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Abstract 30 

Chromatin conformation constitutes a fundamental level of eukaryotic genome 

regulation. However, our ability to examine its biological function and role in disease is 

limited by the large amounts of starting material required to perform current 

experimental approaches. Here, we present Low-C, a Hi-C method for low amounts of 

input material. By systematically comparing Hi-C libraries made with decreasing 35 

amounts of starting material we show that Low-C is highly reproducible and robust to 

experimental noise. To demonstrate the suitability of Low-C to analyse rare cell 

populations, we produce Low-C maps from primary B-cells of a diffuse large B-cell 

lymphoma patient. We detect a common reciprocal translocation t (3;14) (q27;q32) 

affecting the BCL6 and IGH loci and abundant local structural variation between the 40 

patient and healthy B-cells. The ability to study chromatin conformation in primary 

tissue will be fundamental to fully understand the molecular pathogenesis of diseases 

and to eventually guide personalised therapeutic strategies.  
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Introduction 45 

The three-dimensional organisation of chromatin in the nucleus plays a fundamental 

role in regulating gene expression, and its misregulation has a major impact in 

developmental disorders (Lupiáñez et al. 2015; Franke et al. 2016) and diseases such 

as cancer (Hnisz et al. 2016). The development of chromosome conformation capture 

(3C) (Dekker et al. 2002) assays and, in particular, their recent high-throughput 50 

variants (e.g. Hi-C), have enabled the examination of 3D chromatin organisation at 

very high spatial resolution (Rao et al. 2014; Lieberman-Aiden et al. 2009). However, 

the most widely used current experimental approaches rely on the availability of a 

substantial amount of starting material – on the order of millions of cells – below which 

experimental noise and low sequencing library complexity become limiting factors 55 

(Belaghzal, Dekker, and Gibcus 2017). Thus far, this restricts high-resolution analyses 

of population Hi-C to biological questions for which large numbers of cells are available 

and limits the implementation of chromatin conformation analyses for rare cell 

populations such as those commonly obtained in clinical settings. While single-cell 

approaches exist (Nagano et al. 2013; Ramani et al. 2017; Stevens et al. 2017; 60 

Flyamer et al. 2017), they typically operate on much lower resolutions than population-

based approaches and require an extensive set of specialist skills and equipment that 

might be out of reach for the average genomics laboratory. 

Recently, two methods have been developed to measure chromatin conformation 

using low amounts of starting material (Z. Du et al. 2017; Ke et al. 2017). However, the 65 

lack of a systematic comparison of the data obtained with these approaches and 

conventional in situ Hi-C limits our understanding of the technical constraints imposed 

by the amounts of starting material available. In addition, it remains to be demonstrated 

whether these methods could be directly applied to samples with clinical interest, such 

as for example, tumour samples. 70 

Here, we present Low-C, an improved in situ Hi-C method that allows the generation 

of high-quality genome-wide chromatin conformation maps using very low amounts of 

starting material. We validate this method by comparing chromatin conformation maps 

for a controlled cell titration, demonstrating that the obtained maps are robust down to 

1,000 cells of starting material and are able to detect all conformational features –75 

compartments, topologically associating domains (TADs) and loops– similarly as maps 

produced with a higher number of cells. Finally, we demonstrate the applicability of 

Low-C to clinical samples by generating chromatin conformation maps of primary B-

cells from a diffuse large B-cell lymphoma (DLBCL) patient. Computational analysis of 
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the data allows us to detect patient-specific translocations and substantial amounts of 80 

variation in topological features. 
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Results 

Low-C: A Hi-C method for low amounts of input material 

We first sought to develop a Hi-C method for low amounts of input material. To do so, 85 

we modified the original in situ Hi-C protocol (Rao et al. 2014), which recommends 5-

10 million (M) starting cells, to allow for much smaller quantities of input material. The 

modifications are subtle, involving primarily changes in reagent volume and 

concentrations, as well as timing of the individual experimental steps (Fig. 1a, 

Methods, Supplementary Table 1). The combined changes, however, are highly 90 

effective, allowing us to produce high-quality Hi-C libraries from starting cell numbers 

as low as one thousand (1k) cells. 

To assess the feasibility and limitations of Low-C, we prepared libraries for 

progressively lower numbers of mouse embryonic stem cells (mESC) using two 

different restriction enzymes (Supplementary Table 2). Each library was deep-95 

sequenced to an average depth of 100-150x106 reads and processed using a 

computational Hi-C pipeline with particular emphasis on the detection and filtering of 

experimental biases (Methods). The ratios of the number of cis- and trans-contacts 

(Lajoie, Dekker, and Kaplan 2015) indicate a high library quality for all samples 

(Methods) (Supplementary Table 3). Visual inspection of normalised Hi-C maps for 1M 100 

to 1k cells revealed a high degree of similarity between Low-C samples, with TADs 

clearly identifiable at a resolution of 50kb (Fig. 1b, Supplementary Fig. 1a). To 

determine the degree of similarity between samples, we computed correlations of all 

contact intensities against the 1M sample, which showed very high levels of 

reproducibility (Fig. 1b, Pearson correlation coefficient R>=0.95 in all cases). To 105 

evaluate the overall level of reproducibility with other protocols, we performed a 

comparison of a pooled Low-C dataset, merging samples up to 50k cells, to a 

previously published mESC Hi-C dataset (Dixon et al. 2012), to account for differences 

in sequencing depth. This comparison revealed a strong contact intensity correlation 

(R=0.97), that was further confirmed by a principal component analysis that displayed 110 

strong clustering of Low-C samples and high similarity of Low-C to other mESC 

datasets (Supplementary Fig. 1b). In addition, we performed aggregate TAD and 

aggregate loop analysis (Flyamer et al. 2017) on the 1k and 1M samples (Fig. 1c,e), 

which revealed highly consistent TAD (Fig. 1d) and loop strengths (Fig. 1f) across 

datasets. Overall these results suggest that Low-C is a robust method to generate 115 

chromatin conformation maps using small amounts of input material. 
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Low-C data have similar properties as conventional Hi-C 

We next wanted to ensure that the number of input cells does not limit the range of 

observations one can obtain from a Hi-C matrix. In a Hi-C experiment, each DNA 120 

fragment can only be observed in a single ligation product, limiting the number of 

possible contacts of the corresponding genomic region to twice the number of input 

cells (in a diploid cell line). This raises the concern for Low-C that low-probability 

contacts – such as those in far-cis – would be lost for very small numbers of cells. To 

test this, we calculated the correlation of contact intensities at increasing distances for 125 

the 100k, 10k, and 1k against the 1M sample. Reassuringly, while the expected 

decrease in correlation with distance was apparent, the decrease in contact correlation 

is independent of the input cell number (Fig. 2a), indicating that the loss of low-

probability contacts was not a limiting factor for input cell numbers as low as one 

thousand. Furthermore, the remaining differences in correlation disappeared when 130 

comparing sub-sampled matrices to the same number of valid pairs (Supplementary 

Fig. 2a), suggesting that sequencing depth, and not the initial number of cells, is the 

main determinant of the correlation coefficients. We also confirmed that diversity of Hi-

C contacts, measured as the absolute number of unique fragment pairs in a Low-C 

experiment, is not affected by the amount of input cells, but it is primarily a function of 135 

sequencing depth (Supplementary Fig. 2b-c). 

To explore the limits of Low-C, we performed an extensive characterisation of the 

properties of these libraries. Previous work had identified systematic biases in Hi-C 

data that can serve as read-outs for the efficiency of Hi-C library generation (Yaffe and 

Tanay 2011; Jin et al. 2013; Cournac et al. 2012) (Fig. 2b, Supplementary Fig. 3a-f). 140 

Most notably, PCR duplicates indicate low library complexity – a limitation that has 

been previously described when trying to scale down the Hi-C protocol (Belaghzal, 

Dekker, and Gibcus 2017) – while an excess of different types of ligation products, 

such as self-ligated fragments, can point to problems in the digestion and ligation steps 

(Methods). Unsurprisingly, given the higher need for amplification, we find that PCR 145 

duplicates increase with lower amounts of starting material, with roughly 20% of read 

pairs identified as duplicates in the 1k sample (Fig. 2b). Ligation errors, however, 

remained more or less constant across samples, irrespective of the number of cells 

(Supplementary Fig. 4). Other low-input Hi-C datasets (Z. Du et al. 2017a; Ke et al. 

2017) display similar biases (Fig. 2a,b), confirming that decreasing library complexity 150 

appears to be the strongest limitation on the lowest number of input cells that is feasible 

for low-input Hi-C approaches. 
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Compartments, TADs and loops can be detected in Low-C data 

Next, we set out to ensure that not only the Hi-C maps themselves, but also measures 

derived from them are reproducible and unaffected by differences in input cell number. 155 

To do so, we calculated several established and widely used Hi-C measures on the 

Low-C matrices at 50kb resolution, namely: the profile of expected contacts at 

increasing distances between genomic regions (Lieberman-Aiden et al. 2009) (Fig. 3a, 

Supplementary Fig. 5); the correlation matrix and its first eigenvector, used to derive 

AB compartments (Lieberman-Aiden et al. 2009) (Fig. 3b, Supplementary Fig. 6); and 160 

the insulation score (Crane et al. 2015), commonly used to infer TADs and TAD 

boundaries (Kruse et al. 2016) (Fig. 3c). All three examples of Hi-C measures are 

consistent with results from conventional Hi-C and showed high reproducibility 

between the 1M and 1k samples with no apparent dependence on the number of input 

cells, demonstrating that Low-C libraries are highly consistent and reproducible for 165 

input cell numbers as low as one thousand cells. 

Generation of Low-C maps for DLBCL primary tissue 

Given our ability to obtain high quality chromatin conformation maps using low 

amounts of input material, we sought to determine whether the technique could be 

applied in a real-world scenario where the amount of starting material is likely to be the 170 

limiting factor in obtaining chromatin contacts maps. To test this, we performed Low-C 

on a diffuse large B-cell lymphoma (DLBCL) sample and in normal B-cells extracted 

from a healthy donor as a control (see Methods). Generating chromatin contact maps 

with low amounts of input material is beneficial not only because it allows to test the 

3D chromatin conformation directly in the diseased cells, but also since it maximises 175 

the availability of tissue for other procedures and minimises patients’ burden from 

having to undergo repeated biopsies to obtain extra material. 

Patient and donor CD20+ lymphocytes were isolated from lymph nodes and blood, 

respectively, using a magnetic microbead-labelled CD20+ antibody and magnetic-

activated cell sorting (MACS) (Yan et al. 2009) (Fig. 4a, Methods). We confirmed that 180 

the cell fixation procedure did not affect the efficiency of MACS sorting and that we 

were able to correctly distinguish CD20+ from CD20- cells in a mixture of HBL1 and 

Jurkat cells (Supplementary Fig. 7) and in the peripheral blood mononuclear cells 

(PBMCs) from the control sample (Supplementary Fig. 8), respectively before and after 

formaldehyde fixation. Using the MACS approach, we were able to isolate the majority 185 

of B-cells from the control sample and the cell line mixture, although a non-critical 

fraction of B-cells was lost during the process (Supplementary Fig. 9). The same was 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 19, 2018. ; https://doi.org/10.1101/372789doi: bioRxiv preprint 

https://doi.org/10.1101/372789
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

true for the patient sample where fixation did not affect the surface molecules needed 

for MACS sorting (Supplementary Fig. 10) and where the eluted CD20+ cell population 

was made up of 95.5% B-cells (Supplementary Fig. 10f). We then performed Low-C 190 

on approximately 50k cells from each of the patient and control samples and deep-

sequenced the resulting libraries to approximately 500 million (patient) and 300 million 

(control) reads (Supplementary Table 2). The resulting chromatin maps show a high 

degree of similarity between the patient and control B-cells (Fig. 4b). TADs (ordinary 

and loop domains) and loops are clearly distinguishable in the maps, and de novo loop 195 

calling using HICCUPS (Rao et al. 2014) and subsequent aggregate loop analysis (Fig. 

4c) confirms that these can be identified automatically with high confidence. Overall 

these results confirm that Low-C can be successfully used in a clinical setup to obtain 

high-quality chromatin conformation maps directly from primary patient tissue. 

Identification of structural variation in patient Low-C data 200 

Structural variation and, in particular, genome rearrangements are a characteristic 

feature in many cancers (Weischenfeldt et al. 2013). Since chromatin contact maps 

have an intrinsic bias for detecting interactions that happen in the proximal linear 

sequence (Lieberman-Aiden et al. 2009), Hi-C-like data can be used to detect 

structural variation (Harewood et al. 2017; Lin et al. 2018; Lupiáñez et al. 2015; Franke 205 

et al. 2016; Hnisz et al. 2016; van de Werken et al. 2012; Krijger and de Laat 2016; 

Zepeda-Mendoza et al. 2015; Simonis et al. 2009). In order to detect potential 

translocations in the DLBCL sample in a fully automated and unbiased manner, we 

performed virtual 4C (V4C) for the patient and control data. Specifically, we considered 

each 25kb bin in the genome in turn as a viewpoint to detect cases that display 210 

significant amounts of signal anywhere in the genome of the DLBCL cells that do not 

appear in control B-cells (Methods). Hi-C maps at locations of putative structural 

variations were then browsed manually to remove false positives. 

Most prominently, this analysis identified two regions of interest on chromosome 3q27 

separated by ~8Mb, with significant interactions with chromosome 14q32 (Fig. 5a-c). 215 

As expected, a normal V4C profile was observed around the viewpoint in chromosome 

3 for both regions in both control and DLBCL cells. In contrast, the V4C profile found 

for the interacting regions on chromosome 14q32 was only apparent in the patient 

data, suggesting that the interactions are patient-specific. A closer examination of the 

genes located in the patient-interacting regions revealed that the first viewpoint (Fig. 220 

5, magenta shaded region) lies directly at the BCL6 gene, a transcription factor known 

to be affected in DLBCL, while the interacting region on chromosome 14q32 lies at the 
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immunoglobulin heavy-chain (IGH) locus (Fig. 5d, e), suggesting a t (3q27:14q32) 

reciprocal translocation. Translocations involving BCL6 are among the most commonly 

observed rearrangements in DLBCL (C Bastard et al. 1992; Kramer et al. 1998; Offit 225 

et al. 1994), with one study reporting a ~30% (14/46) penetrance in DLBCL patients 

(Christian Bastard et al. 2018). The second viewpoint with significant interactions 

towards the telomeric end of chromosome 3 (Fig. 5, green shaded region) interacts 

with a more centromeric location on chromosome 14. The pattern of interaction signal 

decay over linear distance in the trans-chromosome interactions map suggests a 230 

breakpoint around 195.2Mb (Fig. 5d,f, black triangles) and allows us to manually 

reconstruct the most likely rearrangement of these regions in DLBCL from the Hi-C 

data: the telomeric ends of both chromosomes are involved in a reciprocal 

translocation, with breakpoints around chr3:187.7Mb and chr14:105.9Mb (Fig. 5h). To 

validate our data, we performed a fluorescence in situ hybridisation (FISH) analysis 235 

that confirmed a rearrangement of the BCL6 gene (Fig 5i), providing orthogonal 

validation of the Hi-C findings. In addition, the lack of Hi-C signal between the 

breakpoints in chromosome 3 and 14 suggests that the regions chr3:187.7-195.2Mb 

and chr14:105.6-105.9Mb have been lost on one pair of chromosomes, generating 

regions of loss of heterozygosity in the remaining chromosome. Interestingly, we find 240 

another smaller rearrangement involving ANXA3 on chromosome 4 and EDAR2 on 

chromosome X (Supplementary Fig. 11). Misregulation of ANXA3 is known to promote 

tumour growth, metastasis and drug resistance in both breast cancer (R. Du et al. 

2018) and hepatocellular carcinoma (Tong et al. 2015). In summary, our results 

demonstrate that Low-C can be used directly on primary tissue to detect patient-245 

specific chromosomal rearrangements in an unbiased manner. 

Extensive rewiring of chromatin organisation in DLBCL cells 

Visual comparison of the patient and control chromatin contact maps revealed 

numerous local structural differences. For example, the region undergoing loss of 

heterozygosity reported above (chr3:187.7-195.2Mb; Fig. 5d, arrow) displays a clear 250 

gain of TAD structure encompassing the genes TP63, a member of the p53 family of 

transcription factors that has been previously associated with cancer, and the tumour 

protein p63 regulated gene-1 (TPRG1) which lies in the same de novo established 

TAD, suggesting their potential co-regulation. To evaluate the overall extent of 

changes in chromatin conformation at the TAD structure level between the two 255 

samples, we used the insulation score (Crane et al. 2015) to determine TAD 

boundaries in both samples and looked for regions with broad changes in the Hi-C 

signal (Methods). Using a conservative threshold, we detected 648 regions in the 
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genome with notable changes in local Hi-C contacts (Supplementary Table 4). Out of 

these, 37 appear to be de novo TADs, which in many cases overlap with known 260 

disease-related genes such as PTPRG (LaForgia et al. 1991) (Fig. 6c), APBB2 

(Deffenbacher et al. 2012) (Fig. 6d), and TEAD1 (Zhou et al. 2017; Schmid et al. 2015) 

(Fig. 6e). Overall, we observe the majority of changes in TAD structure to be patient-

specific gains, whereas the loss of TADs present in normal B-cells in the patient is a 

relatively rare event (Fig. 6b). Altogether, our results demonstrate that Low-C can be 265 

used to study chromatin contact differences between patient samples at the TAD level 

and that there are significant differences in TAD structure between DLBCL and normal 

B-cells. 
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Discussion 270 

The development of high-throughput genome-wide techniques to measure chromatin 

conformation has been instrumental to further our understanding of the biological 

importance of the three-dimensional organisation of chromatin in the nucleus. In 

addition to providing a local environment where enhancer-promoter interactions can 

orchestrate the correct deployment of gene expression programmes during 275 

development, the three-dimensional chromatin conformation is fundamental to 

establish proper spatial boundaries, that provide enhancer insulation and limit their 

function to those genes that need to be regulated. Chromatin conformation at the level 

of TADs seems to be fairly static for fully differentiated cells (Nora et al. 2012; Dixon et 

al. 2012, 2015), although dynamic changes in TAD structure can be observed during 280 

development in organisms ranging from Drosophila to mammals (Hug et al. 2017; 

Bonev et al. 2017; Z. Du et al. 2017; Ke et al. 2017), highlighting their dynamic 

behaviour. 

A current limitation for our understanding of these dynamic changes and the potential 

differences in 3D chromatin conformation between tissues or in a disease context is 285 

the high amount of material that is usually necessary to perform these experiments. 

While single-cell Hi-C methods exist, these are usually only able to capture a small 

fraction of the chromatin contacts that occur across the genome. This results in sparse 

chromatin maps of low resolution that usually rely on TAD calls made using standard 

Hi-C maps, limiting their applicability in comparing samples or finding de novo TADs. 290 

Here, we introduce Low-C, an improved Hi-C method that allows the generation of 

high-resolution chromatin contact maps using low amounts of input material. Beyond 

existing low input Hi-C approaches (Z. Du et al. 2017; Ke et al. 2017), we perform a 

thorough comparison of Low-C maps and their derived measurements in a controlled 

environment to systematically demonstrate that Low-C is not affected by biases 295 

originating from the amount of starting material. We also show that the method is 

robust and applicable to mammalian samples down to one thousand cells without 

compromising the quality of the resulting datasets. Therefore, our results establish 

Low-C as an efficient method to study chromatin conformation for rare cell populations, 

where the collection of material currently necessary to perform population-based Hi-C 300 

protocols is infeasible. These include transient developmental stages (Hug et al. 2017; 

Z. Du et al. 2017; Ke et al. 2017), as well as systems of medical relevance, such as 

primary tissue from patient samples, where an examination of changes in chromatin 

conformation between healthy and disease cells might shed light on the etiology of the 

disease. 305 
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To demonstrate the usability of this approach in a real-world scenario, we generated 

Low-C maps for a DLBCL patient sample. Since changes in chromatin contact profiles 

and genomic rearrangements can be detected very easily through Hi-C approaches 

(Engreitz et al. 2012), we developed an unbiased approach to systematically detect 

translocations using these data, uncovering a known reciprocal translocation in this 310 

patient biopsy. This, together with recent reports of similar approaches in other tumour 

types (Harewood et al. 2017) highlights the clinical applicability of this technology. An 

added benefit of our approach when compared with previous work in primary tissue 

samples is the generation of high-quality genome-wide chromatin interaction maps, 

which allows us to examine the level of variability between cells in health and disease. 315 

In fact, we detect a large amount of variation at the TAD level, in particular in the 

DLBCL sample, which gains a significant amount of structure. Interestingly, in several 

cases the emergence of novel chromatin structural features coincides with the 

genomic location of genes previously associated with cancer, such as TP63 and 

ANXA3. Whereas the current maps do not allow us to determine cause or 320 

consequence for these changes, a broader examination of these changes in larger 

cohorts of patient samples, together with an integrative analysis of gene expression 

and chromatin states might provide insight into the causal relationships between these 

in a disease-specific and patient-specific manner. 

Despite the increased applicability of our method, there are still a number of factors to 325 

take into consideration when planning such experiments. First, tissue heterogeneity or 

the presence of healthy cells in biopsies can become an issue with increasingly lower 

cell numbers. Specifically, the lower the input cell number, the greater the impact of 

contaminations or variabilities in sample composition will be on the averaged 

chromatin structures visible in the Hi-C maps. These might obfuscate or increase the 330 

uncertainty about specific structural observations. In our DLBCL analysis, we set out 

to minimise these effects by coupling our Low-C to efficient cell sorting techniques. 

Second, decreasing library complexity is still the current limiting factor for low input Hi-

C studies (Belaghzal, Dekker, and Gibcus 2017), and a significant amount of PCR 

duplicates are to be expected when reducing the amount of starting material. Third, a 335 

further general limitation for bulk Hi-C methods, regardless the initial cell input, is that 

long-range three-dimensional contacts between gene promoters and enhancers are 

likely to be missed, since they usually happen within the context of TAD interactions. 

Therefore, to study these important interactions, which have been shown to affect gene 

regulation and are associated with the risk for various types of diseases (Javierre et 340 

al. 2016; Martin et al. 2015), it might be useful to couple Low-C with capture or 
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promoter-capture techniques (Hughes et al. 2014; Dryden et al. 2014; Mifsud et al. 

2015; Jäger et al. 2015), that will allow the retrieval of these specific interactions. 

In summary, our data demonstrates that it is feasible to obtain high-quality genome-

wide chromatin contact maps from low amounts of input material. We anticipate that 345 

the robustness and relatively simple implementation will make Low-C an attractive 

option that will facilitate bringing the analysis of chromatin architecture within reach of 

personalised clinical diagnostics. 
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Methods 350 

Low-C protocol 

We followed the general protocol for in situ Hi-C as described previously (Rao et al. 

2014), which we adapted for use on low cell numbers. Mainly, differences were related 

to adjustments in the volume of the reactions, a shortening of the digestion step, a 

removal of biotin from the unligated fragments, and an alternative strategy for size-355 

selection during library preparation. For a detailed step by step protocol please see 

Fig. 1a and Supplementary Table 1. 

Cell culture 

mESC OG2 cells were cultured as described previously (Shi et al. 2008), FACS-sorted, 

selected for positive eGFP expression and collected in PBS. Cells were then pelleted 360 

(300 g, 4°C for 10 min) and resuspended in 1 ml PBS. 

Patient and Control samples processing  

Peripheral blood mononuclear cells (PBMCs) were obtained either from a blood 

extraction from a healthy donor or from a lymph node biopsy from a DLBCL patient. 

The patient sample came from the Department of Clinical Pathology at the Robert-365 

Bosch-Hospital in Stuttgart (Germany) and its informed consent for retrospective 

analysis was approved by the ethics committee of the Medical Faculty, Eberhard-Karls-

University and University Hospital Tübingen (reference no. 159/2011BO2). PBMCs 

from the control came from a donor from the Department of Medicine A, Hematology, 

Oncology and Pneumology, University Hospital Muenster in Muenster (Germany). 370 

Control PBMCs were isolated from the in-between layer by density gradient 

centrifugation with Biocoll (Biochrom AG, Germany) and were then frozen at -80°C for 

preservation. The patient sample came from a biopsy of a lymph node. Briefly, the 

biopsy was immediately cut into pieces, homogenized and re-suspended generating a 

cell suspension that was then frozen and kept at -80°C, as previously described 375 

(Staiger et al. 2017). 

Once the samples were thawed, cells were cross-linked in a 1% formaldehyde and 

quenched with 2.5M Glycine solution (for details check the detailed Low-C protocol at 

Supplementary Table 1). A test to ensure that formaldehyde fixation won’t affect the 

surface molecules was performed before and after fixation (Supplementary Figure 8). 380 

The viability of the surface molecules on a mixture of HBL1 and Jurkat cells was 
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assessed by staining with a CD19-PE (FL2) and CD20-FITC (FL1) antibodies 

(Supplementary Figure 7). 

B-cells were then isolated by MACS-sorting (Yan et al., 2009) using a positive selection 

kit (Miltenyi Biotec, 130-091-104). Briefly, CD20+ cells were labelled using magnetic 385 

coated CD20 MicroBeads, the cell suspension was loaded onto a MACS LS column 

(Miltenyi Biotec, 130-041-306) and placed on a magnetic field generated by a MACS 

Separator. The CD20+ cells were retained into the column while the flow through 

(unlabelled cells) was eliminated. Then the column was removed from the MACS 

Separator, the magnetically retained CD20+ cells were then eluted and collected into 390 

a 15 ml Falcon tube. The performance of the MACS sorting was assessed by checking 

the B-cell presence and its proportions in the flow through as well as in the eluted 

portion for the control PBMCs (Supplementary Figure 9a-b, e-f), for the mixed cell 

population sample (Supplementary Figure 9c-d, g-h) and for the patient sample 

(Supplementary Figure 10). 395 

Once the eluted samples were recovered, we proceeded with the lysis and the rest of 

the Hi-C library preparation as described in detail in Supplementary Table 1. 

Bioinformatics processing of Low-C and Hi-C libraries 

Prior to mapping, the two mates of each paired-end reads sample were scanned for 

MboI ligation junctions, indicating sequencing through a Hi-C ligation product. If a 400 

junction was found, the read was split. Reads were then mapped independently to the 

M. musculus reference genome (mm10) using BWA-MEM (0.7.17), which may also 

result in split reads where the ends map to different locations in the genome. Those 

reads that did not align uniquely to the genome or that had a mapping quality lower 

than 3 were filtered out. Read pairs where one read was filtered out are discarded. 405 

For the remaining read pairs, there are three possibilities: (i) none of the two reads in 

a mate pair was split in the pre-processing or mapping step (see above), (ii) one read 

in the pair was split, resulting in 3 mapped reads with the same ID, and (iii) one read 

in a pair was split multiple times or both reads were split at least once, resulting in more 

than 3 reads with the same ID. In case (iii) the mate pair is filtered out, as the exact 410 

interacting genomic location cannot be determined; in case (ii) the pair is considered 

valid if two reads map to the same genomic location (within 100bp), otherwise it is 

discarded; case (i) is considered valid. 
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Restriction fragments in the genome were identified computationally using known 

restriction sequences of MboI and HindIII, and the remaining pairs of reads were 415 

assigned to the restriction fragments. 

Obtaining valid pairs of reads  

Pairs were filtered out if: i) the mapped reads’ distance to the nearest restriction site 

was larger than 5kb, ii) both reads mapped to the same fragment, or iii) the orientation 

and distance of reads indicated a ligation or restriction bias (Jin et al. 2013; Cournac 420 

et al. 2012). Briefly, paired reads mapping in the same direction on the chromosome 

likely originate from a pair of fragments that had a cut restriction site between them 

and that had subsequently ligated – these were considered valid. Paired reads 

mapping in opposite directions may indicate that the reads map to a single large 

fragment with one or more uncut restriction sites. In this case, pairs facing inward 425 

would have originated from an unligated, pairs facing outward from a self-ligated 

fragment. At large genomic distances, there are approximately equal numbers of same 

and opposite orientation pairs. At shorter distances, there is an increased likelihood of 

uncut restriction sites between two reads, and pairs in opposite direction are filtered 

out. For every dataset, both the inward and outward ligation cut-offs have been fixed 430 

at 10kb. 

Finally, pairs were marked as PCR duplicates if another pair existed in the library that 

mapped to the same locations in the genome, with a tolerance of 2bp. In those cases, 

only one pair from all duplicate ones for a given locus was retained for downstream 

processing. Finally, the genome was partitioned into equidistant bins and fragment 435 

pairs were assigned to bins using a previously described strategy (Rao et al. 2014). 

The resulting contact matrix was filtered for low-coverage regions (with less than 10% 

of the median coverage of all regions) and corrected for coverage biases using Knight-

Ruiz matrix balancing as described before (Rao et al. 2014; Knight and Ruiz 2013). 

Bins that had no contacts due to filtering were marked as “unmappable”. 440 

Cis/trans ratio calculation 

The cis/trans ratio is calculated as the number of valid intra-chromosomal contacts 

(cis) to the valid inter-chromosomal contacts (trans). When comparing different 

species, this ratio will be affected by genome size and the number of chromosomes. 

We therefore also provide a “species-normalised” cis/trans ratio by multiplying the 445 

trans value by the ratio of possible intra-chromosomal to inter-chromosomal contacts 
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f (the ratio of the number of intra-chromosomal pixels in the Hi-C map to the number 

of inter-chromosomal pixels).  

Observed/expected (OE) Hi-C matrix generation 

For each chromosome, we obtain the expected Hi-C contact values by calculating the 450 

average contact intensity for all loci at a certain distance. We then transform the 

normalized Hi-C matrix into an observed/expected (OE) matrix by dividing each 

normalized observed by its corresponding expected value. 

Aggregate TAD/loop analysis 

In general, average feature analysis is performed by extracting subsets of the OE 455 

matrix (can be single regions along the diagonal, or region pairs corresponding the 

matrix segments off the diagonal) and averaging all resulting sub-matrices. If the sub-

matrices are of different size, they are interpolated to a fixed size using “imresize” with 

the “nearest” setting from the Scipy Python package. 

TADs and loop anchors in Fig. 1 have been obtained from (. TADs and loop anchors 460 

in Fig. 4 have been called de novo from their respective datasets (see below). The 

region size for TADs has been chosen as 3x TAD size, centred on the TAD, and 

aggregate analyses have been performed in 25kb matrices. The region size around 

loop anchors has been chosen as 400kb in 25kb matrices.  

TAD strength is calculated as in (. Briefly, we calculate the sum of values in the OE 465 

matrix in the TAD-region and the sum of values for the two neighbouring regions of the 

same size divided by two. The TAD strength is then calculated as the ratio of both 

numbers. 

Loop strength is calculated as in (. Briefly, we first calculate the sum of all values in the 

300kb region of the Hi-C matrix centred on the loop anchors. As a comparison, we 470 

calculate the same value for two control regions, substituting one of the loop anchors 

for an equidistant region in the opposite direction. The loop strength is then calculated 

as the original sum of values divided by the average sum of values in the two control 

regions. 

Expected values vs. distance 475 

Intra-chromosomal Hi-C matrix entries (50kb resolution) were binned by distance to 

the diagonal and divided by the total number of possible contacts at each distance. 

The resulting average counts were plotted against distance in a log-log plot. 
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AB compartments 

For each chromosome separately, the Hi-C matrix was converted to an OE matrix (see 480 

above). The OE matrix was then converted into a correlation matrix, where each entry 

(i, j) represents the Pearson correlation between row i and j of the OE matrix. Finally, 

the signs of the first eigenvector entries were used to call compartments. 

Insulation score and TAD boundaries 

The insulation score was calculated as described before (Crane et al. 2015), by 485 

averaging contacts in a quadratic sliding window along the diagonal of the Hi-C matrix. 

Insulation scores were then divided by the chromosomal average and log2-

transformed. Boundaries were calculated from the vector of insulation scores as 

previously described (Crane et al. 2015; Hug et al. 2017a). Aggregate TAD plots in 

Fig. 4, and the insulation and TAD intensity difference plots in Fig. 6 use the intervals 490 

between two consecutive boundaries as input. 

De novo loop calling 

Loops in the DLBCL and B-cell samples have been called using an in-house 

implementation of HICCUPS (Rao et al. 2014). Briefly, for each entry in the Hi-C matrix, 

HICCUPS calculates several enrichment values over different local neighbourhoods 495 

(termed “donut, lower-left, horizontal and vertical – for definition of the neighbourhoods 

see the original publication). Each enrichment value is associated with an FDR value 

for assessing statistical significance. We call loops at a matrix resolution of 25kb and 

perform filtering exactly as described, only retaining loops that (i) are at least 2-fold 

enriched over either the donut or lower-left neighbourhood, (ii) are at least 1.5-fold 500 

enriched over the horizontal and vertical neighbourhoods, (iii) are at least 1.75-fold 

enriched over both the donut and lower-left neighbourhood, and (iv) have an FDR <= 

0.1 in every neighbourhood. We thus obtain 10,093 loops in the DLBCL and 13,213 

loops in the B-cell samples – comparable to the number of loops identified originally in 

GM12878 cells (Rao et al. 2014). 505 

Identification of structural rearrangements in DLBCL 

To generate a list of candidate regions that may have undergone structural 

rearrangements in DLBCL, we performed Virtual 4C (V4C) for each Hi-C bin of the 

DLBCL matrix at 50kb resolution (viewpoint), looking for peaks of signal away from the 

original viewpoint (target) that were not present in normal B-cells.  510 
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Specifically, in a Hi-C matrix M of size NxN, we examined each bin i, with i ϵ [0, N]. If 

any of the bins in the interval [i-7, i+7] is unmappable (see above), it is not considered 

for further analysis, as we found that regions with mappability issues are typically false-

positive rearrangements. We then obtained the vector v of Hi-C signal as row i of M. 

The viewpoint peak height is then given by vi. An entry vj, with j ≠ i, is considered a 515 

peak if it is larger than 0.15*vi and 99.5% of all other values in v (the latter was 

introduced to filter out highly noisy V4C profiles). Peaks closer than 50 bins to i are 

discarded as local enrichment of contacts. 

V4C peaks are called as above for the DLBCL and the B-cell samples. We consider a 

peak as a putative rearrangement if it only occurs in the DLBCL, but not he B-cell 520 

sample. The final list of <100 putative rearrangements could then be inspected by eye 

in the local and inter-chromosomal Hi-C, eliminating highly noisy Hi-C regions and 

likely false-positives. Finally, this left just 14 peaks, of which 4 could be attributed to 

the ANXA3, and 10 to the t (3,14) rearrangements discussed in the manuscript. 

Hi-C difference matrices 525 

Plots highlighting differences between DLBCL and B-cell samples (Figure 6) have 

been obtained by subtracting B-cell from DLBCL Hi-C matrices at 50kb resolution. 

Pixels without signal in either datasets are removed for clarity. 

TAD intensity difference calculations 

To quantify the changes in TAD formation and intensity that occur from B-cell to DLBCL 530 

(Fig. 6a), we first merged boundaries in both samples (see above), and then calculated 

the average Hi-C signal between all possible pairs of contacts in-between two 

consecutive boundaries. This was done separately for the two datasets, and the TAD 

intensity difference for each region was calculated as the difference in average Hi-C 

signal of DLBCL and B-cell. 535 

Correlations 

All reported correlations are Pearson correlations. Corresponding plots were made 

using the “hexbin” plotting function on log-transformed counts from the matplotlib 

library version 2.0.0 in Python (matplolib.org).  

The distance correlations in Fig. 2a have been obtained as follows: All intra-540 

chromosomal contacts in a Hi-C map are first binned by distance. Bins are defined as 

[0-250kb), [250kb, 500kb), [500kb, 750kb), … in the 50kb resolution maps, [0-500kb), 

[500kb-1Mb), [1.5Mb-2Mb), … in the 100kb resolution maps, and [0-1Mb), [1Mb-2Mb), 
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[2Mb-3Mb), … in the 250kb resolution maps. For each library (100k, 10k, 1k, Dixon et 

al., Du et al.) correlations to the 1M sample between all corresponding contact 545 

strengths in each bin are calculated. The x axis has been scaled to omit very large 

distances at which correlations become erratic due to the sparsity of the Hi-C matrix. 

Fluorescent in situ hybridisation analysis 

Interphase-FISH for BCL6 (Vysis Break apart FISH probe kit, Abbot 

Molecular Diagnostics, Germany) was performed on 4 µm thick tissue 550 

sections cut from FFPE archival tissue blocks as previously described (Horn et al. 

2014). 

 

Data availability 
The in situ Hi-C data generated in this study have been deposited in ArrayExpress and 555 

will be available upon publication. 

Previously published Hi-C datasets used in this study are available in Gene Expression 

Omnibus (GEO; Rao et al. 2014: GSE63525; Dixon et. al 2012: GSE35156; Du et al. 

2017: GSE82185) and Genome Sequence Archive (GSA) (Ke et al. 2017: 

PRJCA000241). 560 

Genome annotations have been downloaded from GENCODE, version 27. 
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Figure 1. Low-C enables the examination of chromatin architecture for samples with 810 

low amounts of input material. (a) Schematic overview of the Low-C protocol and 

comparison with the previously published in situ Hi-C protocol form Rao et al., (2014) 

(Rao et al. 2014). Black boxes denote common steps in both protocols. Green and 

magenta boxes denote additional steps in the Low-C and in situ Hi-C protocol, 

respectively. Italicized text marks protocol-specific differences regarding the step next 815 

to it. (P-C-I=Phenol-Chloroform-Isoamyl alcohol) (b) Low-C matrices for a 10Mb region 

on chromosome 13. Input cell numbers for the Hi-C matrices shown span four orders 

of magnitude (1M to 1k cells). Pixel intensity corresponds to normalized counts. The 

bottom two Hi-C matrices display data from a merge of Low-C samples (1k, 10k, 25k, 

and 50k), and a previously published ESC dataset from Dixon et al. (2012) (Dixon et 820 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 19, 2018. ; https://doi.org/10.1101/372789doi: bioRxiv preprint 

https://doi.org/10.1101/372789
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

al. 2012) with similar sequencing depth as the merged sample. In brackets below the 

sample label we list the number of valid read pairs in each Hi-C library. Next to the Hi-

C matrices scatter plots and Pearson correlation coefficient of the contact intensities 

in the 50kb resolution maps of each sample on the left against the 1M sample are 

shown. The correlation and scatter plots next to the Dixon et al. dataset correspond to 825 

a comparison with the merged sample. Red line indicates identity. (c) Aggregate TAD 

analysis of the 1M, 1k, and Dixon et al. Hi-C maps. Shown is the average 

observed/expected ratio of Hi-C signal for regions around all TADs as determined by 

Rao et al. (2014) (Rao et al. 2014). (d) Comparison of TAD strength (Methods) for the 

1M, 1k, and Dixon samples. (e) Aggregate loop analysis showing the average 830 

observed/expected Hi-C signal at all loop regions as determined by Rao et al. (2014) 

(Rao et al. 2014). (f) Comparison of loop strength (Methods) for the 1M, 1k, and Dixon 

samples. 
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 835 

 

Figure 2. Analysis of experimental biases and quantitative properties of Low-C 

libraries. (a) Pearson correlation coefficient for contact intensities in bin pairs at 

increasing distances from the diagonal. Each plot represents different bin sizes, 

indicated above the plot. Colours correspond to input cell number or sample source, 840 

respectively. All reported correlations are with the 1M sample. (b) Fraction of fragment 

pairs affected by and filtered out due to self-ligated fragments or PCR duplicates. Input 

cell numbers and PCR cycles (brackets) are indicated on the bottom of the plot. Note 

that all samples are in mESC, except for the Ke et al. (2017) sample on the right, which 

is in zygote (PN5).  845 
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Figure 3. Compartments, TADs and loops can be detected and are highly reproducible 

in Low-C data. (a) Log-log “distance decay” plot for chromosome 1 showing the 

decrease in contact probability between 50kb bins with increasing distance for the 1M 850 

and 1k, as well as the Dixon et al. (2012) and Du et al. (2017) samples. (b) AB 

compartment comparison for chromosome 1 binned at 1Mb. Contact correlation 

matrices for the 1M and 1k samples (top) and the corresponding first eigenvector 

(coloured according to the sign of the eigenvector entries) for the samples listed in (a) 

are shown on the left. Bottom right shows a scatter plot of first eigenvector values of 855 

the 1M vs. the 1k sample with Pearson correlation coefficient shown in the plot. Red 

line indicates identity. (c) Insulation score (Kruse et al. 2016) comparison for the region 

on chromosome 13 shown in Fig. 1b. Heatmaps display insulation score values for a 

range of window sizes, line plots highlight the insulation index for a window size of 

250kb (see panel a for line colours). Next to it is a scatter plot with the Pearson 860 

correlation coefficient of the complete insulation index vectors for the 1k and 1M 

samples. Red line indicates identity.  
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Figure 4. Generation of Low-C maps for DLBCL primary tissue and healthy B-cells. 865 

(a) Schematic overview of DLBCL (patient) and B-cell (control) sample extraction using 

MACS sorting of CD20+ microbead-labelled cells extracted from primary tissue and 

Low-C library generation. (b) Sample region on chromosome 2 highlighting TADs, 

loops and loops domains in the Low-C maps for DLBCL and B-cells. (c) Aggregate 

TAD and loops analysis (see Figure 1) using de novo loop and TAD boundary calls 870 

(Methods). On the right is a comparison of loop and TAD strengths between patient 

and control. 
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Figure 5. Unbiased detection and characterisation of t (3q27:14q32) reciprocal 

translocation in the DLBCL sample. (a) Whole-genome virtual 4C plot for two 875 
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viewpoints on chromosome 3 (magenta, green). (b, c) Zoom-in of the virtual 4C plots 

to the viewpoint (b) and target (c) regions. (d, e) Local Hi-C maps of the viewpoint (d) 

and target (e) regions. (f, g) Inter-chromosomal Hi-C maps of target vs. viewpoint 

region in the patient (f) and viewpoint vs target region in control (g), highlighting the 

telomeric ends of the corresponding chromosomes. (d, f) Black triangles at the x axis 880 

indicate most likely breakpoint region as determined visually from the inter-

chromosomal Hi-C maps in f. (h) Schematic representation of the reciprocal 

translocation as interpreted from the Hi-C data. (i) Confirmation of BCL6 translocation 

by FISH using a BCL6 Dual Color, Break Apart Rearrangement Probe hybridized to 

the patient‘s tumour sample. A translocation of the BCL6 gene is indicated by 885 

separated red and green signals (green arrows). In addition, two non-rearranged 

red/green fusion signals are seen (yellow arrows).  
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Figure 6. Extensive rewiring of chromatin organisation in DLBCL cells. (a) Insulation 

score changes between DLBCL (patient) and B-cell (control) for all regions in-between 890 
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two consecutive TAD boundaries. (b) Histogram of the differences in average Hi-C 

signal between two consecutive TAD boundaries from patient to control. (c, d, e) 

Examples of de novo TADs emerging in DLBCL showing (from top to bottom: Local 

DLBCL Hi-C, local B-cell Hi-C, difference in local Hi-C (DLBCL – B-cell), insulation 

scores for different window sizes in DLBCL, insulation score in B-cell, difference in 895 

insulation score (DLBCL – B-cell), genes in the region (GENCODE). 
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Supplementary Figure 1. Low-C results are highly similar for different input cell 

numbers. (a) Visual comparison of Hi-C matrices at 50kb resolution from all Low-C 
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libraries in this study. Two different genomic regions are shown as examples. Input cell 900 

numbers are reported to the left of each matrix. (b) PCA on the top 50,000 most 

variable entries in the 100kb resolution Hi-C matrices of contacts between 200kb and 

2Mb (left) and 50kb and 1Mb (right) for all Low-C samples. The plot also includes the 

mESC Hi-C datasets published by Dixon et al. (2012) (Dixon et al. 2012), Du et al 

(2017) (Z. Du et al. 2017a), and the mouse CH12-LX dataset from Rao et al. (2014) 905 

(Rao et al. 2014). Circles denote MboI, triangles denote HindIII in the Low-C samples. 

Dixon et al. used HindIII, Rao et al. and Du et al. used MboI.  
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Supplementary Figure 2. Low-C library complexity is not affected by input cell 

number. (a) Same plot as Fig. 2a, but all datasets have been down sampled to the 

number of valid pairs in the 1M Low-C library for comparison. (b) Line plot of the 910 

average number of unique fragment pairs observed at increasing fragment distances 
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for all Low-C libraries and, additionally, merged Low-C libraries. (c) Average number 

of unique fragment pairs at 100kb distance as a function of the number of valid 

fragment pairs in each library.  
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Supplementary Figure 3. Low-C library statistics. (a-b) Low-C fragment pair statistics 

(a) Total number of fragment pairs in each library. (b) Total number of valid fragment 

pairs after filtering for biases. (c-f) Different types of biases (see Methods) for each 

Low-C library expressed in fraction of total pairs. (c) PCR duplicates. (d) Self-ligated 

fragments. (e) Inward ligation error. (f) Outward ligation error. H=HindIII. 920 
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Supplementary Figure 4. Ligation error plots of Low-C samples using differing 

amounts of input material. Shown are ratios of paired reads facing towards each 

other (red; “inward”-facing, i.e. the first read is on the + strand and the second on the 

– strand) or away from each other (blue; “outward”-facing, i.e. the first mapped read 925 

is on the - strand, the second mapped read is on the + strand) to reads facing in the 

same direction (-/- or +/+) (Cournac et al. 2012; Jin et al. 2013) Dotted lines 

represent cutoffs for filtering read pairs at distances <10kb. 
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Supplementary Figure 5. Contact probability decay with distance (log-log plots) for 930 

each chromosome in the 1k and 1M samples, as well as Dixon et al. (2012) (Dixon et 

al. 2012) and Du et al. (2017) (Z. Du et al. 2017a) mESC Hi-C maps. 
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Supplementary Figure 6. AB compartment reproducibility for each Low-C MboI 

sample. (a) Correlation matrices for chromosome 1. (b) First eigenvector of the 935 

matrices in (a), positive values are coloured blue, negative values red. (c) Scatter plots 

of the eigenvector values in (b) against the eigenvector of the 1M sample with Pearson 

correlation coefficient R indicated in the top left corner. Red line indicates identity. 
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 940 

Supplementary Figure 7. Flow cytometry analysis for HBL1 and Jurkat cells. (a-d) 

Scatter density plots for a HBL1 (B-cell) cell line (a), Jurkat (T-cell) cell line (b), and a 
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mixed HBL1-Jurkat cell population before (c) and after (d) formaldehyde fixation. 

Discontinuous red circles demarcate the cell population of interest. (e-h) Scatter plots 

for double-staining with CD20 (channel one; FL1-H) and CD19 (channel two; FL2-H) 945 

antibodies for HBL1 (e), Jurkat (f) and a mixed HBL1-Jurkat cell populations before (g) 

and after (h) formaldehyde fixation. Red lines demarcate the quadrants for 

positive/negative cell labelling. 
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Supplementary Figure 8. Flow cytometry analysis of PBMCs. (a, b) Scatter density 

plots for the PBMC population before (a) and after (b) cell fixation with formaldehyde. 

Among PBMCs, lymphocytes are shown enclosed on a red discontinuous circle. (c, d) 960 

Scatter plots for double-staining of PBMCs with CD20 (channel one; FL1-H) and CD19 

(channel two; FL2-H) antibodies, before (c) and after (d) formaldehyde fixation. Red 

lines demarcate the quadrants for positive/negative cell labelling. 
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Supplementary Figure 9. Flow cytometry analysis on the MACS sorted populations 965 

from a healthy donor’s PBMCs and a mixture of B- and T-cell population. (a-d) 
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Scatter density plots for the healthy donor PBMCs without B-cells (a, MACS 

unlabelled CDC20- flow through), the healthy donor B-cells (b, MACS elution of 

labelled CD20+ cells), Jurkat (T-cells) from a mixed HBL1-Jurkat mixed cell 

population (c, MACS unlabelled CDC20- flow through), and HBL1 (B-cells) from the 970 

same HBL1-Jurkat mixed population (d, MACS elution of labelled CD20+ cells). 

Discontinuous red circles demarcate the cell population of interest. (e-h) Scatter-plots 

for double-staining of each cell population with CD20 (channel one; FL1-H) and 

CD19 (channel two; FL2-H) antibodies. Scatter plot for the healthy donor PBMCs 

without B-cells (e, MACS unlabelled CDC20- flow through), the healthy donor B-cells 975 

(f, MACS elution of labelled CD20+ cells), Jurkat (T-cells) from a mixed HBL1-Jurkat 

mixed cell population (g, MACS unlabelled CDC20- flow through), and HBL1 (B-cells) 

from the same HBL1-Jurkat mixed population (h, MACS elution of labelled CD20+ 

cells). Red lines demarcate the quadrants for positive/negative cell labelling. 

  980 
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Supplementary Figure 10. Flow cytometry analysis of the patient sample after 

fixation with formaldehyde and MACS sorting. (a-c) Scatter density plots for the 

patient lymphocytes after formaldehyde fixation (a), patient MACS sorted 

lymphocytes without B-cells (b, MACS unlabelled CDC20- flow through), and patient 985 

B-cells (c, MACS elution of labelled CD20+ cells). Lymphocytes are shown enclosed 

on a red discontinuous circle. (d-f) Scatter-plots for double-staining of each cell 
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population with CD20 (channel one; FL1-H) and CD19 (channel two; FL2-H) 

antibodies, for the patient lymphocytes after formaldehyde fixation (d), patient MACS 

sorted lymphocytes without B-cells (e, MACS unlabelled CDC20- flow through), and 990 

patient B-cells (f, MACS elution of labelled CD20+ cells). Red lines demarcate the 

quadrants for positive/negative cell labelling.  
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Supplementary Figure 11. Unbiased detection and characterisation of structural 

rearrangement at ANXA3 in the DLBCL sample. (a) Whole-genome virtual 4C plot for 
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two viewpoints on chromosome 4 (orange, control in blue). (b, c) Zoom-in of the virtual 995 

4C plots to the viewpoint (b) and target (c) regions. (d, e) Local Hi-C maps of the 

viewpoint (d) and target (e) regions. (f, g) Inter-chromosomal Hi-C maps of target vs. 

viewpoint region in the patient (f) and viewpoint vs. target region in control (g). 
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 1000 

 

Supplementary Table 1. Step-by-step Low-C experimental protocol. 

Table provided as a separate Excel file. 

 

Supplementary Table 2. Overview of Low-C samples in this study and their respective 1005 

numbers of read pairs. 
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1M 1 M 45373559 25251575  18798179  37499845  
1M 2 M 45521764 25140413  18701666  
100k 1 M 82904353 42649971  32408508  53300749  
100k 2 M 53221423 27414542  20892241  
50k 1 M 60840152 44930010  33976593  65130281  
50k 2 M 66595079 41112150  31153688  
25k 1 M 62322544 42866712  31680705  62953595  
25k 2 M 63250992 42279423  31272890  
10k 1 M 65602065 44080826  31497073  63027306  
10k 2 M 65489378 44080826  31497073  
1k 1 M 86616647 51722407  22937947  46290053  
1k 2 M 89231005 52922902  23352106  
5M 1 H 123453028 89807393  49189133  49189133  
100k 1 H 140373791 105378368  51030522  51030522  
DLBCL 1 M 250881396 171870902 111898247 

232446650 DLBCL 2 M 252231324 174080064 113844746 
DLBCL 3 M 14289185 10030808 6703657 
B-Cell 1 M 150626741 103327894 75175780 

158093470 B-Cell 2 M 155140165 107468078 77957359 
B-Cell 3 M 9001104 6340367 4960331        

*M = MboI, H = HindIII 
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Supplementary Table 3. Numbers of valid read pairs in cis/trans as a measure of 

quality control. 1010 
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5M HindIII 42641237 6500291 0.868 6.560 0.991 
100k HindIII 43690020 7297432 0.857 5.987 0.991 
1M MboI 30513663 6949072 0.815 4.391 0.987 
100k MboI 43711297 9549094 0.821 4.578 0.988 
50k MboI 55375829 9698299 0.851 5.710 0.990 
25k MboI 52464537 10439922 0.834 5.025 0.989 
10k MboI 54891458 8080917 0.872 6.793 0.992 
1k MboI 39768358 6476292 0.860 6.141 0.991 
DLBCL MboI 142651132 89401751 0.615 1.596 0.966 
B-cell MboI 98490584 59345608 0.624 1.660 0.967 

 

 

Supplementary Table 4. List of genomic regions and genes ranked by magnitude of  

conformational differences between the DLBCL and B-cell Hi-C maps. 

Table provided as a separate Excel file. 1015 
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