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ABSTRACT 

Genetic signal detection in genome-wide association studies (GWAS) can be enhanced 

by pooling small signals from multiple Single Nucleotide Polymorphism (SNP), e.g. across 

genes and pathways. Because genes are believed to influence traits via gene expression, 

it is of interest to combine information from expression Quantitative Trait Loci (eQTLs) in 

a gene or genes in the same pathway. Such methods, widely referred as transcriptomic, 

already exists for gene analysis, e.g. our group’s Joint Effect on Phenotype of eQTLs 

associated with a Gene in Mixed cohorts (JEPEGMIX/JEPEGMIX2). However, due to the 

its quadratic (in the number of SNPs) computational burden for computing linkage 

disequilibrium (LD) across large regions, transcriptomic methods are not yet available for 

arbitrarily large pathways/gene sets. To overcome this obstacle, we propose 
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JEPEGMIX2-pathways (JEPEGMIX-P), which implements a novel transcriptomic 

pathway method having a desirable linear computational burden. It 1) automatically 

estimates the ethnic composition (weights) of the cohort using a very large and diverse 

reference panel (33K subjects, including ~11K Han Chinese), 2) uses these weights and 

the reference panel to estimate the LD between gene transcriptomic statistics and 3) uses 

the estimated LD values along with GWAS summary statistics to rapidly test for the 

association between trait and the expression of genes even in the largest pathways. To 

underline its potential for increasing the power to uncover genetic signals over the state-

of-the-art and commonly used non-transcriptomics (agnostic) methods, e.g. MAGMA, we 

applied JEPEGMIX2-P to summary statistics of several large meta-analyses from 

Psychiatric Genetics Consortium (PGC). Surprisingly, most of these significant pathways 

do not seem to be directly involved in the activity of the central nervous system. While our 

work is just the first step on the road toward the end goal of clinical translation, PGC 

anorexia results suggest possible avenues for (personalized) treatment. 

 

Author summary 

By using summary statistics from genetic studies to infer the association between the 

biologically relevant measure of gene expression and traits, transcriptomics methods are 

a promising avenue for uncovering risk genes and pathway of genes for complex human 

diseases. While numerous such transcriptomic methods were used to uncover a large 

number of gene level signals, due to the extreme computational burden, none of these 

methods was successfully extended for detecting signals at the, probably even more 

biologically relevant, pathway of genes level. In this paper we propose a novel 
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transcriptomic pathway method that has a close to minimally attainable computation 

burden and is applicable “as-is” to ethnically diverse studies. The proposed method 

adequately controls the false positive rates. Its application to psychiatric disorder studies 

unveils numerous new signals that were not detected by state-of-the art non-

transcriptomic (agnostic) methods. 

 

Introduction 

Genome-wide association studies (GWAS) have been very successful for identifying 

diseases loci using single-marker based association tests [1]. Unfortunately, these 

methods have had limited power to identify causal genes or pathways [2]. For most 

complex traits, genetic risks are likely the result of the joint effect of multiple genes located 

in causal pathways [3].  Consequently, pooling information across genes in a pathway is 

likely to greatly improve signal detection.  

 

Given that gene expression (GE), is widely posited to be the critical causal mechanism 

linking variant to phenotype [4], the paradigm for pooling of information should be 

informed by this mediating factor. GE based methods, widely denoted as transcriptomic, 

exist for gene-level inference [5-7]. They combine summary statistics at expression 

Quantitative Traits Loci (eQTL) known to best predict GE to infer the association between 

trait and GE for gene under investigation. The variance of the linear combination [8] is 

assessed using the estimated linkage disequilibrium (LD) matrix for all eQTLs which, for 

𝑚 variants, requires an 𝑂(𝑚2) computational burden. This quadratic running time makes 

them unsuitable for transcriptomic pathway methods, due to the possibility of a very large 
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number of variants being analyzed in large regions of a chromosome. For instance, to 

estimate the correlation between statistics of genes in a pathway, we might have to 

combine information over tens of thousands of Single Nucleotide Polymorphisms (SNPs) 

in Major Histocompatibility (MHC) region from chromosome 6p (~25-35Mbp). Due to its 

irregular LD patterns, LD between any two SNPs in this region cannot be assumed to be 

negligible. 

 

Currently, pathway analysis methods are non-transcriptomic, i.e. at a minimum they do 

not use the LD between transcriptomic gene statistics. Most of them just search for 

“agnostic” (i.e. not GE mediated) signal enrichment in a pathway/gene set. Among 

existing pathway methods we mention ALIGATOR [9], GSEA [10], DAPPPLE [11], as 

MAGENTA [12], INRICH [13] and MAGMA [14], as well as online tools: 

GeneGo/MetaCore (www.genego.com), Ingenuity Pathway Analysis 

(www.ingenuity.com), PANTHER (www.pantherdb.org), WebGestalt 

(bioinfo.vanderbilt.edu/webgestalt), DAVID (david.abcc.ncifcrf.gov) and Pathway Painter 

(pathway.painter.gsa-online.de. While not designed for pathway analyses, LDpred [15, 

16] can also be adapted to test whether pathways are enriched above the polygenic 

background while adjusting for genomic covariates. Although all these tools were shown 

to be very powerful, a transcriptomic based pathway analyses can greatly complement 

the “agnostic” findings of all these tools.   

 

To extend transcriptomic methods to pathway-level inference that models the LD between 

transcriptomic gene statistics, we propose a novel method, called JEPEGMIX2 Pathway 
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(JEPEGMIX2-P). It i) uses a very large and diverse reference panel consisting of 33K 

subjects (including  around 11K Han Chinese), ii) automatically estimates ethnic 

composition of cohort, iii) uses these weight to compute LD for gene statistics via a linear 

running time procedure, iv) uses LD and GWAS summary statistics to rapidly test for the 

association between trait and expression of genes even in even the largest pathways, v) 

avoids an accumulation of just averagely enriched polygenic information by adjusting 

gene statistics for coding regions enrichment, and vi), to avoid the large signal in a gene 

inducing significant signals in all small pathways that include it,  provides the option of a 

conditional analysis that eliminates the effect of SNPs with significant signals. 

 

Results 

JEPEGMIX2-P using our proposed automatic weight detection procedure (see Methods), 

controlled the false positive rates at or below the nominal threshold, even when this 

threshold was 10−6 , under both null (𝐻0) and “polygenic null” (𝐻𝑝 - enrichment in 

association signals is uniform over the entire genome) scenarios.  When the method used 

“precise” prespecified subpopulation weights (e.g. using the closest subpopulations from 

the reference sample, i.e. as derived from the study description), the false positives rates 

were increased, especially for lower nominal rates, by up to ~220-450 (Text S1, Figs S1-

S5 in SI). However, JEPEGMIX2-P with pre-estimated weights based on super 

populations (i.e. European, East Asian, African etc) had a much lower inflation of false 

positive rates; only for 10−6 threshold the false positive rate was increased by ~2-4 times, 

under both 𝐻0 and 𝐻𝑝 scenarios (Text S1, Fig S6 in SI).  

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/373050doi: bioRxiv preprint 

https://doi.org/10.1101/373050
http://creativecommons.org/licenses/by-nc/4.0/


For high-LD pathways, e.g. those defined by single chromosome bands in MSigDB [17-

19], the behavior of automatically estimated weights is similar to the one for all pathways. 

However, false positive rates increase by ~300-1200 for the precise prespecified 

subpopulation weights (Text S1, Figs S7-S11 in SI), while when using super population-

based weights, it remained practically unchanged from the 2-4X increase derived for all 

pathways (Text S1, Fig S12 in SI).  

 

For the “nullified” data sets, i.e. those obtained from real data sets by substituting the 

study Z-scores by their expected quantile under 𝐻0, JEPEGMIX2-P with automatic 

weights adequately controlled the size of the test. However, for the commonly used 

MAGMA false positive rates were up to one order of magnitude higher than the nominal 

ones, especially for the lower nominal thresholds (Fig 1). 

 

Using the FDR p-value adjustment, for both unconditional and conditional JEPEG2-P 

analyses, we uncovered numerous significant pathway signals for Psychiatric Genetics 

Consortium (PGC) traits (Table 1).  For the most significant we present heatmaps (Fig. 2-

3, Text S2, Fig. S13-S17 in SI) while extended tables (Supplementary Excel file) include 

all significant signals. On the other hand, MAGMA (applied to the same GWAS summary 

statistics), most likely due to not employing the transcriptomic information, found fewer 

signals and only for SCZ (Table 2). JEPEGMIX2-P running time for a gene and pathway 

transcriptomic analysis of PGC data was less than 5 days on a single core of a cluster 

node with 4x Intel Xeon 6 core 2.67 GHz. MAGMA’s running time was less than 3 days. 
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Table 1. Description of GWAS studies and traits that were analyses. 

Trait Trait Abbreviation 

 

Dataset Description 

Schizophrenia SCZ PGC2 SCZ [20] 

Attention Deficit Hyperactivity Disorder ADHD PGC ADHD [21] 

Autism AUT PGC AUT [22] 

Bipolar BIP PGC BIP [23] 

Eating Disorders EAT PGC EAT [24] 

Major depression disorder MDD PGC MDD [25] 

 

 

Table 2. Numbers of signals found by JEPEGMIX2-P and MAGMA. 

Trait JEPEGMIX2-P without conditional 

analysis 

JEPEGMIX2-P condition 

analysis 

MAGMA 

ADHD 1 1 - 

AUT 2 2 - 

EAT 268 - - 

MDD 607 7 - 

SCZ 825 27 5 
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Fig 1. Relative size of the test (the quotient of empirical false positive rate and nominal type I error), for all pathways in the analysis of 20 

nullified GWAS.  In legend, Methods denotes whether the statistics had estimate from JEPEGMIX2-P (J) or from MAGMA (M). 
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Fig 2. Top 50 SCZ pathway signals heatmap. The pathways and tissues are ordered in the decreasing order of the overall sum of −𝒍𝒐𝒈𝟏𝟎(𝒑-

values) for all tissues and pathways with at least two significant signals. Where red color denotes 𝒒 < 𝟎. 𝟎𝟎𝟏, orange 𝟎. 𝟎𝟎𝟏 < 𝒒 < 𝟎. 𝟎𝟏, 

green 𝟎. 𝟎𝟏 < 𝒒 < 𝟎. 𝟎𝟓, light blue 𝟎. 𝟎𝟓 < 𝒒 < 𝟎. 𝟏𝟔 and blue 𝟎. 𝟏𝟔 < 𝒒 < 𝟏. (See Excel Supplementary file for Abbreviations and the list of 

the signals not plotted above.) 
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Fig 3. SCZ heatmap for pathway signals after conditioning on all significant SNP signals. See Fig 2. for background. 
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Method evaluation and comparison 

To estimate the false positive rates of JEPEGMIX2-P, for five different cosmopolitan 

studies scenarios, we simulated (under 𝐻0) 100 cosmopolitan cohorts of 10,000 subjects 

for Ilumina 1M autosomal SNPs using 1KG haplotype patterns [26] (Text S1, Table 1 of 

SI). The subject phenotypes were simulated independent of genotypes as a random 

Gaussian sample. SNP phenotype-genotype association summary statistics were 

computed from a correlation test. For each cohort, we obtained JEPEGMIX2-P statistics, 

for the two “null” enrichment scenarios i) under null (𝐻0), i.e. no enrichment, and ii) 

polygenic null (𝐻𝑝), i.e. when enrichment is uniform over the entire genome regardless of 

functionality of individual genomic regions. For the JEPEGMIX2-P analyses of the 

resulting data we used i) prespecified (PRE) and ii) automatically estimated ethnic 

weights (EST). The prespecified (PRE) weights were assigned assuming information from 

the studies about subpopulations involved were available. As PRE-weights, we assigned 

“study-published” weights for the closest subpopulations from our new reference panel. 

Given that i) subjects were re-assigned to subpopulations in the new panel and ii) the 

populations labels in the new panel do not correspond to the ones from 100 Genomes, 

this induced possible mismatches that might result in increased false positive rates.  To 

avoid this, a second version of the PRE-approach provides the published weights to 

continental superpopulations, i.e. European [EUR], East Asian [ASN], South Asian [SAS], 

African [AFR] and America native [AMR]. 

 

During our initial simulations we observed that pathways with name lengths ≤ 8, e.g. 

chr3p21, ch6p21 etc., have increased false positive rates due to having numerous genes 
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in high LD due to their proximity. For that reason, we also estimated the size of the test 

for all cohort scenarios, only for these high LD pathways.   

 

Recently, due to its strength, MAGMA is one of the most used pathway analysis methods. 

Consequently, we compare the results obtained from our method with those obtained by 

this state-of-the-art method. However, to compare JEPEGMIX2-P with MAGMA, given 

that 1) the simulated cohorts might not reflect real data and 2) these data sets are for 

cosmopolitan cohorts (MAGMA software does not provide reference panel for these 

cohorts), we used real data to create “nullified” data sets. These nullified data sets are 

based on 20-real GWAS SCZ, ADHD, AUT, MDD and a further (preponderantly 

European) 16 data sets that are not yet publicly available. This approximation for null data 

is obtained by substituting the expected quantile of the Gaussian distribution for the 

(ordered) Z-score (see also Text S3 of the SI) after eliminating SNPs with significant 

association p-values in the original GWAS. However, one side effect of this approach 

consists of statistics within/near the peak signals in original GWASs might be too 

concentrated into the tails of the distribution to be a perfect “null data”. This can result in 

a slight increase in false positive rate, especially when applied to the nullified version of 

a highly enriched GWAS (e.g. PGC2 SCZ). However, most of the data sets used in 

“nullification” were not highly enriched in association signals. 

 

Practical Applications. We applied JEPEGMIX2-P and MAGMA to summary statistics 

coming from Psychiatric Genetics Consortium (PGC- http://www.med.unc.edu/pgc/) 

datasets, i.e. SCZ, ADHD, AUT, BIP, EAT, MDD. To limit the increase in Type I error 
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rates of JEPEGMIX2-P, we deem as significantly associated only those pathways that 

yield an FDR-adjusted p-value (q-value)< 0.05. Due to C4 explaining most of Major 

Histocompatibility (MHC) (chr6:25-33 Mb [27], gene/signals for SCZ, for this trait, we omit 

non-C4 genes in this region. Moreover, due to the high correlation between SNPs in MHC 

(chr6:25-33 Mb), we also omit genes in this region for MDD, which also showed MHC 

signals.   

 

Discussion 

The discovery of biological pathways implicated in diseases is the target for any genetic 

analysis. Despite the numerous methods available for pathways analysis, none of these 

methods relies solely on eQTLs to infer the association between expression of genes in 

pathway and trait, which is widely posited to be the critical causal mechanism. To 

overcome these two main factors, we propose JEPEGMIX2-P for testing the association 

between pathway expression and trait. Even for uniformly enriched GWAS and high LD 

pathways, JEPEGMIX2-P with the automatic weights fully controls the false positive rates 

at or below nominal levels. 

 

Narrowly assigning the ethnic weights to the subpopulations perceived as the “closest” to 

the ones in the studies is not advisable due to the possibility of great mismatch between 

the cohort and the “re-arranged” subpopulations from ourreference panel, which can 

result in greatly increased false positive rates (see Methods).  Consequetly, users should 

use the automatic detection of cohort composition, regardless whether cohort AFs are 

available or not.   
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Applying JEPEGMIX2-P to psychiatric phenotypes, we discovered numerous pathways 

that were deemed significant for SCZ, ADHD, AUT, EAT and MDD. We mention that while 

the original SCZ paper did not report any genome-wide significant pathways and MAGMA 

reports only five, JEPEGMIX2 detected hundreds of them. Even more, these signals are 

not very likely to be false discoveries due to our method i) adjusting both SNP and gene 

statistics for polygenic/gene enrichment background, ii) accurately estimating of ethnic 

weights and iii) excellent control of Type I error rates.  

 

Interpreting and validating all pathway signals require substantially more work. It is always 

“the last mile” that is the most laborious. However, JEPEGMIX2-P provides carefully 

vetted targets for wet-lab validation. Nonetheless, our findings sometimes allow for 

reasonably informed inferences. For instance, in anorexia results, as one of the 

uncovered signals, the pathway GEISS_RESPONSE_TO_DSRNA_UP (Supplementary 

Excel file) is a pathway that is involved in response to virus infections. This finding 

suggests a possible avenue of treatment: patients with active virus infections might 

benefit from being treated with anti-viral medication. However, the responders to such 

treatment are likely to form only a minority of the anorexia patients, i.e. fraction of those 

with active viral infections.    

 

While the method is a welcome addition to our pathway tools, it still has limitations when 

used for assigning “causal” tissues/cell. First, due to the rather small sample sizes of 

existing GE experiments, GE in different tissues is often correlated and greatly incomplete 

due to ~80% of genes not having good GE prediction from eQTL SNPs. Consequently, 
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the capacity of inferring causal tissues/cell types will be greatly enhanced by future 

updates that i) use larger GE studies and ii) impute the statistics of most genes that do 

not have reliable eQTL predictions by using a) statistics from genes with good GE 

predictions and ii) the empirical correlations between their gene expressions (e.g. GTEx 

derived).  

 

Methods 

Naïve application of many analysis methods for genes/pathways with numerous 

SNPs/genes might yield large signals merely by accumulating “average” polygenic 

signals from well-powered studies. To avoid such an accumulation of average polygenic 

information, we competitively adjust SNP and gene level 𝜒2 statistics for the background 

enrichment of genome wide SNPs and transcriptomic gene statistics, respectively. This 

is achieved simply by adjusting gene statistics for average non-centrality (Text S4, S5 of 

Supplementary Information-SI). Subsequently, as detailed below, we use the GWAS 

summary statistics i) to estimate the ethnic composition of the study cohort and ii) use the 

estimated ethnic weights to build a pathway statistic that has a highly desirable 𝑂(𝑚) 

computational burden.    

 

GWAS summary data comprise of a large range of effect sizes and it is unclear whether 

the estimated pathway statistics are related to the whole range, including SNPs with very 

small effects, or just SNPs with large effects. To avoid a very large signal in a gene 

inducing a significant signal in all smaller pathways including the gene, we also offer the 

option to eliminate the effect size of big SNPs, by applying a novel conditional analysis 
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procedure (Text S6 in SI) to summary statistics before their use in our transcriptomic 

pathway tool. 

Automatic detection of the ethnic composition for the cohort. The LD between 

markers can vary widely between human populations. Thus, to compute the LD, which is 

necessary for internal imputation and variance estimation for gene statistics, we need to 

estimate the ethnic composition of the cohort. Our group has previously described in 

DISTMIX paper [26] a method of using the reference panel to estimate the ethnic 

composition when the cohort allele frequencies (AF) are available. However, lately 

consortia do not provide such summary measure; they often might provide just the 

Caucasians AF. Consequently, there is a need for a method to estimate the ethnic 

composition of the cohort even when no AFs are provided. Below is the theoretical outline 

of such method, which uses only the SNP Z-scores summary statistics.  

Assume that the cohort genotype is a mixture of genotypes from 𝑘 ethnic subpopulation 

from a large and diverse reference panel. If the 𝑖-th subject at the 𝑗-th SNP has genotype 

𝐺𝑖𝑗 and belongs to the 𝑙-th group, let  𝑝𝑗
(𝑙)

 be the frequency of the reference allele 

frequency for this SNP in the 𝑙-th group. Let 𝑞𝑗
(𝑙)

= 1 − 𝑝𝑗
(𝑙)

 and 𝐺′𝑖𝑗 =
𝐺𝑖𝑗−2 𝑝𝑗

(𝑙)

√2𝑝
𝑗
(𝑙)

 𝑞
𝑗
(𝑙)

 be the 

normalized genotype, i.e. the transformation to a variable with zero mean and unit 

variance.  Near 𝐻0, SNP Z-score statics  𝑍𝑗s have the approximately the same correlation 

structure as the genotypes used to construct it, 𝐺∗𝑗 ’s, and, thus, the same correlation 

structure as its transformation, 𝐺′∗𝑗′s.  However, given that both 𝐺′∗𝑗′𝑠 and 𝑍𝑗𝑠 have unit 

variance, it follows that the two have the same covariance (i.e. not only the same 

correlation) structure.  Therefore, for any 𝑠 ≥ 1 
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 𝐸(𝑍𝑗  
𝑍𝑗+𝑠) = 𝐸(𝐺′∗𝑗  

𝐺′∗ 𝑗+𝑠), which, assuming that 𝑤(𝑙) is the expected fraction of subjects 

from the entire cohort that belong to the 𝑙-th subpopulation from the reference panel, 

becomes 

𝐸(𝑍𝑗  𝑍𝑗+𝑠) = ∑ 𝑤(𝑙) 𝑘
𝑙=1 𝐸 [𝐺′

∗𝑗
(𝑙)

 𝐺′
∗(𝑗+𝑠)

(𝑙)
] = ∑ 𝑤(𝑙) 𝑘

𝑙=1 𝐶𝑜𝑣 (𝐺′
∗𝑗

(𝑙)
, 𝐺′

∗(𝑗+𝑠)
(𝑙)

) =

∑ 𝑤(𝑙) 𝑘
𝑙=1 𝐶𝑜𝑟(𝐺′

∗𝑗
(𝑙)

, 𝐺′
∗(𝑗+𝑠)

(𝑙)
)  (1).  

Henceforth, we will simply denote the 𝒘 vector as weights. 

 

While 𝐶𝑜𝑟(𝐺′
∗𝑗

(𝑙)
, 𝐺′

∗(𝑗+𝑠)
(𝑙)

) is unknown, it can be easily estimated using their reference 

panel counterparts with appropriate ethnic weights. Thus, the weights, 𝑤(𝑙), can be simply 

estimated by simply regressing the product of Z-scores of reasonably close SNP 𝑍-

scores, 𝑍𝑗  𝑍𝑗+𝑠, on correlations between normalized genotypes at the same SNP pairs for 

all subpopulations in the reference panel. Because some GWAS might have numerous 

large signals, e.g. latest height meta-analysis [28], a more accurate estimation of the 

weights in equation (1) is very likely to be obtained by substituting the expected Gaussian 

quantiles for 𝑍𝑗 (see text S3 in SI). 

 

Due to the strong LD among SNPs, the estimation of the correlation using all SNPs in a 

genome simultaneously might lead to a poor regression estimate in (1). To avoid this, we 

sequentially split GWAS SNPs into 1000 non-overlapping SNP sets, e.g. first set consists 

of the 1st, 1001st, 2001st, etc. map ordered SNPs in the study. The large distances 

between SNPs in the same set make them quasi-independent which, thus, improves the 

accuracy of the estimated correlation. 𝑊 = (𝑤(𝑙) ) is subsequently estimated as the 
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average of the weights obtained from the 1000 SNP sets. Finally, we set to zero the 

negatives weights and normalize the remaining weights to sum to 1 [29]. 

 

While approximate continental (EUR, ASN, SAS, AFR and AMR) ethnic distribution of 

subjects can be easily estimated from study info, it is not always clear how these weights 

should be apportioned among continental subpopulations. This further apportioning is 

likely to be important when the GWAS cohorts contain a large number of admixed 

populations, e.g.  

 

African Americans and American native populations, which in the making of the reference 

panel, had many subjects re-assigned to related subpopulations. Consequently, when 

continental proportions are provided by the users, we can use the above described 

automatic detection to ditribute these weights to the most likely subpopulations in the 

reference panel.  

 

𝑶(𝒎) LD estimation procedure. It is very computationally challenging [𝑂(𝑚2)] for 𝑚 

genetic variants] to estimate the large correlation matrices needed to compute 

transcriptomic pathway statistics (substantially more so for the upcoming larger reference 

panels). The same heavy computational burden occurs in fine-mapping when there is a 

desire to output correlation between statistics of genes and pathways with 

suggestive/significant signals. Thus, for computational feasibility, we need to find an 

approach that avoids computing correlation matrices. 
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For the theoretical justification of such an approach we use the mathematical notation 

from the automatic weight estimation, where 𝐺∗𝑗
′ =

𝐺𝑖𝑗−2 𝑝𝑗
(𝑙)

√2 𝑝
𝑗
(𝑙)

𝑞
𝑗
(𝑙)

 is the normalized version of 

𝐺∗𝑗, i.e. with means 0 and variance 1, like the Z-scores. The Z-score transcriptomics 

statistic per gene or pathway is a linear combination of the Z-scores from expression 

Quantitative Trait Loci (eQTL) SNPs [6]:  𝑍 =
∑ 𝑏𝑗 𝑍𝑗 𝑚

𝑗=1

𝑆𝐷(∑ 𝑏𝑗 𝑍𝑗 𝑚
𝑗=1 )

 ,  

where the 𝑆𝐷(∑ 𝑏𝑗  𝑍𝑗  𝑚
𝑗=1 ) is not known and should be estimated reasonably fast. Thus, in 

general we are interested in computing the covariance between two very large pathway 

scores (or the variance of a large one), i.e. linear combinations of Z-scores: 

𝐶𝑜𝑣(∑ 𝑎𝑗  𝑍𝑗 , ∑ 𝑏𝑗  𝑍𝑗)𝑚
𝑗=1

𝑚
𝑗=1 . As stated above, working “by SNP” and computing the 

correlation is 𝑂(𝑚2) an, thus, highly untenable for very large combinations of SNP 

statistics.  However, it is possible to work by “mimicking" the higher order entity  (gene, 

pathways) statistics by observing that, under the null hypothesis, ∑ 𝑎𝑗  𝑍𝑗
𝑚
𝑗=1  and 

∑ 𝑏𝑗  𝑍𝑗  𝑚
𝑗=1 have, due to normalization of   𝐺∗𝑗

′ , a distribution that is identical to the 

distribution of  ∑ 𝑎𝑗  𝐺∗𝑗
′𝑚

𝑗=1  and ∑ 𝑏𝑗𝐺∗𝑗
′  𝑚

𝑗=1 , respectively.  

Thus, 𝐶𝑜𝑣(∑ 𝑎𝑗  𝑍𝑗 , ∑ 𝑏𝑗 𝑍𝑗) 𝑚
𝑗=1

𝑚
𝑗=1 = 𝐶𝑜𝑣(∑ 𝑎𝑗  𝐺∗𝑗

′ , ∑ 𝑏𝑗  𝐺∗𝑗
′ ) 𝑚

𝑗=1
𝑚
𝑗=1 , which is easily estimated 

from a reference sample without computing correlation matrices, by using just a highly 

desirable linear [𝑂(𝑚)] running time procedure.  For the correlation between two pathway 

statistics, then: 

𝐶𝑜𝑟(∑ 𝑎𝑗𝑍𝑗 , ∑ 𝑏𝑗𝑍𝑗) =
𝐶𝑜𝑣(∑ 𝑎𝑗𝐺∗𝑗

′𝑚
𝑗=1 ,∑ 𝑏𝑗𝐺∗𝑗

′ )𝑚
𝑗=1

√𝑉𝑎𝑟(∑ 𝑎𝑗𝐺∗𝑗
′𝑚

𝑗=1 ) √𝑉𝑎𝑟(∑ 𝑏𝑗𝐺∗𝑗
′ ,∑ 𝑏𝑗

𝑚
𝑗=1 𝐺∗𝑗

′ )𝑚
𝑗=1

𝑚
𝑗=1

𝑚
𝑗=1   (2) 
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Within JEPEGMIX-P, the covariances and correlations of the statistics are transparently 

computed using subject weights reflecting the fraction in the study cohort for each ethnic 

group from the reference panel. Thus, computing the correlations reduces to simply 

applying linear combinations to normalized genotype vectors in reference panels followed 

by very simple estimations of weighted covariance and variance matrices for the two 

vectors. We need to underscore again that besides the huge memory savings, the 

proposed method has linear running time while estimating the correlation matrix has a 

quadratic (in the number of SNPs) running time.  

 

Computation of pathway statistic. Generic transcriptomic methods output Z-score 

statistics by gene. Thus, if the correlation between gene statistics is available, e.g. by 

using the 𝑂(𝑚) method described above, these statistics can be combined using a 

Mahalanobis 𝜒2 statistics with the number of degrees of freedom (df) equal to the number 

of genes. Unfortunately, this can become quickly very involved if we need to compute the 

LD between statistics of all ~20,000 genes. However, given that the genotypes of variants 

in different chromosome arms are practically independent, if follows that Z-scores for 

genes on different chromosome arms are independent. Thus, the Mahalanobis type 

statistics can be computed more easily by chromosome arm and the pathway 𝜒2 statistics 

are computed simply as the sum of chromosome arm statistics (Fig 4). Similarly, pathway 

statistic df equals the sum of the dfs for chromosome arm statistics. 
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Annotation and reference panel. As pathway database we used MSigDB [17-19], which 

is well maintained and widely used by researchers. To facilitate user-specific input for 

new pathways along with future extensions, the annotation file now includes an R-like 

formula for the expression of each gene as a function of its eQTL genotypes and of the 

content for each pathway as a function of the names its constituting genes. The updated 

annotation file includes cis-eQTL for all tissues available in the v0.7 version of PredictDB 

(http://predictdb.hakyimlab.org/). To avoid making inference about genes poorly predicted 

by SNPs, for the 48 available tissues (Text S7, Table S2 of SI), we retain only genes for 

which the expression is reasonably accurately predicted (q-value < 0.05) from its eQTLs. 

The current version uses the 32,953 subjects (33K) as the reference panel. It consists of 

20,281 Europeans, 10,800 East Asians (from CONVERGE study, Text S8 of SI), 522 

South Asians, 817 Africans and 533 Native of Americas (Text S9 Table S3 of SI). 

Fig 4. Computation of pathway 

statistics  
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Software and data availability 

JEPEGMIX2-P is freely available for academic use at 

https://github.com/Chatzinakos/JEPEGMIX-P. The JEPEGMIX2-P executable requires only the 

GWAS summary statistics from the user. The reference panel and the annotation files 

are also available at the same repo. 

 

Supporting information 

SI. Text and Figures.   
(PDF)  

SE. Table with the significant signals for the real applications. 
(EXCEL) 
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