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¢ Abstract

o Studies have demonstrated that pervasive gene tree conflict underlies several important phylogenetic
10 relationships where different species tree methods produce conflicting results. Here, we present a means
u of dissecting the phylogenetic signal for alternative resolutions within a dataset in order to resolve
12 recalcitrant relationships and, importantly, identify relationships the dataset is unable to resolve. These
13 procedures extend upon methods for isolating conflict and concordance involving specific candidate
14 relationships, and can be used to identify systematic error and disambiguate sources of conflict among
15 species tree inference methods. We demonstrate these procedures on a large phylogenomic plant dataset.
16 Our results support the placement of Amborella as sister to the remaining extant angiosperms, the
v monophyly of extant gymnosperms, and that Gnetales are sister to pines. Several other contentious
18 relationships, including the resolution of relationships within both the bryophytes and the eudicots,
19 remain uncertain given the low number of supporting gene trees. To address whether concatenation of
» filtered genes amplified phylogenetic signal for particular relationships, we implemented a combinatorial
a1 heuristic to test combinability of genes. We found that nested conflicts limited the ability of data
» filtering methods to fully ameliorate conflicting signal amongst gene trees. These analyses confirmed
23 that the underlying conflicting signal does not support broad concatenation of genes. Our approach
2 provides a means of dissecting a specific dataset to address deep phylogenetic relationships while

s highlighting the limitations of the dataset.

% Introduction

2z Over the last few years, we have come to understand that phylogenetic conflict is common and presents
s several analytical challenges. Researchers have amassed large genomic and transcriptomic datasets
» meant to resolve fundamental phylogenetic relationships in plants (Wickett et al. 2014), animals (Jarvis
» et al. 2014; Dunn et al. 2008; Simion et al. 2017; Whelan et al. 2017), fungi (Shen et al. 2016),
a and bacteria (Ahrenfeldt et al. 2017). While the goals of these data collection efforts have been to
» increase the overall phylogenetic support, analyses have demonstrated that different datasets and
13 analytical approaches often reconstruct strongly-supported but conflicting relationships (Feuda et al.
1 2017; Walker et al. 2018; Shen, Hittinger, and Rokas 2017). Underlying these discordant results are
55 strongly conflicting gene trees (Smith et al. 2015). In some cases, one or two “outlier” genes with
s large likelihood differences between alternative relationships can drive results (Shen, Hittinger, and
w» Rokas 2017; Brown and Thomson 2016; Walker, Brown, and Smith 2018). Detailed gene tree analysis
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s of phylogenomic datasets is essential to identifying and analyzing overall gene tree conflict and outlier

39 genes.

w0 Phylogenomic datasets are often analyzed as concatenated supermatrices or with coalescent gene-
a tree / species tree methods. Supermatrix methods were, in part, developed to amplify the strongest
«2 phylogenetic signal. However, it has long been understood that the “total evidence” paradigm (Kluge
1 1989), where the true history will ‘win out’ if enough data are collected, is untenable. Genes with real
« and conflicting histories are expected within datasets due to biological processes like hybridization and
s incomplete lineage sorting (ILS) (Maddison 1997) in addition to outlying genes and sites as mentioned
w above (Shen, Hittinger, and Rokas 2017; Brown and Thomson 2016; Walker, Brown, and Smith 2018).
« “Species tree” inference accommodates for gene tree conflict due to ILS (Edwards, Liu, and Pearl 2007;
s Liu et al. 2009; Edwards 2009; Edwards et al. 2016) and is often conducted alongside concatenated
s supermatrix analyses. Differences in the results from these two approaches are often explained by
so the differences in assumptions each makes. The concatenated supermatrix allows for mixed molecular
st models and gene-specific branch lengths but assumes a single underlying tree topology common to
s2 all genes. This procedure is known to perform poorly in the presence of extensive ILS. Coalescent
53 approaches, depending on the implementation, may assume that all conflict is the result of ILS (but
s« see Boussau et al. (2013) and Ané et al. (2006)), that all genes evolved under selective neutrality and
ss constant effective population size, that all genes contain enough information to properly resolve nodes,

ss and that gene trees are estimated accurately (Springer and Gatesy 2016).

57 While supermatrix and coalescent methods perform well in many scenarios, when unresolved nodes
s or discordance between species trees remain after large data collection efforts, researchers can further
so examine the processes leading to conflict or further dissect the phylogenetic signal within datasets. For
o example, Bayesian methods have been developed that incorporate processes in addition to ILS that
s lead to gene tree discordance (Ané et al. 2006; Boussau et al. 2013). However, these methods are often
&2 computationally intractable for current genomic datasets and may not handle systematic error well.
s Recently, network methods that scale to large datasets have been developed (Wen et al. 2018,@snaq),
e but these do not allow for dissecting signal within datasets. Filtering approaches where subsets of
s genes are analyzed based on model similarity or the relationships displayed by the genes (Chen, Liang,
o and Zhang 2015; Shen et al. 2016; Smith, Brown, and Walker 2018), help to enable computational
e tractability and distill signal. For example, Chen, Liang, and Zhang (2015) filtered for question-specific
e genes in the phylogeny of jawed vertebrates using two methods: one where only gene trees capable of
s supporting one of three resolutions for a given relationship were included in the analysis, and another
7 where only gene trees which agreed with a widely-accepted control locus were retained for the analysis.
n  Researchers have also examined alternative phylogenetic hypotheses in order to isolate the supporting
72 signal (Shen, Hittinger, and Rokas 2017; Brown and Thomson 2016; Walker, Brown, and Smith 2018).

» In plants, several large data collection efforts aimed at resolving difficult nodes have found extensive
7 conflicts (Smith et al. 2015; Walker et al. 2018, 2017; Wickett et al. 2014). Resolution of these clades
75 is not only important for systematics, but crucial to an evolutionary understanding of key biological
76 questions. For example, the relationships among the lineages of bryophytes (i.e., hornworts, liverworts,
7 and mosses) remain unclear despite extensive data collection efforts (Wickett et al. 2014; Puttick et al.
7s  2018). One of the most heavily debated lineages in plant phylogenetics is the monotypic Amborella, the
7 conflicting placement of which alters our understanding of early flowering plant evolution. Amborella
s has been inferred as sister to Nymphaeales, as sister to all angiosperms, or as sister to the remaining

s Angiosperms excluding Nymphaeales (Xi et al. 2014). The resolution of Amborella, along with other
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&2 contentious relationships across land plants, would provide greater confidence in our understanding of
3 the evolution of early reproductive ecology, the evolution of floral development, and the life history of
s« early land plants (Feild et al. 2004; Sauquet et al. 2017).

s We conducted a detailed analysis of nested phylogenomic conflict and signal across a phylogenomic
s dataset in hopes of presenting a computationally tractable and practical way to examine contentious
sz relationships. We extended methods for examining phylogenetic alternatives and present an approach
s that can be widely applied to empirical datasets to determine the support, or lack thereof, for
s phylogenetic hypotheses. We applied these methods to a large plant genomic dataset (Wickett et al.
o 2014). We identified systematic error, nested conflicting relationships, support for alternative resolutions,
o and we present a practical means to test the topological combinability of subsets of genes based on a
e combinatorial heuristic and information criteria statistics. By taking this broad information-centric
s approach, we hope to shed more light on the evolution of plants and present a tractable approach for

u dissecting signal with broad applicability for phylogenomic datasets across the Tree of Life.

s Materials and Methods
w Datasets

o We analyzed the Wickett et al. (2014) dataset of transcriptomes and genomes covering plants available
¢ from http://mirrors.iplantcollaborative.org/onekp_ pilot. There were several different filtering methods
o and approaches used in the original manuscript and, based on conversations with the corresponding
wo author, we analyzed the filtered nucleotide dataset with third codon positions removed. These sites
1w were removed because of problems with excessive variation and GC content that caused problems with
102 the placement of the lycophytes (Wickett et al. 2014). This dataset consisted of 852 aligned genes. We
w3 did not conduct any other filtering or alteration of these data before conducting the analyses performed

s as part of this study.

s Phylogenetic analyses

s We inferred gene trees for each of the 852 genes using IQ-TREE (v. 1.6.3; Nguyen et al. 2014). We used
1w the GTR+G model of evolution and calculated maximum likelihood trees along with SH-aLRT values
s (Guindon et al. 2010). For all constrained analyses, we conducted additional maximum likelihood
100 analyses with the same model of evolution but constrained on the relationship of interest, although the

o rest of the tree topology was free to vary.

m  Conflict analyses

2 We conducted several different conflict analyses. First, we identified the congruent and conflicting
us  branches between the maximum likelihood gene trees (ignoring branches that had less than 80% SH-
s aLRT (Guindon et al. 2010)0, and the maximum likelihood species tree from the original publication
us  (Fig. 2; Wickett et al. 2014). These analyses were conducted using the program bp available from
us https://github.com/FePhyFoFum/gophy. We placed these conflicting and supporting statistics in
w7 a temporal context by calculating the divergence times of each split based on the TimeTree of Life

us  (Hedges, Dudley, and Kumar 2006; Hedges et al. 2015). By examining the dominant conflicting
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o alternatives, we established which constraints to implement and compare for further analyses. Because
1o the gene regions contain partially overlapping taxa, automated discovery of all conflicting relationships

21 concurrently can be challenging. To overcome these challenges, we examine each constraint individually.

122 To determine the difference in the log-likelihood (InL) values among conflicting resolutions, we conducted
13 the constrained phylogenetic analyses (with parameters described in the Phylogenetic analyses section
12 above) and compared the InL values of the alternative resolutions. We then examined those results
s that had a difference in the InL of greater than 2, considering this difference as statistically significant
s (Edwards 1984). For each gene, we noted the relationship with the highest log-likelihood and summed

v the difference of that and the second best relationship (DInL) across all genes.

s We also examined nested conflicts. In particular, for the genes identified as supporting the dominant
120 relationship of the eudicot lineages, we examined the distribution of conflict. We then examined those
130 genes that supported both the eudicot lineages and the relationship of Amborella as sister to the rest
m  of angiosperms. Finally, of those genes, we determined which supported the alternative gymnosperm

12 relationships. We conducted each of these nested analyses using the same methods as described above.

133 Combinability test

13« We describe a simple but fast procedure for testing the combinability within a dataset based on gene
135 tree similarity and information criteria (Fig. 1). A typical concatenated phylogenetic analysis assumes
s that the entire alignment used to calculate the tree was generated with the same underlying topology.
17 When that is not the case, the likelihood of the tree using the entire alignment will be lower than the
s when considering the gene regions separately. It follows that those genes that should be combined (i.e.,
1o concordant histories) will have more similar gene trees than those that should be considered separately
1w (i.e., conflicting histories). To determine similarity between gene trees, we calculated the pairwise
1 weighted Robinson-Foulds (RFW) distance (Robinson and Foulds 1981). We then constructed a graph
12 where genes are nodes and edges are the weights between gene trees based on REFW. Then, beginning
w3 with the strongest edge, we tested for the combinability between the two connecting nodes. If they
us  were combinable, based on the information criteria discussed below, we merged the nodes, along with

us the connecting edges for each.

0
0

genes trees graph based on RFW combinenodes  remaining nodes
where possible are final clusters

Figure 1: Procedure described in the methods section. Gene trees are constructed for genes and
weighted Robinson-Foulds distances are calculated between gene trees. A graph is constructed with
genes as nodes and edge weights from the weighted distances. The strongest edges are then tested for
combinability and combined if possible. The final nodes in the graph are the final clusters (i.e., clusters
that cannot be justifiably combined).

us  Non-nested likelihood-based analyses that have different numbers of parameters cannot be compared
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w7 directly. Instead, in the likelihood framework, information criteria are commonly used to accommodate
ug and penalize for the increase in the number of parameters to prevent overfitting. The Akaike Information
uo  Criterion (AIC; Akaike 1973), the AIC with the correction for dataset size (AICc; see Burnham and
150 Anderson 2003), and the Bayesian Information Criterion (BIC; Schwarz 1978) may all be used to
11 compare likelihood scores that are produced from different numbers of parameters. Each of these
12 criteria has different assumptions and different potential utility. Here, we examine the differences in
153 considering AICc and BIC.

15« The number of parameters for a single gene in a phylogenetic analysis include those for the molecular
155 model (e.g., GT'R = 8, 5 for substitution rates (the 6 rates are expressed relative to one arbitrary rate
15 that is fixed as 1.0) and 3 for stationary nucleotide frequencies, with an additional 1 when including
157 gamma-distributed rate variation) and the branch lengths of the unrooted phylogenetic tree (2n — 3).
155 There are several ways by which multiple genes may be combined. For example, often molecular models
159 are allowed to vary between these genes, or partitions. It is possible to test whether the genes should
o share models and programs exist to conduct such tests (e.g. PartitionFinder: Lanfear et al. (2016)). If
11 models vary between gene regions, then for a x gene dataset, the number of molecular model parameters
12y would be x x y. The parameterization of branch lengths has several options: shared (2n — 3), exactly
163 proportional (‘scaled’; (2n — 3) + (z — 1)), and independent ((2n — 3) x z). Here, we considered the
16« molecular models to be independent between gene regions and tested both scaled and independent

s branch lengths.

166 With these considerations, the tree comparison calculation proceeded as follows: for each gene, calculate
17 the information criterion of the ML gene tree. Next, sum the information criterion statistic for the
s set of genes being tested. Further, concatenate the genes and calculate the information criterion for
wo the ML tree. The genes may have different model parameters or branch lengths (shared, scaled, or
wo independent), but they share the same topology. Lastly, compare the values of the information criterion
w1 for the summed gene trees and the concatenated genes. If the concatenated genes have a lower value
12 of the information criterion than the summed gene trees, accept the combined genes and continue to
173 the next comparison. If genes are already a member of a merged set, then compare the new gene to
e the merged set. Given this procedure, our algorithm is a greedy clustering method. Our approach
s is somewhat similar to the GARD method for detection of recombination breakpoints (Kosakovsky
ws  Pond et al. 2006a, 2006b). Here, the ‘breakpoints’ are the ends of the gene partitions, and we allow
17 full maximum likelihood inference of the topologies of each partition, as well as selection of different
s branch length models and information criteria. Furthermore, instead of a genetic algorithm, we use
o tree distances to select which pairs to test. These methods are implemented in an open source python
1w package, phyckle, available at https://github.com/FePhyFoFum//phyckle.

11 Simulations

122 We verified the performance of our combinatorial method using a variety of simulations across tree
183 depths, branch length heterogeneity, topological variation, and model variation. Each simulation is
18« described below. In general, we attempted to simplify the simulations in order to isolate the specific
15 element being tested in order to better describe the expected behavior. While alignments were simulated
s under differing models, all clustering tests were conducted using GTR+G as this is typical of empirical
w7 analyses. For all simulations below, trees were simulated using pxbdsim from the phyx package (Brown,
s Walker, and Smith 2017) and alignments were generated using INDELible (Fletcher and Yang 2009).
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w0 Comparing information criteria and branch length models— In order to determine the efficacy of different
wo information criteria as well as different branch length models, we conducted several simulation analyses.
11 For each simulation, we generated a tree from a pure birth model with 25 tips and then three gene
12 regions under JC model of evolution with 1000 sites each. This analysis was conducted with 100
03 replicates. While the JC model of evolution is, perhaps, overly simplistic, we aimed to isolate the factors
e that caused genes to be considered separate or combined. We test more complex models below. Tree
15 heights were tested for 0.05, 0.25, 0.75, and 1.25. We also conducted tests where branches could vary
106 between gene regions. For each gene region, the species tree branch lengths were perturbed randomly
w7 with a sliding window of 0.01, 0.05, and 0.1, so U(z — w,z + w). We examined scaled and independent
108 branch length models with both BIC and AICc.

w9 Eramining the impact of branch differences—The above tests examined variation between simulated
a0 genes involving branch length heterogeneity and model complexity, but all had the same underlying
20 topology. We also examined the impact of having different underlying topologies between gene regions.
22 To do this, we simulated a pure birth tree of 25 tips and a tree depth of 0.5 and simulated two gene
23 regions under this model. Then for one additional gene region, we chose one node randomly and
2a  swapped nearest neighbors and then simulated gene regions. This resulted in three gene regions with two
25 different underlying topologies. The difference in the underlying topologies varied from one swapping
26 move to five swapping moves. All genes trees also had branch lengths perturbed with branch length

207 heterogeneity of 0.01 as described above.

208 Exzamining the impact of different models on different genes— In order to examine whether different
200 models may cause the gene regions to be considered separate we conducted similar simulations to those
20 described above but with distinct substitution models applied to individual gene regions. Two gene
au  regions were simulated for each of three substitution models (i.e., six gene regions total), each with 1000
22 bases and the same underlying pure birth topology of 25 taxa and tree depth of 0.5. Branch length
213 heterogeneity varied from 0.01, 0.05, and 0.1. The first two gene regions were evolved under JC, the
2 second set of two gene regions under HKY with x = 2.5, proportion of invariable sites = 0.25, I' = 0.5,
25 number of I' categories= 10, and state frequencies of 0.2,0.3,0.1,0.4 for A, C, G, and T, respectively,
26 and the third set of two gene region under HKY with « = 1.5, proportion of invariable sites = 0.25,
a7 I'= 0.5, number of ' categories= 10, and state frequencies of 0.1,0.4,0.3,0.2. Two gene regions were
218 simulated for each model in order to verify that those two continued to be clustered together regardless
219 of how the separate models clustered. This test was not intended to be comprehensive as variation in
20 molecular models in relation to information criteria has already been thoroughly explored (e.g., Lanfear
a1 et al. 2016; Seo and Thorne 2018). Instead, we aimed to better understand the conditions under which

222 variation in molecular model would result in consideration as completely separate analyses.

23 Eramining the impact of missing taxa—Because genes often do not have completely overlapping taxa, we
24 conducted simulations where some taxa may be missing from each gene region. For these simulations,
»s 25 taxon pure birth trees were generated and three gene regions of 1000 bases each were simulated.
26 Then from one to three tips were randomly removed from one gene. We also conducted simulations
27 where from one to three tips were randomly removed from each of the three genes. Random taxa were
2 removed from each gene and so some genes would have the same taxa removed and others would not.
29 All genes trees also had branch lengths perturbed with branch length heterogeneity of 0.01 as described

230 above.

a1 Examining the potential for snowballing—Based on initial observations, we hypothesized that the use

22 of particular combinations of model and information criteria may lead to genes being erroneously
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23 combined because of the size of the cluster they were compared to, i.e. that clusters would snowball
24 in size. We assessed this possibility by simulating 1000 base-pair alignments under a JC model of
235 evolution on a 25-taxon pure birth tree with a tree depth of 0.5, and comparing these alignments to
236 another alignment simulated on a tree three NNI-moves away. In each iteration, we increased the
27 number of alignments simulated on the same tree. Thus iteration one compared one gene on one tree
28 and another on a tree three NNI moves away, while iteration two compared two genes simulated on
239 one tree with another on a tree three NNI moves away, and so on. Each comparison was repeated 100
20 times for linked (proportionally scaled) and unlinked (independent) branch lengths and analyzed with
2a both AICc and BIC.

«2  Empirical Demonstration

23 For demonstration purposes, we did not conduct exhaustive testing of combinability of the entire
24 Wickett et al. (2014) dataset. Instead, we conducted these tests on two gene sets that supported the
us eudicot relationship. First, we tested the set of genes that supported the eudicot relationship in the
26 ML tree that did not have a branch length longer than 2.5 and did not have outgroup taxa falling
a7 in the ingroup. Long branch lengths (e.g., >2.5 substitutions per site) suggest multiple substitutions
28 at each site and therefore little to no remaining phylogenetic information (e.g., systematic error or
20 extremely rapid rates of evolution). Second, we tested the set of genes that did not only support the
»0  relationship in the ML tree but also displayed the relationship in the ML gene tree with SH-aLRT
1 support higher than 80 and with no outlying branch lengths or outgroup taxa falling in the ingroup.
2 These control methods echo the classes of filtering evoked in Chen, Liang, and Zhang (2015), that of
253 non-specific data filtering (branch length, support values) and ‘node-control’ (outgroup relationships,

25 eudicot relationships).

25 Clustering analyses were conducted using IQ-TREE with AICc and the -spp option for scaled branch
»6 lengths partitions, as simulations demonstrated that it split the most accurately based on conflicting

=7 topologies (see Results).

s We compared the results of our analyses to the PartitionFinder ‘greedy’ algorithm implemented in
0 1Q-TREE using the option -m MERGE, specifying the GTR+G model and assessing partitions with the
%0 edge-linked proportional model with -spp. We compared the individual gene trees of each merged
s partition in IQ-TREE with -spp and -m GTR+G and for comparison assessed the optimal partitioning
x%2  scheme on the full data similarly with -spp and -m GTR+G. In addition we compared the results of
%3 treating the clusters from the combination procedure as an optimal partitioning scheme, using -spp

s and -m GTR+G. In each case AICc was used for a direct comparison to the results of our method.

s  Results
% Conflict analyses

27 We compared gene trees (Fig. 1) based on the concatenated maximum likelihood (ML) analysis from
s Wickett et al. (2014) and found that both gene tree conflict and support varied through time with
260 support increasing toward the present (Fig. 2). We aimed to resolve contentious relationships, with a
a0 focus on those that have either been debated in the literature or been considered important in resolving

o1 key evolutionary questions, to the best of the ability of the underlying data (Table 1).
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a2 The massive scale of genomic datasets can cause substantial noise that is often difficult to identify
23 when taking the dataset as a whole. When analyzing specific genes, we found that several conflicting
o relationships were the result of systematic error in the underlying data. In order to minimize the
s impact of systematic error on the estimation of relationships, we excluded obvious errors where possible.
s For example, we found 258 of 852 gene trees contained non-land plant taxa that fell within the land
o7 plants. While these errors may not impact the estimation of relationships within eudicots, they will
s impact the estimation of relationships at the origin of land plants. Therefore, we excluded gene trees
2o for which there was not previously well established monophyly of the focal taxa (i.e., involving the
20 relationship of interest). We also identified 68 gene trees that possessed very long estimated branch
s lengths (> 2.5 expected substitutions per site). We conservatively considered these to contain potential
22 errors in homology (Yang and Smith 2014). While these genes demonstrate patterns associated with
23 systematic error, they also likely contain information for several relationships. However, some error
2« may be the result of misidentified orthology that will mislead estimation of phylogenetic relationships,
s even if this error may not impact all relationships inferred by the gene. Therefore, to minimize sources

26 of systematic error, we took a conservative approach and excluded these genes from additional analyses.

27 We explored both numbers of gene trees and differences in log-likelihoods for several key relationships.
s In some cases both number of gene trees and differences in log-likelihood support the same resolution,
289 as was the case for the monophyly of Gymnosperms. However, other relationships are more equivocal or
20 contradictory. For example, Gnetales and conifers as sisters (“Gnetifers”) is supported by more genes,

21 but Gnetales and Pines as sisters (“Gnepine”) is supported by differences in log-likelihood (Table 1).

22 Table 1. Comparison of the number of genes and the difference in the likelihood (DInL) with relationships

23 ordered based on support. * indicates relationships present in the ML tree.

Major clade Resolutions Genes Genes (> 2lnL) DInL  DInL > 2
Bryophytes Hornworts sister™ 110 83 677.6  654.1
Liverworts sister 56 41 294.1 280.8
Mosses+liverworts 81 40 228.9  190.2
All monophyly 81 37 185.3  148.5
Gymnosperms monophyly* 288 264 7259.0 7233.8
Gnetum sister 45 31 229.8 216.0
Cycas sister 39 18 120.3 105.2
Gymno relat.  Gnepine* 107 85 1017.2 9944
conifers 93 79 800.0  787.2
Gnetifers 134 55 288.1  217.8
Gnetales sister 76 40 211.2 176.3
Amborella Amborella sister™ 184 152 1501.1  1470.0
Amborella+ Nuphar 118 75 564.2 526.3
Nuphar sister 111 62 392.2  345.2
FEudicots Magnoliids+eudicots* 114 98 1223.4 1204.3
Monocots+eudicots 66 49 541.5 526.5
Monocots+magnoliids 90 o8 453.3  425.5
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Figure 2: Phylogeny of land plants with pie charts at nodes illustrating conflict, concordance, and
informativeness of the gene tree set without any filtering. Inset boxes show summed differences in log
likelihoods (top row) and the number of gene trees (bottom row) that support the relationship shown
in the tree and the dominant conflicting relationships. Right pie charts in the inset box show results
when only differences greater than 2 log likelihoods are considered. See also Table 1.
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Figure 3: Examination of support and conflict in relation to time across all nodes with node ages
taken from TimeTree (Hedges, Dudley, and Kumar 2006; Hedges et al. 2015). The differences between
support and conflict are noted with vertical lines. The cumulative sum of support and conflict through
time is noted in solid grey. Focal nodes from Fig. 2 are identified.
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2 Nested analyses

25 Given the variation in support and conflict through time (Fig. 3), many genes that contain signal for a
26 particular relationship may disagree with the resolution at other nodes. To examine these patterns of
27 nested conflict, we examined the genes that support the resolution of the eudicot relationships (Fig. 4).
28 In a set of 127 genes which supported the eudicot relationships recovered in the original ML analysis,
200 98 survived filtering for outgroup placement, branch length, and support with a statistically significant
20 difference in InL (> 2; Edwards 1984). 63 of these genes supported the monophyly of gymnosperms,

;o and among those 63 only 25 supported a sister relationship between pines and Gnetum.

Ellud\coﬁj others gthers
agnoliids filtered ine
Monocots fere 2InL Gymnosperms Gnetum

1714 @8 63 25

Figure 4: Nested patterns of support with genes associated with the resolution of eudicots. From left
to right are shown the genes that support eudicots as sister to magnoliids (far left), those genes filtered
as not having any outgroup errors or long branch lengths, those genes that support the resolution by at
least 2InL, those genes that support monophyletic gymnosperms, and finally those genes that support
the Gnepine relationship.

s Simulations of combinability

33 The procedure described here consists of two components: the information criterion for testing model
s complexity and the hill-climbing greedy clustering algorithm. First we conducted analyses to compare
ws  the performance of the difference information criteria measures (Fig. 5). In our tests, BIC with scaled
s branch lengths performed the best overall while AICc with scaled branch lengths performed well when
so7  branch length heterogeneity was low but poorly when branch length heterogeneity was medium to high.
38 AICc with independent branch lengths tended to overfit when tree depths were higher but was more
w0 consistent across a range of branch length heterogeneity than any other information criterion. BIC with
a0 independent branch lengths (not shown) failed to recover any clusters and therefore was not considered
sn  further. High branch length heterogeneity generally resulted in overfitting. Because of the propensity
sz of AICc with independent branch lengths to erroneously split clusters with both increasing tree depth

sz and low levels of branch length heterogeneity, we did not consider it further.

s Phylogenomic datasets often have only partially overlapping taxa sets for each gene, therefore we tested
a5 the influence of this in two ways (Fig. 5B). First, we randomly removed from one to three taxa for a
a6 single gene. These results demonstrate that the procedure will tend to overfit as the number of missing
ar taxa increases. AICc with scaled branch lengths was highly sensitive to missing taxa, with between
s 33% and 87% overfitting for missing taxa in one gene and only one replicate correctly recovering one
a0 cluster for the highest amount of missing taxa in all genes. BIC with scaled branch lengths was less
20 sensitive to missing taxa, with between 4% and 12% overfitting for missing taxa in one gene, and up to

=1 52% overfitting for missing taxa in all genes.

22 The results above all had the same underlying species tree topology for each gene simulated. In order

123 to determine not only whether the procedure overfitted models, we also examined the ability for the
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Figure 5: Simulations of clustering behaviour for the information criteria-based clustering under different
models and data perturbation. ‘sc’ indicates that branch lengths are scaled (proportional) between gene
regions, while ‘in’ indicates independent branch lengths. A performance of varied tree depths for three
gene regions simulated on the same topology. Ideally all would recover one cluster. B performance for
decreasing taxon overlap, with three gene regions simulated on the same topology but with one gene
missing 1-3 taxa or with all genes missing 1-3 taxa. Ideally all would recover one cluster. C ability to
detect topological differences amongst three gene regions, with two simulated on one topology and one
simulated on a topology 1-5 NNI moves away. Ideally all would recover two clusters. D performance of
varied branch length heterogeneity for three gene regions simulated on the same topology using the
same model. Ideally all would recover one cluster. E performance for three gene regions simulated
under different models and increasing branch length heterogeneity on the same topology. Ideally all
would recover one cluster.
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2 procedure to correctly break up gene regions when underlying topologies differed (Fig. 5C). As the
»s  simulations were conducted with two topologies differing from one to five NNIs, we expected the
»s  procedure to identify two clusters. We found that AICc with scaled branch lengths was much more
w7 sensitive to topological differences, with a highest error of 9% of replicates, and perfect recovery at five
s NNIs. BIC with scaled branch lengths tended to underfit, with error rates up to 60%, and producing
20 two clusters in 5% of replicates even at five NNIs.

a0 While isolating the behavior of the information criteria in relation to tree depth and branch length
s heterogeneity is helpful, it is likely that most datasets will have variation in substitution models between
s genes as well (Fig. 5E). We found that the BIC with scaled branch lengths was mostly robust to model
;3 variation except in the presence of large branch length heterogeneity (i.e., 10% of total tree height).
s AICc with scaled branch lengths was prone to overfitting based on model discrepancies, particularly
355 with increasing branch length heterogeneity, correctly recovering one cluster in all replicates with branch
s length heterogeneity of 0.01, but incorrectly recovering three clusters in all replicates with branch
s length heterogeneity of 0.01. The discrepancy between the branch length heterogeneity of 0.1 in this
18 analysis and the one above reflect that there were six genes simulated in this case with two for each

;30 model versus three gene regions as above.

a0 Initial observations from some empirical data suggested the potential for clusters to snowball in size.
s We therefore simulated increasing numbers of genes on the same topology and tested clustering them
s against a single gene simulated on a topology three NNI moves away. For an proportional branch length
s model, two clusters were obtained in all replicates regardless of the number of genes in the cluster, for
s both AICc and BIC. For an independent branch length model, two clusters were also obtained in all
us  replicates for AICc and BIC (not shown).

us Empirical combinability of genes

sr - We greedily tested the combinability of genes sets based on Robinson-Foulds distances to examine
us  whether genes can be justifiably concatenated despite heterogeneity in information content throughout
s the phylogeny. We refer to our method as the COMBination of datasets (COMB) method. Because
0 our approach bears conceptual similarity to algorithms used to estimate the optimal partitioning
s schemes (e.g. PartitionFinder, Lanfear et al. 2012, 2016), we compared combinable subsets to those
32 recommended by the implementation of the PartitionFinder algorithm in IQ-TREE (Kalyaanamoorthy
33 et al. 2017, referred to as MERGE here). Since an exhaustive search of the entire dataset is intractable,
s we examined the combinability of those genes that support the eudicot lineages to be sister to the
ss  magnoliid lineages (Fig. 2). We conducted analyses of two sets of genes: those that support the
36 relationship with greater than 2 InL versus alternative relationships (98 genes; ‘CombinedSet’), and
ss7 those that display the relationship in the ML gene tree and have SH-aL.LRT support greater than 80 (44
s genes; ‘MLSet’). These two sets were chosen because the first set was already examined as part of this

30 study and the second is a typical cutoff used in standard systematics analyses (Guindon et al. 2010).

w0 No method or gene set supported the concatenation of all genes that supported the focal eudicot
s1  relationship (see Table 2). The COMB method on the ‘CombinedSet’ supported concatenation of only
w2 two sets: one of three genes and one of two. The MERGE method supported merging partitions of
s 46 genes out of 98 (see Table 2 for more details). MERGE supported partition merging for a much
s greater number of genes than COMB supported combination. The COMB and MERGE results did
s 1ot contain any identical concatenated sets. We constructed phylogenies of each concatenated set and
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36 compared the inferred topologies (Table 2). Despite filtering on the magnoliids as sister to eudicots
7 relationship, not all concatenated sets recovered this relationship with greater than 80 SH-aLLRT. In

w8 one case, a merged partition supported a contradictory relationship to the filtered one.

wo  Table 2. Comparison of partitioned subsets between combining strategies

Algorithm  Gene set Genes  Sets Partitioned Topology Subset Relationships

MERGE combined 98 20 magnoliids+eudicots magnoliids+eudicots
(2x4, (100) (40%)
2x3,
16x2)
ML 44 9 (1x4, magnoliids+eudicots magnoliids+eudicots
2x3, (100) (67%)
6x2)
monocots+eudicots
(11%)
COMB combined 98 2 (1x3, magnoliids+eudicots magnoliids+eudicots(100%)
1x2) (100)
ML 44 5 (1x3, magnoliids+eudicots magnoliids+eudicots
4x2) (100) (25%)

s Brackets following a partitioned topology give the SH-aLRT score for that branch, while percentages
sn following a subset relationship give the proportion of individual partition gene trees supporting the
s specified relationship with > 80 SH-aLRT

s Discussion
s Conflict analysis

ss  Several contentious relationships show strong contrast between the number of genes supporting the
ws relationship, the number of genes strongly supporting the relationship (>2 InL), the InL supporting the
sr7 - relationship, and the InL of genes that strongly support the relationship. Our analyses demonstrate that
s the differences in the number of gene trees supporting relationships and the difference in the summed
se likelihoods can provide insight into the cause for discordance between concatenated ML analyses
;0 and coalescent analyses. For example, the relationship involving Gnetales and the conifers as sister
s (Gnetifers) was recovered in coalescent-based analysis and is supported by more genes. However, the sum
s of the differences in the log-likelihoods of alternative resolutions support the Gnepine relationship (i.e.,
33 Gnetales sister to Pinales), the relationship found in the ML supermatrix analyses. Other relationships,
s« including the placement of Amborella (Table 1), unequivocally support Amborella as sister to the rest of
s the angiosperms. For some relationships, gene support was equivocal (e.g. for relationships in eudicots
s and Bryophytes), but differences in strongly supporting genes and in summed InL differences showed a

s7 clear preference.
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s INested analysis

e Filtering genes by the specific relationship they display provides an opportunity to examine nested
20 conflicts (i.e., subsets of genes that do not conflict in one relationship may conflict in another).
s Furthermore, if conflict was reduced as a result of filtering, concatenation may be more tenable on
s such a filtered datasets. However, our nested conflict analyses demonstrated significant conflict and
33 variation in the support for different relationships (Fig. 4) and that filtering genes based on specific
s relationships did not reduce conflict in other parts of the tree. While filtering genes may provide some
w5 means for lessening some systematic errors (Brown and Thomson 2016), or reducing some conflict (the
w6 question-specific ‘node-control’ approach of Chen, Liang, and Zhang (2015)) our analyses suggest that

se7 it will not likely solve general problems regarding conflicting genes.

s A test for the combinability of genes

s It is perhaps naive to expect a single gene to have high support throughout a large part of the Tree of
wo Life (see Penny et al. (1990); MUTOG: the ‘Myth of a Universal Tree from One Gene’). For this reason,
w1 some researchers have thus argued that concatenating genes effectively combines data informative at
w2 various scales and so provides the necessary information to better resolve deep and shallow nodes (e.g.,
w3  Mirarab, Bayzid, et al. 2014). Despite the potential benefits of concatenation (i.e., amplifying weak
ws  phylogenetic signal), the underlying model of evolution for a concatenated analysis assumes topological
w5 concordance among gene tree histories. Extensive gene conflicts should often violate these assumptions.
ws Filtering genes could be one means of reducing conflict, though our filtered analyses demonstrated that
a7 conflict remained in other parts of the tree. However, this conflict may have been weak enough to
w8 still support concatenation. Whether genes should be combined for a concatenated analysis has been
wo discussed at length (Huelsenbeck, Bull, and Cunningham 1996; Leigh et al. 2008; Seo and Thorne 2018;
a0 Theobald 2010; Walker, Brown, and Smith 2018) and Bayesian methods have recently been developed
a1 to address some of these issues (Neupane et al. 2018). However, due to the large scale of genomic

a2 datasets, Bayesian methods are often computationally intractable.

as We developed a heuristic to test if genes should be combined based on information criteria, and
as validated its performance through simulation. Our approach bears some similarity to methods which
a5 test the combinability of partition models in concatenated analyses (Lanfear et al. 2012, 2016), but
a6 additionally considers topological heterogeneity between gene regions, rather than evaluating them on
a7 a fixed topology (Neupane et al. 2018; Seo and Thorne 2018). In some cases the two approaches are
as  expected to perform similarly. For example, if two genes have identical topologies, then our results and
a0 the results of PartitionFinder should be identical. One key difference lies in the interpretation of the
20 results. If two genes are not merged in a PartitionFinder-like analysis, they are still included in the
o1 same concatenation analysis, albeit in different partitions. However, if two genes are not clustered by

a2 our approach, we argue that they should not be concatenated at all.

23 Simulations demonstrated that our approach performed well with clustering success decreasing with
w2 increasing tree depth and increasing branch length heterogeneity (Fig. 5). Simply put, trees that
s were more different were easier to separate into clusters. Overfitting increased as taxon overlap was
26 reduced. Based on these results, we find that our method provides a feasible approach to partition
w27 data into combinable subsets and to determine the degree of combinability (or lack thereof) of a set
w28 of genes. Despite the shortcuts employed, however, it may still involve long computational times

w20 or be intractable for some large datasets. Therefore, methods that reduce computational time, for
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a0 example the training of machine learning discriminative models for metrics like RFW from data subsets,
a1 could be explored. Because of the extensive gene tree conflict within datasets and the improbable
a2 nature of supporting combining genes that differ extensively in topology, generally researchers would
a3 be better to test subsets of the datasets instead of the entire dataset, reducing computational time and
a effort extensively. Additionally, the results of our simulations show that different information criteria
.5 and branch length models may be applicable in different situations. For example, AICc with scaled
a6 branch lengths is likely to produce few clusters when gene tree conflict is extensive, while BIC with
a7 scaled branch lengths may produce more. Therefore, researchers wishing to apply our approach should

a3 consider the characteristics of the data they are analyzing when making this choice.

a0 Combinability of empirical data

w0 Using our heuristic, we tested combinability of the subset of the genes from Wickett et al. (2014)
w1 that supported magnoliids sister to eudicots as inferred in the original ML analysis. We found that
w2 only a very small set of genes supported concantenation. Because concatenation is a common means
w3 for analyzing large phylogenomic analyses, it may be surprising that our metric does not support
wus widespread concatenation. However, given the extensive underlying gene tree conflict that remains
ws even after filtering for a particular focal relationship (Fig. 4) this should be expected. In particular,
ws  simulations demonstrated that our approach using AICc with scaled branch lengths is very sensitive to
w7 topological heterogeneity. Therefore, very small numbers of concatenated sets are probably the result
s of the extensive gene tree conflict that remains even after node-specific filtering. Furthermore, it is
wo  notable that even after filtering for gene trees supporting a particular relationships, some concatenated
w0 subsets still did not provide strong support for that relationship. While concatenation can be helpful for
1 exploratory inference to identify dominant signal, it is not capable of addressing specific and contentious
2 relationships. We suggest that when exploring specific relationships analyses such as those described
w3 above should be used to uncover the most robust phylogenetic hypothesis upon which to base other

ss¢  evolutionary hypotheses.

s Implications for plant phylogenetics

a6 The results presented here provide strong support for several relationships that have long been considered
w7 contentious, and indicate probable resolutions for others. For example, we found support for Amborella
s being sister to the rest of angiosperms and that gymnosperms are monophyletic. Several relationships
50 (e.g., among the eudicots and relatives as well as the hornworts, liverworts, and mosses) lack enough
w0 information to confidently accept any of the alternative resolutions. Rather than being dismayed at this
w1 apparent failure, we regard this lack of signal as extremely valuable information, as it informs where
w2 future effort should be focused. Though we identified the relationship that was more strongly supported
w3 by the data (Table 1), the differences between the alternatives were so slight that the current dataset is
s likely unable to confidently resolve this debate and conducting additional analyses with expanded taxa

w5 and gene regions is warranted.

ws  Among the strongly supported hypotheses, the placement of Amborella continues to be a point of
w7 major contention within the plant community. Amborella is a tropical tree with relatively small flowers,
ss  while the Nymphaeales are aquatic plants with relatively large flowers. The resolution of these taxa in
wo relation to the remainder of the flowering plants will inform the life history or early angiosperms (Feild

wo et al. (2004)) as well as the lability of life history and floral traits. Our results suggest Amborella is
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an  sister to all other extant angiosperms, and imply that rates of evolution need not be particularly fast in
a2 order to understand the morphological differences between a tropical tree (Amborella) and water lilies
a3 (Nymphaeales). Strong support for the monophyly of gymnosperms implies that the morphological
ann disparity of extant gymnosperm taxa, including the especially diverse Gnetales, emerged post-divergence
a5 from the angiosperm lineage. This reinforces analyses of LEAFY homologs, which recover gymnosperm
s paralogs as monophyletic groups (Sayou et al. 2014), and also lends support to shared characteristics
wr between Gnetales and angiosperms resulting from convergent evolution (Bowe, Coat, and dePamphilis
ws 2000; Hansen et al. 1999).

a9 For contentious relationships only weakly supported here, there are several biological questions that
s will be answered once these are confidently resolved. The data and analyses presented here suggest
w1 that hornworts are sister to all other land plants. This is consistent with some studies (Nickrent et al.
.2 2000; Nishiyama and Kato 1999), but contradicts the results of others (Cox et al. 2014; Karol et al.
w3 2010; Qiu et al. 2006), including some but not all results of a recent re-analysis of this dataset (Puttick
s et al. 2018). If the position of hornworts presented here holds with additional data, it implies that the
s absence of stomata in liverworts and some mosses is a derived state resulting from loss of the trait,
s suggests a single loss of pyrenoids in non-hornwort land plants (but see Villarreal and Renner 2012),
«r  and questions some inferences on the characteristics of hornwort sporophytes (Qiu et al. 2006). Among
s gymnosperms, these data suggest that Gnetales are sister to pines (the “Gnepine” hypothesis; Chaw et
w0 al. 2000), further supporting the lability and rapid evolution of morphological disparity within the
w0 group. Finally, magnoliids are inferred as sister to the eudicot lineages, which has implications on the

21 origin and divergence times of eudicots and monocots.

w2 Despite the ability of the methods explored here to accomodate the underlying gene tree uncertainty,
a3 our results depend on the information available in the underlying dataset. While this dataset is not
w0 comprehensive, it does represent extensive sequencing of transcriptomes and genomes for the taxa
w5 included. We can say, with confidence, what these data support or do not support, but different datasets
ws  (e.g., based on different taxa, different homology analyses) may have stronger signal for relationships
w7 that are resolved more equivocally here. We recommend analyzing these future datasets with an eye
w8 toward hypotheses of specific phylogenetic relationships. Our novel approach provides insight into
w0 several of the most contentious relationships across land plants and is broadly applicable among different
so0  groups. Approaches that ascertain the support for alternative resolutions should be used to resolve

s contentious branches across the Tree of Life.

s Implications for future phylogenomic studies

si3 A panacea does not currently exist for phylogenomic analyses. Some researchers aim to determine
sa  the relative support for contentious relationships. Others want to construct a reasonable, if not ideal,
sos  phylogeny for downstream analyses. Others still may be primarily interested in gene trees. Here, we
so6  suggest that more detailed analyses of the gene trees will yield more informative results regarding the
sov information within a particular dataset and the ability of the dataset to resolve relationships. Our

sos results also speak to the common analyses conducted on phylogenomic datasets.

s0o  The underlying conflict identified by many researchers (Wickett et al. 2014; Puttick et al. 2018)
s suggests that concatenation, while helpful for identifying the dominant signal, should not be used
su  to address contentious nodes. Our targeted exploration of the combinability of gene regions found

sz that very few genes are optimally modelled by concatenation, even when filtering on those genes that
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s13 support a relationship. However, our analyses of combinability leaves many unanswered questions.
su - For example, how should we adequately address the problem of low signal when gene tree conflict is
sis. high and concatenation is statistically unsupported? Are genes that are statistically supported to be
sie  analyzed together linked? And perhaps, most importantly, when faced with several clusters of combined
sz genes, how does one move forward with inference? Some have suggested feeding the clusters into a
sis  coalescent analysis (Mirarab, Bayzid, et al. 2014), however this most likely violates many assumptions
si9  of the coalescent. Alternatively, researchers are faced with multiple species trees. Here, we suggest that
s0 examining each of the dominant relationships in more detailed helps resolve these conflicts, though

ss1 - additional work is necessary to translate these results to species tree analyses.

s The most common alternative to concatenation, coalescent species tree approaches, often accomodate
s one major source of conflict in gene trees without concatenation, ILS (Mirarab, Reaz, et al. 2014).
s«  However, the most sophisticated model-based coalescent approaches are often not computationally
s tractable for phylogenomic analyses because of the large sizes of the datasets (Ané et al. 2006; Boussau
s6 et al. 2013). Instead, most phylogenomic analyses that accommodate ILS use quartet methods (e.g.,
sv ASTRAL) that, while fast and effective, do not account for multiple sources of conflict and make several
s other assumptions that may or may not be reasonable given the dataset (e.g. equal weighting of gene
s trees regardless of properties of the underlying genes). Some researchers have suggested filtering the
s0 data to include only those genes that conflict due to ILS (Knowles et al. 2018; Huang et al. 2017) or
sn that agree with accepted relationships or specific relationships to be tested (Chen, Liang, and Zhang
s 2015; Doyle et al. 2015; Smith, Brown, and Walker 2018). However, for datasets with a broad scope,
s13 several processes may be at play throughout the phylogeny and it may not be possible to filter based

s on a single underlying process.

535 While a single species tree may be necessary for some downstream analyses, these obfuscate the biological
s3s  realities that underlie these data. By uncovering the support and lack thereof, we can determine the
s limits of our data, identify troublesome phylogenetic relationships that require more attention, and put
s to rest debates over specific relationships (at least in regard to specific datasets). The approach we
s adopt here is akin to the ‘hypothesis-control’ method of Chen, Liang, and Zhang (2015), but instead
ss0  of relying on the results of typical inference on the filtered subsets, we profile the signal for different
sa resolutions and processes within them. Overall, we suggest that species trees, because of the cacophany
s2  of signal and conflict, are not the best units of analysis for resolving specific relationships. Instead,
ss3  analyses which focus on the support for a particular relationship in isolation, without requiring the

s data to speak to the full set of relationships in a species tree, should be pursued.
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