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Abstract 
Cancers	converge	onto	shared	patterns	that	arise	from	constraints	placed	by	the	biology	

of	the	originating	cell	lineage	and	microenvironment	on	recurrent	programs	driven	by	

oncogenic	events.	This	structure	should	be	transferable	to	molecular	stratification.	We	

exploit	 expression	 data	 resources	 and	 a	 parsimonious	 and	 computationally	 efficient	

network	analysis	method	to	define	consistent	expression	modules	 in	colon	and	breast	

cancer.	 Comparison	 between	 cancer	 types	 identifies	 principles	of	 gene	 co-expression:	

cancer	hallmarks,	 functional	and	structural	gene	batteries,	copy	number	variation	and	

biology	of	originating	lineage.	Mapping	outcome	data	at	gene	and	module	level	onto	these	

networks	generates	a	detailed	 interactive	 resource.	Testing	 the	utility	of	 the	 resulting	

modules	in	TCGA	data	defines	specific	associations	of	module	expression	with	mutation	

state,	 identifying	striking	associations	such	as	mast	cell	gene	expression	and	mutation	

pattern	in	breast	cancer.	These	analyses	provide	evidence	for	a	generalizable	framework	

to	enhance	molecular	stratification	in	cancer.	
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Introduction 
A	 primary	 driver	 in	 tumor	 classification	 is	 enhanced	 precision	 through	 molecular	

characterization.	 Such	 analysis	 provides	 an	 increasingly	 complex	 view	 of	 individual	

tumor	 biology	 [1],	 resulting	 in	 the	 concept	 of	 combinatorial	 characterization	 using	

multiple	platforms.	An	extension	 is	provided	by	pan-cancer	 classification	where	 cases	

associated	with	key	molecular	features	are	combined	potentially	across	the	boundaries	

of	conventional	classification	[2].		

Gene	 expression-based	 classifications	 have	 defined	 both	 prognostically	 and	

pathogenetically	distinct	cancer	subtypes	[3-6],	which	have	preferential	association	with	

mutational	and	cytogenetic	profiles	[7].	Use	of	reduced	sets	of	genes	allows	recognition	

of	subtypes	in	applied	classifications	[8,	9].	The	cancer	hallmark	paradigm	postulates	that	

aberrantly	regulated	features	assemble	in	modular	fashion	to	promote	malignancy	[10].	

Thus,	 an	 integrated	assessment	of	 these	 features	might	also	 take	a	modular	approach	

within	individual	cancers.		

With	multiple	data	sets	the	pattern	of	correlation	between	individual	pairs	of	genes	can	

be	used	 to	determine	 intrinsic	modules	of	 gene	 co-expression	[11].	Exemplifying	how	

modular	patterns	of	co-expression	can	be	identified	within	the	overall	profile	of	a	tumor,	

gene	expression	allows	inference	of	tumor	infiltrating	immune	populations	[12,	13].		

Existing	expression	data	sets	provide	an	extensive	resource	for	individual	types	of	cancer,	

which	 sit	 alongside	multiparameter	 analysis	 across	 diverse	 cancer	 types	 in	 resources	

such	as		TCGA.	Applying	a	common	data-led	analysis	strategy	of	gene	co-expression	to	

different	 cancer	 types,	 should	 discover	 shared	 modules	 of	 expression	 linked	 to	 the	

neoplastic	state	between	cancer	types	alongside	features	of	established	expression-based	

classifications.	 Previous	 successful	 methods	 for	 network	 analysis	 have	 provided	

significant	insights	in	model	systems	and	clinical	data	[14-17].	A	challenge	in	network-

based	 analysis	 is	 high	 density	 of	 connectivity,	 but	 this	 can	 be	 successfully	 negotiated	
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using	approaches	that	focus	onto	modular	patterns	of	gene	expression	[18].	Here	we	test	

a	conceptually	simple,	parsimonious	approach	to	the	problem	of	connectivity	reduction,	

as	means	to	derive	modular	expression	networks	and	a	platform	that	facilitates	linkage	

between	pre-existing	gene	 expression	assets	and	exploration	of	multi-parameter	data	

such	as	TCGA.	

 

Results 

Parsimony enhances gene expression network clustering 
We	reasoned	that	a	parsimonious	approach	in	which	only	a	restricted	number	of	the	most	

significant	correlations	(edges)	per	gene	(node)	are	retained	might	provide	a	 focusing	

effect	in	network	analysis.	To	address	this,	we	developed	a	method	in	which	only	the	most	

highly	 correlated	 genes	 are	 retained	 for	 each	 index	 gene.	 These	 are	 assembled	 into	 a	

correlation	matrix	 in	which	an	 index	gene	may	 re-acquire	additional	 correlations	 if	 it	

represents	a	 common	retained	partner	of	other	genes	 in	 the	matrix	 (Fig.	1A,	S1A;	 full	

pairwise	gene	correlation	lists	online).	The	resulting	parsimonious	correlation	matrices	

were	used	in	network	generation.		

We	applied	this	approach	to	expression	data	sets	for	breast	cancer	(BRCA)	and	colorectal	

cancer	(CRC).	Clusters	of	gene	co-expression	were	derived	from	resulting	matrices	using	

three	 approaches:	 hierarchical	 clustering,	 K-means	 clustering	 or	 a	 computationally	

efficient	network	tool,	fast	unfolding	of	communities	in	large	networks	(FastUnfold)	[19].	

In	each	instance	clusters	were	generated	from	matrices	in	which	genes	retained	all	edges	

or	 compared	 to	 parsimonious	 correlation	 matrices	 retaining	 3	 to	 10	 edges	 per	 gene	

(Table	S1).	The	resulting	clusters	(subsequently	referred	to	as	modules,	Table	S2)	of	co-

expression	were	then	tested	for	the	separation	of	known	biology,	based	on	enrichment	

of	 ontology	 and	 signature	 terms.	 This	was	 assessed	 as	 summative	 enrichment	 across	

signature	 terms	 and	 purity	 of	 enrichment,	 examining	 relative	 separation	 of	 biology	
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between	 modules	 (Fig.	 1C).	 	 The	 network	 method	 (FastUnfold)	 provided	 the	 most	

significant	enrichment	and	segregation	of	ontology	terms.	Edge	reduction	improved	the	

segregation	 of	 biology,	 and	 increasingly	 stringent	 edge-reduction	 enhanced	 the	

enrichment	of	ontologies/signatures	and	purity	of	segregation	between	modules	across	

both	cancers	(Fig.	1C).	Indeed,	there	was	no	significant	benefit	to	retaining	more	than	3	

edges	 per	 gene	 (EPG3).	 	 We	 call	 the	 EPG3	 matrix	 clustered	 with	 FastUnfold	 a	

parsimonious	gene	correlation	network	analysis	(PGCNA).		Robustness	of	clustering	was	

tested	using	the	top	100	PGCNA	clusterings,	showing	that	for	each	cancer	type	modules	

retained	a	high	proportion	of	the	same	genes	across	different	clustering	runs	(Fig.	S1B,	

C).	For	each	cancer	type	the	optimal	PGCNA	clustering	based	on	ontology	enrichment	was	

taken	 forward	 for	 further	 analysis.	 Initially	 the	 networks	 were	 visualized	 as	 an	

interactive	web-based	 resource	 (Fig.	2).	To	enhance	network	utility	additional	 factors	

were	 overlaid	 providing	 inter-related	 visualizations	 of	 the	 data	 viewed	 through	 the	

networks	(Fig.	S2	&	http://pgcna.gets-it.net/).	

Biology of network modules and mapping to expression-based cancer classifications 
Detection	of	BRCA	intrinsic	sub-classes	has	been	refined	into	expression-based	tools	such	

as	the	PAM50	classifier		[5,	4,	8].	Mapping	genes	linked	to	these	intrinsic	classes	onto	the	

network	 identifies	BRCA_M6	as	 the	 luminal	module	 (Fig.	2A	 [i],	 S2A-C,	online).	Genes	

associated	with	ERBB2	amplified	breast	cancer	map	on	to	BRC_M5	(Fig.	2A	[ii]),	epithelial	

genes	 defining	 basal	 breast	 cancer	 overlap	 with	 those	 linked	 to	 normal-like	 breast	

cancers	 and	 map	 onto	 module	 BRCA_M14	 (Fig.	 2A	 [iii]).	 While	 genes	 linked	 to	 cell	

proliferation	which	provide	a	shared	feature	of	Luminal	B	and	Basal	type	breast	cancers	

map	onto	BRCA_M7	(Fig.	2A	[iv]).		

The	CRC	consensus	molecular	subtype	classification	recognizes	four	subtypes	[6]:	CMS2	

containing	genes	 linked	to	canonical	enterocyte-like	differentiation	maps	onto	module	

CRC_M3	(Fig.	2B	[i]);	CMS3	reflects	goblet-cell	and	metabolic	differentiation	and	maps	
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onto	 CRC_M7	 (Fig.	 2B	 [ii]);	 CMS1	 identifies	 microsatellite	 unstable	 cancers	 through	

interferon	 response	 genes	 and	 maps	 onto	 CRC_M32	 (Fig.	 2B	 [iii]);	 and	 CMS4	

encompassing	mesenchymal	dominant	CRC	maps	onto	CRC_M8	(Fig.	2B	[iv])	(Fig.	S2D-F,	

online).	 Therefore,	 the	 PGCNA	 networks	 successfully	 place	 current	 paradigms	 of	

expression-based	 classification	 in	 BRCA	 and	 CRC	 in	 the	 context	 of	 wider	 expression	

patterns	for	each	cancer.	

Assessment	of	network	clustering	success	was	based	on	the	enrichment	and	segregation	

of	 gene	 signatures	 between	 the	 resulting	modules.	 These	 enrichments	 (Table	 S3,	 S4)	

were	 summarized	 to	 illustrate	 the	most	 significantly	enriched	ontology	and	signature	

terms	between	modules	(Fig.	3A,	B	&	S3A,	B).	Purity	of	segregated	biology	was	reflected	

in	 the	 separation	 of	 enriched	 signatures	 between	 individual	 modules.	 A	 summary	

designation	was	assigned	to	each	module	based	on	a	selectively	enriched	term.	

We	next	tested	whether	recurrent	features	of	cancer	biology	could	be	identified	in	the	

comparison	of	modules	between	the	cancer	types.	Pairwise	comparison	demonstrated	a	

high	 degree	 of	 similarity	 at	 the	 level	 of	module	 gene	membership	 (Fig.	 3C,	 S3C)	 and	

ontologies/signatures	associated	with	each	module	(Fig.	3D,	S3D).		

Considering	cancer	hallmarks	recurrent	modules	could	be	identified	relating	to	pathways	

linked	 to	 cell	 cycle,	 immune	 response,	 EMT/stroma	 and	 angiogenesis.	 Additional	

recurrent	modules	were	linked	to	co-regulated	gene	batteries	such	as	the	IFN-response	

or	growth	factor	signaling	pathways,	or	structural	gene	clusters	such	as	Histone,	HOX	and	

immunoglobulin	 genes.	 Moreover,	 these	 modules	 exhibited	 shared	 enrichments	 for	

signatures	 of	 transcription	 factor	motifs	 linked	 to	 gene	 promoters	 (Table	 S5)	 [20].	 In	

BRCA	the	impact	of	chromosomal	copy	number	variation	on	gene	expression	in	cis	has	

been	extensively	analyzed	[21].	Such	patterns	of	gene	co-expression	were	recovered	in	

the	networks	and	proved	highly	reproducible	between	BRCA	and	CRC,	with	the	majority	
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of	BRCA	modules	linked	to	specific	chromosomal	region	having	a	direct	counterpart	in	

CRC	(Fig.	3	C,	D).		

Hence,	the	comparison	between	cancer	types	identified	principle	determinants	of	gene	

co-expression	 patterns.	 These	 reflect	 the	 impact	 of	 cancer	 hallmarks,	 functional	 and	

structural	 gene	 batteries,	 and	 copy	 number	 variation,	which	 are	 overlaid	on	modules	

linked	to	the	specific	biology	of	the	originating	cell	type.	

Module neighborhoods link to epithelial differentiation pathways 
Within	 the	 individual	 modules,	 the	 network	 sub-structure	 identifies	 genes	 with	 the	

highest	degrees	of	correlation.	To	resolve	whether	these	patterns	linked	to	discrete	cell	

states	we	reran	FastUnfold	and	signature	enrichment	analysis	for	modules	independently	

and	defined	the	resulting	sub-structure	as	module	neighborhoods	(Fig.	4,	Fig.	S4,	Table	

S6	&	online).		

In	CRC	features	of	epithelial	differentiation	are	encompassed	in	CRC_M3	(enterocyte)	and	

CRC_M7	(goblet	cell).	The	enterocyte	module	encompassed	neighborhoods	enriched	for	

genes	 linked	 to	 the	WNT-signaling	 pathway	 (neighborhood	 9,	 CRC_M3.n9),	 including	

LGR5	[22],	through	to	neighborhood	CRC_M3.n1	enriched	for	genes	characteristic	of	the	

mature	 enterocyte	 state	 (CA1,	 CA4,	 CD177,	 MS4A12	 and	 SLC26A3),	 recapitulating	 co-

expression	observed	in	single	cell	analysis	of	colonic	epithelium	(Fig.	4A)	[23].	The	goblet	

cell	 module	 divides	 into	 11	 neighborhoods	 of	 which	 5	 could	 be	 assigned	 to	 known	

ontology	 associations,	 for	 example	 CRC_M7.n10	 linked	 to	 glycolysis	 and	 glucose	

metabolism	and	CRC_M7.n11	linked	to	defense	responses	(Fig.	4B,		S4B).	Neighborhood	

CRC_M7.n8,	 lacking	enrichment	of	established	ontology	terms,	 included	the	hub	genes	

FCGBP	and	ST6GALNAC1	as	well	as	SPINK4	and	MUC2,	that	are	characteristic	goblet	cell	

markers	 linked	 to	 CMS3	 CRC	 [23,	 6].	 The	 closely	 linked	 neighborhood	 CRC_M7.n1	

included	hub	genes	REG4,	AGR2	and	AGR3	(Fig.	4B,	online).	Notably		REG4	has	recently	

identified	as	a	marker		of	deep	crypt	secretory	cells	[24].		
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In	 BRCA	 the	 luminal	 module	 (BRCA_M6)	 divides	 into	 9	 neighborhoods.	 Of	 these	

BRCA_M6.n8	is	enriched	for	core	ESR1	target	genes	and	encompasses	GATA3	and	ESR1	

as	hub	nodes	(Fig.	4D,	Table	S6,	online)		[25,	26].	Genes	that	contribute	to	a	basal-like	

classification	and	to	epithelial	biology	fall	in	BRCA_M14.	BRCA_M14.n8	includes	the	hub	

gene	SFRP1	as	well	as	EGFR	and	FOXC1,	PAM50	classifier	genes	used	to	define	basal	breast	

cancer	 (Fig.	 4C,	 Table	 S6,	online).	 A	 subset	of	basal	 breast	 cancer	 classifier	genes	 are	

connected	 to	 the	 cytokeratin	 gene	 KRT17	 in	 BRCA_M14.n7	 encompassing	 genes	

associated	with	epithelial	and	epidermal	differentiation	and	linked	to	normal-like	breast	

cancer	classification	(Fig.	4C,	Table	S6).	Thus,	the	structure	of	gene	neighborhoods	in	the	

epithelial	modules	 reflects	 patterns	 of	 gene	 expression	 observed	 in	 differentiation,	 in	

both	CRC	and	BRCA.	

Networks as multi-layered tools to explore survival associations 
To	provide	resources	that	explore	associations	of	expression	with	survival,	we	overlaid	

meta-information	 including	 association	 of	 gene	 expression	with	 hazard	 ratio	 (HR)	 of	

death	(Fig.	5,	Fig.	S5,	online).	The	integration	of	multiple	data	sources	retained	the	ability	

to	detect	robust	HR	associations.	In	the	BRCA	network,	considered	without	histological	

subdivision,	this	recovered	the	separation	of	good	and	adverse	outcome	between	luminal	

(BRCA_M6)	and	basal	type	(BRCA_M14)	gene	expression	(Fig.	5A,	S5A).	At	a	module	level	

cell	cycle	(BRCA_M7)	showed	the	strongest	adverse	outcome	association,	which	was	also	

evident	for	modules	linked	to	amplified	chromosomal	regions	that	cluster	with	the	cell	

cycle	module	(such	as	BRCA_M24	&	M37).	Heterogeneity	 in	HR	association	of	module	

genes,	as	shown	by	spread	in	the	violin	plot	across	the	neutral	line,	is	a	particular	feature	

of	the	stem	cell/EMT	(BRCA_M9)	and	immune	response	modules	(BRCA_M29).	The	latter	

encompasses	several	distinct	neighborhoods	(Fig.	S5B),	reproducing	the	ability	to	impute	

immune	cell	populations	in	cancer	immune	response	from	gene	expression	data.	These	

separate	into	good	outcome	associations	centered	on	T/NK-	and	B-lymphocyte	genes	or	
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components	of	MHC	class	II,	as	opposed	to	genes	characteristic	of	monocyte/macrophage	

populations	such	as	SLAMF8	and	CD163	link	to	adverse	outcome.		

In	 CRC,	 the	 enterocyte	 (CRC_M3)	 and	 interferon	 response	 modules	 (CRC_M32)	 were	

linked	 to	 good	 outcome,	 while	 adverse	 outcome	 associations	 centered	 on	 the	

EMT/angiogenesis	 module	 (CRC_M8)	 and	 modules	 linked	 to	 specific	 chromosomal	

regions	(Fig.	5B,	S5C).	 	The	three	modules	with	strongest	adverse	outcome	association	

were	HOXA	(CRC_M34),	growth	factor	signaling	(CRC_M21)	and	nucleosome	(CRC_M35).	

In	CRC	the	immune	response	module	(CRC_M26)	also	showed	a	heterogenous	pattern,	

distinct	from	the	near	homogenous	good	outcome	association	of	the	IFN	module.	Poor	

outcome	associated	with	genes	linked	to	macrophage/monocyte	populations	and	again	

contrasted	with	good	outcome	for	B-	and	T/NK-cell	linked	gene	expression	(Fig.	S5D).	

Consistent	 with	 previous	 analysis	 [13],	 the	 immunoglobulin	 modules	 (BRCA_M34	 &	

CRC_M30)	indicative	of	tumor	associated	plasma	cells	were	linked	to	good	outcome,	but	

with	a	relatively	stronger	signal	in	CRC.			

Network modules provide a platform for molecular stratification  
Having	validated	PGCNA	as	a	tool	to	interrogate	the	integrated	training	data	sets,	we	next	

tested	the	modules	as	a	platform	to	explore	TCGA	data	[7,	27].	First,	we	used	the	25	most	

representative	 genes	 (nodes)	 of	 each	 module	 to	 generate	 module	 expression	 values	

(MEV)	and	assessed	module	co-expression	by	hierarchical	clustering.	In	both	BRCA	and	

CRC	the	overall	pattern	of	module	co-expression	in	RNA-seq	data	was	closely	related	to	

that	in	array	derived	training	data	sets	(Fig.	S6)	supporting	the	use	of	MEVs	as	a	platform	

for	analysis	of	TCGA	data.			

Applying	 the	 MEVs	 in	 hierarchical	 clustering	 segregated	 BRCA,	 initially	 without	

considering	histological	type,	into	branches	according	to	expression	of	basal,	luminal	and	

mesenchymal	related	modules.	In	the	latter	this	distinguished	subsets	or	mesenchymal	

from	mixed	mesenchymal/angiogenic	BRCA	that	included	the	majority	of	lobular	breast	

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 19, 2018. ; https://doi.org/10.1101/372557doi: bioRxiv preprint 

https://doi.org/10.1101/372557
http://creativecommons.org/licenses/by/4.0/


	 10	

cancers	(Fig.	S7A).	Within	these	major	branches	further	heterogeneity	was	evident	across	

other	network	modules,	sub-dividing	the	primary	branches	according	to	wider	patterns	

of	modular	gene	expression.	Such	subdivision	was	also	evident	within	histological	types	

(Fig.	 S8A)	 and	 for	 example	 illustrated	 a	 distinctive	 pattern	 of	 MEV	 expression	 in	

mucinous	carcinomas.		

Extending	this	approach	to	CRC	the	clustering	divided	into	three	main	branches	(Fig.	S7B)	

corresponding	to	the	primary	features	of	the	consensus	molecular	subtypes.	However,	

the	network	modules	again	illustrated	heterogeneity	within	these	primary	branches.	This	

remained	evident	after	separation	by	mutational	load.	Notably	a	subset	of	highly	mutated	

CRC	was	identifiable	as	deficient	in	immune	and	EMT/angiogenesis	module	expression	

(Fig.	S8B).	

Thus,	 MEVs	 can	 be	 employed	 to	 capture	 both	 primary	 features	 related	 to	 existing	

consensus/intrinsic	 classes	 alongside	 features	 of	 gene	 expression	 across	 the	 wider	

characteristics	of	a	cancer	type.	

Network modules show distinctive mutational associations in BRCA and CRC 
To	integrate	module	expression	with	gene	mutation	we	first	considered	BRCA	as	a	single	

entity.	This	demonstrated	a	primary	division	of	enrichment	or	anti-enrichment	of	TP53	

versus	 CDH1,	 PIK3CA,	 GATA3,	MAP3K1,	 KMT2C	 and	NCOR1	 mutation	 (Fig.	 6A).	 TP53	

mutation	 positively	 correlated	 with	 the	 cell	 cycle	 and	 basal	 modules,	 and	 some	

chromosomal	 regional	 modules.	 Cell	 cycle	 as	 well	 as	 the	 immune	 response	 and	 IFN	

modules	were	additionally	distinguished	by	a	positive	association	with	diverse	additional	

mutational	 targets.	 The	 luminal,	 EMT,	 angiogenesis	 and	 related	 modules	 were	

significantly	 anti-correlated	 with	 TP53	 mutation	 and	 positively	 associated	 with	

combinations	of	mutations	in	CDH1,	PIK3CA,	GATA3,	MAP3K1,	KMT2C	and	NCOR1.		

GATA3	mutations	can	be	subdivided	between	DNA-binding	domain	or	carboxy-terminus,	

with	the	latter	including	frameshift	mutations.	The	potential	value	of	MEVs	as	a	tool	for	
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assessing	 selective	 patterns	 of	 gene	 expression	 is	 supported	 by	 the	 observation	 that	

GATA3	 mutations	 affecting	 the	 carboxy-terminus	 are	 selectively	 associated	 with	

nucleosome	 module	 expression.	 Extending	 the	 analysis	 to	 BRCA	 after	 division	 by	

histological	subtype,	the	general	pattern	observed	in	all	BRCA	irrespective	of	histological	

type	was	evident	when	considering	ductal	BRCA	in	isolation	(Fig.	S9A).	Lobular	BRCA	is	

more	molecularly	 homogenous,	 reflected	 in	 a	 sparse	 correlation	 pattern,	 nonetheless	

also	retaining	features	observed	in	BRCA	as	a	whole	(Fig.	S9B).	

For	 CRC,	 the	 pattern	was	 impacted	 by	 the	 high	 overall	mutation	 load	 (Fig.	 6B,	 S9C).	

Associations	divided	around	modules	linked	with	both	TP53	and	APC	mutation	and	those	

that	correlated	with	a	high	mutation	load	across	a	wide	range	of	target	genes	and	that	

were	 neutral	 or	 anti-correlated	 with	 TP53	 and	 APC	 mutation.	 This	 separated	 the	

enterocyte	module,	linked	to	TP53	and	APC	mutation,	and	the	goblet	cell	module	linked	

to	high	mutation	load	and	KRAS	mutation,	with	KRAS	mutation	also	correlating	with	the	

growth	 factor	 signaling	 module.	 	 In	 CRC	 the	 cell	 cycle	 module	 was	 not	 positively	

correlated	with	TP53	mutation,	 but	 instead	was	 linked	 to	 the	 broad	 swathe	 of	 highly	

mutated	target	genes.	The	modules	most	strongly	linked	to	mutation	load	encompassed	

genes	 from	the	vicinity	of	 the	TP53	on	chr17p,	chr18	and	components	of	 the	 immune	

response	and	 IFN	signaling.	Overall	 this	 reinforces	 the	division	of	CRC	 into	 the	major	

molecular	 pathways	 of	 TP53	 and	 APC	 mutation	 versus	 hypermutational	 genomic	

instability	and	supports	 the	broadly	different	patterns	of	molecular	 features	 linked	 to	

patterns	of	goblet	cell	or	enterocyte	module	expression	in	CRC.		

Patterns of mutation link to intensity of module expression 
Finally,	 we	 addressed	 the	 potential	 value	 of	 module	 expression	 intensity.	 The	 BRCA	

luminal	MEV	intensity	showed	a	strong	positive	correlation	with	CDH1,	MAP3K1,	GATA3	

and	PIK3CA	mutations	and	profound	anti-correlation	with	TP53	mutation	(Fig.	6C).	This	

was	paralleled	by	the	opposite	association	of	cell	cycle	(Fig.	6F)	and	basal	(Fig.	6G)	MEV	
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intensity	with	 these	mutations.	 The	 angiogenesis	module	 separated	 a	 strong	 positive	

association	 of	 expression	 intensity	with	CDH1	 mutation	 status	 from	 either	GATA3	 or	

MAP3K1	mutation.	By	contrast	the	mast	cell	MEV	outperformed	the	luminal	module	as	a	

ranking	variable	in	relation	to	CDH1	and	MAP3K1	mutation	across	both	lobular	and	ductal	

type	BRCA	(Fig.	6D),	which	was	notable	given	the	link	between	mast	cell	module	and	good	

outcome.	 Contrasting	 with	 this	 was	 the	 nucleosome	 module	 which	 when	 used	 as	 a	

ranking	variable	emphasized	selective	positive	correlation	with	GATA3	3’-mutations	(Fig.	

6H),	and	anti-correlation	with	CDH1	mutation	status.	As	part	of	this	specific	association,	

both	nucleosome	module	expression	and	GATA3	3’	mutations	were	enriched	in	mucinous	

BRCA	(p-value	0.0004).	We	conclude	that	use	of	MEVs	as	ranking	variables	illustrated	a	

principle	that	the	extremes	of	module	expression	selected	for	increasingly	stereotyped	

tumors	with	more	distinct	patterns	of	mutation	association.		

 

Discussion 
We	set	out	to	test	whether	the	modular	nature	of	gene	co-expression	could	be	used	to	

derive	expression	codes	summarizing	diverse	features	of	cancer	biology.	Furthermore,	

whether	 these	 could	 enhance	 molecular	 stratification	 by	 providing	 a	 link	 between	

existing	assets	of	 large	gene	expression	data	and	resources	of	multi-parameter	cancer	

exploration	exemplified	by	TCGA.		

A	striking	finding	is	that	radical	pruning	of	edges	in	expression	correlation	matrices	prior	

to	 network	 analysis	with	 FastUnfold	 allows	 remarkably	 efficient	 recovery	 of	 biology.	

Neighborhoods	of	highly	correlated	genes	within	network	modules	recover	patterns	of	

gene	co-expression	observed	in	previous	single	cell	analysis	of	cellular	sub-populations	

[23].	 	The	patterns	of	 association	 seen	at	 the	gene	neighborhood	 level	 typified	by	 the	

immune	response	modules	recapitulate	features	seen	in	previous	analyses	[13,	12],	while	
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allowing	extension	to	the	single	gene	level.	Thus,	the	network	and	its	modular	structure	

may	be	used	at	different	levels	to	separate	or	coalesce	cellular	features.	

CRC	 and	 BRCA	 show	 a	 remarkable	 communality	 in	 gene	 co-expression	 patterns.	 The	

shared	biology	supports	a	set	of	core	principles	that	underpin	patterns	of	co-expression	

in	cancer.	These	can	be	summarized	as	(1)	genes	linked	to	cancer	hallmark	features	such	

as	 cell	 cycle,	 EMT,	 angiogenesis,	 and	 immune	 response;	 (2)	 functional	 gene	 batteries	

linked	to	either	specific	pathways	such	as	 the	 IFN-response	or	growth	factor	receptor	

signaling	or	to	structural	clusters	of	co-regulated	genes;	and	(3)	to	co-expression	related	

to	 copy	number	variation.	 In	each	case	 these	 shared	drivers	are	overlaid	on	modules	

derived	from	the	selective	biology	of	the	originating	lineage.		

As	 a	 platform	 from	 which	 to	 enrich	 molecular	 stratification,	 the	 networks	 recover	

modules	that	map	closely	onto	existing	classifications	for	both	BRCA	and	CRC,	and	place	

these	in	a	wider	context.	Using	hub	genes	to	generate	MEVs	allowed	the	integration	of	

expression	with	mutation	profiles	in	the	TCGA	resource	at	data	set	and	case-by-case	level,	

in	 effect	 exploring	 the	 TCGA	 data	 from	 the	 perspective	 of	 the	 deep	 expression	 data	

available	 for	 BRCA	 and	 CRC.	 Together	 these	 provide	 evidence	 that	 molecular	

classification	 may	 be	 enriched	 by	 using	 MEVs	 as	 a	 gene	 expression	 barcode,	

complementing	current	paradigms.	

The	 approach	 we	 describe	 here	 has	 both	 disease-specific	 and	 general	 relevance.	 It	

provides	an	approach	for	extracting	useful	networks	that	can	be	applied	effectively	 to	

diverse	clinical	and	experimental	data	sets,	while	also	generating	a	mineable	resource,	

and	 illustrates	how	resulting	network	modules	might	be	used	to	sit	alongside	existing	

expression-based	classifications	to	enhance	molecular	stratification.	
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Figure Legends 

Figure 1. Process outline and validation of parsimony in network generation. 
(A)	 Graphical	 outline	 of	 the	 methodological	 steps.	 Networks	 and	 linked	 resources	

available	at	http://pgcna.gets-it.net/	(B)	Violin	plots	of	the	distribution	module	numbers	

from	FastUnfold	clustering	of	matrices	with	different	levels	of	edge	reduction	(edges	per	

gene	 EPG).	 	 Upper	 panel	 BRCA,	 lower	 panel	 CRC.	 (C)	Distribution	 of	 gene	 signature	

enrichment	 observed	 with	 FastUnfold	 (n=100	 runs	 per	 EPG),	 hierarchical	 clustering	

(with	different	distance	metrics;	n=21	runs	per	EPG)	or	K-means	clustering	(3	different	

K;	n=50	runs	per	EPG).		Upper	panel	BRCA,	lower	Panel	CRC.		Violin	plot	distribution	with	

median	(blue	square)	and	IQR.	

Figure 2. PGCNA network visualization for BRCA and CRC 
(A)	 BCRA	network	with	modules	 color-coded,	modules	overlapping	 significantly	with	

those	 in	 CRC	 share	 a	 common	 color.	 Modules	 corresponding	 to	 intrinsic	 BRCA	

classification	 (i)	 luminal	 (BRCA_M6),	 (ii)	 ERBB2/HER2	 (BRCA_M5),	 (iii)	 basal/normal	

(BRCA_M14),	 (iv)	 cell	 cycle	 (BRCA_M7).	 	 (B)	 CRC	 network,	 highlighted	 modules	

correspond	to	consensus	molecular	subtypes	of	CRC	(i)	CMS2-enterocyte	(CRC_M3),	(ii)	

CMS3-metabolic/goblet	 (CRC_M7),	 (iii)	 CMS1-hypermutated	 (CRC_M32),	 (iv)	 CMS4-

mesenchymal	 (CRC_M8).	 	 Fully	 annotated	 versions	 in	 Fig.	 S2,	 and	 http://pgcna.gets-

it.net/.	

Figure 3. Module biology and between cancer analysis identifies principles of gene co-
expression 
Heatmaps	of	gene	signature	enrichment	between	modules	(A)	BRCA,	(B)	CRC.	Significant	

enrichment	 or	 depletion	 illustrated	 on	 red/blue	 scale,	 x-axis	 (modules)	 and	 y-axis	

(signatures).	Hierarchical	clustering	according	to	gene	signature	enrichment	(using	top	

15	 signatures	 per	module;	 FDR	<0.05).	 Scalable	 version	 in	 Fig.	 S3.	 (C)	&	 (D)	Module	

relationship	between	cancers	analyzed	using	hypergeometric	test	displayed	as	pairwise	
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comparison	matrix.	Significance	of	overlap	displayed	as	p-values	on		indicated	color	scale	

(p-values	 <	 0.001);	 overlap	 by	 (C)	 module	 gene	 membership,	 (D)	 enriched	 gene	

signatures.	Grey	side	bars	illustrate	maximal	significance	for	module	match.	Module	class	

Cancer-Hallmark:	gray,	Cell-of-origin:	blue,	Chromosome-Region:	cyan,	Functional-Gene-

Battery:	yellow,	Structural-Gene-Battery:	orange	and	Unassigned:	white.	

Figure 4. Module neighborhoods provide fine-grained resolution 
Neighborhoods	within	modules	are	displayed	by	color	code,	interactive	version	online.	

(A)	 CRC_M3,	 enterocyte	 module,	 expanded:	 CRC_M3.n9,	 WNT-signaling	 (blue),	 and	

CRC_M3.n1,	 superficial	 enterocyte	 (orange).	 (B)	 CRC_M7,	 goblet	 metabolic	 module,	

expanded:	 CRC_M7.n8,	 classical	 goblet	 cell	 and	 CMS3	 genes	 (purple),	 and	 CRC_M7.n1	

putative	 deep	 secretory	 cell	 neighborhood	 (dark	 pink).	 (C)	 BRCA_M14,	 basal/normal	

module,	expanded:	BRCA_M14.n8	(blue),	basal	classifier	genes,	and	BRCA_M14.n7	(pink),	

epithelial/epidermal	 differentiation.	 (D)	 BRCA_M6,	 luminal	 module,	 expanded:	

BRCA_M6.n8,	GATA3	and	ESR1	neighborhood	(yellow).	

Figure 5. Networks as multilayered tools to explore survival association  
BRCA	(A)	&	CRC	(B)	meta-information	overlay.	Left	to	right:	module	color	code,	median	

expression	 percentile	 (relative	 intensity	 of	 expression)	 across	 data	 sets,	 median	

expression	 dispersion	 (Quartile	 coefficient	 of	 dispersion,	 variation	 between	

samples/patients)	 within	 data	 sets,	 and	 association	 of	 gene	 expression	 with	 meta-

analysis	HR	(HR)	of	death.	Color	scales:	expression	dispersion	and	variance	blue	(least)	

to	red	(most);	outcome	blue	(low	HR	-	good	outcome)	to	red	(high	HR	-	poor	outcome).	

Lower	 panels,	 ranked	module	 level	 association	 with	 HR	 of	 death.	 Distribution	 of	 HR	

associations	for		module	genes	with	p-value	<	0.05,	along	with	median	(blue	square)	and	

IQR.		
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Figure 6. Network modules show distinctive patterns of mutational association  
Correlations	of	MEV	with	mutation	status	of	commonly	mutated	genes	in	TCGA	data	(A)	

BRCA	&	(B)	CRC.	Significance	of	Spearman’s	Rank	correlation	of	MEV	with	mutation,	z-

score	on	blue	to	red	scale;	fraction	of	mutated	cases	per	gene,	blue	to	black	color	scale.		

Hierarchical	clustering	for	genes	mutated	in	≥	5%	BRCA	&	≥	10%	CRC	of	TCGA	samples.	

For	CRC	the	heatmap	is	truncated	for	display	purposes	(complete	version	Fig.	S9C).	(C)	

BRCA_M6	Luminal,	(D)	BRCA_M18	mast	cell,	(E)	BRCA_M8	angiogenesis,	(F)	BRCA_M7	

cell	 cycle,	 (G)	 BRCA_M14	 basal,	 and	 (H)	 BRCA_M27	 nucleosome,	 MEVs	 as	 ranking	

variables	(red	to	blue	color	scale)	for	mutation	distribution,	z-score	and	-log10	p-value	

for	GATA3	with	division	into	proximal	(pos2;N-terminus)	and	distal	(pos3;	C-terminus),	

CDH1,	 MAP3K1,	 PIK3CA	 and	 TP53.	 Histological:	 ductal	 (grey),	 lobular	 (white)	

lobular/ductal	 (dark	 blue),	 medullary	 (green),	 metaplastic	 (dark	 green),	 mucinous	

(black),	not	reported	(light	blue).		
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Methods 

CONTACT FOR REAGENT AND RESOURCE SHARING 
Further	 information	 and	 requests	 for	 resources	 and	 reagents	 should	 be	 directed	 to	

Matthew	Care	(m.a.care@leeds.ac.uk)	or	Reuben	Tooze	(r.tooze@leeds.ac.uk).	

METHOD DETAILS 

See	Supplemental	Figure	1	(Fig.	S1A)	for	outline,	will	refer	to	numbers	in	this	figure	in	

the	sections	below.	

Expression data sets 

See	Fig.	S1A	part	1	

For	 the	generation	of	 the	gene	 correlation	networks	23	breast	 cancer	 (BRCA)	 and	12	

colorectal	 cancer	 (CRC)	 gene	 expression	 data	 sets	 were	 downloaded	 from	 the	 Gene	

Expression	Omnibus(Barrett	et	al.,	2011)	(See	Key	Resources	Table)	(BRCA,	7464	cases;	

26	arrays)	[28-49]	and	(CRC,	2399	cases;	11	arrays	after	merging	of	2)[50-59].		Three	of	

the	BRCA	data	sets	were	on	two	different	expression	platforms	(GSE3494,	GSE36774	and	

GSE4922),	these	were	analyzed	independently,	giving	a	total	of	26	BRCA	expression	data	

sets.		In	the	case	of	CRC	two	related	data	sets	were	merged	(GSE17536),	giving	a	total	of	

11	CRC	data	sets.	

TCGA data sets 

For	 independent	 assessment	 of	 the	 network	 modules	 two	 RNA-seq	 data	 sets	 were	

downloaded	from	The	Cancer	Genome	Atlas	(BRCA/CRC	data	sets	were	downloaded	on	

2017.11.15	 from	http://cancergenome.nih.gov/)	 along	with	 the	 corresponding	 simple	

nucleotide	 variation	 data	 (MuTect2	 pipeline).	 	 The	 overlapping	 expression/mutation	

samples	were	used	for	downstream	analyses	(See	Key	Resources	Table).	

Normalization	and	re-annotation	of	data	
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For	 each	 data	 set	 the	 probes	 were	 re-annotated	 using	 the	 MyGene.info	

(http://mygene.info)	API	using	all	available	references	(e.g.	NCBI	Entrez,	Ensembl	etc.)	

and	any	ambiguous	mappings	manually	assigned	[60].	

Each	data	set	was	quantile	normalized	using	the	R	Limma	package	and	the	probes	 for	

each	gene	merged	by	taking	the	median	value	for	probe	sets	with	a	Pearson	correlation	

≥0.2	and	the	maximum	value	for	these	with	a	correlation	<0.2	[61].		

Network analysis 

This	 discusses	 how	 the	 Parsimonious	 Gene	 Correlation	 Network	 Analysis	 (PGCNA)	

approach	was	developed.	

Gene correlation calculation 

See	Fig.	S1A	part	2	and	3	

For	 each	 expression	 data	 set	 the	 80%	 most	 variant	 genes	 were	 used	 to	 calculate	

Spearman’s	rank	correlations	for	all	gene	pairs	using	the	Python	scipy.stats	package.		The	

resultant	p-values	and	correlations	matrices	were	merged	across	all	data	sets	for	a	given	

cancer	 by	 taking	 the	 median	 values	 (across	 the	 sets	 in	 which	 the	 gene	 pairs	 were	

contained)	to	give	a	final	median	correlation	matrix	and	its	corresponding	p-value	matrix.		

Genes	present	in	<	9	data	sets	for	BRCA	and	<	4	data	sets	for	CRC		were	removed	from	

respective	matrices.		This	gave	a	final	matrix	size	of	17,805	and	18,896	for	BRCA	and	CRC	

respectively.		Finally,	all	correlations	with	a	p-value	>	0.05	were	set	to	0	to	reduce	noise.	

Edge reduction 

See	Fig.	S1A	part	4	

We	tested	a	simple	but	aggressive	edge	reduction	strategy	as	a	way	to	improve	module	

discovery	and	network	visualization.	 	For	each	gene	(row)	in	a	correlation	matrix	only	

the	N	most	correlated	Edges	Per	Gene	(EPG)	were	retained,	with	N	ranging	from	3	to	10	

(<3	gives	orphan	modules).		The	resulting	matrix	M,	with	entries	written	as	M	=	(mij)	was	
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made	symmetrical	by	setting	mij	=	mji	for	all	indices	i	and	j	so	that	M	=	MT	(its	transpose).	

For	 EPG3	 this	 reduced	 the	 nodes	 in	BRCA	 from	 43,231,589	 to	 49,199	 and	 CRC	 from	

42,142,502	to	52,257,	in	both	cases	>	800-fold	reduction	(Supplemental	Table	1).	

Data clustering 

See	Fig.	S1A	part	5	

The	matrices	from	the	edge	reduction	step	alongside	the	Total	matrices	were	clustered	

using	3	different	approaches:	hierarchical	clustering	using	the	R	package	fastcluster,	k-

means	clustering	using	the	R	package	kmeans	and	a	network	level	clustering	using	the	

Fast	 unfolding	 of	 communities	 in	 large	 networks	 algorithm	 (version	 0.3)	 referred	 to	

subsequently	herein	as	FastUnfold	[19,	62].		FastUnfold	was	run	10,000	times	at	each	EPG	

level	 and	 the	 100	 best	 (judged	 by	 the	 modularity	 score)	 were	 used	 for	 downstream	

analysis	(note:	the	Total	edges	data	always	yielded	3	modules	and	was	thus	ignored	for	

the	 FastUnfold	 approach).	 	 The	 FastUnfold	 algorithm	 automatically	 converges	 on	 a	

module	number	and	therefore	does	not	require	a	user	defined	module	number.	

For	the	k-means	clustering	k	was	set	 to	±	1	around	the	module	number	 from	the	best	

FastUnfold	solution	(see	Cluster	selection)	and	for	each	k	and	EPG	50	iterations	were	run.	

For	 hierarchical	 clustering	 8	 different	 linkage	 methods	 (average,	 centroid,	 complete,	

Mcquitty,	Median,	Single,	WardD	and	WardD2)	were	used	and	the	resultant	dendrograms	

cut	at	±	10	around	the	module	number	from	the	best	FastUnfold	solution	giving	21	results	

for	 every	 input	 matrix	 (note:	 only	 the	 2	 best	 linkage	 methods,	WardD/WardD2,	 are	

shown	in	Figure	1C).	

Computational efficiency 

See	Fig.	S1A	part	5	

All	data	clustering	was	run	on	the	MARC1	HPC	at	the	University	of	Leeds.	For	comparison	

of	computational	efficiency	(averaged	between	BRCA/CRC):	
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For	FastUnfold	EPG3	after	47	seconds	initial	setup	50	data	clustering	ran	in	10	seconds	

with	memory	usage	of	60	MB.	

For	k-means	 for	50	clusterings	of	 the	total	data	the	run	time	was	~30h	with	memory	

usage	of	25GB.	While	for	EPG3	the	run	time	was	~15h	with	memory	usage	of	24.8GB.	

For	hierarchical	clustering	the	total	run	time	was	~6.5h	with	memory	usage	of	~16GB	

for	both	total	and	EPG3.	

Cluster selection 

See	Fig.	S1A	part	6	

The	success	of	the	clustering	approaches	was	assessed	by	looking	at	the	level	of	biological	

enrichment	 of	 each	 module	 while	 rewarding	 purity	 (biological	 enrichment	 in	 single	

modules)	and	similar	(even)	module	sizes	(i.e.	to	avoid	skewing	to	a	few	modules	that	

contain	many	genes/functions).	

Gene	signature	analysis	was	carried	out	for	each	module,	from	each	clustering	of	the	data.		

Then	to	generate	a	total	enrichment	score	for	a	given	clustering:	

Signatures	were	 filtered	 to	 retain	only	 those	with	≥	5	and	≤	1000	genes	with	an	FDR	

(Benjamini	Hochberg)	of	<	0.05.	

For	each	module	within	a	clustering,	the	enriched	signatures	were	ranked	by	FDR	and	

the	top	15	added	to	a	global	list	of	signatures	for	that	clustering.	

A	matrix	was	generated	that	contained	all	the	z-scores	for	every	signature	(rows)	in	the	

global	list	across	all	the	modules	(columns).	

For	each	signature	a	fractional	contribution	was	calculated	as	the	row-max-zScore/row-

sum-zScores	(where	1	=	enrichment	of	signature	in	only	1	module).		Across	all	signatures	

a	median	factional	contribution	(MFC)	was	calculated.	

The	sum	of	the	maximum	z-score	per	signature	(row)	was	calculated	(ZScoreMS).	

Module	size	skewing	was	assessed	by	calculating	the	normalized	Shannon	entropy:	
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of	the	module	sizes.		This	gave	a	score	that	ranged	from	1	(even	module	sizes)	towards	0	

with	increasing	skewing.	

A	 final	 clustering	 enrichment	 score	 was	 calculated	 as:	 ZScoreMS	 ⋅	 MFC	 ⋅	

normalizedEntropy.	

This	allowed	the	selection	of	the	best	FastUnfold	clustering	(Figure	1C;	Gene	Signature	

Enrichment:	FastUnfold).		This	was	then	used	to	set	the	module	number	range	in	the	k-

means/hierarchical	 approaches.	 	 The	 FastUnfold	 method	 outperformed	 the	 k-

means/hierarchical	 clustering	 methods	 across	 all	 EPG,	 with	 only	 the	 Ward-linkage	

hierarchical	clustering	approaching	a	similar	enrichment	when	using	the	Total	data.		With	

increasing	EPG	there	was	a	corresponding	decrease	in	module	number	with	no	trade-off	

of	increased	biological	enrichment	(Figure	1B	and	1C).		Thus,	for	all	downstream	analysis	

we	 chose	 the	 optimal	 FastUnfold	 EPG3	 result	 for	 both	 cancers;	 this	 combination	 of	

FastUnfold	 and	 EPG3	 we	 term	 a	 Parsimonious	 Gene	 Correlation	 Network	 Analysis	

(PGCNA).		However,	it	should	be	noted	that	most	of	the	recovered	modules	were	broadly	

retained	 across	 the	 100	 FastUnfold	 clustering	 results	 (see	 Module	 Stability	 and	

Supplemental	Figure	1C/D).	

Figure	3A	and	Supplemental	Figure	3A/B	show	visualizations	of	the	optimal	BRCA/CRC	

gene	signature	results.		As	before	these	show	the	top	15	signatures	per	module	(with	≥	5	

and	≤	1000	genes)	but	are	filtered	with	the	more	lenient	p-value	<	0.01.	
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Module stability 

The	stability	of	modules	was	assessed	 to	see	how	recurrent	 the	modules	were	across	

different	clustering	runs	(Supplemental	Figure	1B/C).		Using	the	optimal	clustering	as	a	

reference,	for	each	of	the	100	FastUnfold	clustering,	per	reference	module:	

Find	the	maximum	overlapping	module.	

Store	the	number	of	overlapping	genes	along	with	significance	(p-value)	of	the	overlap	

and	increment	sums	for	the	overlapping	genes.	

The	stability	%	per	gene	is	simply	the	overlap	sum	(i.e.	across	100	clustering	runs	what	%	

of	 maximum	 overlapping	 modules	 is	 the	 gene	 found	 in).	 	 The	 stability	 values	 per	

reference	module	was	calculated	as	median	overlap	across	the	100	clustering	runs.	

Network visualization 

See	Fig.	S1A	part	7	

The	optimal	EPG3	matrix	from	BRCA/CRC	was	converted	into	a	list	of	edges	and	nodes	

and	uploaded	into	the	Gephi	package	(version	0.82)	[63].		Modules	were	colored	so	that	

where	possible	significantly	overlapping	modules	between	BRCA	and	CRC	shared	colors.		

Degree	and	Betweenness	Centrality	were	calculated	and	the	latter	used	to	adjust	node	

sizes.	 	 The	 network	 layout	 was	 generated	 using	 the	 ForceAtlas2	 approach	 [64],	 and	

interactive	 HTML5	 web	 visualizations	 exported	 using	 the	 sigma.js	 library	

(https://github.com/oxfordinternetinstitute/gephi-plugins/tree/sigmaexporter-

plugin).	

Network meta-data 

See	Fig.	S1A	part	8	

A	number	of	additional	features	were	calculated	for	the	network	genes	across	the	data	

sets	 used	 to	 generate	 the	 correlation	 network.	 	 For	 each	 gene	 the	median	 percentile	

expression	was	calculated	across	all	data	sets,	its	dispersion	across	data-sets	calculated	

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 19, 2018. ; https://doi.org/10.1101/372557doi: bioRxiv preprint 

https://doi.org/10.1101/372557
http://creativecommons.org/licenses/by/4.0/


	 29	

as	the	median	absolute	deviation	(MAD)	and	its	dispersion	within	data-sets	(i.e.	across	

patients)	calculated	as	the	median	quantile	coefficient	of	dispersion	(QCOD).	

The	Survival	library	for	R	was	used	to	analyze	right-censored	survival	data	for	the	data	

sets	where	 this	was	available	 (n=8	 for	BRCA,	n=4	 for	CRC).	 	Within	each	data	 set	 the	

expression	 of	 each	 gene	 (as	 z-score)	 was	 used	 as	 a	 continuous	 variable	 in	 a	 Cox	

Proportional	Hazards	model.		Across	data	sets	a	meta-analysis	was	conducted	by	fitting	

a	fixed-effect	model	(R	metafor	package)	to	the	hazard	ratios,	weighted	by	data	set	size.	

rma(yi=lnHazardRatio,sei=standardErr,weights=dataSetSize,weighted=TRUE,method="

FE")	[65].	

Module overlaps 

See	Fig.	S1A	part	9	

The	overlap	of	 the	modules	between	that	cancers	at	 the	gene	and	signature	 level	was	

assessed	using	a	hypergeometric	test	and	the	overlap	visualized	as	a	python	matplotlib	

heatmap	of	-log10	p-values	(Fig.	3B	&	C),	and	with	the	overlap	number	and	module	size	

displayed	(Fig.	S3C	&	D).		The	signatures	were	pre-filtered	to	p-value	<0.001	and	≥	5	and	

≤	1000	genes.	

Application to TCGA data 

The	 modules	 derived	 from	 the	 GEO	 ‘training	 data’	 were	 used	 to	 analyze	 unseen	

expression	and	mutation	data	from	The	Cancer	Genome	Atlas	(TCGA).	

Module Expression Values 

See	Fig.	S1A	part	10	

To	assign	module	enrichment/depletion	at	the	patient	level	a	summary	score	was	created	

for	each	module	for	each	patient.	

Within	each	data	set,	which	vary	in	available	genes,	the	first	step	was	to	select	the	25	most	

representative	genes	per	module:	
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For	every	gene	a	connectivity	score	was	calculated	by	summing	its	correlations	within	its	

module.	

This	was	then	weighted	using	expression	and	dispersion	information	

ModCon	=	connectivity2	⋅	percentileExpression	⋅	VarWithin	⋅	(100	–	VarAcross)/100	

	 	

Where	VarWithin	is	the	dispersion	of	a	gene	expression	within	data	sets	measured	as	the	

median	quantile	coefficient	of	dispersion	(max	range	0—1),	VarAcross	is	the	dispersion	

of	 gene	 expression	 across	 data	 sets	 measured	 as	 the	 median	 absolute	 deviation	 of	

percentile	 expression	 (max	 range	 0—100).	 	 This	 rewards	 genes	 that	 have	 high	

connectivity	and	are	variant	across	patients	but	invariant	across	data	sets.	

Genes	were	ranked	by	ModCon	and	the	top	25	selected.	

	

These	25	genes	were	then	converted	to	a	Module	Expression	Value	(MEV):	

Per	gene,	standardize	(z-score)	the	quantile	normalized	log2	expression	data.	

Per	sample	(patient)	sum	the	25	z-scores	to	give	a	MEV.	

Heatmap visualizations 

See	Fig.	S1A	part	11	

The	MEV	were	used	to	create	heatmap	visualizations	of	each	module	at	the	patient	level	

within	 the	 BRCA	 and	 CRC	 TCGA	 data	 sets.	 	 Using	 the	 Broad	 GENE-E	 package	

(https://software.broadinstitute.org/GENE-E/)	 the	MEV	were	 hierarchically	 clustered	

(Pearson	correlations	and	average	linkage)	and	displayed	along	with	available	meta	data	

(Fig.	6	&	Fig.	S7).	

Mutation correlation analysis 

See	Fig.	S1A	part	12	
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The	 relationship	of	mutations	 and	modules	was	 calculated	 using	 the	MuTect2	 simple	

nucleotide	variation	 (SNV)	mutation	data	and	the	MEV.	 	The	SNV	data	was	 filtered	 to	

retain	mutations	 present	 in	 >	 5	 or	 >	 10%	 of	 patients	 in	 BRCA	 and	 CRC	 respectively.		

Spearman’s	 rank	 correlations	were	 calculated	 between	 all	 pairs	 of	mutated	 gene	 and	

module.	 	These	were	 converted	 to	 z-scores	 to	 convey	 the	±	 correlation	along	with	 its	

significance.	 	 A	 matrix	 was	 output	 containing	 the	 z-scores	 for	 all	 gene/modules	 ≥	 1	

positive	significant	(p-value	<0.05)	correlation	(i.e.	a	gene	need	only	be	significant	in	one	

module	 to	 be	 included).	 	 This	 matrix	 was	 then	 hierarchically	 clustered	 (Pearson	

correlations	and	average	linkage)	using	GENE-E	(Figure	7	and	Supplemental	Figures	8).	

For	BRCA	the	140	GATA3	mutations	were	split	into	3	groups	based	on	mutation	position:	

GATA3_Pos1	 (Chr10:	 8058419—8064131;	 n=10),	 GATA3_Pos2	 (Chr10:	 8069470—

8069596;	n=57)	and	GATA3_Pos3	(Chr10:	8073734—8074229;	n=73).	

QUANTIFICATION AND STATISTICAL ANALYSIS 

Gene signature data and enrichment analysis 

A	data	set	of	17,211	gene	signatures	was	created	by	merging	signatures	downloaded	from	

http://lymphochip.nih.gov/signaturedb/	 (SignatureDB),	

http://www.broadinstitute.org/gsea/msigdb/index.jsp	 MSigDB	 V6.1	 (MSigDB	 C1–C7	

and	H;	 excluding	C5.	With	MIPS	 signatures	 from	version	3.1	and	PID	signatures	 from	

version	 4	 added	 back),	 http://compbio.	 dfci.harvard.edu/genesigdb/	 Gene	 Signature	

Database	 V4	 (GeneSigDB),	 UniProt	 keywords	 (parsed	 XML	 from	

http://www.uniprot.org/downloads),	and	locally	curated	lists.		A	gene	ontology	gene	set	

was	 created	 using	 an	 in-house	 python	 script.	 	 This	 parses	 a	 gene	 association	 file	

(http://geneontology.org/page/download-go-annotations)	 to	 link	genes	with	ontology	

terms	 and	 then	 uses	 the	 ontology	 structure	 (.obo	 file;	

http://purl.obolibrary.org/obo/go.obo)	 to	 propagate	 these	 terms	 up	 to	 the	 root.	 The	
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resultant	gene	set	contained	22,271	terms.	The	gene-ontology	and	gene-signatures	sets	

were	merged	to	give	a	final	signature	set	of	39,482	terms.		

Enrichment	 of	 gene	 lists	 for	 signatures	was	 assessed	 using	 a	 hypergeometric	 test,	 in	

which	 the	 draw	 is	 the	 gene	 list	 genes,	 the	 successes	 are	 the	 signature	 genes,	 and	 the	

population	is	the	genes	present	on	the	platform.	

Correlation of modules 

The	 relationship	 of	 the	 modules	 was	 analyzed	 by	 calculating	 the	 Spearman’s	 rank	

correlation	for	all	module	(as	MEV)	pairs	within	each	data	set.		These	were	then	merged	

across	 data	 sets	 by	 calculating	 the	 median	 correlation	 and	 p-values.	 	 A	 final	 matrix	

generated	 by	 setting	 all	 correlations	with	 a	 p-value	 >	 0.05	 to	 0.	 	Within	 GENE-E	 the	

‘training	data’	was	hierarchically	clustered	(Pearson	correlations	and	average	 linkage)	

and	 the	 TCGA	 data	 displayed	 in	 the	 same	 order	 without	 hierarchical	 clustering	

(Supplemental	Figure	6).	

DATA AND SOFTWARE AVAILABILITY 

Interactive	 networks	 and	 all	 meta-data	 is	 available	 at	 http://pgcna.gets-it.net/.	 	 All	

scripts	are	available	upon	request	

Supplemental Figure Legends 

Figure S1. Process diagram and module stability. Accompanies Figure 1 (A). 

(A)	A	detailed	version	of	the	process	diagram	with	numbering	of	the	process	linked	to	

Online	 Methods	 sections.	 The	 diagram	 is	 divided	 into	 the	 broad	 categories	 of	

Development	&	Validation,	Data	Exploration	and	Network	Testing.		(B)	BRCA	and	(C)	CRC,	

violin	 plots	 of	 the	 stability	 of	 module	 membership	 generated	 in	 the	 100	 networks	

evaluated	 for	 EPG3	 using	 fast	 unfolding	 networks.	 The	 module	 membership	 of	 the	

optimal	 clustering	 was	 set	 as	 reference.	 The	 degree	 of	 overlap	 of	 module	 gene	

membership	with	these	reference	modules	is	shown	as	percentage	stability	across	the	
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other	 99	 network	 clusterings.	 Violin	 plots	 display	 the	 distribution	 along	with	median	

(blue	square)	and	the	IQR,	ordered	by	module	median	stability.	

Figure S2. Network visualization. Accompanies, Figure 2 and Figure 5. 

Detailed	annotation	of	the	network	generated	by	PGCNA	for	BRCA	displaying	the	optimal	

clustering	 as	 shown	 in	 Fig.	 2,	 with	 all	 modules	 annotated	 and	 labelled	 with	 their	

respective	 summary	designation.	 (A)	displays	primary	module	 color	 coding	 for	BRCA,	

with	shared	coding	where	applicable	to	the	closest	matching	module	for	CRC	in	(D),	(B)	

shows	module	annotations	in	the	context	of	the	network	meta	hazard	ratio	overlay,	and	

(C)	annotation	 in	the	context	of	expression	percentile.	 (D)	Annotated	primary	module	

color	coded	version	of	CRC	network,	(E)	annotation	in	relation	to	meta	hazard	ratio,	and	

(F)	annotation	in	the	context	of	expression	percentile.	Color	scales:	expression	percentile	

blue	(least)	to	red	(most);	outcome	blue	(low	HR	-	good	outcome)	to	red	(high	HR	-	poor	

outcome).	Networks	and	 linked	 resources	are	available	 as	 fully	searchable	 interactive	

tools	at	at	http://pgcna.gets-it.net/		

Figure	 S3.	 Gene	 signature	 and	 ontology	 enrichments	 and	 overlap	 of	 module	 gene	

membership	between	BRCA	and	CRC.	Accompanies	Figure	3.	

High-resolution	version	of	heatmaps	of	gene	signature	and	ontology	term	enrichments	

for	the	network	modules	of	(A)	BRCA	and	(B)	CRC.	Module	numbers	and	designations	are	

listed	on	the	x-axis,	and	signature/ontology	terms	on	the	y-axis,	modules	were	clustered	

according	 to	 gene	 signature	 enrichment	 using	 hierarchical	 clustering	 (using	 top	 15	

signatures	 per	 module;	 FDR	 <0.05).	 Gene	 signature	 enrichments	 are	 illustrated	 as	 a	

red/blue	color	code	reflecting	significance	(z-score)	of	enrichment,	complete	lists	of	all	

signature	enrichment	results	including	the	contributing	genes	are	provided	in	SI-	Table	

3&4	and	online	 resources.	 (C)	Heatmap	of	module	gene	membership	overlap	and	 (D)	

module	gene	signature	enrichment	overlap	in	the	pairwise	comparison	of	BRCA	(y-axis)	
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and	CRC	(x-axis)	modules.	In	each	instance	the	number	of	genes	included	in	the	module	

is	 show	 along	 with	 the	 module	 number	 and	 summary	 term.	 Within	 the	 pairwise	

comparison	the	significance	of	overlap	is	illustrated	in	the	indicated	color	scale	of	-log10	

p-value.	For	each	pairwise	comparison	the	number	of	overlapping	genes	is	indicated	in	

the	relevant	square.	

Figure S4. Gene signature and ontology enrichments in epithelial differentiation module 

neighborhoods. Accompanies Figure 4. 

These	heatmaps	illustrate	the	results	of	gene	signature	and	ontology	term	enrichment	

analysis	for	the	module	neighborhood	analysis	shown	in	Figure	4,	(A)	CRC_M3	enterocyte,	

(B)	 CRC_M7	 goblet	 cell,	 (C)	 BRCA_M6	 luminal,	 (D)	 BRCA_M14	 basal.	 Neighborhood	

numbers	and	designations	are	listed	on	the	x-axis,	and	signature/ontology	terms	on	the	

y-axis,	 modules	 were	 clustered	 according	 to	 gene	 signature	 enrichment	 using	

hierarchical	clustering	(using	top	15	signatures	per	module;	FDR	<0.05).	Gene	signature	

enrichments	are	illustrated	as	a	red/blue	color	code	reflecting	significance	(z-score)	of	

enrichment,	complete	lists	of	all	signature	enrichment	results	including	the	contributing	

genes	are	provided	in	SI-Table	6	and	online	resources.		

Figure S5. Hazard ratio overlays provide tools for analyzing potential prognostic 

associations. Accompanies Figure 5. 

This	figure	displays	the	relationship	between	hazard	ratio	at	module	and	gene	level	for	

the	BRCA	and	CRC	networks.	(A)	Highlights	the	position	of	luminal,	basal	and	cell	cycle	

related	modules	that	map	onto	components	of	the	intrinsic	classes	of	BRCA	in	relation	to	

meta	 hazard	 ratio	 (lower	 panel).	 (B)	 Shows	 an	 expanded	 illustration	 of	 the	 immune	

response	 components	 of	 the	 BRCA	 network,	 with	 neighborhoods	 identified	 with	

indicative	 labels	 and	 showing	 the	 relationship	 to	 the	 relative	 position	 in	 the	 original	

color-coded	network	for	comparison	(left	panel:	meta	hazard	ratio,	right	panel:	module	
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colors).	(C)	Highlights	the	position	of	enterocyte,	goblet	and	mesenchymal	modules	that	

map	onto	components	of	the	consensus	molecular	subtype	classes	of	CRC	in	relation	to	

hazard	ratio	(lower	panel).	(D)	Shows	an	expanded	illustration	of	the	immune	response	

components	of	 the	CRC	network,	with	neighborhoods	 identified	with	 indicative	 labels	

and	showing	the	relationship	to	the	relative	position	in	the	original	color-coded	network	

for	 comparison	 (top	 panel:	 meta	 hazard	 ratio,	 bottom	 panel:	 module	 colors).	 	 (E)	

Illustrates	the	core	components	of	the	growth	factor	signaling	modules	of	BRCA	and	CRC	

with	the	juxtaposition	of	the	hazard	ratio	overlay	(right	panel	in	each	case).	Meta	hazard	

ratios	are	shown	on	a	color	scale	from	blue	(low)	to	red	(high)	

Figure S6. Assessment of network module co-occurrence across all samples in training array 

data sets and TCGA RNA-seq data. Accompanies Figure 6. 

Correlation	heatmaps	of	 the	 co-occurrence	of	network	modules	 in	array	 training	data	

(left	 panels)	 and	TCGA	RNAseq	 data	 (right	 panels)	 for	 BRCA	 (upper	 panels)	 and	 CRC	

(lower	panels).	Module	expression	values	(MEV)	were	generated	for	all	samples	from	the	

25	(or	less	for	smaller	modules)	hub	genes	of	each	module	(see	Online	methods).		The	

relationship	of	the	modules	was	analyzed	by	calculating	the	Spearman’s	rank	correlation	

for	all	module	(as	MEV)	pairs	within	each	data	set.		These	were	then	merged	across	data	

sets	 by	 calculating	 the	median	 correlation	 and	 p-values.	 	 A	 final	matrix	 generated	 by	

setting	all	correlations	with	a	p-value	>	0.05	to	0.		Within	GENE-E	the	‘training	data’	was	

hierarchically	clustered	(Pearson	correlations	and	average	linkage)	and	the	TCGA	data	

displayed	in	the	same	order	without	hierarchical	clustering.		

Figure S7. Module expression values as a platform for a bar-code of gene expression  

Use	 of	 module	 expression	 values	 in	 hierarchical	 clustering	 of	 TGCA	 data	 (A)	 BRCA.	

Illustrated	 are	 the	 distribution	 of	 mutations	 in	 common	 target	 genes	 above	 the	

expression	 values	 as	 colored	 bars	 GATA3_Pos2	 (green),	 GATA3_Pos3	 (yellow),	 CDH1	
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(blue),	MAP3K1	(dark	red),	PIK3CA	(red),	TP53	(black)	as	well	as	a	wider	range	of	less	

frequently	mutated	target	genes	(grey).	Beneath	this	is	illustrated	assessment	of	highly	

mutated	status	and	mutation	burden,	ER	and	PR	status,	and	histological	type.	Beneath	the	

heatmap	 indicative	 examples	 of	 the	modules	 linked	 to	 heterogeneity	 in	 the	 principle	

branches	of	the	tree	are	identified,	as	indicated	in	the	figure	key	to	the	left	of	the	heatmap.	

(B)	 CRC.	 Illustrated	 above	 the	 heatmap	 are	 the	 distribution	 of	mutations	 in	 common	

target	genes	as	 colored	bars,	TP53	 (black),	KRAS	 (red)	and	APC	 (blue),	beneath	 these	

mutation	 events	 in	 a	 wider	 set	 of	 representative	 genes	 (grey).	 The	 distribution	 of	

dichotomized	highly	mutated	cases	is	shown	in	red,	beneath	this	refined	assessment	of	

mutation	 burden	 is	 provided	 (blue	 to	 red	 color	 scale).	 A	 range	 of	 other	meta-data	 is	

indicated	 in	 the	 figure	 key	 to	 the	 left	 of	 the	 heat-map	 and	 includes	 histological	 type,	

anatomical	 subdivision,	 pathological	 stage,	 colon	 polyps,	 BRAF	 gene	 analysis,	 micro-

satellite	instability.	Beneath	the	heatmap	indicative	examples	of	the	modules	linked	to	

heterogeneity	in	the	principle	branches	of	the	tree	are	identified.	

Figure S8. Module expression values in stratification of BRCA after subdivision by 

histological type, and CRC after division by mutational load. Accompanies Figure 6. 

(A)	Illustrates	the	results	of	applying	hierarchical	clustering	using	MEVSs	for	BRCA	cases	

after	 separating	 by	 histological	 type.	 Illustrated	 are	 the	 distribution	 of	 mutations	 in	

common	target	genes	above	the	expression	values	as	colored	bars	GATA3_Pos2	(green),	

GATA3_Pos3	(yellow),	CDH1	(blue),	MAP3K1	(dark	red),	PIK3CA	(red),	TP53	(black)	as	

well	 as	 a	wider	 range	 of	 less	 frequently	mutated	 target	 genes	 (grey).	 Beneath	 this	 is	

illustrated	assessment	of	highly	mutated	status	and	mutation	burden,	ER	and	PR	status,	

and	histological	type.	Beneath	the	heatmap	indicative	examples	of	the	modules	linked	to	

heterogeneity	in	the	principle	branches	of	the	tree	are	identified,	as	indicated	in	the	figure	

key	to	the	left	of	the	heatmap.	(B)	Illustrates	the	results	of	hierarchical	clustering	of	CRC	
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cases	 using	 MEVs	 after	 subdivision	 by	 hypermutation	 status.	 Illustrated	 above	 the	

heatmap	are	the	distribution	of	mutations	in	common	target	genes	as	colored	bars,	TP53	

(black),	 KRAS	 (red)	 and	 APC	 (blue),	 beneath	 these	mutation	 events	 in	 a	wider	 set	 of	

representative	genes	 (grey).	The	distribution	of	dichotomized	highly	mutated	cases	 is	

shown	in	red,	beneath	this	refined	assessment	of	mutation	burden	is	provided	(blue	to	

red	color	scale).	A	range	of	other	meta-data	is	indicated	in	the	figure	key	to	the	left	of	the	

heat-map	 and	 includes	 histological	 type,	 anatomical	 subdivision,	 pathological	 stage,	

colon	 polyps,	 BRAF	 gene	 analysis,	 micro-satellite	 instability.	 Beneath	 the	 heatmap	

indicative	examples	of	the	modules	linked	to	heterogeneity	in	the	principle	branches	of	

the	tree	are	identified.	

Figure S9. Network module and mutational association for BRCA divided by histological 

type and CRC. Accompanies Figure 7. 

This	 figure	shows	the	results	of	analyzing	the	correlation	between	module	expression	

values	(MEV)	and	mutations	in	BRCA/CRC	after	separating	cases	according	to	histological	

type	 for	 (A)	 infiltrating	 ductal	 BRCA,	 (B)	 infiltrating	 lobular	 BRCA	 and	 (C)	 complete	

version	of	the	correlations	between	module	expression	values	(MEV)	and	mutation	status	

for	CRC,	as	shown	in	a	truncated	format	in	Fig.	6B.	Significance	of	the	Spearman’s	Rank	

correlation	of	MEV	with	mutation	is	illustrated	as	a	z-score	with	the	indicated	blue	to	red	

scale,	while	for	each	gene	the	fraction	of	mutated	cases	and	mutation	type	are	illustrated	

with	blue	to	black	color	code	along	the	side	of	the	heatmap.		Heatmap	shows	hierarchical	

clustering	for	genes	mutated	in	≥	5%	BRCA	&	≥	10%	CRC	of	TCGA	patients.	
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