeling of the influence 

of differential Vegfr (A) and flt1 (B) levels on the timing of EC activation via lateral 

inhibition. By defining a selection window at approximately 175-time steps, the model 

accurately recapitulates the in-vivo behavior induced by Vegfr inhibition (decreased EC       

selection) and flt1 knockdown (increased EC selection) in Figure 1C. (C) Quantification of 

the number of cells selected in the selection window both in silico and in-vivo. (D) Example 

frames from one simulation run of a control simulation (Vsink=9) vs a flt1 KD simulation 

(Vsink =8) showing by the end of the time window the control is actually less efficient, i.e. 

slower to select within the time window as the flt1 KD selects all possible tip cells from 

the available pool of cells more rapidly. Frames taken at t=0,50,100,150,200. (E-F) Matrix 

plots of EC patterning speeds in the 2-cell ODE system following exposure of each cell to 

different VEGF levels in the absence (E) or presence (F) of positive-feedback. Grey boxes 

indicate either the failure to adequately pattern into Vegfr active and Notch active ECs or 

very slow patterning. Larger orange boxes indicate coupled ECs experiencing the lowest 

VEGF levels (<0.05 c.u.). Positive-feedback globally increases the speed of cell patterning 

and greatly reduces the threshold of VEGF levels capable of generating robust patterning 

(see large orange boxes). 

 

Figure S2. Phylogenetic, synteny and protein analysis of the TM4SF family, related 

to Figure 2. (A-B) Phylogenetic trees of vertebrate TM4SF1/4/18 protein family based on 

either neighbor-joining (NJ, A) or maximum-likelihood (ML, B) analyses. Human 

TM4SF5 protein sequence was defined as the out-group. Branch lengths are proportional 
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to evolutionary distance corrected for multiple substitutions; the scale bar denotes 0.1 

underlying amino acid substitutions per site. Figures on branches indicate robustness of 

each node (>50%), estimated from 1000 bootstrap replicates for NJ (A) and 100 replicates 

for ML (B). All nodes with a bootstrap support of less than 50% were collapsed to a 

polytomy. Based on separate analyses of all vertebrate TM4SF protein (data not shown), 

TM4SF1, 4 and 18 form a monophyletic group and likely share a common ancestor. Hence, 

TM4SF1 and TM4SF18 are the most related in the TM4SF family. (C) Synteny analysis of 

vertebrate Tm4SF1/4/18 in the human, mouse, chick, turtle and zebrafish genome 

assemblies. Dashed lines represent breaks in synteny. TM4SF1, 4 and 18 are closely 

located on the same chromosome, suggesting that they were generated by two tandem gene 

duplications at early stages of vertebrate evolution. The first of these gave rise to the 

TM4SF4 and TM4SF1/18 paralogous groups, and the second gave rise to the TM4SF1 and 

TM4SF18 paralogous groups. The tm4sf1 subfamily appears to have subsequently been 

lost in the lineage leading to teleost fish. Similarly, the Tm4sf18 subfamily appears to have 

subsequently been lost in mice. (D) Percentage BLAST sequence identity (black numbers) 

and sequence similarity (red numbers) between teleost fish (zebrafish, medaka, tetraodon 

and fugu) Tm4sf18 and human, mouse or chick TM4SF1/18. Following the loss of tm4sf1, 

the remaining Tm4sf18 in teleost fish consistently shares higher protein sequence 

identity/similarity with human and chicken TM4SF1 over TM4SF18. Hence,            

zebrafish Tm4sf18 appears to have acquired the function of Tm4sf1 and is the predominant 

teleost homologue of mammalian TM4SF1. 

 

Figure S3. Phenotypic consequences of tm4sf18 mutation and disruption of EC 

proliferation, related to Figure 3. (A) Quantification of the dorsal movement of tip ECs 

in wild type, tm4sf18+/- exon1 heterozygous mutant and tm4sf18-/- exon-1 homozygous 
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mutant embryos. Mutation of only the long isoform of tm4sf18 does not disrupt EC 

motility. (B) Quantification of the length of any fully formed ISVs observed in wild type, 

tm4sf18+/- heterozygous mutant, tm4sf18-/- homozygous mutant and hydroxyurea / 

aphidocolin (HU/Ap)-treated embryos. None of these perturbations affects the morphology 

of successfully formed ISVs. (C) Quantification of the number of ECs selected to branch 

into ISVs in wild type or HU/Ap-treated embryos. Disruption of EC proliferation has no 

significant effect on selection of motile ECs by lateral inhibition. (D) Quantification of the 

dorsal movement of tip ECs in ISV consisting of 1, 2 and 3 and more ECs and comparison 

with the motility of tip ECs in wild type and HU/Ap-treated embryos. Tip ECs in wild type 

embryos behave like those in ISVs with three cells whereas inhibition of proliferation 

generates tip ECs that behave like those in ISVs with only two cells, consistent with the 

average number of ECs per ISV in both of these situations (see Figure 3H). Error bars: 

mean ± SEM. 
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