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Abstract – Visual attention dramatically improves subjects’ ability to see and also modulates the 8 

responses of neurons in every known visual and oculomotor area, but whether those modulations 9 

can account for perceptual improvements remains unclear. We measured the relationship 10 

between populations of visual neurons, oculomotor neurons, and behavior during detection and 11 

discrimination tasks. We found that neither of the two prominent hypothesized neuronal 12 

mechanisms underlying attention (which concern changes in information coding and the way 13 

sensory information is read out) provide a satisfying account of the observed behavioral 14 

improvements. Instead, our results are more consistent with the novel hypothesis that attention 15 

reshapes the representation of attended stimuli to more effectively influence behavior. Our 16 

results suggest a path toward understanding the neural underpinnings of perception and cognition 17 

in health and disease by analyzing neuronal responses in ways that are constrained by behavior 18 

and interactions between brain areas. 19 

 20 
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Introduction –  22 

Each of the huge number of psychophysical and physiological studies of visual attention show 23 

that attention profoundly affects subjects’ perceptual abilities and also modulates the responses 24 

of populations of neurons at every stage of visual and oculomotor processing1-4, Despite these oft 25 

replicated observations, whether any of the observed neuronal modulations can account for the 26 

improvements in psychophysical performance remains unknown. Two, non-mutually exclusive, 27 

hypotheses have dominated the literature (Figure 1A): that attention 1) improves visual 28 

information coding5-7,  or 2) improves the efficiency with which visual information is read out by 29 

the premotor neurons involved in decision-making 8-11. The studies used to support these 30 

hypotheses were limited by available data and analysis methods, which primarily involved the 31 

responses of single neurons or pairs of simultaneously recorded neurons in the same brain area. 32 

We evaluated these hypotheses using the responses of groups of simultaneously recorded 33 

neurons in multiple stages of visuomotor processing, psychophysics, and data analysis methods 34 

that leverage that unique combination. We recorded simultaneously from groups of neurons in 35 

area MT, which encodes motion information 12,13 and the superior colliculus (SC), where 36 

neuronal responses are either visual, oculomotor, or intermediate, contribute to gaze control 14-16 37 

and are involved in computing perceptual decisions 17-19. When we analyzed the responses of 38 

single neurons or pairs of neurons, we replicated previous observations, including the results 39 

from two of our previous studies, which focus on visual area V4 in two different tasks with 40 

spatial attention components: an orientation change detection task 5 and a contrast discrimination 41 

task 6. However, constraining our analyses of our MT data set or of both V4 data sets by the 42 

animals’ behavior and the simultaneous recordings from both areas made it clear that neither 43 
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prior hypothesis constitutes a satisfying account of the observed attention-related improvements 44 

in performance.  45 

 46 

Our results suggest that on the timescale of perceptual decisions, across two visual areas and 47 

during both detection and discrimination tasks, spatial attention does not act primarily by 48 

improving information coding or by changing the way visual information is read out. Instead, the 49 

long-observed attention-related changes in the responses of visual cortical neurons account for 50 

perceptual improvements, but they do so by reshaping the representation of attended stimuli such 51 

that they more effectively drive downstream neurons and guide behavior (Figure 1B). Our study 52 

provides a framework for leveraging multi-neuron, multi-area recordings and controlled 53 

psychophysics to study how neuronal networks mediate flexible behavior in many systems, 54 

timescales, and tasks.  55 

 56 

Results –  57 

We compared evidence for and against two hypothesized attention mechanisms using neuronal 58 

responses collected while two rhesus monkeys performed the widely studied motion direction 59 

change-detection task in Figure 1C5,9,20-22, and then compared the results to recordings while 60 

monkeys performed a similar orientation change detection task 5 and a contrast discrimination 61 

task 6. As in the two previously published data sets, the animals’ performance in our new 62 

experiment was greatly affected (Figure 1D) by a cue instructing them to shift spatial attention 63 

between a stimulus within the same or opposite hemifield as the joint receptive fields of several 64 

dozen neurons that were recorded on multielectrode probes in MT (Figure 1E, red points) and the 65 

SC (blue points). MT and the SC represent different stages of perceptual decision-making and 66 
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therefore provide the opportunity to evaluate each hypothesized attention mechanism. MT 67 

contributes to motion perception12,13. The SC is thought to play many roles in visually guided 68 

tasks including gaze control 14-16, decision-making 17-19 and attention 4. 69 

 70 

 71 

Figure 1. Hypotheses and methods. (A) Schematics describing predominant hypotheses about 72 
links between attention, visual cortical activity, and behavior. The left plot depicts MT 73 
population responses to two visual stimuli plotted along two dimensions in population response 74 
space (e.g. the first two principal components; see Methods) and a readout dimension which 75 
represents the visual information that is communicated to neuronal populations involved in 76 
planning behavior during the uncued condition. The insets depict projections of the population 77 
responses onto the readout dimension. Hypothesis 1 is that the MT representations of the two 78 
stimuli become more easily distinguishable (e.g. by separating the distributions of responses to 79 
the two stimuli). In this scenario, the distributions of projections along even a suboptimal 80 
readout axis may also be more separable. Hypothesis 2 suggests that attention changes the way 81 
visual information is read out from MT such that projections of MT population responses to the 82 
two stimuli onto the readout dimension are more separable. (B) Our new hypothesis: attention 83 
reshapes population responses so they are better aligned with relatively static readout 84 
dimensions. This alignment could be a direct result of widely observed attention-related changes 85 
in firing rates and response variability. (C) Direction change-detection task with cued attention. 86 
The drifting Gabor stimuli before the change were identical on every trial within an 87 
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experimental session and can be thought of as stimulus A, while the changed stimulus can be 88 
thought of as stimulus B in the schematics in (A). (D) Psychometric curves from two example 89 
sessions (monkey ST, top, monkey HO, bottom) with best-fitting Weibull functions. Attention 90 
improved detection of median difficulty trials by 25% on average across all experiments (cued 91 
76.5% detected across sessions, uncued 51.8% detected; Wilcoxon signed-rank test, p<.001). (E) 92 
Receptive field (RF) centers of recorded units from the same example session as in the top plot in 93 
(D). Dots represent the RF center (red, MT; blue, SC). The circle represents the size and 94 
location of the median RF from each area.  95 
 96 

Population recordings replicate previously observed effects of attention  97 

The two predominant attention hypotheses make different predictions about how attention should 98 

affect MT and the SC in our task. The first (information coding) hypothesis predicts that 99 

attention improves the motion direction information encoded in MT. The second (readout) 100 

hypothesis posits that attention changes the way that stimulus information is read out of MT to 101 

influence downstream responses and ultimately behavior. Our strategy was to show that our data 102 

are consistent with those in past studies by replicating the results that have been used as evidence 103 

to support each hypothesis and then to evaluate each hypothesis using analyses that leverage our 104 

simultaneous measurements from the subjects’ behavior and multi-neuron, multi-area recordings.  105 

 106 

Past studies have evaluated these hypotheses by analyzing the responses of individual neurons or 107 

pairs of neurons, which typically lack the statistical power to reveal a strong link to behavior. 108 

Using our data set, we replicated the observations that have been used as evidence in favor of 109 

each hypothesis. Consistent with previous studies evaluating the information coding hypothesis 110 

2,3,23, we found that attention increased the trial-averaged responses of neurons in both MT and 111 

the SC (Supplementary Figure 1A and B) and that attention decreased the extent to which the 112 

trial to trial fluctuations in neuronal responses to repeated presentations of the same stimulus are 113 

shared between pairs of MT neurons5,7,21 (quantified as the average spike count or noise 114 
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correlation, or rSC
24; Supplementary Figure 1C). Consistent with studies evaluating the readout 115 

hypothesis, attention increases correlated variability between the two areas9,10,25 (Supplementary 116 

Figure 1C). This increase between areas suggests that attention-related effects are not simply due 117 

to global reductions in slow fluctuations, which has recently been hypothesized to explain 118 

attention-related correlation decreases within a single brain area26 (Supplementary Figure 2 and 119 

Supplementary Text). Further, this attention-related increase was weakly dependent on the visual 120 

responsivity of SC neurons (Supplementary Figure 3).  121 

 122 

Neuronal population decoding methods provide incomplete support the information coding or 123 

readout hypotheses 124 

We reasoned that analyzing the relationship between populations of simultaneously recorded 125 

neurons in multiple brain areas with the animals’ behavior would provide insight into the relative 126 

importance of each hypothesized mechanism. To this end, we determined whether attention 127 

affects the amount of stimulus information that can be decoded from the population of MT 128 

neurons using cross-validated linear decoders that are optimized to a) dissociate between the 129 

original and changed stimuli (Stimulus decoder in Figure 2), b) predict the animals’ choices 130 

(whether or not they made an eye movement in response to change stimuli; Choice decoder), or 131 

c) predict the activity of the population of SC neurons we recorded (using responses to the 132 

original stimulus; SC decoder). These decoders were always constructed using data from trials 133 

with the intermediate change amount (see Figure 1D).  134 
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135 
Figure 2 – Schematic of our decoding procedure. We used linear regression to find the weights 136 
(second column) that best relate the first ten principal components of the MT population’s 137 
response (left) to both the original and change stimuli (Stimulus decoder; top row), the animal’s 138 
choice in response to change stimuli (Choice decoder; middle row), or the projections of the 139 
responses to the original stimulus of the population of simultaneously recorded SC neurons (SC 140 
decoder; bottom row). We assessed the performance of each decoder by decoding stimulus 141 
information from MT responses on a separate set of trials using each set of weights (right 142 
column) and responses to both the original and change stimuli. See methods for detailed 143 
decoding and cross validation procedures. 144 
 145 

The information coding hypothesis posits that attention improves the stimulus information that 146 

could be gleaned by an optimal Stimulus decoder, but our data provided only weak support for 147 

this idea. Attention did not significantly affect the performance of an optimal decoder in our data 148 
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set, even when we used a decoder optimized separately for each attention condition (Figure 3A, 149 

left bars). Recent theoretical work has demonstrated that high-dimensional decoders can ignore 150 

pairwise correlations that are orthogonal to the decoding axis and that correlations are 151 

increasingly likely to be orthogonal to this axis in larger populations 27-29. This suggests that the 152 

effects of attention on the stimulus information that can be decoded from small neuronal 153 

populations like the ones we recorded are likely to be even more minimal for larger populations, 154 

making it seem unlikely that attention-related improvements in information coding account for 155 

the robust improvements in behavioral performance that we observed. 156 

 157 

The readout hypothesis posits that attention changes the importance of the attended stimulus in 158 

guiding behavior by changing the way its representation is read out by the neurons involved in 159 

computing decisions. Therefore, this hypothesis posits that attention should change the weights 160 

relating MT responses to either behavior or SC responses. We found that attention had larger 161 

effects on the stimulus information that is related to the animals’ choices on individual trials 162 

(Figure 3A, middle bars) or that is shared with the SC (Figure 3A, right bars) than it did on the 163 

Stimulus decoder (p<.05). However, this difference could arise from either a weight change 164 

(Figure 1A) or a change within MT that results in more stimulus-related visual information being 165 

projected onto a static readout dimension (Figure 1B).  166 

 167 
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Figure 3.  Effects of attention on the stimulus 168 
information that can be decoded from small 169 
populations of MT neurons. (A) Ability of a cross-170 
validated linear decoder to distinguish the original 171 
from changed stimuli (intermediate change amount) 172 
for each decoder. Error bars represent SEM, gray 173 
lines are individual sessions. The effect of attention 174 
was significant for the Choice and SC decoders 175 
(paired t-tests, p<.05) but not for the Stimulus 176 
decoder (p=0.28). The effects of attention on the 177 
Choice and SC decoders were greater than for the 178 
Stimulus decoder (paired t-tests, p<.05), but not 179 
significantly different from each other (p=0.21). (B) 180 
Weight swapping analysis demonstrates that 181 
decoding performance was typically better using the 182 
MT responses from the cued condition and the 183 
Choice decoder weights from the uncued condition 184 
(y-axis) than using the MT responses from the 185 
uncued condition and the Choice decoder weights 186 
from the cued condition (x-axis; paired t-test, 187 
p<.05). (C) Same, using the weights from the SC 188 
decoder (paired t-test, p<.05).  189 
 190 

A new hypothesis: attention reshapes sensory 191 

activity so that it more effectively guides decisions 192 

Our data do not support the hypothesis that attention 193 

changes weights relating MT responses to SC 194 

responses or behavior. Because the responses of MT 195 

neurons are correlated and because the behavioral 196 

readout is binary, the weights obtained by each 197 

decoder are non-unique, making it impossible to 198 

identify weight changes by analyzing the weights 199 

themselves 23,30. However, we can infer their stability 200 

by measuring the stimulus information gleaned by 201 
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each decoder using weights from the opposite attention condition from which they were 202 

calculated (see Methods). Both the Choice and SC decoders gleaned more stimulus information 203 

from MT responses in the attended than unattended condition when we used the weights 204 

computed in the opposite attention condition (Figures 3B and 3C). Together, these neuronal 205 

population analyses that use the animals’ behavior and the activity of downstream neurons to 206 

assess the hypothesized attention mechanisms reveal that neither the information coding nor 207 

readout hypothesis provide a satisfactory account of the large observed attention-related 208 

behavioral improvement.  209 

 210 

Our observations suggest that in MT neurons recorded while monkeys performing a change 211 

detection task, attention acts primarily by changing the visual information that is used to guide 212 

behavior using relatively fixed readout weights. To investigate the generality of these 213 

observations to different visual areas and different tasks, we tested these hypotheses using two 214 

additional datasets. In the first dataset, monkeys performed the same direction change detection 215 

described here while we recorded from populations of V4 neurons5. Similar to our results in MT, 216 

we found that attention had larger effects on the stimulus information that is related to the 217 

animals’ choices (Choice decoder; Figure 4A) than it did on the stimulus information that could 218 

be gleaned using an optimal (Stimulus) decoder (p<0.05; Figure 4B). As in our MT data set 219 

(Figure 3B), the results from this data set suggest that attention typically reshapes V4 responses 220 

to align with relatively fixed readout mechanisms: decoding performance was typically better 221 

using the V4 responses from the cued condition and the Choice decoder weights from the uncued 222 

condition (y-axis) than using the V4 responses from the uncued condition and the Choice 223 

decoder weights from the cued condition (p<0.05).  224 
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In the second new data set, we searched for attention-related changes in information coding in 225 

V4 neurons while monkeys performed a discrimination task6. These data provide a particularly 226 

important test of the information coding hypothesis because unlike in the change detection task 227 

in which attention has fairly uniform effects on V4 and MT neurons (increasing rates and 228 

decreasing noise correlations), we showed that in our discrimination task, attention can flexibly 229 

increase or decrease noise correlations in a way that is broadly consistent with improving 230 

information coding. Despite these findings, the results of our decoding analyses were similar for 231 

the detection and discrimination tasks, meaning that we did not find strong evidence that 232 

attention improves the amount of stimulus information that can be optimally extracted from a 233 

population of visual neurons in either task (Figure 4C, p=.09). Together, these results provide 234 

evidence that in multiple visual areas and visually-guided tasks, attention acts primarily to 235 

reshape population activity so that more stimulus information is used to guide behavior using 236 

relatively fixed decision mechanisms.  237 
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 238 
Figure 4. Similar attention-related effects on neuronal populations in two brain areas and two 239 
tasks. (A) In a change detection task, the effects of attention on the stimulus information that can 240 
be decoded from small populations of V4 neurons is similar to MT. The plot shows the ability of 241 
a cross-validated linear decoder to distinguish the original from changed stimuli (intermediate 242 
change amount) for both the Stimulus and Choice decoders (no SC data was available). Error 243 
bars represent SEM, gray lines are individual hemisphere-sessions (see methods). Attention 244 
significantly affected the performance of both the Stimulus and Choice decoders (t-test, p<0.05), 245 
but the attention-related improvement in the Choice decoder was greater than in the Stimulus 246 
decoder (paired t-tests, p<0.05). (B) Decoding performance was typically better using the V4 247 
responses from the cued condition and the Choice decoder weights from the uncued condition (y-248 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 9, 2019. ; https://doi.org/10.1101/372888doi: bioRxiv preprint 

https://doi.org/10.1101/372888


	 14	

axis) than using the V4 responses from the uncued condition and the Choice decoder weights 249 
from the cued condition (x-axis; paired t-test, p<0.05; compare to Figure 3B). (C) The ability of 250 
a cross-validated linear decoder using V4 population responses to distinguish between stimulus 251 
configurations during a contrast discrimination task6 reveals no significant effect of attention 252 
(p=.09). Plotting conventions as in A. Because of the details of the discrimination task (which 253 
did not include choices related to uncued stimuli), it was impossible to calculate a choice 254 
decoder using these data. 255 
 256 

Our data support the hypothesis that attention reshapes the representation of attended stimuli to 257 

more effectively guide behavior (Figure 1B). In this scenario, the critical changes are in visual 258 

cortex. However, this reshaping does not result in a large improvement in the stimulus 259 

information that can be gleaned by an optimal Stimulus decoder. Instead, the modulated neuronal 260 

activity in MT better aligns with the readout dimensions using relatively static weights.   261 

 262 

How could a reshaping of the representation of an attended stimulus be implemented? The 263 

simplest mechanism would make use of the oft observed signatures of attention such as changes 264 

in firing rate gain2,3,23 or pairwise noise correlations5-7,9,20-22,31-37. We investigated the possibility 265 

that these simple response changes can account for the attention-related improvement in the 266 

stimulus information decoded using both the Choice and SC decoders in two stages. First, to 267 

verify the prediction of the weight-swapping analyses (Figures 3B and 3C), we constructed a 268 

single Choice decoder for both attention conditions (Figure 5A) and determined that it captured 269 

the attention-related improvement in decoded stimulus information (compare the blue and yellow 270 

bars in Figure 5B; p< .05). Second, we used those same weights to decode stimulus information 271 

from population responses constructed using the mean rates from the uncued condition and the 272 

residuals from the cued condition (green bar). We found that simply using residuals (which 273 

incorporate both response variability that is private to each neuron and that which is shared 274 

between neurons) from the cued condition was enough to completely account for the attention-275 
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related improvement in decoded stimulus information in both the Choice (Figure 5B) and SC 276 

decoders (Figure 5C). These common decoders captured the attention-related improvement in 277 

decoded stimulus information (p< .05) and using residuals from the cued condition completely 278 

accounted for the attention-related improvement in decoded stimulus information (p= .84 for the 279 

Choice decoder and p=.48 for the SC decoder). 280 

Figure 5. Effects of 281 
attention on the 282 
stimulus information 283 
that can be decoded 284 
from small populations 285 
of MT neurons is 286 
explained by changes 287 
in response variability.  288 
(A) Schematic of our 289 
procedure to 290 
understand which 291 
attention-related 292 
changes could account 293 
for the improvement in 294 
the amount of stimulus 295 
information that could 296 
be gleaned using the 297 
Choice decoder. We 298 
separated the first ten 299 
principal components 300 
of the MT population 301 
response (left) to the 302 
original and changed 303 
stimulus in both 304 
attention conditions 305 
into mean responses 306 
(scale adjusted to 307 
account for smaller 308 
value range) and 309 
residuals. We assessed 310 
the extent to which 311 
decoder performance 312 
was affected by 313 
attention-related 314 
changes in means and 315 
residuals by decoding 316 
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stimulus information from MT responses on a separate set of trials in each attention condition 317 
and also using the residuals from the cued condition and the mean responses from the uncued 318 
condition (third row). See methods for detailed decoding and cross validation procedures. (B) 319 
Using the procedure described in (A), we found that the reshaping of the MT representation of 320 
the attended stimulus can be accomplished as a result of attention-related changes in response 321 
variability (e.g. noise correlations). The amount of stimulus information that can be decoded 322 
using a single Choice decoder whose weights are determined from data from both attention 323 
conditions is indistinguishable for the cued data and data constructed using the mean responses 324 
from the uncued condition and the residuals from the cued condition (paired t-test, p=0.84). 325 
Error bars represent SEM, gray lines are individual sessions. (C) Same as B, for the SC decoder. 326 
The amount of stimulus information that can be decoded using a single SC decoder whose 327 
weights are determined from data from both attention conditions is indistinguishable for the 328 
cued data and data constructed using the mean responses from the uncued condition and the 329 
residuals from the cued condition (paired t-test, p=.48). 330 
 331 

Discussion – 332 

We used multi-neuron, multi-area recordings and psychophysics in detection and discrimination 333 

tasks to test two previous hypotheses and one novel hypothesis about the relationship between 334 

attention-related changes in perception and in neuronal responses on the timescale of perceptual 335 

decisions. In contrast with the hypotheses motivating most of the extensive literature concerning 336 

the neuronal basis of attention, our data are most consistent with the novel hypothesis that 337 

attention reshapes population activity so that information about the attended stimulus is read out 338 

to guide behavior. Our conclusions are based on comparing the visual information that can be 339 

gleaned from decoders optimized for the stimulus, the animals’ choices, and the activity of 340 

groups of visuomotor neurons. These results support the idea that behavioral flexibility is 341 

mediated by reshaping the representation of visual stimuli rather than improvements in 342 

information coding (which may be impossible given the immense amount of sensory information 343 

encoded in the brains of even anesthetized animals29 or in the responses of single neurons13) or by 344 

changing read out, which may be comparatively difficult to flexibly alter on the approximately 345 

150 ms timescale on which subjects can behaviorally shift attention38-40.  346 
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 347 

The idea of reshaping sensory information to better align with static read out mechanisms seems 348 

like it would require much more exotic mechanisms than the other hypothesized attentional 349 

mechanisms. However, we showed that commonly observed effects of attention on neuronal 350 

response variability were sufficient to reshape the representation of attended stimuli so that they 351 

more effectively influence the activity of downstream neurons and behavior (Figure 5B and 5C). 352 

Changing covariability may require a simpler mechanism than changing information coding or 353 

synaptic weights: we showed recently in a model that the covariability of a population of neurons 354 

can be readily changed by altering the balance of inhibition to excitation 41,42.   355 

 356 

The idea that changing correlated variability better aligns sensory responses to a fixed readout is 357 

also consistent with our recent observation that in the change detection task, monkeys’ choices 358 

are well-aligned with the axis in population space that explains the most correlated noise 21. One 359 

exciting possibility is that the correlated variability axis represents the fixed readout dimension, 360 

perhaps because it is well-positioned to decode the motion direction of the broad set of stimuli 361 

that animals encounter outside the limited environment of most laboratory tasks 23. If so, 362 

reducing noise correlations and increasing firing rate gains would improve the stimulus 363 

information projected along that readout axis (following the intuitions in 43).  364 

 365 

While our results were broadly consistent across two tasks and two visual cortical areas, it 366 

remains possible that attention uses different mechanisms in different tasks, brain areas, or 367 

sensory modalities. In particular, it is possible that the mechanisms underlying change detection, 368 

which is an important component of natural vision, are different than other tasks or that the 369 
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mechanisms differ by brain areas. Therefore, the observation that attention also does not change 370 

the amount of stimulus information that can be decoded from visual cortex during a contrast 371 

discrimination task provides strong independent support for the generality of our findings. 372 

However, even if we happened upon a special, albeit common, scenario using these two tasks, it 373 

is remarkable to observe a situation in which the large attention-related change in behavioral 374 

performance can be accomplished without changing information coding or weights between 375 

areas. In contrast, theoretical models and machine learning techniques accomplish flexibility in 376 

computation almost solely by changing weights 44-47. Our results constitute an existence proof: an 377 

example of a situation in which flexibility can be mediated by simple changes within sensory 378 

cortex.  379 

 380 

In the future, it will be interesting to use the same approach to determine whether similar 381 

mechanisms can account for behavioral changes associated with other cognitive processes (e.g. 382 

task switching) that might seem more likely to change the weights relating stimulus information 383 

to downstream neurons or behavior. Further, many neuropsychiatric disorders (including 384 

disorders of attention, Autism, and schizophrenia) are thought to involve changes in the same 385 

computations thought to underlie attention48. An exciting possibility is that these changes might 386 

be identified and potential therapies evaluated in animal models using the combination of 387 

behavioral evaluation and multi-neuron, multi-area recordings that we described here. 388 

 389 

Online Methods 390 
Methods Summary 391 
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The subjects of the simultaneously recorded MT and SC experiments were two adult male rhesus 392 

monkeys (Macaca mulatta, 8 and 9 kg). All animal procedures were approved by the 393 

Institutional Animal Care and Use Committees of the University of Pittsburgh and Carnegie 394 

Mellon University. Using linear 24 channel moveable probes (Plexon), we simultaneously 395 

recorded extracellular activity from direction-selective neurons in area MT and neurons in the 396 

superior colliculus that responded either visually, prior to a saccade, or both. Before beginning 397 

the experiment, we searched for neurons in both areas that had overlapping spatial receptive 398 

fields (Figure 1E) as determined by mapping with both drifting gratings and a delayed saccade 399 

task. The monkeys performed a direction change-detection task that commenced upon fixation of 400 

a central spot (Figure 1C). Two drifting Gabor stimuli, whose direction was selected to drive the 401 

recorded population of MT neurons well, flashed on and off until the direction of one stimulus 402 

changed at a random, unsignaled time. The monkeys signaled detection of the change by making 403 

a saccade to the changed stimulus within 450 ms of its onset.  The location of the stimulus 404 

change was cued using instruction trials prior to each block of trials and the cue was valid 80% 405 

of the time. On the other 20% of trials, the change happened at the uncued location. In order to 406 

encourage fixation on longer trials, catch trials, where no stimulus changed direction and 407 

monkeys were rewarded for maintaining fixation, were intermixed.  408 

Materials and Methods 409 

The subjects of the simultaneously recorded MT and SC experiments were two adult male rhesus 410 

monkeys (Macaca mulatta, 8 and 9 kg). All animal procedures were approved by the 411 

Institutional Animal Care and Use Committees of the University of Pittsburgh and Carnegie 412 

Mellon University. 413 
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We presented visual stimuli using custom software (written in MATLAB using the 414 

Psychophysics Toolbox 49,50 on a CRT monitor (calibrated to linearize intensity; 1024x768 415 

pixels; 120 Hz refresh rate) placed 54 cm from the animal. We monitored eye position using an 416 

infrared eye tracker (Eyelink 1000; SR Research) and recorded eye position and pupil diameter 417 

(1000 samples/s), neuronal responses (30,000 samples/s), and the signal from a photodiode to 418 

align neuronal responses to stimulus presentation times (30,000 samples/s) using hardware from 419 

Ripple. 420 

 421 

Behavioral Task 422 

As previously described5, a trial began when the monkey fixated a small, central spot within a 423 

1.25° per side square fixation window in the center of a video display while two peripheral full 424 

contrast, drifting Gabor stimuli (one overlapping the receptive fields of the recorded neurons, the 425 

other in the opposite visual hemifield) synchronously flashed on (for 200 ms) and off (for a 426 

randomized period between 200-400 ms) until, at a random, unsignaled time, the direction of one 427 

of the stimuli changed from that of the preceding stimuli (Figure 1C). The monkey received a 428 

liquid reward for making a saccade to the stimulus that changed. Attention was cued in blocks of 429 

50-100 trials, and alternated between blocks where attention was cued to either the left or the 430 

right stimulus. In each block, the direction change occurred at the cued stimulus on 80% of trials, 431 

and at the uncued stimulus in 20% of trials (all uncued changes used either the middle or largest 432 

direction change, Figure 1D). Catch trials, where no stimulus changed direction and the monkey 433 

was rewarded for maintaining fixation, were randomly intermixed throughout each block and 434 

made up approximately 12% of total trials. Psychometric data were fit with Weibull functions. 435 

Before recording commenced, the monkeys were extensively trained to have stable thresholds 436 
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across a range of spatial locations (3-6 months). Because we recorded from several dozen 437 

neurons simultaneously, we could not optimize the stimuli for all neurons. We made sure to 438 

position one Gabor stimulus in the joint receptive field of the recorded neurons in both areas and 439 

we made an effort to set the properties of the size (approximately 3-6 degrees of visual angle), 440 

speed (approximately 3-12 degrees of visual angle per second) and direction of the stimuli so 441 

that they drove as many MT units as possible. The direction of all of the stimuli prior to the 442 

direction change (termed original stimulus) was constant throughout a recording session and this 443 

direction was typically either the median or mode of the distribution of MT preferred directions 444 

from that session. The range of direction changes differed from session to session, was selected 445 

based on the animals’ training history and depended on stimulus properties such as eccentricity 446 

and size. A typical range of change amounts for both animals was 1-35 degrees in log-spaced 447 

steps. 448 

 449 

Electrophysiological Recordings 450 

We simultaneously recorded extracellularly from single units and sorted multiunit clusters (the 451 

term “unit” refers to either). The dataset consisted of a total of 306 responsive MT units and 345 452 

responsive SC units total (36-58 units per session, mean 20 in MT, 24 in the SC for Monkey HO; 453 

36-53 units per session, mean 21 in MT, 22 in SC for Monkey ST) in both MT and the SC in the 454 

right hemisphere using moveable, linear 24-channel V-probes (Plexon; inter-electrode spacing in 455 

MT = 50µm, SC = 100µm). We presented visual stimuli and tracked eye position as previously 456 

described9. The data presented are from 6 days of recording for Monkey HO and 9 days of 457 

recording for Monkey ST. Each day consisted of multiple blocks of the attention task (Figure 1C; 458 
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mean 1015 of trials for Monkey HO, 745 for Monkey ST) preceded by receptive field mapping 459 

using a delayed saccade task and direction tuning during passive fixation. 460 

Data Analysis 461 

All spike sorting was done offline manually using Offline Sorter (version 3.3.5; Plexon). We 462 

based our analyses on both single units and multiunit clusters and use the term “unit” to refer to 463 

either. Neuronal analyses in Supplemental Figure 1 and 2 used spike count responses between 464 

50-250 ms after stimulus onset to account for visual latencies in the two areas. To remove 465 

response contamination from eye movements during change stimuli, data presented in the 466 

decoding analyses in Figure 3 and 4 used shorter response windows. Responses to both original 467 

and changed stimuli were measured from 50-185 ms after stimulus onset for monkey HO and 50-468 

220 ms for monkey ST. These times were selected based on the distribution of each animal’s 469 

reaction times with the goal of maximizing the number of trials that could be included in the 470 

analyses. Trials with reaction times that began during those windows were excluded. Using these 471 

shorter response windows did not qualitatively affect the measures of attention described in 472 

Supplemental Figure 1. Attention still increased the firing rates of MT (mean attention index = 473 

0.034, median attention index = 0.034), Wilcoxon signed rank test, p< 10-18) and SC neurons 474 

(mean attention index = 0.071, median attention index = 0.05), Wilcoxon signed rank test, p< 10-475 

44) and decreased noise correlations within MT (Wilcoxon signed rank test, p< 10-72). To 476 

minimize the impact of adaptation on our results, we did not analyze the first stimulus 477 

presentation in each trial. We only analyzed a recorded MT unit if its stimulus-driven firing rate 478 

was 10% higher than its firing rate as measured in the 100 ms prior to the onset of the first 479 

stimulus. We only analyzed a recorded SC unit if its stimulus-driven firing rate was 10% higher 480 

than its firing rate as measured in the 100 ms prior to the onset of the first stimulus or if its 481 
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response during a 100 ms epoch prior to a saccade on hit (correct) trials to the contralateral side 482 

was 10% larger than that same baseline. Stimulus presentations during which a microsaccade 483 

was detected were excluded from analyses9,51). 484 

 485 

For firing rate analyses in Supplementary Figure 1A and B, attention indices were calculated 486 

using average spike counts on the (original) stimulus presentation prior to correct detections of 487 

the intermediate change amount depending on whether attention was directed into or out of the 488 

receptive fields of the recorded neurons using the formula (attendin – attendout)/(attendin + 489 

attendout). Significance of individual units was determined by a paired t-test (p<0.05). 490 

 491 

Noise correlations 492 

 493 

We defined the correlated variability of each pair of simultaneously recorded units (quantified as 494 

spike count correlation or rSC
24) as the Pearson correlation coefficient between the responses of 495 

the two units to repeated presentations of the same stimulus. This measure of rSC represents noise 496 

correlations rather than signal correlations because the responses used in this analysis were 497 

always to an identical visual stimulus. For Supplementary Figure 1C, we included responses 498 

from stimulus presentations 2 though 10 from trials that ended with either a hit, miss or correct 499 

catch trial and that were immediately followed by the maintenance of fixation and continuation 500 

of the trial (i.e., stimulus presentations where the behavioral response on the subsequent stimulus 501 

presentation was not a saccade). We z-scored responses as a function of the stimulus presentation 502 

number in each trial and then pooled data across stimulus presentations before calculating noise 503 

correlations. Results did not qualitatively change if we did not perform this z-score procedure. 504 
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For Supplementary Figure 1D, we included data from all stimulus presentations prior to the 505 

change stimulus (except the first) and sorted them depending on what the behavioral outcome 506 

was on the subsequent stimulus presentation. Pairs of units that were recorded on the same 507 

electrode were not included in correlation analyses. The data presented in Supplementary Figures 508 

1C consisted of 3,285 MT pairs, 3,948 SC pairs and 6,934 between area pairs.  509 

 510 

Decoding 511 

We focused our decoding analyses (Figures 2, 3 and 5) on trials in which the third largest 512 

(middle) direction change occurred, because changes of that magnitude occurred in both 513 

attention conditions. This approach also serves to linearize the problem by attempting to classify 514 

between one of two directions of motion. Therefore, we have restricted our decoding approach to 515 

using linear methods. We performed the decoding analyses using responses from trials that were 516 

either hits (correct detection) or misses (maintained fixation after change stimulus) only from 517 

data sets for which there were at least 10 trials in each attention condition and at least three hits 518 

and three misses in each condition. These criteria led us to exclude one data set. We did not 519 

include false alarms in the analyses because there were too few (and they were too inconsistent 520 

across recording sessions) to handle appropriately.  521 

 522 

We used the decoding strategy schematized in Figure 2. We began by constructing a matrix of 523 

MT responses for each attention condition: ‘MT responses’ (a # MT neurons by 2*# trials matrix 524 

of MT responses to the stimuli before the direction change and the changed stimulus on the 525 

relevant trials). The stimulus decoder was performed using two matrices for each attention 526 

condition: all of ‘MT responses’ (a # MT neurons by 2*# trials matrix of MT responses to the 527 
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stimuli before the direction change and the changed stimulus on the relevant trials) and ‘motion 528 

direction’ (a 1 by 2*# trials vector of zeros for the stimulus before the change, referred to as 529 

‘original’, and ones for the changed stimulus, referred to as ‘change’). The Choice decoder was 530 

performed using two matrices for each attention condition: the responses during change stimulus 531 

presentations from ‘MT responses’ (a # MT neurons by 1*# trials matrix of MT responses to the 532 

change stimulus on the relevant trials) and ‘choice’ (a 1 by 1*# trials vector of zeros for change 533 

stimulus presentations on which the animal did not make an eye movement, referred to as ‘no 534 

saccade’, and ones when the animal made an eye movement, referred to as ‘saccade’). The SC 535 

decoder was performed using two matrices for each attention condition: the responses during 536 

original stimulus presentations ‘MT responses’ (a # MT neurons by 1*# trials matrix of MT 537 

responses to the original stimulus on the relevant trials) and ‘SC responses’ (a # SC neurons by 538 

1*# trials matrix of SC responses to the original stimuli on the relevant trials). We refer to this 539 

final decoder as an ‘SC decoder’ but the weights are defined with no directionality: we have 540 

simply identified the weights that best relate the activity between the two areas. 541 

 542 

We cross validated by holding out the two stimulus presentations from ‘MT responses’ (for the 543 

original and changed stimuli) from one trial at a time to perform the classification of motion 544 

direction. To reduce the number of weights we needed to fit and therefore improve our 545 

confidence in the weights we did fit, we performed PCA on the MT and SC responses to find the 546 

first 10 PCs in each area. The choice of number of vectors did not qualitatively affect the results 547 

in the range of 4-15 vectors. We then performed linear regression to find the weight vectors (for 548 

the Stimulus and Choice decoders) or weight matrices (for the SC decoder) that related 549 
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projections along the first ten MT PCs plus a vector of ones to ‘motion direction’, ‘choice’, or 550 

projections along the first 10 SC PCs in each attention condition.  551 

 552 

We assessed the stimulus information in each decoder (Figure 3) by multiplying projections of 553 

MT responses to the original and changed stimuli from the held-out trial by the fitted weights 554 

and either determining whether those weighted sums correctly classified the stimuli as original or 555 

changed (Stimulus and Choice decoders) or whether a linear classifier correctly classified those 556 

stimulus presentations on the basis of the predicted SC responses (SC decoder). The performance 557 

of the decoder is defined as the area under the receiver operating characteristic curve comparing 558 

the distributions of weighted average responses to each stimulus using the weights constructed 559 

for each decoder.  560 

 561 

The critical aspect of the decoding analysis is that we ask how much stimulus information is 562 

contained in each different subset of MT activity.  The Stimulus (or optimal) decoder will 563 

perform best, because it was designed specifically to ask this question. The Choice and SC 564 

decoders identify different subspaces of MT activity and then ask how much stimulus 565 

information is contained in those subspaces. These decoders, by definition, will perform worse 566 

than the Stimulus decoder, but they are asking the same question. 567 

 568 

To assess the stability of the weights for each decoder in the two attention conditions, we 569 

assessed the stimulus information gleaned by each decoder using the sensory responses from one 570 

attention conditions and the weights calculated from the other (Figures 3 and 4). Because the 571 

responses of visual neurons are non-unique and because our behavioral response is binary, the 572 
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weights found with our linear decoding methods are non-unique23,30. It is therefore not 573 

informative to make direct comparisons of the weights across conditions. Instead, we borrowed 574 

the spirit of the analyses in a recent study30 and compared the stimulus information that could be 575 

gleaned using each set of weights in each attention condition. In general, the choice and SC 576 

decoders performed better with weights computed from the same attention condition, even 577 

though we cross-validated these analyses (this effect could be attributed to non-stationarities in 578 

the recordings or the monkey’s behavior). The critical comparison is the performance of the 579 

decoders using sensory responses from one attention condition and weights from the other 580 

(Figures 3 and 4).  581 

 582 

For the decoding analysis in Figure 5, we took a similar approach to the previously described 583 

Choice and SC decoders, except that we combined data from both the cued and uncued 584 

conditions to calculate decoding weights. We then decomposed the responses of the population 585 

responses to each stimulus in each attention conditions into mean responses and residuals 586 

(R=M+S, where R is the number of neurons by number of trials matrix of spike count responses 587 

to one stimulus in one attention condition, M is a matrix of mean responses for each neuron, and 588 

S is the matrix of residuals). We tested the hypothesis that attention-related changes in the 589 

residuals account for the improvement in stimulus information used to guide behavior by 590 

decoding stimulus information from responses created by using the mean responses from the 591 

uncued condition and residuals from the cued condition.  592 

 593 

The analyses of the V4 data from the change detection task (Figure 4A and 4B) were identical 594 

manner to the MT data described above. This dataset consisted of multineuron recordings using 595 
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Utah arrays placed in both hemispheres of V4 during 37 experimental sessions in two animals, 596 

the details of which are described in5. Data from each hemisphere was treated separately in the 597 

decoding analyses, so each session contributes two data points for each analysis (gray lines in 598 

Figure 4A). The details of the contrast discrimination task used in Figure 4C required a different 599 

form of the Stimulus decoder. This dataset consisted of multineuron recordings using Utah arrays 600 

placed in both hemispheres of V4 during 17 experimental sessions in two animals. The details of 601 

this experiment have been previously described6. Briefly, two monkeys judged which of two 602 

stimuli in a pair was higher contrast by making a saccade to a target representing its choice. 603 

Attention toward one pair of stimuli or the other was changed in blocks. The Stimulus decoder 604 

(Figure 4C) compares performance using V4 responses to distinguish between a given stimulus 605 

configuration and its opposite configuration in the attended and unattended conditions.  As in the 606 

other V4 data set, data from each hemisphere was treated separately. 607 

 608 
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