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Abstract 
Dynamic molecular clusters are assembled through weak multivalent interactions and are platforms for cellular 
functions, especially receptor-mediated signaling.  Using coarse-grain kinetic Langevin dynamics, we 
performed computational experiments on a prototypical ternary system modeled after membrane-bound 
nephrin, the adaptor Nck1 and the actin nucleation promoting factor NWASP. Steady state cluster size 
distributions favored stoichiometries that optimized binding, but still were quite broad. A balance of enthalpy 
and entropy limited the number of molecules per cluster, with complete annealing into a single complex being 
exceedingly rare. Domains close to binding sites sterically inhibited clustering much less than terminal domains 
because the latter effectively restrict access to the cluster interior. Increased flexibility of interacting molecules 
diminished clustering by shielding binding sites within compact conformations. Membrane association of 
nephrin increased the cluster size distribution in a density-dependent manner. These properties provide 
insights into how molecular ensembles function to localize and amplify cell signaling. 

	

Introduction 

Dynamic molecular clusters can form through weak binding interactions between multivalent molecules. They 
are highly plastic structures with a distribution of stoichiometries and sizes; they are becoming increasingly 
recognized as molecular platforms to drive key cellular functions, especially receptor-mediated signaling (1-
11). For example, the epidermal growth factor receptor (EGFR) dimerizes and develops kinase activity when it 
binds its ligand, resulting in multiple phosphorylated sites on the cytoplasmic domains; these in turn interact 
with multiple SH2 domains on other multivalent scaffold or adaptor proteins, which then recruit additional 
binding partners (13). The result is the formation of multi-molecular dynamic ensembles with a distribution of 
stoichiometries and sizes even within the same cell, but with robust and specific cell signaling functions. This 
general pattern applies to the entire class of receptor tyrosine kinases as well as other multi-molecular systems 
such as T-cell and B-cell receptors(14-17), focal adhesion complexes(18), or the post-synaptic densities of 
dendritic spines (19). We and others have used the term “ensemble” (3, 5, 6, 11, 19, 20) to specifically convey 
the notion of dynamic cluster composition and size. Formation of molecular ensembles is also a prerequisite 
for the phenomenon of liquid-liquid phase separation, which has become a major focus of cell biophysics 
research (21, 22). And even cellular polymers such as F-actin and microtubules qualify as molecular 
ensembles because they display tremendous combinatorial complexity and plasticity, not just because of the 
infinite number of possible polymer sizes, but also because of the plethora of binding proteins that can interact 
at any site along the polymer (23, 24).  

The physical and chemical properties of molecular ensembles are not well understood, and are likely to be far 
from those of dilute molecules in solution. Multivalency underlies the formation of clusters. It serves to increase 
local concentration of biomolecules and trigger downstream signaling events. Multivalency can lead to the 
formation of large molecular clusters or polymers even when the individual binding affinities are weak – a form 
of cooperativity. Biophysical models of these systems may serve to address the interplay of valency and 
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geometry by systematically varying the cellular and molecular features underlying these properties. Stochastic 
reaction-diffusion modeling at the cellular scale cannot fully account for steric effects or molecular flexibility, 
because molecules are typically modeled as infinitesimal points in space (25-27). In principle, 
multimolecular/multistate interactions could be modeled with atomistic molecular dynamics simulations, but the 
large sizes of these systems and the need to simulate on the second timescale make such simulations 
computationally impractical. Such simulations might be handled through coarse-graining (28), where individual 
proteins are modeled as a collection of linked domains (29-31).  

In this work, we explore the interplay of multivalency and spatial effects with SpringSaLaD (31), a modeling 
and simulation software application developed in our lab that bridges the scales between molecular dynamics 
and cellular modeling. SpringSaLaD uses a Langevin dynamics formulation for linking spherical domains (or 
“sites”) with stiff springs to transmit the random diffusion-derived forces impinging on each site. It uses a rule-
based modeling(32, 33) scheme to build models based on defining the states of and interaction between 
individual sites within the molecules. Stochastic reaction-diffusion simulations are then run within a 3D 
rectangular spatial domain. SpringSaLaD also has strong integrated analysis and visualization and a unique 
exact formulation to relate bimolecular macroscopic on-rates to the microscopic reaction probabilities. 

We use SpringSaLaD to examine a prototypical multivalent system with a membrane anchored protein 
containing 3 phosphotyrosine (pTyr) sites, an adaptor protein containing one SH2 domain and 3 SH3 domains, 
and an effector protein consisting of 6 proline-rich motifs (PRMs) (34). This model is inspired by the nephrin - 
Nck1 - NWASP system, which we have previously studied with a non-spatial simulation algorithm based on 
Flory-Stockmayer theory (3). This system has also been extensively investigated experimentally by the Rosen 
lab (35, 36) and has been shown to exhibit liquid phase separation within physiological concentration ranges. 
However, as opposed to our earlier work (3), we do not explore the requirements for sol-gel transitions that 
underlie phase separation. Rather, we use SpringSaLaD to perform computational experiments to elucidate 
how structural features influence the size of molecular ensembles composed of a small number of these 
multivalent molecules.  

 We show how multivalency, membrane anchoring, steric interactions, molecular flexibility and the crowded cell 
environment all influence the size and distribution of molecular ensembles.	 
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Methods 

The SpringSaLaD simulation algorithm has been fully described(31), but will be briefly summarized here. 
Macromolecules are represented as a series of hard spherical domains or sites that are linked by stiff springs. 
The motions of molecules are governed by a Langevin dynamics formulation that uses a diffusion coefficient 
assigned by the modeler to each site to calculate a distribution of random forces applied to each sphere. The 
forces are transmitted vectorially to neighboring sites in the molecule through the stiff spring linkers. Some of 
the spheres can represent binding sites, where the assigned on-rates with binding partners, together with their 
respective diffusion coefficients are used to calculate a reaction radius and reaction probability within each a 
time step. The shorter the time step the higher the accuracy of the simulations. A new bond is represented, 
simply, as a new stiff spring linking the binding sites. Inputs of off-rates are directly used to determine the 

A.1 A.2 

B.2 B.1 

C.1 C.2 

Figure 1: Construction of model components by coarse-graining the protein structures. (A) The 
165 amino acid (aa) intracellular portion of the transmembrane protein nephrin is modelled with 8 sites, 
three of them (red) represent pY-containing binding sites which bind to SH2 domains; this molecule is 
tethered to the membrane (yellow surface) via an anchoring site (grey). (B) The 376 aa cytoplasmic 
protein Nck1 is modelled with three SH3 sites (magenta), one SH2 site (yellow) and one linker site (light 
pink). (C) The 505 aa cytoplasmic protein NWASP has a long intrinsically disordered region containing 6 
proline rich motifs from 277-392 in its sequence (shown as a black dotted line in C.1). So this stretch is 
assumed to adopt a polyproline-II (PP-II) type helical structure with an average distance between two 
residues of 0.31 nm(12); it is modelled with six binding sites (green) for SH3 domains and five structural 
sites (pink). The N-terminal (1-276) and C-terminal sequences (393-505) are modelled with four and one 
structural sites respectively, according to the predicted secondary structures; the C-terminal structural 
site corresponds to the VCA domain, which activates actin polymerization. 
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probability of dissociation during a time step. In this study, we are primarily interested in characterizing the size 
and composition of clusters at steady state. We do this by initiating simulations with a random spatial 
distribution of elongated monomers and allowing them to diffuse and react stochastically until the average 
cluster size fluctuates around a stable size. We statistically analyze 50 stochastic trajectories for each 
condition. The 50 simulations are run in parallel on the CCAM High Performance Compute Cluster 
(https://health.uconn.edu/high-performance-computing/resources/); a typical run with 36 molecules for 500ms 
requires 7 hours. 

 Molecule construction 

 Our model has three molecular components – nephrin, Nck and NWASP. Each protein has multiple domains 
which take part in biochemical interactions. While some of the specific domain structures are solved 
experimentally, the full protein structures are not yet available in the literature. So we have used secondary 
structure prediction homology modeling with web-server platforms like RaptorX (http://raptorx.uchicago.edu) 
(37) and Phyre2 (http://www.sbg.bio.ic.ac.uk/phyre2) (38) to generate approximate secondary structures from 
the amino acid (aa) sequences of interest. SpringSaLaD was then used to generate coarse grain models 
composed of multiple spheres linked with stiff spring linkers (Fig. 1). The relative sizes of the sites (Fig.S1) are 
determined by the predicted structures with the aid of a k-means clustering algorithm, mol2sphere(39). 

 

Parameters           

In SpringSaLaD, each site is assigned a diffusion coefficient (D). Because we are interested in the steady state 
cluster size distributions, as opposed to the kinetics of cluster formation, we could use somewhat smaller 
diffusion coefficients (Table 1) than realistic estimates; this permitted us to use longer time steps for our 
simulations, thus increasing computational throughput. Table 1 shows the D values assigned to the molecular 
sites. The high affinity binding of a pY site on nephrin to the SH2 domain on Nck is assigned a Kd of 1 µM(40); 
the low affinity binding between a Nck SH3 domain and a PRM on NWASP is assigned a Kd of 100 µM(41). 
Again, because the actual binding or dissociation rates do not affect the equilibrium cluster sizes, we chose 
values in Table 1 to optimize computational throughput. We checked some simulation results with both shorter 
timesteps and larger D values to assure that the steady state cluster characteristics were accurate when using 
our nominal values. All these input specifications can be found in the SpringSaLaD input files included in 
Supporting Information. 

 

 

 
Table 1: Parameters used in the model 

 
[nephrin] 9.06 µM 

[Nck] 33.22 µM 
[NWASP] 16.61 µM 

Kd, SH2 (Nck) – pY (nephrin) 1 µM (kon = 100 µM-1 s-1 ;koff = 100 s-1) 
Kd, SH3 (Nck) – PRM (NWASP) 100 µM (kon = 100 µM-1 s-1; koff = 10000 s-1) 

D, nephrin_anchor_site 0.05 µm2/s 
D, nephrin_cytosolic_sites 1 µm2/s 

D, Nck_sites 2 µm2/s 
D, NWASP_sites 2 µm2/s 
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Results 

Analysis of cluster size and composition 

The baseline reference system (with which other configurations will be compared) consists of 36 molecules in 
a cubic domain 100nm on each side as described in Figs. 1 and 2. The proportion of nephrin:Nck:NWASP was 
6:20:10, respectively and chosen to approximate the optimal stoichiometry for binding site interactions; that is, 
in the reference system there are 18 pTyr sites interacting with 20 SH2 sites and 60 SH3 sites interacting with 
60 PRM sites. Typically, we analyzed outputs from 50 trajectories. We can display the steady state outputs of 
these simulations as histograms, as illustrated in Fig. 3. In Fig. 3A, the abscissa corresponds to the average 
cluster size at steady state from a single simulation; this is calculated as the number of molecules (36 for the 
reference system) divided by the number of clusters. Thus, if a simulation produces 2 clusters each containing 
18 molecules and another simulation produced 2 clusters containing 1 and 35 molecules, they would each 
yield the same average cluster size of 18. Since the number of clusters and the number of molecules are both 
small integers, only certain average cluster sizes are mathematically possible as can be seen from the sparse 
distribution in the histogram (Fig.3A).To better examine how molecules are distributed over all possible cluster 
sizes, we can use an analysis displayed in Fig. 3B. Here, the abscissa is every possible cluster size from 1 to 
36 molecules; the ordinate is the fraction of molecules populating these cluster sizes. For the scenario 
described above, a pair of 18mers would produce a single histogram entry at 18 on the abscissa with fraction 
of 1 on the ordinate; a configuration containing 1 monomer with 1 35mer would have an abscissa entry at 1 
with a height of 0.028 and at 35 with a height of 0.972. For both of these histograms, we calculate weighted 
means, indicated by the dashed lines in Figs. 3A and B, that we term, respectively, Average Cluster Size 
(ACS) and Average Cluster Occupancy (ACO). For our 2 extreme scenarios, the ACS is 18 for both; the ACO 
for 2 18mers is 18 and for the combination of monomer and 35mer, ACO is 34.06. We can compute the ACS 
and ACO for each of the time points to generate averaged trajectories (Figs. 3C. and D.). The kinetics for both 
methods of assessing clustering are similar, reaching steady state by 100ms. To produce the histograms in 
Figs. 3A and B, we use this 100ms relaxation of the system as an interval over which to sample five time points 

Figure 2: Clustering in a single trajectory of the “reference” system. (A) The system contains a total 
of 36 molecules (6 nephrin, 20 Nck, 10 NWASP) in a cubic reaction volume (X = Y = Z = 100 nm); XY 
surface represents the membrane where nephrin is anchored. At the beginning of a simulation (t = 0), 36 
molecules are distributed randomly (nephrin onto the membrane, Nck and NWASP in the cytosol) in the 
reaction volume. (B, C) A pair of time points during the trajectory reveal the development of clusters. At 
steady state (t ~ 100 ms), most clusters reside in the vicinity of membrane. Molecular motions and cluster 
formation can be seen at the supplementary video file (Movie S1). 

X 
Z Y 

A C B 



(100 - 500 ms). As each time point corresponds to 50 runs, 250 independent data points are used to plot the 
steady state distributions in Fig.3A, 3B.	 

A surprising property is the insensitivity of the ACS and ACO to the system’s size. When we increase or 
decrease the number of molecules, keeping the molecular concentrations the same by adjusting the size of the 
domain, cluster size distributions and means turn out to be similar (Fig. 4). This indicates that the small number 
of available monomers does not limit the size of the clusters. Rather, this similarity in cluster sizes suggests 
that the system is sufficiently large to be approximated by equilibrium thermodynamics. In particular, there 
appears to be a balance of enthalpy and entropy that governs the size distributions of clusters and does not 
allow monomers to condense into a single large cluster.  With a larger number of molecules, the average 
cluster size displays a much tighter distribution (Fig. 4A, bottom) because the higher number of possible 
average cluster sizes reduces the stochasticity of each average for individual steady state points. However, 
remarkably, there is very little effect on the shape of the distribution of fractional occupancy (Fig. 4B). This 
suggests that the shape of the distributions in Fig. 4B correctly reflects the tendency of the system to favor 
certain cluster sizes, as will be further discussed below. Overall, this analysis also indicates that our reference 

A C 

B D 

Figure 3: Quantification of molecular clustering in the reference system.  A. Distribution of average 
cluster sizes in 250 steady state samples. B. Distribution of fraction of molecules occupying individual 
cluster sizes in 250 steady state samples. Steady states in A and B are from 50 trajectories, sampled at 
5 equally spaced intervals from 100 - 500 ms. C., D. Corresponding time courses for the average of 50 
trajectories. 



system with 36 molecules, is sufficiently large to provide a good representation of the steady state system 
behavior. 

 Effect of multivalency:  Molecular clustering is a direct consequence of multivalent interactions between 
binding partners, but how this works in a specific system can be hard to predict. Here, we directly address this 
problem computationally. We manipulate the nephrin molecule to create three situations where the total 
number of binding sites are same, but the valency states are different (Fig.5A): 3 pY sites on each of 6 nephrin 
(3v, the “reference” system), 2 pY sites on each of 9 nephrin (2v), and 1 pY sites on each of 18 nephrin (1v). 
Nck and NWASP configurations are the same for all 3 scenarios. The histogram of fractional occupancy shifts 
to the left and, correspondingly, ACO decreases with reduced valence state (Fig. 5B). In considering this, it is 
important to appreciate that the strong interaction between the pY sites on nephrin and the single SH2 site on 
Nck assures that almost all the pY sites will be occupied with Nck in all 3 scenarios (as confirmed by the 
simulations results). Therefore, the effect of nephrin valency is actually to gather multiple Nck into a reduced 
local volume for interaction with the NWASP molecules. It should also be noted that this multivalency effect is 
over and above the effect of localizing the nephrin to the membrane, which actually becomes densely covered 
with nephrins for the 1v case, with 18 nephrins/ 100nm2 (the effect of membrane localization is fully considered 
below).	 

Returning to Fig. 4B, we can appreciate that even for different numbers of molecules (maintaining their initial 
concentrations), the shape of the distribution of fractional occupancies remains remarkably the same. While 
the histograms of fractional occupancy are quite broad, some cluster sizes are preferred over others for all 3 
system sizes. This reveals a tendency to optimize the binding site occupancy in individual molecules by 
favoring certain stoichiometries. Specifically, it appears that clusters with 2, 4, 5, 9 or 11 molecules are 
preferred over their neighbors. For example, the 11mer almost always has a composition of 
nephrin2Nck6NWASP3, despite the fact that other compositions are mathematically possible (Supplementary 
Table S1). This observed composition corresponds to what would be predicted for a perfect stoichiometric 
binding of all the binding sites. However, close examination of individual 11mers at a given steady state time 
point reveals that some binding sites are often unoccupied for the weaker binding between the SH3 sites on 

A B 

Figure 4: Clustering behavior is independent of system size. Steady state distribution of average 
cluster size (A) and molecule occupancy of individual cluster sizes (B), for 36 (blue), 18 (red) and 144 
(green) molecules in each simulation. These results are from 250 steady state samples as in Fig. 3. 



Nck and the PRM sites on NWASP. What enforces the 11mer stability is the enhanced rebinding rates of these 
sites emerging from their proximity within the cluster.  

Fig. 5B shows how the broad distribution of the reference trivalent nephrin system gives way to much sharper 
distributions when the nephrin valency is decreased. Strong preference for tetramers and pentamers are seen 
for the bivalent and monovalent, respectively, nephrin molecules. Again, optimal binding site stoichiometry 
underlies these preferences. The perfect binding site stoichiometry (nephrin: Nck: NWASP) for the bivalent 
system is 1:2:1 and for the monovalent nephrin, 2:2:1, accounting for the preference for tetramers and 
pentamers seen in Fig. 5B and Table S1. Interestingly, computational experiments that increase the affinities of 
the interactions for the trivalent nephrin (top panels of Fig. S2 A. and B.), also produce much more discrete 
histograms of fractional occupancy; stoichiometries that maximize multivalent binding are now highly favored 
(see also Table S1). Overall, this analysis indicates that at a fixed affinity, increasing multivalency leads to 
larger clusters, but with broader size distributions; higher affinity binding at a fixed valency, leads to larger 

clusters with more discrete cluster size distributions. 

As noted above, the count ratio of each molecule in the reference system, 6:20:10, was chosen to optimize the 
possible number of interactions between, respectively, nephrin, Nck and NWASP. We asked how clustering 
might be affected by altering the ratios of these molecules, keeping the total number of molecules at 36 (Table. 
S2). As expected, the reference system produces the largest clusters. Interestingly, however, a system where 
the ratio is, respectively, 10:20:6, is practically as good, despite the poor match between available binding site 
partners. What seems to be more important than the best match is the availability of a high level of Nck, which 
serves as an “adaptor” to link multivalent nephrin to multivalent NWASP.  

Effect of molecular structural features: Our model gives us a unique opportunity to probe the interplay of 
steric effects, proximity effects and protein flexibility on cluster formation. We first asked if the clustering 
propensity depends on the intramolecular distances between binding sites. We created two systems where the 
linker lengths within a molecule are elongated by 1 nm and 2 nm respectively compared with the reference 

3v * 6 = 18 pY 

2v * 9 = 18 pY 

1v * 18 = 18 pY 

Figure 5: Multivalency produces larger clusters. (A) Three Nephrin constructs with differing valency; 
red sites represent pY (SH2 binding sites). The number of these tri, bi, and monovalent Nephrin molecules 
are adjusted (6, 9, 18 respectively) such that total number of pY-sites remains the same in all three cases. 
(B) Steady state distributions of individual cluster sizes (the dotted line represents the mean of the 
distribution).  

A B 



 L 

 L + 1 

 L + 2 

A 

B 

Figure 6: Effect of linker length. (A) The reference 
system compared to molecules where the linkers are 
increased by 1nm and 2nm. Only Nephrin is shown but 
the linker lengths were incremented in the same way in 
Nck and NWASp. (B) Steady state distributions of 
molecular occupancies (dotted line indicates the mean of 
the distributions).  

system (Fig. 6A). As the distance between sites is increased, there is a dramatic shift in the distribution of 
molecules into larger clusters and a corresponding increase in mean cluster occupancy (Fig. 6B). The probable 

reason for this behavior is that with longer 
linkers, binding sites in the interior of a large 
cluster remain more accessible to additional 
binding partners; i.e. steric hindrance within 
the interior of a cluster is reduced with longer 
distances between binding sites.	 

While the analysis in Figure 6 is informative, 
in that it isolates the effect of distance 
between sites, the linkers in SpringSaLaD 
have 2 attributes that limit how they can 
represent the regions between binding sites: 
they are inflexible and they are sterically 
transparent. Therefore, to better represent 
the actual molecular structures, we included 
“structural” sites in all our molecules, as 
identified in Fig. 1. 

These do not have any binding attributes, but 
they do exclude volume and serve as pivot 
points for conformational flexibility. As might 
be expected, completely removing the 
structural sites dramatically increases the 
steady state cluster size (Fig. S3). There are 
two possible underlying factors that could 
cause such dramatic shift in cluster size: 
steric effect and conformational flexibility. 
While steric effect should inhibit the 
clustering by hindering the approach of two 
binding partners, the effect of flexibility is not 
that intuitive.	 

To isolate the steric effect, we create three 
NWASP constructs (Fig. 7) with similar 
flexibilities, but different steric effects by 

varying the sizes (Fig. S4) of the structural sites (nephrin and Nck have the reference structures in all these 
simulations). Compared to the reference system (Fig. 7A), increasing the size of all structural sites (Fig. 7B) 
moderately decreases the clustering, while decreasing their sizes (Fig. 7C) moderately increases the cluster 
sizes. As would be expected, these changes reveal the influence of steric hindrance for binding interactions. 
Interestingly, removal of the peripheral structural sites from the reference NWASP molecule (Fig. 7D) 
dramatically increases the tendency to form larger clusters. This large effect of the peripheral binding sites can 
be attributed to their exclusion from the cross-linked interior of larger clusters. This exclusion has the 
synergistic effects of unfavorably lowering the entropy of larger clusters and also serving as a steric barrier for 
the binding of monomers to available free binding sites in the interior.	 

The 3 proteins that inspire this work all have intrinsically disordered region (IDR) in their sequences; the proline 
rich sequence in NWASP (42), the linker region between SH2 domain and first SH3 domain in Nck (36), and 



almost all the intracellular portions of the nephrin sequence (43). As a consequence of the flexibility of IDRs, 
the intramolecular distance between sites that flank them are more likely to vary in the course of interaction. To 
test the effect of flexibility, we created the NWASP molecules shown in Fig. 8 and simulated their clustering 
behavior  with the reference structures of nephrin and Nck (Fig. 8A is the reference structure of NWASP). 

Interestingly, we see that the less flexible structure of Figs. 8B have the tendency to form very large clusters; 
structures with similar flexibilities but differently sized pivot sites (Fig. 8A vs. Fig. 8C) yield similar clustering 
behavior. This flexibility dependence could be explained by considering entropic effects. Since average cluster 
size is an equilibrium property, the loss of entropy would prevent the system from forming larger clusters, as 
discussed above. But the loss of entropy is not just due to the formation of multimers from monomers, but also 
because of the loss of conformational freedom resulting from the cross-linked multivalent binding. The more 
flexible the monomers, the greater the entropic loss upon cluster formation. So the steady state cluster size 
would go up with the less flexible initial structures, consistent with the trend shown in Fig. 8. Another way of 
explaining this would be the tendency of the less flexible molecules to populate relatively more extended 
conformations, where their binding sites remain more highly accessible. To examine this idea, we analyzed the 
distance between the outer binding sites in isolated NWASP molecules shown in Figs. 8 A, B and C. When 
fully stretched, the distance between these sites is 35nm.  For each case, we averaged 25,000 independent 
conformations from 50 trajectories, and they show precisely this trend (Figs. 8 and S5). It is interesting that the 
smaller pivot sites in Fig. 8C actually produce a more compact average conformation than the reference 
structure of Fig. 8A, consistent with the smaller average cluster size in the former. Steric inhibition of binding 
would have predicted the opposite, suggesting that flexibility is a more important factor in limiting cluster size 
than steric hindrance. However, turning to Fig. 8D, we see that decreasing both steric hindrance and flexibility 
produces the most dramatic enhancement of clustering, over and above the effects of each alone (compare 
Figs. 7D and 8B).	 

Effect of membrane anchoring: Signaling cluster formation takes place in the spatial region near the plasma 
membrane; so membrane associated proteins are likely to play a key role in this process. In principle, 
membrane anchoring can promote clustering by producing by confining binding sites to a region of 
approximately one molecular length from the membrane; this effectively increases the local concentration 

C 

D 

A 

B 

Figure 7: Steric effects. Sizes of NWASP structural sites are varied, keeping the sizes of PRM binding 
sites (green) unchanged. (A) Reference; (B) Larger structural sites; (C) Smaller structural sites; (D) 
NWASP without the peripheral structural sites. Corresponding steady state distributions of individual 
cluster sizes (dotted line indicates mean of the distribution) are shown on the right. Nephrin and Nck retain 
the reference structures in all 4 cases.  



compared to sites that are free within the bulk volume. On the other hand, the membrane might serve as a 
steric barrier preventing the binding partners to approach the membrane-tethered molecular binding sites. To 
understand the interplay of these 2 opposing effects, we created three nephrin constructs where length of the 
anchor linker is increased gradually (keeping the rest of the configurations same) to reduce the potential steric 
effect from the membrane;  we also include simulations where nephrin is detached from the membrane and 
free to diffuse around the cytosol, which should demonstrate the role of spatial confinement or effective higher 

A 

B 

C 

 Figure 8: Decreased flexibility around binding sites promotes clustering. (A) Reference 
configuration, (B) pivot sites (pink) flanking the PRM sites (green) are removed; (C) Similar to reference 
system, except the sizes of pivot sites in between PRM are smaller; (D) NWASP with only PRM binding 
sites. Corresponding steady state distributions of individual cluster sizes (dotted line indicates the mean 
of the distribution) are shown on the right. Nephrin and Nck retain their reference structures in all cases.  

D 

AL = 3nm  
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) 
AL = 7 nm  

AL = 11 nm 
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Figure 9: Membrane association increases clustering but can also exert steric inhibition. (A) 
Nephrin constructs with varying anchor length, AL (which is the linker that connects first structural site 
with the anchor site) and without anchor. (B) Steady state distributions of individual cluster sizes (dotted 
line indicates the mean of the distribution). 
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local concentration around the membrane (Fig. 9). There is a small increase in fractional occupancy as a 
function of anchor length, indicating the steric contribution from the membrane is minor. However, removing 
the membrane anchor results in a more significant reduction of mean cluster occupancy, indicating that 
membrane confinement can potentiate clustering. This effect is much more prominent when the same 
experiment is done with the binding sites only (BSO) system (Fig. S6).	 

To further probe the importance of spatial confinement at the membrane, we explore the effect of density of 
nephrin molecules at the membrane surface. In our reference configuration, we have a total of 36 molecules (6 
nephrin, 20 Nck, 10 NWASP) in a cubic (X = Y = Z = 100 nm) reaction volume with nephrin anchored on the 
XY plane. We can 
change the 
membrane surface 
density of nephrin, 
while maintaining 
constant volume and 
monomer 
concentrations, by 
altering the X, Y, Z 
dimensions (Fig. 
10A, 10B, and 10C). 
For a constant 
volume 
(concentration), 
when we increase 
the membrane 
density of nephrin, 
we see a correlated 
increase in average 
cluster size (Fig. 
10D); the effect in 
cluster occupancy is 
much more 
prominent indicating 
the larger sizes of 
the clusters with 
higher membrane 
density (Fig. 10E). 
However, without the 
membrane, this 
change in aspect 
ratio does not have 
any effect of 
clustering dynamics 
(Fig. S7). So 
receptor density at 
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X = Y = 100 
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100 nm 
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Figure 10: Increased nephrin membrane density promotes clustering. (A) 
Reference configuration in a cubic reaction volume (X = Y = Z = 100 nm); nephrin 
density = d (= 0.06 molecules.µm

-2
).  (B) X = 50 nm, Y = 100 nm, Z = 200 nm; 

nephrin density = 2*d. (C) X = Y = 50 nm, Z = 400 nm; nephrin density = 4*d. (D) 
Dynamics of average molecular occupancy; note that times to reach steady states 
are different for three. (E) Steady state distributions of molecular occupancies. For 
higher nephrin density cases (red and green), two steady state time points (100 
realizations) are sampled, unlike the reference system (250 realizations). Total 
number of molecules are the same in all simulations. 



the membrane potentiates clustering. Interestingly, however, the kinetics for approach to steady state is much 
slower for the higher density systems. Thus the local confinement afforded by membrane anchoring 
significantly increases the propensity for clustering while decreasing the rate of cluster growth.	 

Effect of molecular crowding: Cells contain a wide range of biomolecules with varying shapes and sizes; 
these molecules occupy physical volume and behave as obstacles to other diffusion driven processes. We 
next use our system to explore how molecular crowding might influence clustering. To address that, we create 
a crowded environment by 
adding inert molecules to 
our system. We employ 320 
spherical crowders of radius 
= 5 nm (Fig.11B). We see a 
large increase in average 
cluster size and occupancy 
upon adding the crowder. 
The effect of molecular 
crowding is attributed to the 
excluded volume effect 
(repulsive steric process) 
which enhances the 
effective concentration (or 
thermodynamic activity) of 
the reactive molecules by 
reducing the available 
volume. Although a simple 
calculation shows that our 
spheres fill ~1/6 of the 
106nm3 reaction volume, the 
actual excluded volume 
might be better 
approximated by subtracting 
the packed volume of the 
spheres from the total 
volume; if we assume a 
cubic packing, this volume 
is 320 X (2r)3, or ~1/3 of the 
106nm3 simulation volume. 
To test this effect of volume 
reduction, we modeled an 
additional case where 36 
interacting molecules are 
put into a 2/3 of reference 
reaction volume with no 
crowders (Fig. 11C). 
Interestingly the increase in 
average cluster size or 
occupancy is less 

Figure 11: Effect of molecular crowding. (A) Reference system with 36 
interacting molecules in a 100

3
 nm

3
 cubic reaction volume. (B) System with 

320 inert crowder (radius = 5 nm) along with 36 interacting molecules in 
the reference reaction volume. The crowders would take up ~1/3 of the 
volume based on cubic packing (each sphere with radius r would occupy 
an effective cubic volume having a side length of 2r). (C) 36 interacting 
molecules in 2/3 of the reference volume, i.e., (100*100*67) nm

3
. The 

Corresponding steady state distributions of molecular occupancies are 
shown in the right hand panels (inset shows the time course). Since the 
crowded system takes longer to reach steady state, four time points (*50 
runs = 200 realizations) are sampled for the distribution. 

mean  = 7.86 
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pronounced as compared to the crowded system. So the extent of volume exclusion is higher than the sum of 
closely packed volume of the crowder. This is likely a consequence of the physical size of the interacting 
molecules, which increases the excluded volume still further. That is, the finite size of the sites within the 36 
interacting molecules because the mass-center of each interacting molecule can’t access a spherical volume 
corresponding to the sum of its own radius and that of the crowder (Fig. S8), and even with the wall of the 
chamber. This additional volume exclusion is reflected in the larger cluster formation in crowded environment 
(Fig. 11B vs. 11C).	 

Discussion 

The aims of our study were to establish the biophysical factors that shape how weakly binding multivalent 
interactions control the formation of dynamic clusters, which have been also called molecular ensembles. We 
have developed a kinetic model that utilizes a coarse representation (Figs. 1 and S1) of the key molecular 
features in 3 interacting multivalent molecules. It is inspired by the nephrin/Nck/NWASP system that underlies 
the structural integrity of the kidney filtration unit (44, 45). The multivalent binding domains from each of these 
molecules also served as the basis for a seminal study of microdroplet formation by liquid-liquid phase 
separation (35).  It is important to emphasize that our model is not intended to predict the ability of a system to 
phase separate. This would require a more macroscopic theory that also accounts for electrolyte interactions 
and the state of water in the 2 phases (22, 46). However, cluster formation through weak multivalent 
interactions is a definite prerequisite for liquid droplet phases. More broadly, molecular ensembles can serve 
as functional platforms for key cellular signaling systems. 

Our reference system consisted of 6 membrane-bound nephrin molecules, 20 cytosolic Nck molecules and 10 
cytosolic NWASP molecules in a cubic reaction volume of 100nm on a side; one face of the cube represented 
a planar patch of membrane within which the nephrin molecules could diffuse (Fig. 2). This stoichiometry was 
close to the optimal for maximizing interaction between all the binding sites on these multivalent molecules. 
Based on stochastic simulations, we analyzed the kinetic approach to steady state, the distribution of cluster 
sizes at steady state and the distribution of molecular occupancies within each possible cluster size (Fig. 3). 
We found the reference system of 36 molecules was sufficiently large to simulate all the key features of the 
system (Fig. 4) because, perhaps somewhat surprisingly, the cluster size and cluster occupancy histograms 
were very similar for 18, 36 or 144 molecules. This gave us confidence that the reference system properties 
could serve as a good baseline for computational experiments that systematically probed for the effects of 
molecular and cellular structure on the clustering behavior. It also demonstrated that a balance of enthalpic 
and entropic factors limited the size distribution of clusters and prevented their annealing into a single large 
complex. 

As would be expected, decreasing valency decreases the steady state cluster size distribution (Fig. 5). This 
computational experiment mirrors the trend in an in vitro experiment by the Rosen lab (35), in which nephrin 
constructs with 3, 2 and 1 phosphotyrosines required progressively higher concentrations of Nck and NWASP 
to produce phase separation. But, more subtly, the simulations show that there are preferred cluster sizes with 
specific monomer compositions that are dependent on valency, with lower valency sharpening the preference 
for clusters of optimal stoichiometric composition. On the other hand, the distributions are also sharpened to 
favor specific cluster sizes and compositions as the binding site affinities are increased, which increases the 
average cluster sizes (Fig. S2).  

We deconvolved the influence of steric interactions and molecular flexibility on steady state cluster sizes by 
systematically altering NWASP structural features (Figs. 6, 7, 8). In SpringSaLaD, each spherical site excludes 
volume to represent steric effects and also serves as a pivot to impart molecular flexibility; the stiff spring links 
serve to maintain a fixed distance between the sites and also transmit forces. Decreasing flexibility by 



removing sites that were not involved in binding produced a major increase in cluster sizes. We showed that 
this effect is not due to a decrease in local steric interference to binding, which might also be an effect of 
removing these structural sites (compare Fig. 8A and C). We believe this effect can be attributed to a loss in 
entropy during cluster formation, where more flexible monomers would lose more entropy than less flexible 
monomers. Another way of thinking about this is to consider that the less flexible molecules would tend to 
adopt more open conformations with more exposed binding sites. Indeed, an analysis of the distribution of 
distances between the terminal binding sites (Fig. S5) shows that removing the pivot sites results in a 
significantly stretched average conformation. This synergistic interplay of entropy and access to binding sites 
also emerges in our consideration of steric interactions.  

We examined steric interactions by changing the sizes or eliminating the structural sites in NWASP, keeping 
the sizes of binding sites constant (Figs. 7 and S4). The most surprising conclusion was the dominance of the 
peripheral structural sites in NWASP; removing or shrinking these sites significantly increased cluster sizes 
(Fig. 7). Shrinking the structural sites that were located between binding sites without changing the peripheral 
sites (Fig. 8C) actually slightly shifted the cluster occupancy histogram to smaller sizes. Apparently, the 
crosslinking of binding sites favors exclusion of the structural sites from the interior of clusters, with larger 
structural sites having a greater propensity for exclusion. This self-organizing effect would lower the entropy 
and explain the greater steric effect for peripheral domains. As an alternate view, these large structural sites at 
the periphery of clusters would serve as a steric barrier to the recruitment of additional monomers to binding 
sites in the interior, thereby limiting cluster expansion. A biological implication is that these domains would be 
present at the exterior where they could participate in downstream signaling. In particular, the VCA domains of 
NWASP (within the right-most yellow structural site in Fig. 1C.2) would be assembled at the periphery of 
clusters; this is particularly opportune, because a pair of proximate VCA domains is required to recruit and 
activate ARP2/3, which in turn, nucleates branched actin polymerization (47, 48). In general, such non-linearity 
is a hallmark of signaling systems.   

Turning to cellular effects, our model shows increased steady state clustering effected by inert crowders (Fig. 
11).  We attribute this to an effective increase in binding site concentration due to the excluded volume of the 
spherical crowders. On the other hand, crowders significantly reduce the rate of cluster formation. A similar, 
but subtler consideration of effective concentration can explain how membrane anchoring of nephrin 
significantly promotes clustering (Fig. 9). This is because confining reactions to the membrane effectively 
reduces the available reaction volume once the initial complement of Nck and NWASP molecules are recruited 
from the bulk volume. Thus, annealing of small membrane-associated clusters into larger ones is favored 
because the binding sites are at an effectively higher concentration. This effect is further enhanced when the 
surface area of the membrane is decreased while keeping the bulk concentrations constant (Fig. 10): 
increasing the membrane density 4-fold doubles the average cluster size occupancy. Lipid rafts provide a 
biological platform to concentrate membrane proteins and are thought to play an especially important role in 
receptor-mediated signaling (49). Our results suggest that clustering can serve as a positive feedback 
mechanism to amplify the ability of lipid rafts to localize membrane receptors and thereby amplify spatially 
encoded signals.  

Our computational experiments have allowed us to gain insights into the biophysical features that control the 
formation of molecular ensembles. But most importantly, they suggest experiments that will help to validate 
these ideas. In vitro experiments employing manipulated protein constructs and/or supported membranes, 
similar to the work from the Rosen lab (50, 51), could be used to systematically test our predictions on how 
steric hindrance, linker flexibility and membrane surface density influence the formation of molecular 
ensembles. Single molecule or super resolution microscopy experiments would be especially pertinent for 
characterization of the size and composition of molecular ensembles in cells. It would be of great interest to 



explore our prediction, for example, that the VCA domain of NWASP is most likely to be situated at the 
periphery of clusters. Also, disrupting rafts through cholesterol depletion prior to stimulation by ligand, can test 
our general prediction that confinement of receptors to lipid rafts will increase the size of clusters. Ultimately, 
we anticipate that coarse-grained molecular kinetic modeling can guide experimental manipulation of molecular 
ensembles to control downstream cellular responses. 
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