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atically investigated their intertwined impacts on prediction accuracy across studies. We employ

a hybrid parametric/non-parametric bootstrap method to realistically simulate publicly available

compendia of microarray, RNA-seq, and whole metagenome shotgun (WMS) microbiome studies

of health outcomes. Three types of heterogeneity between studies are manipulated and studied:

1) imbalances in the prevalence of clinical and pathological covariates, 2) differences in gene

covariance that could be caused by batch, platform, or tumor purity effects, and 3) differences

in the “true” model that associates gene expression and clinical factors to outcome. We assess

model accuracy while altering these factors. Lower accuracy is seen in CSV than in CV. Sur-

prisingly, heterogeneity in known clinical covariates and differences in gene covariance structure

have very limited contributions in the loss of accuracy when validating in new studies. However,

forcing identical generative models greatly reduces the within/across study difference. These re-

sults, observed consistently for multiple disease outcomes and omics platforms, suggest that the

most easily identifiable sources of study heterogeneity are not necessarily the primary ones that

undermine the ability to accurately replicate the accuracy of omics prediction models in new

studies. Unidentified heterogeneity, such as could arise from unmeasured confounding, may be

more important.

Key words: Cross-study validation; Data heterogeneity; Genomic prediction models.

1. Introduction

Quantification of heterogeneity between studies and its impact on validation of decision models

is important across a wide range of applications. It has been noted that independent validation

of genomic classifiers is rare (Castaldi and others, 2011), and the difficulty of external validation

and study heterogeneity is common not only in microarray studies but in GWAS (König, 2011),

and RNA-seq studies (Xu and others, 2016). External validation is critical in any research domain
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The impact of sources of heterogeneity on accuracy of genomic prediction 3

affected by heterogeneous samples, sample selection bias, or technical batch effects. However, it

has proven especially difficult for classifiers and subtypes identified from gene expression data.

Patient populations can be heterogeneous in their exposures, geography, race/ethnicity, and so-

cioeconomic status, and these differences could manifest as biologically distinct forms of diseases

that vary systematically between studies. Batch effects (Leek and others, 2010) and platform ef-

fects impact on reproducibility across studies. The sources of batch variation, sampling bias, and

other heterogeneity may be unknown. Finally, “samples of convenience” are the norm in transla-

tional genomics research (Simon and others), due to the difficulty of collecting tissue specimens

and the time-consuming process of clinical follow-up. In spite of these challenges, we expect

clinically-relevant genomic findings to be reproducible at hospitals with different populations

around the world, suggesting robustness in the presence of some heterogeneity. The “molecular

portraits” of breast cancer, for example, have been broadly reproduced across platforms and

centers (Hu and others).

Previous studies have shown that accuracy estimates of genomic prediction models based

on independent validation are inferior to cross-validation estimates (Castaldi and others, 2011;

Bernau and others, 2014), but did not identify the sources of heterogeneity responsible. Ma and

others (2014) and Chang and Geman (2015) showed, by learning diagnostic models on large

number of studies, how to estimate whether enough heterogeneity has been explored to achieve a

desired degree of generalizability. Specifically, Chang and Geman (2015) showed that cross-study

validation (CSV) error rate exceeds the randomized cross-validation (RCV) error rate for any

number of studies. The latter increases with the diversity of studies, and both converge to the

optimal rate for the whole population. Methods for correction of validation accuracy estimation in

training samples of biased covariate distribution to the unbiased distribution (Cortes and others,

2008) and to the covariate distribution in test samples (Uno and Inoue, 2017) have been proposed.

It remains critical to understand the contributions of each component of “study effects” to
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the difference of performance. In practice, a standard approach is to remove as many sources

of heterogeneity as possible, such as Waldron and others (2014) and Riester and others (2014),

which limited meta-analyses to late-stage, high-grade, serous ovarian cancer. Similarly, recom-

mendations for the replication of genome-wide association studies include studying a “similar”

population. However in many cases it is unclear what measures of study similarity are impor-

tant, and unnecessarily restrictive inclusion criteria have costs in reduced sample size and loss

of generality of findings. Thus the question arises of which sources of heterogeneity do in fact

impact the accuracy of cross-study prediction, and how these can be determined from the data.

We propose that the impact even of still-unidentified sources of heterogeneity can be accounted

for and quantified if independent studies are available.

We compare within and across study validation of omics-based prediction models using sim-

ulations which are generated from publicly available datasets, including both microarray and se-

quencing data. We investigate the impact of three possible types of heterogeneity on cross-study

validation performance: changes in prevalence of known clinical and pathologic factors, changes

in gene expression covariance structure for example due to batch or platform effects, and changes

in the true models associating gene expression and clinical factors with outcome. These sources of

heterogeneity are manipulated and equalized in turn, while we compare within- to across- study

validation of predictions for the disease outcome or risk scores for survival. The methodology of

this study can be applied to investigating the effects of study heterogeneity on model validation

in any scenario where multiple independent but comparable datasets are available.

2. Methods

We evaluate the effects of across-study heterogeneity by resampling of studies, and preserving the

distribution and covariance of gene expression through resampling of individuals within studies.

We generate linear models associating clinical/pathological variables and gene expression to the
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The impact of sources of heterogeneity on accuracy of genomic prediction 5

outcome based on the original experimental data. We use these models to generate new outcome

variables, which preserve the properties of the original outcome. We emphasize that standard

clinical factors were included as required, unpenalized covariates in the “true” prognostic model

so that their associations with outcome would be guaranteed to be preserved across simulations.

We review the simulation procedure in the following sections, which involves a 3-step bootstrap

method. To implement this simulation approach, we developed the simulatorZ package and made

this available through Bioconductor. Scripts for reproducing the results of this paper are stored

and documented at https://bitbucket.org/zhangyuqing/datasetheterogeneity.

2.1 Datasets

2.1.1 Microarray studies Public experimental studies are hereafter referred as the “original”

datasets. Steps for preprocessing these datasets are detailed in Supplementary Materials.

The first compendium consists of 7 curated breast cancer datasets, which was originally pub-

lished by Haibe-Kains and others (2012), and used in Bernau and others (2014). These stud-

ies contain censored disease and metastasis-free survival (DMFS) response, and 1021 estrogen-

receptor positive breast cancer individuals. Available covariates in these studies include patient

age at diagnosis, tumor size, and histological grade. Age and tumor size were dichotomized at 50

years and 2cm, respectively (Haibe-Kains and others, 2012), and grade was kept at three levels

(low/medium/high) as in the original datasets. Synthesized Hazard Ratios (HR) of the tumor

size, grade and patient age are 1.96, 1.65 and 1.2 (Supplementary Table 2). This is consistent

with commonly used prognostic factors for primary breast cancer such as the Nottingham Prog-

nostic Index (Haybittle and others, 1982), showing that the dichotomized tumor size and grade

are prognostic. Sample information and distributions of covariates are summarized in Table 1.

The other collection, of 5 microarray datasets containing 935 ovarian cancer patients, was pub-

lished in Ganzfried and others (2013) and is available from the curatedOvarianData Bioconductor
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package. Patients with late-stage, high-grade cancer were included. The datasets contain patient

age and debulking status as available covariates. Age was dichotomized at 70 years. Synthesized

Hazard Ratios of these covariates are 1.84 (age) and 1.48 (debulking), as shown in Supplementary

Table 3. Distributions of these covariates are summarized in Supplementary Table 4.

2.1.2 The RNA-seq study In addition to the microarray studies, we created simulations in RNA-

seq data with time-to-event outcome. Lacking sufficient RNA-seq studies for a full cross-study

validation, we substituted the TCGA microarray dataset with TCGA RNA-seq data in the ovarian

cancer study collection. The TCGA RNA-seq study is also available in the curatedOvarianData

package. It contains 190 patients, a subset of the microarray cohort. We used the same clinical

covariates, patient age and debulking status, for the simulations using the RNA-seq study.

2.1.3 Metagenomics studies We further evaluated the impact of heterogeneity in whole-metagenome

shotgun-sequencing studies with binary disease outcomes, which are available from the curated-

MetagenomicData Bioconductor package (Pasolli and others, 2017). We focused on 3 studies with

gut microbiome samples of type-II diabetes (T2D) patients and healthy individuals. The binary

outcome indicates the disease status for each sample. We identified Body Mass Index (BMI) as

the covariate to be balanced for these studies.

For predictors we used gene families, as estimated by HUMAnN2 (Abubucker and others,

2012) and provided by curatedMetagenomicData, in the prediction models. We performed a series

of feature selection steps, as documented in Supplementary Materials, after which 800 features

were included in the studies. We dichotomized BMI at 25 based on the empirical separation of

BMI as “under to normal weight” and “overweight to obese”. Supplementary Table 5 and Figure

2 summarize the sample and covariate information of these studies.
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2.2 Simulation approach and the simulatorZ Bioconductor package

Bernau and others (2014) introduced a systematic approach for synthesizing a group of indepen-

dent microarray datasets with survival outcome for cross-study assessment of prediction methods.

We developed the simulatorZ package to create collections of independent genomic datasets with

realistic properties and outcome variables generated from a known risk model. simulatorZ also

implements the Más-o-menos algorithm (Zhao and others, 2014; Donoho and Jin, 2008) and

provides basic facilities for cross-validation and cross-study validation of prognostic models.

2.2.1 Simulation of independent datasets The simulation procedure contains three steps. The

first is a non-parametric bootstrap at the dataset level, in which studies are sampled with replace-

ment from the list of original studies. This estimates the variability due to sampling of studies

from a “super-population” of studies (Hartley and Sielken, 1975). The second step is another

non-parametric bootstrap at the patient level, where observations are sampled with replacement

from each dataset selected in step 1. In the final step, a linear model is fit to the original datasets,

then used to simulate new outcome on the simulated datasets (parametric bootstrap).

For studies with time-to-event outcome, we fit a proportional hazard (PH) model to the data:

M j
true : λj(t|x) = λj0(t) ∗ exp(βT

j x) (2.1)

M j
true is the PH model for the j-th dataset, whose hazard function is λj(t|x), with x as covariates.

λj0(t) is the baseline hazard function for this study. β represents the regression coefficients.

This generative model in step 3 combines the truncated inversion method of Bender and

others (2005), the Nelson-Aalen estimator (Nelson, 1969, 1972; Aalen, 1978) for cumulative haz-

ard functions, and the CoxBoost method of generating best-fit linear risk scores (Binder and

Schumacher, 2008). We first use CoxBoost to obtain coefficients of linear predictors fitted to

the original datasets, using the genes plus the clinical covariates, such as tumor size, debulking,

histological grade and patient age, as predictors. The prognostic covariates were included to be
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mandatory unpenalized. We also obtained the Nelson-Aalen estimator of baseline cumulative

survival and censoring hazard, which, together with the CoxBoost coefficients and Equation 2.1,

define the “true” models of survival for each dataset. Finally, we have:

U = S(T ) = exp[−H0(T ) ∗ exp(βTx)] ∼ Uni(0, 1) (2.2)

H0 is the baseline cumulative hazard for the lifetime random variable T . S denotes the survival

function. We sample two independent, uniformly distributed variables u1 and u2, then simulate

the survival (T ) and censoring (C) time, with

T = H−1
surv0 [− log(u1) ∗ exp(−βTx)] C = H−1

cens0 [− log(u2) ∗ exp(−βTx)] (2.3)

H−1
surv0 and H−1

cens0 are the inverses of baseline cumulative survival and censoring hazard, respec-

tively. These are inverted by finding the point on the time line such that the values calculated

by − log(u) ∗ exp(−βTx) are closest in absolute value to the cumulative hazards. The simulated

survival response is the smaller one between T and C.

For studies with binary outcome, we fit a logistic regression to the data:

M j
true : log

P j

1− P j
= βT

j x (2.4)

P j denotes the probability of a sample in study j to have the disease. Here, for studies with

binary outcome, the term “true model” refers to Equation 2.4 together with the model coefficients

β. After fitting the model and estimating the probability P j
i for a sample i in study j, we draw

a value from the Bernoulli distribution B(P j
i ) as the simulated outcome for that sample.

2.2.2 Summary of within and across-study model performances We selected the Más-o-menos

algorithm (Zhao and others, 2014; Donoho and Jin, 2008) and ridge regression (Hoerl and Ken-

nard, 1970) as examples of predictive models to generate risk scores on the simulated datasets.

Bernau and others (2014) and Zhao and others (2014) have shown that these algorithms perform

comparably to more complicated methods in the microarray datasets that we use. We repeated
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100 simulations and model validations for each dataset/algorithm combinations. These include

applying Más-o-menos and ridge regression to each collection of datasets, including breast and

ovarian cancer microarray studies, ovarian cancer microarray and RNA-seq compendium, and the

metagenomic studies. We estimated the model accuracy with C-indices for studies with time-to-

event outcome, and area under ROC curve (AUC) for studies with binary outcome.

In each of 100 iterations, we simulated a list of independent datasets of sample size n = 150

using the “original studies” and the 3-step bootstrap approach. We then generated a matrix

of accuracy estimates for all combinations of training and test sets, as described by Bernau

and others (2014). Cross-study validation (CSV) performance was summarized by the simple

average of accuracy estimates for training and validation across all pairs of independent studies

(off-diagonal elements of the matrix), and performance of the 4-fold cross-validation (CV) was

summarized by the average of the diagonal elements (Bernau and others, 2014). The process was

repeated while altering potential sources of across-study heterogeneity, as described in Sections

2.3 through 2.5. The above methods are summarized in Figure 1.

2.2.3 Comparison of model accuracy using the RNA-seq study The methods for the RNA-seq

study differed due to the availability of only a single RNA-seq study with comparable outcome to

the microarray studies. We compared cross-validation within this study to training and validation

across different data types (one microarray and one RNA-seq study). During the simulations, we

skipped the first bootstrap step which re-samples studies from the collection, in order to keep

track of the RNA-seq study among the other microarray datasets. We generated the matrix of

accuracy estimates as before. When comparing model performances between within and across-

study validation, we limited the comparison to only when the RNA-seq study is involved. This

means that, in each simulation, we select the row and the column of the performance matrix

which correspond to the RNA-seq study. The performance of cross-validation is the diagonal
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element located at the intersection of the row and the column. The cross-study performance is

summarized by averaging over all remaining elements within the row and the column.

2.3 Clinical covariates

To simulate studies with similar distributions of a single clinical covariate, such as dichotomized

tumor size, debulking, or of young and old patients, we first define the overall proportions of pa-

tients for that covariate using the proportions in the union of all original studies. We then changed

the probabilities for bootstrap resampling on the individuals, so that on average, each simulated

study would have proportions of patients equal to the overall proportions of the covariate. To

balance on multiple covariates, we re-weighted individual bootstrap sampling probabilities of each

patient to result in identical joint probability distributions of the clinical/pathologic covariates

across datasets. For example, we denote the proportion of individuals with age > 70yrs and

suboptimal debulking status in all ovarian cancer studies combined as Pcommon. Such proportion

in a study s alone is denoted as Ps. Then in the simulated study resampled from study s, patients

with age > 70yrs and suboptimal debulking status will be resampled with a probability that is

proportional to Pcommon/Ps, which is scaled to one for all individuals in study s. Re-weighting of

the sampling probabilities, rather than enforcing strict equality of proportions, reflects the reality

that these proportions are subject to sampling variation.

2.3.1 Mixed-effect models We quantify the impact of changing the proportion of covariates

on the cross-study prediction accuracy by a regression approach, implemented via mixed-effect

models. These are implemented in the two compendia of microarray studies. We established a

“baseline” scenario of 100 simulations based on the original studies, without any manipulation of

sources of heterogeneity. We then performed another 100 simulations where we changed the boot-

strap re-sampling probabilities at the patient level to produce, on average, equal distributions of
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covariates in each study. This scenario is called “balancing covariates”. These simulations produce

100 matrices of C-index for each of the two scenarios, “baseline” and “balancing covariates”.

The validation matrices from the two scenarios are then paired together: the first matrix from

“baseline” is paired with the first one from “balancing covariates”, then the second is paired with

the second,...,the 100th is paired with the 100th. These pairs of validation matrices, as well as

their corresponding lists of simulated independent datasets, are used to compute the changes in

cross-study validation accuracy, and the changes in the proportions of subjects in each covariate

subgroup. For each off-diagonal position in the matrix, we calculate the change in C-index as

the value in “balancing covariates” at that position minus the corresponding value in “baseline”.

Also, for the same position, there is a pair of training/test sets for “baseline”, and another for

“balancing covariates”. We compute the difference between the proportions of patients in the

training (test) set for “balancing covariates” and the proportions in the training (test) set for

“baseline”. This difference will serve as a potential predictor for changes in the C-index.

We then fit the model:

Yi|B = (bi0, b
T
i ) ∼ N (bi0 +X(α+ bi), σ

2), B ∼ N (0,Σ) (2.5)

For n independent studies in a single simulation i, Yi represents the changes in C-index. Each

Yi, i = 1, 2, ..., 100, is a vector of length n ∗ (n− 1) corresponding to all possible training/test set

pairs in the i-th simulation. The design matrix X contains predictors which include the changes

in the covariate distributions in the training and the test set, as well as a third interaction term.

Entries in X are grouped by simulation indices (i). X has n ∗ (n− 1) ∗ 100 rows, accounting for

all cross-study training/test set pairs across the 100 simulations. α = (α1, α2, α3)T is a vector

of fixed effects. The three dimensions correspond to the changes of covariate proportions in the

training and test set, and the interaction term. In the i-th simulation, B equals to (bi0, b
T
i ), bi =

(bi1, bi2, bi3)T . They serve as a vector of normally distributed random effects, with mean and

variance estimated across the only level of grouping, 100 simulations.
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Having the coefficients vary across simulations accounts for the potential inherent correlations

in the observations within each simulation group, which uses the same list of simulated datasets.

The observations are independent across groups, given that the simulated datasets are indepen-

dent. It is modeled as having no intercept in the fixed component because the average difference

over many simulations must be zero when there is no difference in the covariate distribution or

the generating model for these two validation matrices. However there will be random variation

across simulations, for which we include an intercept in the random component. This model is fit

on every covariate for the microarray dataset/algorithm combinations.

2.4 Expression covariance

To investigate the potential impact of heterogeneity between gene expression levels in different

datasets, we compared the baseline case to the case where we only use genes with high Integrative

Correlation (Parmigiani and others, 2004; Garrett-Mayer and others, 2008) between every dataset

pair. Briefly, we first calculated the Pearson correlation matrix of each gene expression matrix.

For each pair of datasets, the Pearson correlation of the k-th rows of the two correlation matrices

is the Integrative Correlation of gene k. We did a grid search for the threshold of the Integrative

Correlation, such that around 1000 genes with the highest Integrative Correlation scores between

every pair of original datasets were included. We also used arbitrary cut-offs 0.4 for breast cancer

microarray studies and 0.2 for ovarian cancer microarray datasets, as a comparison with selecting

1000 genes. Simulations in the microbiome studies are also performed with arbitrary cut-offs 0.4.

2.5 True models

We equalized the “true models” of each dataset. In each simulation, we randomly select an

original study in the 3rd bootstrap step, and use its corresponding “true model” to simulate

the new outcome for all re-sampled studies from the first two bootstrap steps. For studies with
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time-to-event outcome, we equalized separately the coefficients of the linear risk score, and the

baseline hazard function. For studies with binary outcome, we used identical model coefficients.

3. Results

We first detail our observations from the cancer microarray studies of patient survival because

they provide the greatest sample size, then summarize RNA and whole-metagenome sequencing

results which are broadly consistent with these results. In original and simulated data, we observed

a substantial loss of prediction accuracy in cross-study validation (CSV) when compared to cross-

validation (CV). Reductions were approximately 0.04 on the C-index scale, and 0.12 on the AUC

scale. We manipulated aspects of the simulated data to establish that reducing heterogeneity in

the sources we investigate is not sufficient to eliminate the gap between across- and within-study

prediction accuracy. Using identical “true” models is most effective in reducing this difference.

Figures 2 and 3 summarize our results across multiple omics platforms, showing that the three

factors of interest cannot fully explain the loss of accuracy in independent validation.

3.1 Simulation of microarray studies

Sections 3.1 through 3.4 are discussed in the context of the microarray studies. We re-capitulated

the major properties of these two collections of studies in a 3-step bootstrap simulation pro-

cedure. The simulation resulted in within and across-dataset training validation characteristics

comparable to those from prior clinical studies (Supplementary Figure 3). Most importantly, the

simulation studies maintained a realistic difference in validation accuracy as estimated within

and across studies by the C-index. This difference is seen for both ridge regression and the Más-

o-menos method, in breast cancer and ovarian cancer (see panels “Baseline” in Figure 2).
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3.2 Eliminating heterogeneity in clinical factors

To establish whether eliminating heterogeneity in known clinical factors could improve cross-

study validation accuracy, we re-weighted bootstrap sampling probabilities to balance tumor

size, grade and patient age for the breast cancer data, and age and debulking status for the

ovarian cancer data. Proportions of these factors were then the same, in expectation, for each

simulated dataset. For both cancer types, the differences between CV and CSV are not eliminated

(Figure 2, “Rebalanced covariates”). In this scenario, differing distributions of these covariates

does not contribute to the loss of prediction accuracy across studies relative to within studies.

Though the re-balancing of covariates does not mitigate the overall drop in accuracy in cross-

study validation, we found that the rank of CSV scores may be somewhat affected depending on

the algorithm used. Supplementary Figure 5 displays re-ordering of performance ranks for differ-

ent training test pairs, but with no overall effect across all training testing pairs. To quantify this

observation, we built a linear model for every covariate. Each model associates the changes in

proportions of clinical factors to the changes in the CSV scores. Supplementary Table 6 summa-

rizes the results of this analysis and highlights which covariates have an effect on CSV in the two

methodologies used. Interestingly, even covariates that are prognostic of the survival outcome do

not necessarily significantly relate to the prediction accuracy changes.

3.3 Filtering genes by Integrative Correlation

We filtered genes to include roughly the top 1000 genes with the highest Integrative Correlation

(Parmigiani and others, 2004; Garrett-Mayer and others, 2008) between every pair of original

datasets. We implemented this by searching on a grid for the required threshold of IC. The

threshold is 0.24 for breast cancer (999 genes), and 0.15 for ovarian cancer (1002 genes). After

filtering these genes on the original datasets, the differences between CV and CSV are only slightly

reduced for breast cancer, and not reduced for ovarian cancer (Figure 2 , “Filtered genes”).
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As an alternative to fixing the size of the gene set, we used thresholds of 0.4 for breast

cancer and 0.2 for ovarian cancer. Both CV and CSV perform slightly worse using the fixed

thresholds compared to the grid search, as the stricter filtering results in loss of good predictors.

The observed pattern remains that the gap in accuracy is not eliminated (Supplementary Figure

6), which suggests that the result is robust to the choice of thresholds. Filtering genes to enforce

similar covariance structures across studies, as would be expected in the absence of substantial

microarray batch or platform effects, does not remove the CV-CSV difference.

3.4 Using the same true model

True models of the experimental sets with time-to-event outcome differ in both baseline survival

and risk coefficients. Figure 4 shows the average probability of survival in each dataset and for all

datasets combined, which explains what we mean by the differences in the true models. Differences

in baseline survival mean that survival across all patients is better in some datasets than others,

for example varying between 60% and nearly 90% 5-year survival. We equalized both coefficients

and baseline hazards across studies, while allowing the joint distribution of covariates and the

gene covariance structure to remain heterogeneous.

Utilizing true survival models that are identical in both baseline hazard and coefficients mod-

erately reduces the difference between within and across-study validation when training Más-o-

menos for both breast and ovarian cancer studies. It greatly reduces the within to across-study

performance gap when ridge regression is used for both cancer types (Figure 2, “Same models”).

In addition, equalizing only the baseline survival functions but not the model coefficients barely

reduces the performance gap (Figure 2, “Same hazard”).
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3.5 Generalization across data types

We now illustrate the results from simulations involving sequencing-based studies. First, we sum-

marized the results of training and validating the prediction models using the TCGA RNA-seq

study. Figure 3 and Supplementary Figure 9 show the comparison of results evaluating predic-

tion models across microarray and RNA-seq data types, with those using only the microarray

studies. We observed high similarity in the distribution of accuracy estimates between using

only microarray studies, and a combination of RNA-seq and microarray studies. Including only

highly comparable genes in the original studies brings down the cross-validation performance.

Among the sources of heterogeneity we investigate, enforcing identical “true” models is most

effective in reducing the performance gap, while maintaining the cross-validation performance at

a comparable level to the “baseline” simulations.

These observations are further validated in the metagenomic studies with binary outcome

of type-II diabetes vs. control (Figure 2). We observed high variance in AUC scores of models

in across-study validation compared to cross-validation. Reducing heterogeneity in clinical fac-

tors and in gene measurements barely influences the difference between within to across-study

validation. Using identical “true” models greatly reduces the performance gap.

These results demonstrate generalizability of key results across various data types (gene ex-

pression microarray, RNA-seq, and whole-metagenome shotgun sequencing), health outcomes

(overall survival for ovarian and breast cancers, and type-II diabetes), known sources of hetero-

geneity (age, tumor grade and size, suboptimal ovarian carcinoma debulking, and BMI), as well

as for both time-to-event and binary outcomes.

4. Discussion

It is commonly assumed that heterogeneity in experimental platforms or procedures, and differ-

ences in patient cohorts, compromise the comparability of independent datasets and the appli-
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cation of omics-based prediction models across studies. This could be addressed by minimizing

potential sources of heterogeneity, for example by enforcing precise criteria for patient inclu-

sion. However, such narrowing has costs in sample size and potential generalizability of findings.

To the best of our knowledge, no study has carried out a systematic approach to assessing the

impact of suspected sources of heterogeneity on the across-study performance of prediction mod-

els. We used several compendia of datasets, generated from microarray, RNA sequencing, and

whole-metagenome shotgun microbiome sequencing, with study heterogeneity from known and

unknown sources, to perform this exploration. We emphasize that the presence of heterogeneity

between studies, both measured and unmeasured, is necessary to our investigation.

When training and validating prediction models in these collections of studies, we observed

a discrepancy in performance for models validated in fully independent studies when compared

to standard cross-validation. For risk prediction of overall survival in compendia of breast and

ovarian cancer datasets, independent validation statistics were 0.04 worse on the C-index scale

when compared to cross-validation. For predictions of type-II diabetes patients vs. controls from

stool metagenomes, accuracy is more than 0.1 worse on the AUC scale in across-study validation

compared to within-study validation. These differences in model performance are widespread

and sufficiently sizable to question the utility of cross-validation for deciding whether to pursue

further development of a prediction model developed and validated on a single dataset. We thus

investigated the contributions of known and unknown sources of heterogeneity to this discrepancy.

In simulations mimicking these compendia of studies, spanning various data generation tech-

nologies and types of outcome, reducing heterogeneity in important clinical covariates did not

reduce the discrepancy between CV and CSV. This finding highlights that it should not be as-

sumed that known differences in the composition of different cohorts will negatively impact the

application of prediction models across them, or that stricter inclusion criteria will improve the

models’ cross-study validation. Several factors are in play. Covariates define strata that are gen-
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erally associated with different degrees of predictability —in some strata the predictors may be

more effective than in others in predicting the outcome. Thus, rebalancing covariates may result

in better or worse prediction accuracy depending on which strata are given greater weight. Also,

covariate mix in the training sample affects properties of the training algorithm, particularly

when relevant covariates are not or cannot be modeled explicitly. Thus, it is difficult to draw gen-

eral conclusions from individual case studies, but it should not be assumed that stricter inclusion

criteria will improve prediction models.

Nonetheless, it is interesting to associate the changes in proportions of clinical covariates

to the changes in cross-study validation accuracy. We investigated this association with mixed-

effect models in the collections of cancer microarray studies where some covariates strongly affect

survival, but found that their marginal distributions do not have much impact on the cross-study

stability of predictions of survival. Heterogeneity in the prevalence of covariates like debulking

and patient age for ovarian cancer can impact overall survival in different cohorts, but not the

ability to predict overall survival.

Similarly, in these compendia of datasets spanning at least 11 different labs and various

microarray and sequencing platforms, enforcing good expression measurement comparability

through selection of genes with high Integrative Correlation (Parmigiani and others, 2004; Garrett-

Mayer and others, 2008) only moderately closed the gap between cross-study validation and

cross-validation in certain data algorithm combinations. Ensuring fully identical models of the

association between gene expression and outcome for each study is most powerful in reducing

this discrepancy. Thus in these datasets, the most important sources of heterogeneity from the

perspective of cross-study validation are likely to be those affecting the relationship between pre-

dictors and outcome, and are not likely to be included in the published datasets. For example

these could arise from different relationships between covariates and unmeasured confounders, or

from different marginal distributions of these confounders.
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We used a hybrid parametric/non-parametric bootstrap simulation approach to generate po-

tentially different outcomes for simulated samples that are resampled from the same individual.

The parametric step made it possible to simulate the removal of unmeasured confounding through

the equalizing of the data-generating models with respect to coefficients and baseline hazards.

Theoretically, we could perform rebalancing of covariates in a fully non-parametric approach.

However, this would require an extension of the .632 or related approaches (Efron and Tibshi-

rani, 1997) to correct for over-optimism in estimated model performance caused by resampling

of both individuals within studies and entire studies within the collection. To the best of our

knowledge, such a method is not yet described for a cross-study bootstrap. This would be an

interesting area for future research.

This study has several limitations. We focus on AUC and C-Index to evaluate the discrimina-

tion accuracy of the prediction models, even though these statistics are not directly relevant to

clinical implementation. However, they provide advantages of simplicity while adequately captur-

ing the phenomenon of degraded cross-study validation performance relative to cross-validation.

The additional model selection in determining thresholds, and necessary assumptions about

prevalences to calculate positive and negative predictive values, are complicating factors that

may distract from rather than provide additional insight from the basic phenomenon of degrada-

tion in cross-study validation performance. Furthermore sampling designs of the studies analyzed

are not amenable to validation of positive/negative predictive value without further simulation. In

independent validations of predictive value, we would expect prevalence to be an additional source

of potential heterogeneity between study populations, but for the conclusions of this manuscript

to remain relevant.

We focus mainly on altering one source of heterogeneity at a time. Altering multiple factors

yields results that have a less clear interpretation. We report these results in the supplement

(Supplementary Figures 9 and 10) to document the interactions between different sources of het-
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erogeneity. We could only analyze clinical strata available in sufficient numbers in these datasets:

patient age, tumor size and grade for breast cancer; age and debulking status for ovarian cancer;

BMI for type-II diabetes. But our proposed approach shows how the impact of known sources of

study heterogeneity can be assessed for their impact on prediction modeling, and that the most

obvious heterogeneity may not be the most important.

Despite the limitations, our work has several novel and important contributions. We introduce

a novel approach to quantify the impacts of heterogeneity in observed confounders, predictor

covariance, and unmeasured confounding on cross-study prediction accuracy. In addition, our

results of rebalancing covariates have an important implication - that it is questionable whether

studying more clinically homogeneous groups justifies the loss of sample size in practice. This is a

common but relatively unexamined practice that we challenge. We developed simulatorZ which

automates all steps of these simulations including covariate balancing. One powerful feature of

simulatorZ is that it can simulate data from one or more “omics” studies in a highly realistic way

compared to typical synthetic data. Realistic, data-driven, simulated data is essential in evaluating

newly developed computational methods. Recent studies have mentioned the utility of simulatorZ

in evaluating methods for proteomics data (Gatto and others, 2015), and in validating replicable

cross-study predictors for personalized medicine (Patil and Parmigiani, 2018). By publishing

simulatorZ, as well as a code repository to reproduce the results of this paper, we hope to

encourage further investigation of the effects of study heterogeneity in other predictive modeling

contexts.

5. Supplementary Material

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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Datasets Breast cancer microarray datasets, ER+ individuals and DMFS response

Cleaning

• Linear scaling of expression values
• Missing values in gene expressions filled with KNN imputation
• Remove 60% low variance genes
• Remove duplicate samples or samples with missing values
• Remove studies with too few samples
• Curation of covariates: size, age, grade  (Supplementary table 1 for availability)

7 datasets, with 1021 patients  (Table 1 in main paper)

Simulate
independent 
datasets

Step 1:  Resample studies with replacement

Step 2:  Resample individuals with replacement

Non-parametric
Bootstrap

Step 3:  Use generative model to simulate response
Parametric
Bootstrap

Fit CoxBoost
-> true coefficients

True cumulative 
hazards

True Model: 

Randomly draw samples from U(0,1) and
Compute T and C 
(Equations 2.1-2.3 )

Within- and 
across study 
validation

Repeat for 100 iterations:

Simulate a 
list of 

datasets 
with the 
method 
above

For all

i, j

Train on dataset i,
Test on dataset j

4-fold CV on set i

A matrix of C-index: 

(i, j) element
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1 CV and 1 
CSV value:
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diagonal and 
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the matrix

Altering 
heterogeneity
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Proportions of 
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Difference in 
true models

Combination of sources
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Filter genes with high 
Integrative Correlation

Use identical model 
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Fig. 1. A schema of our study. Simulation methods (using the breast cancer microarray studies as an
example) are summarized in this flow chart.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 23, 2018. ; https://doi.org/10.1101/374355doi: bioRxiv preprint 

https://doi.org/10.1101/374355
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 23, 2018. ; https://doi.org/10.1101/374355doi: bioRxiv preprint 

https://doi.org/10.1101/374355
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 23, 2018. ; https://doi.org/10.1101/374355doi: bioRxiv preprint 

https://doi.org/10.1101/374355
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 23, 2018. ; https://doi.org/10.1101/374355doi: bioRxiv preprint 

https://doi.org/10.1101/374355
http://creativecommons.org/licenses/by-nd/4.0/



