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Abstract8

Studies have demonstrated that pervasive gene tree conflict underlies several important phylogenetic9

relationships where different species tree methods produce conflicting results. Here, we present a means10

of dissecting the phylogenetic signal for alternative resolutions within a dataset in order to resolve11

recalcitrant relationships and, importantly, identify relationships the dataset is unable to resolve. These12

procedures extend upon methods for isolating conflict and concordance involving specific candidate13

relationships, and can be used to identify systematic error and disambiguate sources of conflict among14

species tree inference methods. We demonstrate these procedures on a large phylogenomic plant dataset.15

Our results support the placement of Amborella as sister to the remaining extant angiosperms, the16

monophyly of extant gymnosperms, and that Gnetales are sister to pines. Several other contentious17

relationships, including the resolution of relationships within both the bryophytes and the eudicots,18

remain uncertain given the low number of supporting gene trees. To address whether concatenation of19

filtered genes amplified phylogenetic signal for particular relationships, we implemented a combinatorial20

heuristic to test combinability of genes. We found that nested conflicts limited the ability of data21

filtering methods to fully ameliorate conflicting signal amongst gene trees. These analyses confirmed22

that the underlying conflicting signal does not support broad concatenation of genes. Our approach23

provides a means of dissecting a specific dataset to address deep phylogenetic relationships while24

highlighting the limitations of the dataset.25

Introduction26

Over the last few years, we have come to understand that phylogenetic conflict is common and presents27

several analytical challenges. Researchers have amassed large genomic and transcriptomic datasets28

meant to resolve fundamental phylogenetic relationships in plants (Wickett et al. 2014), animals (Jarvis29

et al. 2014; Dunn et al. 2008; Simion et al. 2017; Whelan et al. 2017), fungi (Shen et al. 2016),30

and bacteria (Ahrenfeldt et al. 2017). While the goals of these data collection efforts have been to31

increase the overall phylogenetic support, analyses have demonstrated that different datasets and32

analytical approaches often reconstruct strongly-supported but conflicting relationships (Feuda et al.33

2017; Walker et al. 2018; Shen, Hittinger, and Rokas 2017). Underlying these discordant results are34

strongly conflicting gene trees (Smith et al. 2015). In some cases, one or two “outlier” genes with35

large likelihood differences between alternative relationships can drive results (Shen, Hittinger, and36

Rokas 2017; Brown and Thomson 2016; Walker, Brown, and Smith 2018). Detailed gene tree analysis37
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of phylogenomic datasets is essential to identifying and analyzing overall gene tree conflict and outlier38

genes.39

Phylogenomic datasets are often analyzed as concatenated supermatrices or with coalescent gene-40

tree / species tree methods. Supermatrix methods were, in part, developed to amplify the strongest41

phylogenetic signal. However, it has long been understood that the “total evidence” paradigm (Kluge42

1989), where the true history will ‘win out’ if enough data are collected, is untenable. Genes with real43

and conflicting histories are expected within datasets due to biological processes like hybridization and44

incomplete lineage sorting (ILS) (Maddison 1997) in addition to outlying genes and sites as mentioned45

above (Shen, Hittinger, and Rokas 2017; Brown and Thomson 2016; Walker, Brown, and Smith 2018).46

“Species tree” inference accommodates for gene tree conflict due to ILS (Edwards, Liu, and Pearl 2007;47

Liu et al. 2009; Edwards 2009; Edwards et al. 2016) and is often conducted alongside concatenated48

supermatrix analyses. Differences in the results from these two approaches are often explained by49

the differences in assumptions each makes. The concatenated supermatrix allows for mixed molecular50

models and gene-specific branch lengths but assumes a single underlying tree topology common to51

all genes. This procedure is known to perform poorly in the presence of extensive ILS. Coalescent52

approaches, depending on the implementation, may assume that all conflict is the result of ILS (but53

see Boussau et al. (2013) and Ané et al. (2006)), that all genes evolved under selective neutrality and54

constant effective population size, that all genes contain enough information to properly resolve nodes,55

and that gene trees are estimated accurately (Springer and Gatesy 2016).56

While supermatrix and coalescent methods perform well in many scenarios, when unresolved nodes57

or discordance between species trees remain after large data collection efforts, researchers can further58

examine the processes leading to conflict or further dissect the phylogenetic signal within datasets. For59

example, Bayesian methods have been developed that incorporate processes in addition to ILS that60

lead to gene tree discordance (Ané et al. 2006; Boussau et al. 2013). However, these methods are often61

computationally intractable for current genomic datasets and may not handle systematic error well.62

Recently, network methods that scale to large datasets have been developed (Wen et al. 2018,@snaq),63

but these do not allow for dissecting signal within datasets. Filtering approaches where subsets of64

genes are analyzed based on model similarity or the relationships displayed by the genes (Chen, Liang,65

and Zhang 2015; Shen et al. 2016; Smith, Brown, and Walker 2018), help to enable computational66

tractability and distill signal. For example, Chen, Liang, and Zhang (2015) filtered for question-specific67

genes in the phylogeny of jawed vertebrates using two methods: one where only gene trees capable of68

supporting one of three resolutions for a given relationship were included in the analysis, and another69

where only gene trees which agreed with a widely-accepted control locus were retained for the analysis.70

Researchers have also examined alternative phylogenetic hypotheses in order to isolate the supporting71

signal (Shen, Hittinger, and Rokas 2017; Brown and Thomson 2016; Walker, Brown, and Smith 2018).72

In plants, several large data collection efforts aimed at resolving difficult nodes have found extensive73

conflicts (Smith et al. 2015; Walker et al. 2018, 2017; Wickett et al. 2014). Resolution of these clades74

is not only important for systematics, but crucial to an evolutionary understanding of key biological75

questions. For example, the relationships among the lineages of bryophytes (i.e., hornworts, liverworts,76

and mosses) remain unclear despite extensive data collection efforts (Wickett et al. 2014; Puttick et al.77

2018). One of the most heavily debated lineages in plant phylogenetics is the monotypic Amborella, the78

conflicting placement of which alters our understanding of early flowering plant evolution. Amborella79

has been inferred as sister to Nymphaeales, as sister to all angiosperms, or as sister to the remaining80

Angiosperms excluding Nymphaeales (Xi et al. 2014). The resolution of Amborella, along with other81
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contentious relationships across land plants, would provide greater confidence in our understanding of82

the evolution of early reproductive ecology, the evolution of floral development, and the life history of83

early land plants (Feild et al. 2004; Sauquet et al. 2017).84

We conducted a detailed analysis of nested phylogenomic conflict and signal across a phylogenomic85

dataset in hopes of presenting a computationally tractable and practical way to examine contentious86

relationships. We extended methods for examining phylogenetic alternatives and present an approach87

that can be widely applied to empirical datasets to determine the support, or lack thereof, for88

phylogenetic hypotheses. We applied these methods to a large plant genomic dataset (Wickett et al.89

2014). We identified systematic error, nested conflicting relationships, support for alternative resolutions,90

and we present a practical means to test the topological combinability of subsets of genes based on a91

combinatorial heuristic and information criteria statistics. By taking this broad information-centric92

approach, we hope to shed more light on the evolution of plants and present a tractable approach for93

dissecting signal with broad applicability for phylogenomic datasets across the Tree of Life.94

Materials and Methods95

Datasets96

We analyzed the Wickett et al. (2014) dataset of transcriptomes and genomes covering plants available97

from http://mirrors.iplantcollaborative.org/onekp_pilot. There were several different filtering methods98

and approaches used in the original manuscript and, based on conversations with the corresponding99

author, we analyzed the filtered nucleotide dataset with third codon positions removed. These sites100

were removed because of problems with excessive variation and GC content that caused problems with101

the placement of the lycophytes (Wickett et al. 2014). This dataset consisted of 852 aligned genes. We102

did not conduct any other filtering or alteration of these data before conducting the analyses performed103

as part of this study.104

Phylogenetic analyses105

We inferred gene trees for each of the 852 genes using IQ-TREE (v. 1.6.3; Nguyen et al. 2014). We used106

the GTR+G model of evolution and calculated maximum likelihood trees along with SH-aLRT values107

(Guindon et al. 2010). For all constrained analyses, we conducted additional maximum likelihood108

analyses with the same model of evolution but constrained on the relationship of interest, although the109

rest of the tree topology was free to vary.110

Conflict analyses111

We conducted several different conflict analyses. First, we identified the congruent and conflicting112

branches between the maximum likelihood gene trees (ignoring branches that had less than 80% SH-113

aLRT (Guindon et al. 2010)0, and the maximum likelihood species tree from the original publication114

(Fig. 2; Wickett et al. 2014). These analyses were conducted using the program bp available from115

https://github.com/FePhyFoFum/gophy. We placed these conflicting and supporting statistics in116

a temporal context by calculating the divergence times of each split based on the TimeTree of Life117

(Hedges, Dudley, and Kumar 2006; Hedges et al. 2015). By examining the dominant conflicting118
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alternatives, we established which constraints to implement and compare for further analyses. Because119

the gene regions contain partially overlapping taxa, automated discovery of all conflicting relationships120

concurrently can be challenging. To overcome these challenges, we examine each constraint individually.121

To determine the difference in the log-likelihood (lnL) values among conflicting resolutions, we conducted122

the constrained phylogenetic analyses (with parameters described in the Phylogenetic analyses section123

above) and compared the lnL values of the alternative resolutions. We then examined those results124

that had a difference in the lnL of greater than 2, considering this difference as statistically significant125

(Edwards 1984). For each gene, we noted the relationship with the highest log-likelihood and summed126

the difference of that and the second best relationship (DlnL) across all genes.127

We also examined nested conflicts. In particular, for the genes identified as supporting the dominant128

relationship of the eudicot lineages, we examined the distribution of conflict. We then examined those129

genes that supported both the eudicot lineages and the relationship of Amborella as sister to the rest130

of angiosperms. Finally, of those genes, we determined which supported the alternative gymnosperm131

relationships. We conducted each of these nested analyses using the same methods as described above.132

Combinability test133

We describe a simple but fast procedure for testing the combinability within a dataset based on gene134

tree similarity and information criteria (Fig. 1). A typical concatenated phylogenetic analysis assumes135

that the entire alignment used to calculate the tree was generated with the same underlying topology.136

When that is not the case, the likelihood of the tree using the entire alignment will be lower than the137

when considering the gene regions separately. It follows that those genes that should be combined (i.e.,138

concordant histories) will have more similar gene trees than those that should be considered separately139

(i.e., conflicting histories). To determine similarity between gene trees, we calculated the pairwise140

weighted Robinson-Foulds (RFW) distance (Robinson and Foulds 1981). We then constructed a graph141

where genes are nodes and edges are the weights between gene trees based on RFW. Then, beginning142

with the strongest edge, we tested for the combinability between the two connecting nodes. If they143

were combinable, based on the information criteria discussed below, we merged the nodes, along with144

the connecting edges for each.145

Figure 1: Procedure described in the methods section. Gene trees are constructed for genes and
weighted Robinson-Foulds distances are calculated between gene trees. A graph is constructed with
genes as nodes and edge weights from the weighted distances. The strongest edges are then tested for
combinability and combined if possible. The final nodes in the graph are the final clusters (i.e., clusters
that cannot be justifiably combined).

Non-nested likelihood-based analyses that have different numbers of parameters cannot be compared146
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directly. Instead, in the likelihood framework, information criteria are commonly used to accommodate147

and penalize for the increase in the number of parameters to prevent overfitting. The Akaike Information148

Criterion (AIC; Akaike 1973), the AIC with the correction for dataset size (AICc; see Burnham and149

Anderson 2003), and the Bayesian Information Criterion (BIC; Schwarz 1978) may all be used to150

compare likelihood scores that are produced from different numbers of parameters. Each of these151

criteria has different assumptions and different potential utility. Here, we examine the differences in152

considering AICc and BIC.153

The number of parameters for a single gene in a phylogenetic analysis include those for the molecular154

model (e.g., GTR = 8, 5 for substitution rates (the 6 rates are expressed relative to one arbitrary rate155

that is fixed as 1.0) and 3 for stationary nucleotide frequencies, with an additional 1 when including156

gamma-distributed rate variation) and the branch lengths of the unrooted phylogenetic tree (2n− 3).157

There are several ways by which multiple genes may be combined. For example, often molecular models158

are allowed to vary between these genes, or partitions. It is possible to test whether the genes should159

share models and programs exist to conduct such tests (e.g. PartitionFinder: Lanfear et al. (2016)). If160

models vary between gene regions, then for a x gene dataset, the number of molecular model parameters161

y would be x× y. The parameterization of branch lengths has several options: shared (2n− 3), exactly162

proportional (‘scaled’; (2n− 3) + (x− 1)), and independent ((2n− 3) × x). Here, we considered the163

molecular models to be independent between gene regions and tested both scaled and independent164

branch lengths.165

With these considerations, the tree comparison calculation proceeded as follows: for each gene, calculate166

the information criterion of the ML gene tree. Next, sum the information criterion statistic for the167

set of genes being tested. Further, concatenate the genes and calculate the information criterion for168

the ML tree. The genes may have different model parameters or branch lengths (shared, scaled, or169

independent), but they share the same topology. Lastly, compare the values of the information criterion170

for the summed gene trees and the concatenated genes. If the concatenated genes have a lower value171

of the information criterion than the summed gene trees, accept the combined genes and continue to172

the next comparison. If genes are already a member of a merged set, then compare the new gene to173

the merged set. Given this procedure, our algorithm is a greedy clustering method. Our approach174

is somewhat similar to the GARD method for detection of recombination breakpoints (Kosakovsky175

Pond et al. 2006a, 2006b). Here, the ‘breakpoints’ are the ends of the gene partitions, and we allow176

full maximum likelihood inference of the topologies of each partition, as well as selection of different177

branch length models and information criteria. Furthermore, instead of a genetic algorithm, we use178

tree distances to select which pairs to test. These methods are implemented in an open source python179

package, phyckle, available at https://github.com/FePhyFoFum/phyckle.180

Simulations181

We verified the performance of our combinatorial method using a variety of simulations across tree182

depths, branch length heterogeneity, topological variation, and model variation. Each simulation is183

described below. In general, we attempted to simplify the simulations in order to isolate the specific184

element being tested in order to better describe the expected behavior. While alignments were simulated185

under differing models, all clustering tests were conducted using GTR+G as this is typical of empirical186

analyses. For all simulations below, trees were simulated using pxbdsim from the phyx package (Brown,187

Walker, and Smith 2017) and alignments were generated using INDELible (Fletcher and Yang 2009).188
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Comparing information criteria and branch length models– In order to determine the efficacy of different189

information criteria as well as different branch length models, we conducted several simulation analyses.190

For each simulation, we generated a tree from a pure birth model with 25 tips and then three gene191

regions under JC model of evolution with 1000 sites each. This analysis was conducted with 100192

replicates. While the JC model of evolution is, perhaps, overly simplistic, we aimed to isolate the factors193

that caused genes to be considered separate or combined. We test more complex models below. Tree194

heights were tested for 0.05, 0.25, 0.75, and 1.25. We also conducted tests where branches could vary195

between gene regions. For each gene region, the species tree branch lengths were perturbed randomly196

with a sliding window of 0.01, 0.05, and 0.1, so U(x− w, x+ w). We examined scaled and independent197

branch length models with both BIC and AICc.198

Examining the impact of branch differences–The above tests examined variation between simulated199

genes involving branch length heterogeneity and model complexity, but all had the same underlying200

topology. We also examined the impact of having different underlying topologies between gene regions.201

To do this, we simulated a pure birth tree of 25 tips and a tree depth of 0.5 and simulated two gene202

regions under this model. Then for one additional gene region, we chose one node randomly and203

swapped nearest neighbors and then simulated gene regions. This resulted in three gene regions with two204

different underlying topologies. The difference in the underlying topologies varied from one swapping205

move to five swapping moves. All genes trees also had branch lengths perturbed with branch length206

heterogeneity of 0.01 as described above.207

Examining the impact of different models on different genes– In order to examine whether different208

models may cause the gene regions to be considered separate we conducted similar simulations to those209

described above but with distinct substitution models applied to individual gene regions. Two gene210

regions were simulated for each of three substitution models (i.e., six gene regions total), each with 1000211

bases and the same underlying pure birth topology of 25 taxa and tree depth of 0.5. Branch length212

heterogeneity varied from 0.01, 0.05, and 0.1. The first two gene regions were evolved under JC, the213

second set of two gene regions under HKY with κ = 2.5, proportion of invariable sites = 0.25, Γ = 0.5,214

number of Γ categories= 10, and state frequencies of 0.2, 0.3, 0.1, 0.4 for A, C, G, and T, respectively,215

and the third set of two gene region under HKY with κ = 1.5, proportion of invariable sites = 0.25,216

Γ = 0.5, number of Γ categories= 10, and state frequencies of 0.1, 0.4, 0.3, 0.2. Two gene regions were217

simulated for each model in order to verify that those two continued to be clustered together regardless218

of how the separate models clustered. This test was not intended to be comprehensive as variation in219

molecular models in relation to information criteria has already been thoroughly explored (e.g., Lanfear220

et al. 2016; Seo and Thorne 2018). Instead, we aimed to better understand the conditions under which221

variation in molecular model would result in consideration as completely separate analyses.222

Examining the impact of missing taxa–Because genes often do not have completely overlapping taxa, we223

conducted simulations where some taxa may be missing from each gene region. For these simulations,224

25 taxon pure birth trees were generated and three gene regions of 1000 bases each were simulated.225

Then from one to three tips were randomly removed from one gene. We also conducted simulations226

where from one to three tips were randomly removed from each of the three genes. Random taxa were227

removed from each gene and so some genes would have the same taxa removed and others would not.228

All genes trees also had branch lengths perturbed with branch length heterogeneity of 0.01 as described229

above.230

Examining the potential for snowballing–Based on initial observations, we hypothesized that the use231

of particular combinations of model and information criteria may lead to genes being erroneously232
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combined because of the size of the cluster they were compared to, i.e. that clusters would snowball233

in size. We assessed this possibility by simulating 1000 base-pair alignments under a JC model of234

evolution on a 25-taxon pure birth tree with a tree depth of 0.5, and comparing these alignments to235

another alignment simulated on a tree three NNI-moves away. In each iteration, we increased the236

number of alignments simulated on the same tree. Thus iteration one compared one gene on one tree237

and another on a tree three NNI moves away, while iteration two compared two genes simulated on238

one tree with another on a tree three NNI moves away, and so on. Each comparison was repeated 100239

times for linked (proportionally scaled) and unlinked (independent) branch lengths and analyzed with240

both AICc and BIC.241

Empirical Demonstration242

For demonstration purposes, we did not conduct exhaustive testing of combinability of the entire243

Wickett et al. (2014) dataset. Instead, we conducted these tests on two gene sets that supported the244

eudicot relationship. First, we tested the set of genes that supported the eudicot relationship in the245

ML tree that did not have a branch length longer than 2.5 and did not have outgroup taxa falling246

in the ingroup. Long branch lengths (e.g., >2.5 substitutions per site) suggest multiple substitutions247

at each site and therefore little to no remaining phylogenetic information (e.g., systematic error or248

extremely rapid rates of evolution). Second, we tested the set of genes that did not only support the249

relationship in the ML tree but also displayed the relationship in the ML gene tree with SH-aLRT250

support higher than 80 and with no outlying branch lengths or outgroup taxa falling in the ingroup.251

These control methods echo the classes of filtering evoked in Chen, Liang, and Zhang (2015), that of252

non-specific data filtering (branch length, support values) and ‘node-control’ (outgroup relationships,253

eudicot relationships).254

Clustering analyses were conducted using IQ-TREE with AICc and the -spp option for scaled branch255

lengths partitions, as simulations demonstrated that it split the most accurately based on conflicting256

topologies (see Results).257

We compared the results of our analyses to the PartitionFinder ‘greedy’ algorithm implemented in258

IQ-TREE using the option -m MERGE, specifying the GTR+G model and assessing partitions with the259

edge-linked proportional model with -spp. We compared the individual gene trees of each merged260

partition in IQ-TREE with -spp and -m GTR+G and for comparison assessed the optimal partitioning261

scheme on the full data similarly with -spp and -m GTR+G. In addition we compared the results of262

treating the clusters from the combination procedure as an optimal partitioning scheme, using -spp263

and -m GTR+G. In each case AICc was used for a direct comparison to the results of our method.264

Results265

Conflict analyses266

We compared gene trees (Fig. 1) based on the concatenated maximum likelihood (ML) analysis from267

Wickett et al. (2014) and found that both gene tree conflict and support varied through time with268

support increasing toward the present (Fig. 2). We aimed to resolve contentious relationships, with a269

focus on those that have either been debated in the literature or been considered important in resolving270

key evolutionary questions, to the best of the ability of the underlying data (Table 1).271
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The massive scale of genomic datasets can cause substantial noise that is often difficult to identify272

when taking the dataset as a whole. When analyzing specific genes, we found that several conflicting273

relationships were the result of systematic error in the underlying data. In order to minimize the274

impact of systematic error on the estimation of relationships, we excluded obvious errors where possible.275

For example, we found 258 of 852 gene trees contained non-land plant taxa that fell within the land276

plants. While these errors may not impact the estimation of relationships within eudicots, they will277

impact the estimation of relationships at the origin of land plants. Therefore, we excluded gene trees278

for which there was not previously well established monophyly of the focal taxa (i.e., involving the279

relationship of interest). We also identified 68 gene trees that possessed very long estimated branch280

lengths (> 2.5 expected substitutions per site). We conservatively considered these to contain potential281

errors in homology (Yang and Smith 2014). While these genes demonstrate patterns associated with282

systematic error, they also likely contain information for several relationships. However, some error283

may be the result of misidentified orthology that will mislead estimation of phylogenetic relationships,284

even if this error may not impact all relationships inferred by the gene. Therefore, to minimize sources285

of systematic error, we took a conservative approach and excluded these genes from additional analyses.286

We explored both numbers of gene trees and differences in log-likelihoods for several key relationships.287

In some cases both number of gene trees and differences in log-likelihood support the same resolution,288

as was the case for the monophyly of Gymnosperms. However, other relationships are more equivocal or289

contradictory. For example, Gnetales and conifers as sisters (“Gnetifers”) is supported by more genes,290

but Gnetales and Pines as sisters (“Gnepine”) is supported by differences in log-likelihood (Table 1).291

Table 1. Comparison of the number of genes and the difference in the likelihood (DlnL) with relationships292

ordered based on support. * indicates relationships present in the ML tree.293

Major clade Resolutions Genes Genes (> 2lnL) DlnL DlnL > 2

Bryophytes Hornworts sister* 110 83 677.6 654.1
Liverworts sister 56 41 294.1 280.8
Mosses+liverworts 81 40 228.9 190.2
All monophyly 81 37 185.3 148.5

Gymnosperms monophyly* 288 264 7259.0 7233.8
Gnetum sister 45 31 229.8 216.0
Cycas sister 39 18 120.3 105.2

Gymno relat. Gnepine* 107 85 1017.2 994.4
conifers 93 79 800.0 787.2
Gnetifers 134 55 288.1 217.8
Gnetales sister 76 40 211.2 176.3

Amborella Amborella sister* 184 152 1501.1 1470.0
Amborella+Nuphar 118 75 564.2 526.3
Nuphar sister 111 62 392.2 345.2

Eudicots Magnoliids+eudicots* 114 98 1223.4 1204.3
Monocots+eudicots 66 49 541.5 526.5
Monocots+magnoliids 90 58 453.3 425.5
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Figure 2: Phylogeny of land plants with pie charts at nodes illustrating conflict, concordance, and
informativeness of the gene tree set without any filtering. Inset boxes show summed differences in log
likelihoods (top row) and the number of gene trees (bottom row) that support the relationship shown
in the tree and the dominant conflicting relationships. Right pie charts in the inset box show results
when only differences greater than 2 log likelihoods are considered. See also Table 1.
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Figure 3: Examination of support and conflict in relation to time across all nodes with node ages
taken from TimeTree (Hedges, Dudley, and Kumar 2006; Hedges et al. 2015). The differences between
support and conflict are noted with vertical lines. The cumulative sum of support and conflict through
time is noted in solid grey. Focal nodes from Fig. 2 are identified.
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Nested analyses294

Given the variation in support and conflict through time (Fig. 3), many genes that contain signal for a295

particular relationship may disagree with the resolution at other nodes. To examine these patterns of296

nested conflict, we examined the genes that support the resolution of the eudicot relationships (Fig. 4).297

In a set of 127 genes which supported the eudicot relationships recovered in the original ML analysis,298

98 survived filtering for outgroup placement, branch length, and support with a statistically significant299

difference in lnL (> 2; Edwards 1984). 63 of these genes supported the monophyly of gymnosperms,300

and among those 63 only 25 supported a sister relationship between pines and Gnetum.301

Figure 4: Nested patterns of support with genes associated with the resolution of eudicots. From left
to right are shown the genes that support eudicots as sister to magnoliids (far left), those genes filtered
as not having any outgroup errors or long branch lengths, those genes that support the resolution by at
least 2lnL, those genes that support monophyletic gymnosperms, and finally those genes that support
the Gnepine relationship.

Simulations of combinability302

The procedure described here consists of two components: the information criterion for testing model303

complexity and the hill-climbing greedy clustering algorithm. First we conducted analyses to compare304

the performance of the difference information criteria measures (Fig. 5). In our tests, BIC with scaled305

branch lengths performed the best overall while AICc with scaled branch lengths performed well when306

branch length heterogeneity was low but poorly when branch length heterogeneity was medium to high.307

AICc with independent branch lengths tended to overfit when tree depths were higher but was more308

consistent across a range of branch length heterogeneity than any other information criterion. BIC with309

independent branch lengths (not shown) failed to recover any clusters and therefore was not considered310

further. High branch length heterogeneity generally resulted in overfitting. Because of the propensity311

of AICc with independent branch lengths to erroneously split clusters with both increasing tree depth312

and low levels of branch length heterogeneity, we did not consider it further.313

Phylogenomic datasets often have only partially overlapping taxa sets for each gene, therefore we tested314

the influence of this in two ways (Fig. 5B). First, we randomly removed from one to three taxa for a315

single gene. These results demonstrate that the procedure will tend to overfit as the number of missing316

taxa increases. AICc with scaled branch lengths was highly sensitive to missing taxa, with between317

33% and 87% overfitting for missing taxa in one gene and only one replicate correctly recovering one318

cluster for the highest amount of missing taxa in all genes. BIC with scaled branch lengths was less319

sensitive to missing taxa, with between 4% and 12% overfitting for missing taxa in one gene, and up to320

52% overfitting for missing taxa in all genes.321

The results above all had the same underlying species tree topology for each gene simulated. In order322

to determine not only whether the procedure overfitted models, we also examined the ability for the323
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Figure 5: Simulations of clustering behaviour for the information criteria-based clustering under different
models and data perturbation. ‘sc’ indicates that branch lengths are scaled (proportional) between gene
regions, while ‘in’ indicates independent branch lengths. A performance of varied tree depths for three
gene regions simulated on the same topology. Ideally all would recover one cluster. B performance for
decreasing taxon overlap, with three gene regions simulated on the same topology but with one gene
missing 1-3 taxa or with all genes missing 1-3 taxa. Ideally all would recover one cluster. C ability to
detect topological differences amongst three gene regions, with two simulated on one topology and one
simulated on a topology 1-5 NNI moves away. Ideally all would recover two clusters. D performance of
varied branch length heterogeneity for three gene regions simulated on the same topology using the
same model. Ideally all would recover one cluster. E performance for three gene regions simulated
under different models and increasing branch length heterogeneity on the same topology. Ideally all
would recover one cluster.

12

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2018. ; https://doi.org/10.1101/371930doi: bioRxiv preprint 

https://doi.org/10.1101/371930
http://creativecommons.org/licenses/by-nc-nd/4.0/


procedure to correctly break up gene regions when underlying topologies differed (Fig. 5C). As the324

simulations were conducted with two topologies differing from one to five NNIs, we expected the325

procedure to identify two clusters. We found that AICc with scaled branch lengths was much more326

sensitive to topological differences, with a highest error of 9% of replicates, and perfect recovery at five327

NNIs. BIC with scaled branch lengths tended to underfit, with error rates up to 60%, and producing328

two clusters in 5% of replicates even at five NNIs.329

While isolating the behavior of the information criteria in relation to tree depth and branch length330

heterogeneity is helpful, it is likely that most datasets will have variation in substitution models between331

genes as well (Fig. 5E). We found that the BIC with scaled branch lengths was mostly robust to model332

variation except in the presence of large branch length heterogeneity (i.e., 10% of total tree height).333

AICc with scaled branch lengths was prone to overfitting based on model discrepancies, particularly334

with increasing branch length heterogeneity, correctly recovering one cluster in all replicates with branch335

length heterogeneity of 0.01, but incorrectly recovering three clusters in all replicates with branch336

length heterogeneity of 0.01. The discrepancy between the branch length heterogeneity of 0.1 in this337

analysis and the one above reflect that there were six genes simulated in this case with two for each338

model versus three gene regions as above.339

Initial observations from some empirical data suggested the potential for clusters to snowball in size.340

We therefore simulated increasing numbers of genes on the same topology and tested clustering them341

against a single gene simulated on a topology three NNI moves away. For an proportional branch length342

model, two clusters were obtained in all replicates regardless of the number of genes in the cluster, for343

both AICc and BIC. For an independent branch length model, two clusters were also obtained in all344

replicates for AICc and BIC (not shown).345

Empirical combinability of genes346

We greedily tested the combinability of genes sets based on Robinson-Foulds distances to examine347

whether genes can be justifiably concatenated despite heterogeneity in information content throughout348

the phylogeny. We refer to our method as the COMBination of datasets (COMB) method. Because349

our approach bears conceptual similarity to algorithms used to estimate the optimal partitioning350

schemes (e.g. PartitionFinder, Lanfear et al. 2012, 2016), we compared combinable subsets to those351

recommended by the implementation of the PartitionFinder algorithm in IQ-TREE (Kalyaanamoorthy352

et al. 2017, referred to as MERGE here). Since an exhaustive search of the entire dataset is intractable,353

we examined the combinability of those genes that support the eudicot lineages to be sister to the354

magnoliid lineages (Fig. 2). We conducted analyses of two sets of genes: those that support the355

relationship with greater than 2 lnL versus alternative relationships (98 genes; ‘CombinedSet’), and356

those that display the relationship in the ML gene tree and have SH-aLRT support greater than 80 (44357

genes; ‘MLSet’). These two sets were chosen because the first set was already examined as part of this358

study and the second is a typical cutoff used in standard systematics analyses (Guindon et al. 2010).359

No method or gene set supported the concatenation of all genes that supported the focal eudicot360

relationship (see Table 2). The COMB method on the ‘CombinedSet’ supported concatenation of only361

two sets: one of three genes and one of two. The MERGE method supported merging partitions of362

46 genes out of 98 (see Table 2 for more details). MERGE supported partition merging for a much363

greater number of genes than COMB supported combination. The COMB and MERGE results did364

not contain any identical concatenated sets. We constructed phylogenies of each concatenated set and365
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compared the inferred topologies (Table 2). Despite filtering on the magnoliids as sister to eudicots366

relationship, not all concatenated sets recovered this relationship with greater than 80 SH-aLRT. In367

one case, a merged partition supported a contradictory relationship to the filtered one.368

Table 2. Comparison of partitioned subsets between combining strategies369

Algorithm Gene set Genes Sets Partitioned Topology Subset Relationships

MERGE combined 98 20
(2x4,
2x3,
16x2)

magnoliids+eudicots
(100)

magnoliids+eudicots
(40%)

ML 44 9 (1x4,
2x3,
6x2)

magnoliids+eudicots
(100)

magnoliids+eudicots
(67%)

monocots+eudicots
(11%)

COMB combined 98 2 (1x3,
1x2)

magnoliids+eudicots
(100)

magnoliids+eudicots(100%)

ML 44 5 (1x3,
4x2)

magnoliids+eudicots
(100)

magnoliids+eudicots
(25%)

Brackets following a partitioned topology give the SH-aLRT score for that branch, while percentages370

following a subset relationship give the proportion of individual partition gene trees supporting the371

specified relationship with ≥ 80 SH-aLRT372

Discussion373

Conflict analysis374

Several contentious relationships show strong contrast between the number of genes supporting the375

relationship, the number of genes strongly supporting the relationship (>2 lnL), the lnL supporting the376

relationship, and the lnL of genes that strongly support the relationship. Our analyses demonstrate that377

the differences in the number of gene trees supporting relationships and the difference in the summed378

likelihoods can provide insight into the cause for discordance between concatenated ML analyses379

and coalescent analyses. For example, the relationship involving Gnetales and the conifers as sister380

(Gnetifers) was recovered in coalescent-based analysis and is supported by more genes. However, the sum381

of the differences in the log-likelihoods of alternative resolutions support the Gnepine relationship (i.e.,382

Gnetales sister to Pinales), the relationship found in the ML supermatrix analyses. Other relationships,383

including the placement of Amborella (Table 1), unequivocally support Amborella as sister to the rest of384

the angiosperms. For some relationships, gene support was equivocal (e.g. for relationships in eudicots385

and Bryophytes), but differences in strongly supporting genes and in summed lnL differences showed a386

clear preference.387
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Nested analysis388

Filtering genes by the specific relationship they display provides an opportunity to examine nested389

conflicts (i.e., subsets of genes that do not conflict in one relationship may conflict in another).390

Furthermore, if conflict was reduced as a result of filtering, concatenation may be more tenable on391

such a filtered datasets. However, our nested conflict analyses demonstrated significant conflict and392

variation in the support for different relationships (Fig. 4) and that filtering genes based on specific393

relationships did not reduce conflict in other parts of the tree. While filtering genes may provide some394

means for lessening some systematic errors (Brown and Thomson 2016), or reducing some conflict (the395

question-specific ‘node-control’ approach of Chen, Liang, and Zhang (2015)) our analyses suggest that396

it will not likely solve general problems regarding conflicting genes.397

A test for the combinability of genes398

It is perhaps naïve to expect a single gene to have high support throughout a large part of the Tree of399

Life (see Penny et al. (1990); MUTOG: the ‘Myth of a Universal Tree from One Gene’). For this reason,400

some researchers have thus argued that concatenating genes effectively combines data informative at401

various scales and so provides the necessary information to better resolve deep and shallow nodes (e.g.,402

Mirarab, Bayzid, et al. 2014). Despite the potential benefits of concatenation (i.e., amplifying weak403

phylogenetic signal), the underlying model of evolution for a concatenated analysis assumes topological404

concordance among gene tree histories. Extensive gene conflicts should often violate these assumptions.405

Filtering genes could be one means of reducing conflict, though our filtered analyses demonstrated that406

conflict remained in other parts of the tree. However, this conflict may have been weak enough to407

still support concatenation. Whether genes should be combined for a concatenated analysis has been408

discussed at length (Huelsenbeck, Bull, and Cunningham 1996; Leigh et al. 2008; Seo and Thorne 2018;409

Theobald 2010; Walker, Brown, and Smith 2018) and Bayesian methods have recently been developed410

to address some of these issues (Neupane et al. 2018). However, due to the large scale of genomic411

datasets, Bayesian methods are often computationally intractable.412

We developed a heuristic to test if genes should be combined based on information criteria, and413

validated its performance through simulation. Our approach bears some similarity to methods which414

test the combinability of partition models in concatenated analyses (Lanfear et al. 2012, 2016), but415

additionally considers topological heterogeneity between gene regions, rather than evaluating them on416

a fixed topology (Neupane et al. 2018; Seo and Thorne 2018). In some cases the two approaches are417

expected to perform similarly. For example, if two genes have identical topologies, then our results and418

the results of PartitionFinder should be identical. One key difference lies in the interpretation of the419

results. If two genes are not merged in a PartitionFinder-like analysis, they are still included in the420

same concatenation analysis, albeit in different partitions. However, if two genes are not clustered by421

our approach, we argue that they should not be concatenated at all.422

Simulations demonstrated that our approach performed well with clustering success decreasing with423

increasing tree depth and increasing branch length heterogeneity (Fig. 5). Simply put, trees that424

were more different were easier to separate into clusters. Overfitting increased as taxon overlap was425

reduced. Based on these results, we find that our method provides a feasible approach to partition426

data into combinable subsets and to determine the degree of combinability (or lack thereof) of a set427

of genes. Despite the shortcuts employed, however, it may still involve long computational times428

or be intractable for some large datasets. Therefore, methods that reduce computational time, for429
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example the training of machine learning discriminative models for metrics like RFW from data subsets,430

could be explored. Because of the extensive gene tree conflict within datasets and the improbable431

nature of supporting combining genes that differ extensively in topology, generally researchers would432

be better to test subsets of the datasets instead of the entire dataset, reducing computational time and433

effort extensively. Additionally, the results of our simulations show that different information criteria434

and branch length models may be applicable in different situations. For example, AICc with scaled435

branch lengths is likely to produce few clusters when gene tree conflict is extensive, while BIC with436

scaled branch lengths may produce more. Therefore, researchers wishing to apply our approach should437

consider the characteristics of the data they are analyzing when making this choice.438

Combinability of empirical data439

Using our heuristic, we tested combinability of the subset of the genes from Wickett et al. (2014)440

that supported magnoliids sister to eudicots as inferred in the original ML analysis. We found that441

only a very small set of genes supported concantenation. Because concatenation is a common means442

for analyzing large phylogenomic analyses, it may be surprising that our metric does not support443

widespread concatenation. However, given the extensive underlying gene tree conflict that remains444

even after filtering for a particular focal relationship (Fig. 4) this should be expected. In particular,445

simulations demonstrated that our approach using AICc with scaled branch lengths is very sensitive to446

topological heterogeneity. Therefore, very small numbers of concatenated sets are probably the result447

of the extensive gene tree conflict that remains even after node-specific filtering. Furthermore, it is448

notable that even after filtering for gene trees supporting a particular relationships, some concatenated449

subsets still did not provide strong support for that relationship. While concatenation can be helpful for450

exploratory inference to identify dominant signal, it is not capable of addressing specific and contentious451

relationships. We suggest that when exploring specific relationships analyses such as those described452

above should be used to uncover the most robust phylogenetic hypothesis upon which to base other453

evolutionary hypotheses.454

Implications for plant phylogenetics455

The results presented here provide strong support for several relationships that have long been considered456

contentious, and indicate probable resolutions for others. For example, we found support for Amborella457

being sister to the rest of angiosperms and that gymnosperms are monophyletic. Several relationships458

(e.g., among the eudicots and relatives as well as the hornworts, liverworts, and mosses) lack enough459

information to confidently accept any of the alternative resolutions. Rather than being dismayed at this460

apparent failure, we regard this lack of signal as extremely valuable information, as it informs where461

future effort should be focused. Though we identified the relationship that was more strongly supported462

by the data (Table 1), the differences between the alternatives were so slight that the current dataset is463

likely unable to confidently resolve this debate and conducting additional analyses with expanded taxa464

and gene regions is warranted.465

Among the strongly supported hypotheses, the placement of Amborella continues to be a point of466

major contention within the plant community. Amborella is a tropical tree with relatively small flowers,467

while the Nymphaeales are aquatic plants with relatively large flowers. The resolution of these taxa in468

relation to the remainder of the flowering plants will inform the life history or early angiosperms (Feild469

et al. (2004)) as well as the lability of life history and floral traits. Our results suggest Amborella is470
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sister to all other extant angiosperms, and imply that rates of evolution need not be particularly fast in471

order to understand the morphological differences between a tropical tree (Amborella) and water lilies472

(Nymphaeales). Strong support for the monophyly of gymnosperms implies that the morphological473

disparity of extant gymnosperm taxa, including the especially diverse Gnetales, emerged post-divergence474

from the angiosperm lineage. This reinforces analyses of LEAFY homologs, which recover gymnosperm475

paralogs as monophyletic groups (Sayou et al. 2014), and also lends support to shared characteristics476

between Gnetales and angiosperms resulting from convergent evolution (Bowe, Coat, and dePamphilis477

2000; Hansen et al. 1999).478

For contentious relationships only weakly supported here, there are several biological questions that479

will be answered once these are confidently resolved. The data and analyses presented here suggest480

that hornworts are sister to all other land plants. This is consistent with some studies (Nickrent et al.481

2000; Nishiyama and Kato 1999), but contradicts the results of others (Cox et al. 2014; Karol et al.482

2010; Qiu et al. 2006), including some but not all results of a recent re-analysis of this dataset (Puttick483

et al. 2018). If the position of hornworts presented here holds with additional data, it implies that the484

absence of stomata in liverworts and some mosses is a derived state resulting from loss of the trait,485

suggests a single loss of pyrenoids in non-hornwort land plants (but see Villarreal and Renner 2012),486

and questions some inferences on the characteristics of hornwort sporophytes (Qiu et al. 2006). Among487

gymnosperms, these data suggest that Gnetales are sister to pines (the “Gnepine” hypothesis; Chaw et488

al. 2000), further supporting the lability and rapid evolution of morphological disparity within the489

group. Finally, magnoliids are inferred as sister to the eudicot lineages, which has implications on the490

origin and divergence times of eudicots and monocots.491

Despite the ability of the methods explored here to accomodate the underlying gene tree uncertainty,492

our results depend on the information available in the underlying dataset. While this dataset is not493

comprehensive, it does represent extensive sequencing of transcriptomes and genomes for the taxa494

included. We can say, with confidence, what these data support or do not support, but different datasets495

(e.g., based on different taxa, different homology analyses) may have stronger signal for relationships496

that are resolved more equivocally here. We recommend analyzing these future datasets with an eye497

toward hypotheses of specific phylogenetic relationships. Our novel approach provides insight into498

several of the most contentious relationships across land plants and is broadly applicable among different499

groups. Approaches that ascertain the support for alternative resolutions should be used to resolve500

contentious branches across the Tree of Life.501

Implications for future phylogenomic studies502

A panacea does not currently exist for phylogenomic analyses. Some researchers aim to determine503

the relative support for contentious relationships. Others want to construct a reasonable, if not ideal,504

phylogeny for downstream analyses. Others still may be primarily interested in gene trees. Here, we505

suggest that more detailed analyses of the gene trees will yield more informative results regarding the506

information within a particular dataset and the ability of the dataset to resolve relationships. Our507

results also speak to the common analyses conducted on phylogenomic datasets.508

The underlying conflict identified by many researchers (Wickett et al. 2014; Puttick et al. 2018)509

suggests that concatenation, while helpful for identifying the dominant signal, should not be used510

to address contentious nodes. Our targeted exploration of the combinability of gene regions found511

that very few genes are optimally modelled by concatenation, even when filtering on those genes that512
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support a relationship. However, our analyses of combinability leaves many unanswered questions.513

For example, how should we adequately address the problem of low signal when gene tree conflict is514

high and concatenation is statistically unsupported? Are genes that are statistically supported to be515

analyzed together linked? And perhaps, most importantly, when faced with several clusters of combined516

genes, how does one move forward with inference? Some have suggested feeding the clusters into a517

coalescent analysis (Mirarab, Bayzid, et al. 2014), however this most likely violates many assumptions518

of the coalescent. Alternatively, researchers are faced with multiple species trees. Here, we suggest that519

examining each of the dominant relationships in more detailed helps resolve these conflicts, though520

additional work is necessary to translate these results to species tree analyses.521

The most common alternative to concatenation, coalescent species tree approaches, often accomodate522

one major source of conflict in gene trees without concatenation, ILS (Mirarab, Reaz, et al. 2014).523

However, the most sophisticated model-based coalescent approaches are often not computationally524

tractable for phylogenomic analyses because of the large sizes of the datasets (Ané et al. 2006; Boussau525

et al. 2013). Instead, most phylogenomic analyses that accommodate ILS use quartet methods (e.g.,526

ASTRAL) that, while fast and effective, do not account for multiple sources of conflict and make several527

other assumptions that may or may not be reasonable given the dataset (e.g. equal weighting of gene528

trees regardless of properties of the underlying genes). Some researchers have suggested filtering the529

data to include only those genes that conflict due to ILS (Knowles et al. 2018; Huang et al. 2017) or530

that agree with accepted relationships or specific relationships to be tested (Chen, Liang, and Zhang531

2015; Doyle et al. 2015; Smith, Brown, and Walker 2018). However, for datasets with a broad scope,532

several processes may be at play throughout the phylogeny and it may not be possible to filter based533

on a single underlying process.534

While a single species tree may be necessary for some downstream analyses, these obfuscate the biological535

realities that underlie these data. By uncovering the support and lack thereof, we can determine the536

limits of our data, identify troublesome phylogenetic relationships that require more attention, and put537

to rest debates over specific relationships (at least in regard to specific datasets). The approach we538

adopt here is akin to the ‘hypothesis-control’ method of Chen, Liang, and Zhang (2015), but instead539

of relying on the results of typical inference on the filtered subsets, we profile the signal for different540

resolutions and processes within them. Overall, we suggest that species trees, because of the cacophany541

of signal and conflict, are not the best units of analysis for resolving specific relationships. Instead,542

analyses which focus on the support for a particular relationship in isolation, without requiring the543

data to speak to the full set of relationships in a species tree, should be pursued.544

Acknowledgments545

This work was supported by funding from NSF DEB 1354048 (J.F.W. and S.A.S.) and NSF AVATOL546

1207915 (J.W.B. and S.A.S.). We appreciate comments from Ning Wang, Caroline Parins-Fukuchi,547

Diego Alvarado Serrano, Greg Stull, Drew Larson, Hector Fox, and Richie Hodel.548

Literature Cited549

Ahrenfeldt, Johanne, Carina Skaarup, Henrik Hasman, Anders Gorm Pedersen, Frank Møller Aarestrup,550

and Ole Lund. 2017. “Bacterial Whole Genome-Based Phylogeny: Construction of a New Benchmarking551

Dataset and Assessment of Some Existing Methods.” BMC Genomics 18 (1). BioMed Central: 19.552

18

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2018. ; https://doi.org/10.1101/371930doi: bioRxiv preprint 

https://doi.org/10.1101/371930
http://creativecommons.org/licenses/by-nc-nd/4.0/


Akaike, Hirotogu. 1973. “Information Theory and an Extension of the Maximum Likelihood Principle.”553

In Second International Symposium on Information Theory, edited by Petrov P. N. and Csaki F.,554

267–81. Akademiai Kiado.555

Ané, Cécile, Bret Larget, David A Baum, Stacey D Smith, and Antonis Rokas. 2006. “Bayesian556

Estimation of Concordance Among Gene Trees.” Molecular Biology and Evolution 24 (2). Oxford557

University Press: 412–26.558

Boussau, Bastien, Gergely J Szöllősi, Laurent Duret, Manolo Gouy, Eric Tannier, and Vincent Daubin.559

2013. “Genome-Scale Coestimation of Species and Gene Trees.” Genome Research 23 (2). Cold Spring560

Harbor Lab: 323–30.561

Bowe, L Michelle, Gwénaële Coat, and Claude W. dePamphilis. 2000. “Phylogeny of Seed Plants562

Based on All Three Genomic Compartments: Extant Gymnosperms Are Monophyletic and Gnetales’563

Closest Relatives Are Conifers.” Proceedings of the National Academy of Sciences 97 (8). National564

Acad Sciences: 4092–7.565

Brown, Jeremy M, and Robert C Thomson. 2016. “Bayes Factors Unmask Highly Variable Information566

Content, Bias, and Extreme Influence in Phylogenomic Analyses.” Systematic Biology 66 (4). Oxford567

University Press: 517–30.568

Brown, Joseph W, Joseph F Walker, and Stephen A Smith. 2017. “Phyx: Phylogenetic Tools for Unix.”569

Bioinformatics 33 (12). Oxford University Press: 1886–8.570

Burnham, Kenneth P, and David R Anderson. 2003. Model Selection and Multimodel Inference: A571

Practical Information-Theoretic Approach. Springer Science & Business Media.572

Chaw, Shu-Miaw, Christopher L Parkinson, Yuchang Cheng, Thomas M Vincent, and Jeffrey D573

Palmer. 2000. “Seed Plant Phylogeny Inferred from All Three Plant Genomes: Monophyly of Extant574

Gymnosperms and Origin of Gnetales from Conifers.” Proceedings of the National Academy of Sciences575

97 (8). National Acad Sciences: 4086–91.576

Chen, Meng-Yun, Dan Liang, and Peng Zhang. 2015. “Selecting Question-Specific Genes to Reduce577

Incongruence in Phylogenomics: A Case Study of Jawed Vertebrate Backbone Phylogeny.” Systematic578

Biology 64 (6). Oxford University Press: 1104–20.579

Cox, Cymon J., Blaise Li, Peter G. Foster, T. Martin Embley, and Peter Civáň. 2014. “Conflicting580

Phylogenies for Early Land Plants Are Caused by Composition Biases Among Synonymous Substitutions.”581

Systematic Biology 63 (2). Oxford University Press: 272–79. http://dx.doi.org/10.1093/sysbio/syt109.582

Doyle, Vinson P, Randee E Young, Gavin JP Naylor, and Jeremy M Brown. 2015. “Can We Identify583

Genes with Increased Phylogenetic Reliability?” Systematic Biology 64 (5). Oxford University Press:584

824–37.585

Dunn, Casey W, Andreas Hejnol, David Q Matus, Kevin Pang, William E Browne, Stephen A Smith,586

Elaine Seaver, et al. 2008. “Broad Phylogenomic Sampling Improves Resolution of the Animal Tree of587

Life.” Nature 452 (7188). Nature Publishing Group: 745.588

Edwards, Anthony William Fairbank. 1984. Likelihood. CUP Archive.589

Edwards, Scott V. 2009. “Is a New and General Theory of Molecular Systematics Emerging?” Evolution590

63 (1). Wiley Online Library: 1–19.591

19

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2018. ; https://doi.org/10.1101/371930doi: bioRxiv preprint 

http://dx.doi.org/10.1093/sysbio/syt109
https://doi.org/10.1101/371930
http://creativecommons.org/licenses/by-nc-nd/4.0/


Edwards, Scott V, Liang Liu, and Dennis K Pearl. 2007. “High-Resolution Species Trees Without592

Concatenation.” Proceedings of the National Academy of Sciences 104 (14). National Acad Sciences:593

5936–41.594

Edwards, Scott V, Zhenxiang Xi, Axel Janke, Brant C Faircloth, John E McCormack, Travis C Glenn,595

Bojian Zhong, et al. 2016. “Implementing and Testing the Multispecies Coalescent Model: A Valuable596

Paradigm for Phylogenomics.” Molecular Phylogenetics and Evolution 94. Elsevier: 447–62.597

Feild, Taylor S, Nan Crystal Arens, James A Doyle, Todd E Dawson, and Michael J Donoghue. 2004.598

“Dark and Disturbed: A New Image of Early Angiosperm Ecology.” Paleobiology 30 (1). BioOne:599

82–107.600

Feuda, Roberto, Martin Dohrmann, Walker Pett, Hervé Philippe, Omar Rota-Stabelli, Nicolas Lartillot,601

Gert Wörheide, and Davide Pisani. 2017. “Improved Modeling of Compositional Heterogeneity Supports602

Sponges as Sister to All Other Animals.” Current Biology 27 (24). Elsevier: 3864–70.603

Fletcher, William, and Ziheng Yang. 2009. “INDELible: A Flexible Simulator of Biological Sequence604

Evolution.” Molecular Biology and Evolution 26 (8). SMBE: 1879–88.605

Guindon, Stéphane, Jean-François Dufayard, Vincent Lefort, Maria Anisimova, Wim Hordijk, and606

Olivier Gascuel. 2010. “New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies:607

Assessing the Performance of Phyml 3.0.” Systematic Biology 59 (3). Oxford University Press: 307–21.608

Hansen, Andrea, Sabine Hansmann, Tahir Samigullin, Andrey Antonov, and William Martin. 1999.609

“Gnetum and the Angiosperms: Molecular Evidence That Their Shared Morphological Characters Are610

Convergent, Rather Than Homologous.” Molecular Biology and Evolution 16 (7). Oxford University611

Press: 1006–6.612

Hedges, S Blair, Joel Dudley, and Sudhir Kumar. 2006. “TimeTree: A Public Knowledge-Base of613

Divergence Times Among Organisms.” Bioinformatics 22 (23). Oxford University Press: 2971–2.614

Hedges, S. Blair, Julie Marin, Michael Suleski, Madeline Paymer, and Sudhir Kumar. 2015. “Tree615

of Life Reveals Clock-Like Speciation and Diversification.” Molecular Biology and Evolution 32 (4):616

835–45. https://doi.org/10.1093/molbev/msv037.617

Huang, Huateng, Jeet Sukumaran, Stephen A Smith, and LLacey Knowles. 2017. “Cause of Gene618

Tree Discord? Distinguishing Incomplete Lineage Sorting and Lateral Gene Transfer in Phylogenetics.”619

PeerJ PrePrints 5. PeerJ, Inc.: e3489v1.620

Huelsenbeck, John P, JJ Bull, and Clifford W Cunningham. 1996. “Combining Data in Phylogenetic621

Analysis.” Trends in Ecology & Evolution 11 (4). Elsevier: 152–58.622

Jarvis, Erich D, Siavash Mirarab, Andre J Aberer, Bo Li, Peter Houde, Cai Li, Simon YW Ho, et al.623

2014. “Whole-Genome Analyses Resolve Early Branches in the Tree of Life of Modern Birds.” Science624

346 (6215). American Association for the Advancement of Science: 1320–31.625

Kalyaanamoorthy, Subha, Bui Quang Minh, Thomas KF Wong, Arndt von Haeseler, and Lars S Jermiin.626

2017. “ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates.” Nature Methods 14627

(6). Nature Publishing Group: 587.628

Karol, Kenneth G., Kathiravetpillai Arumuganathan, Jeffrey L. Boore, Aaron M. Duffy, Karin DE629

Everett, John D. Hall, S. Kellon Hansen, et al. 2010. “Complete Plastome Sequences of Equisetum630

20

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2018. ; https://doi.org/10.1101/371930doi: bioRxiv preprint 

https://doi.org/10.1093/molbev/msv037
https://doi.org/10.1101/371930
http://creativecommons.org/licenses/by-nc-nd/4.0/


Arvense and Isoetes Flaccida: Implications for Phylogeny and Plastid Genome Evolution of Early Land631

Plant Lineages.” BMC Evolutionary Biology 10 (1): 321. https://doi.org/10.1186/1471-2148-10-321.632

Kluge, Arnold G. 1989. “A Concern for Evidence and a Phylogenetic Hypothesis of Relationships633

Among Epicrates (Boidae, Serpentes).” Systematic Biology 38 (1). Society of Systematic Zoology: 7–25.634

Knowles, L Lacey, Huateng Huang, Jeet Sukumaran, and Stephen A Smith. 2018. “A Matter of635

Phylogenetic Scale: Distinguishing Incomplete Lineage Sorting from Lateral Gene Transfer as the Cause636

of Gene Tree Discord in Recent Versus Deep Diversification Histories.” American Journal of Botany637

105 (3). Wiley Online Library: 376–84.638

Kosakovsky Pond, Sergei L, David Posada, Michael B Gravenor, Christopher H Woelk, and Simon639

DW Frost. 2006a. “Automated Phylogenetic Detection of Recombination Using a Genetic Algorithm.”640

Molecular Biology and Evolution 23 (10). Oxford University Press: 1891–1901.641

———. 2006b. “GARD: A Genetic Algorithm for Recombination Detection.” Bioinformatics 22 (24).642

Oxford University Press: 3096–8.643

Lanfear, Robert, Brett Calcott, Simon YW Ho, and Stephane Guindon. 2012. “PartitionFinder:644

Combined Selection of Partitioning Schemes and Substitution Models for Phylogenetic Analyses.”645

Molecular Biology and Evolution 29 (6). Oxford University Press: 1695–1701.646

Lanfear, Robert, Paul B Frandsen, April M Wright, Tereza Senfeld, and Brett Calcott. 2016. “Partition-647

Finder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological648

Phylogenetic Analyses.” Molecular Biology and Evolution 34 (3). Oxford University Press: 772–73.649

Leigh, Jessica W, Edward Susko, Manuela Baumgartner, and Andrew J Roger. 2008. “Testing650

Congruence in Phylogenomic Analysis.” Systematic Biology 57 (1). Taylor & Francis: 104–15.651

Liu, Liang, Lili Yu, Dennis K Pearl, and Scott V Edwards. 2009. “Estimating Species Phylogenies652

Using Coalescence Times Among Sequences.” Systematic Biology 58 (5). Oxford University Press:653

468–77.654

Maddison, Wayne P. 1997. “Gene Trees in Species Trees.” Systematic Biology 46 (3). Oxford University655

Press: 523–36.656

Mirarab, Siavash, Md Shamsuzzoha Bayzid, Bastien Boussau, and Tandy Warnow. 2014. “Statistical657

Binning Enables an Accurate Coalescent-Based Estimation of the Avian Tree.” Science 346 (6215).658

American Association for the Advancement of Science: 1250463.659

Mirarab, Siavash, Rezwana Reaz, Md S Bayzid, Théo Zimmermann, M Shel Swenson, and Tandy660

Warnow. 2014. “ASTRAL: Genome-Scale Coalescent-Based Species Tree Estimation.” Bioinformatics661

30 (17). Oxford University Press: i541–i548.662

Neupane, Suman, Karolina Fucikova, Louise A Lewis, Lynn Kuo, Ming-Hui Chen, and Paul Lewis.663

2018. “Assessing Combinability of Phylogenomic Data Using Bayes Factors.” bioRxiv. Cold Spring664

Harbor Laboratory, 250969.665

Nguyen, Lam-Tung, Heiko A Schmidt, Arndt von Haeseler, and Bui Quang Minh. 2014. “IQ-Tree: A666

Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies.” Molecular667

Biology and Evolution 32 (1). Oxford University Press: 268–74.668

Nickrent, Daniel L., Christopher L. Parkinson, Jeffrey D. Palmer, and R. Joel Duff. 2000. “Multigene669

Phylogeny of Land Plants with Special Reference to Bryophytes and the Earliest Land Plants.” Molecular670

21

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2018. ; https://doi.org/10.1101/371930doi: bioRxiv preprint 

https://doi.org/10.1186/1471-2148-10-321
https://doi.org/10.1101/371930
http://creativecommons.org/licenses/by-nc-nd/4.0/


Biology and Evolution 17 (12): 1885–95. https://doi.org/10.1093/oxfordjournals.molbev.a026290.671

Nishiyama, T, and M Kato. 1999. “Molecular Phylogenetic Analysis Among Bryophytes and Tracheo-672

phytes Based on Combined Data of Plastid Coded Genes and the 18S rRNA Gene.” Molecular Biology673

and Evolution 16 (8): 1027–36. https://doi.org/10.1093/oxfordjournals.molbev.a026192.674

Penny, D, MD Hendy, EA Zimmer, and RK Hamby. 1990. “Trees from Sequences: Panacea or Pandora’s675

Box?” Australian Systematic Botany 3 (1). CSIRO: 21–38.676

Puttick, Mark N, Jennifer L Morris, Tom A Williams, Cymon J Cox, Dianne Edwards, Paul Kenrick,677

Silvia Pressel, et al. 2018. “The Interrelationships of Land Plants and the Nature of the Ancestral678

Embryophyte.” Current Biology 28 (5). Elsevier: 733–45.679

Qiu, Yin-Long, Libo Li, Bin Wang, Zhiduan Chen, Volker Knoop, Milena Groth-Malonek, Olena680

Dombrovska, et al. 2006. “The Deepest Divergences in Land Plants Inferred from Phylogenomic681

Evidence.” Proceedings of the National Academy of Sciences 103 (42). National Academy of Sciences:682

15511–6. https://doi.org/10.1073/pnas.0603335103.683

Robinson, David F, and Leslie R Foulds. 1981. “Comparison of Phylogenetic Trees.” Mathematical684

Biosciences 53 (1-2). Elsevier: 131–47.685

Sauquet, Hervé, Maria von Balthazar, Susana Magallón, James A Doyle, Peter K Endress, Emily J686

Bailes, Erica Barroso de Morais, et al. 2017. “The Ancestral Flower of Angiosperms and Its Early687

Diversification.” Nature Communications 8. Nature Publishing Group: 16047.688

Sayou, Camille, Marie Monniaux, Max H Nanao, Edwige Moyroud, Samuel F Brockington, Emmanuel689

Thévenon, Hicham Chahtane, et al. 2014. “A Promiscuous Intermediate Underlies the Evolution of690

Leafy Dna Binding Specificity.” Science 343 (6171). American Association for the Advancement of691

Science: 645–48.692

Schwarz, Gideon. 1978. “Estimating the Dimension of a Model.” The Annals of Statistics 6 (2).693

Institute of Mathematical Statistics: 461–64.694

Seo, Tae-Kun, and Jeffrey L Thorne. 2018. “Information Criteria for Comparing Partition Schemes.”695

Systematic Biology 67 (4): 616–32. https://doi.org/10.1093/sysbio/syx097.696

Shen, Xing-Xing, Chris Todd Hittinger, and Antonis Rokas. 2017. “Contentious Relationships in697

Phylogenomic Studies Can Be Driven by a Handful of Genes.” Nature Ecology & Evolution 1 (5).698

Nature Publishing Group: 0126.699

Shen, Xing-Xing, Xiaofan Zhou, Jacek Kominek, Cletus P Kurtzman, Chris Todd Hittinger, and700

Antonis Rokas. 2016. “Reconstructing the Backbone of the Saccharomycotina Yeast Phylogeny Using701

Genome-Scale Data.” G3: Genes, Genomes, Genetics 6 (12). G3: Genes, Genomes, Genetics: 3927–39.702

Simion, Paul, Hervé Philippe, Denis Baurain, Muriel Jager, Daniel J. Richter, Arnaud Di Franco,703

Béatrice Roure, et al. 2017. “A Large and Consistent Phylogenomic Dataset Supports Sponges as704

the Sister Group to All Other Animals.” Current Biology 27 (7): 958–67. https://doi.org/https:705

//doi.org/10.1016/j.cub.2017.02.031.706

Smith, Stephen A, Joseph W Brown, and Joseph F Walker. 2018. “So Many Genes, so Little Time: A707

Practical Approach to Divergence-Time Estimation in the Genomic Era.” PloS One 13 (5). Public708

Library of Science: e0197433.709

22

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2018. ; https://doi.org/10.1101/371930doi: bioRxiv preprint 

https://doi.org/10.1093/oxfordjournals.molbev.a026290
https://doi.org/10.1093/oxfordjournals.molbev.a026192
https://doi.org/10.1073/pnas.0603335103
https://doi.org/10.1093/sysbio/syx097
https://doi.org/https://doi.org/10.1016/j.cub.2017.02.031
https://doi.org/https://doi.org/10.1016/j.cub.2017.02.031
https://doi.org/https://doi.org/10.1016/j.cub.2017.02.031
https://doi.org/10.1101/371930
http://creativecommons.org/licenses/by-nc-nd/4.0/


Smith, Stephen A, Michael J Moore, Joseph W Brown, and Ya Yang. 2015. “Analysis of Phylogenomic710

Datasets Reveals Conflict, Concordance, and Gene Duplications with Examples from Animals and711

Plants.” BMC Evolutionary Biology 15 (1). BioMed Central: 150.712

Solís-Lemus, Cécile, Claudia AND Ané. 2016. “Inferring Phylogenetic Networks with Maximum713

Pseudolikelihood Under Incomplete Lineage Sorting.” PLOS Genetics 12 (3). Public Library of Science:714

1–21. https://doi.org/10.1371/journal.pgen.1005896.715

Springer, Mark S, and John Gatesy. 2016. “The Gene Tree Delusion.” Molecular Phylogenetics and716

Evolution 94. Elsevier: 1–33.717

Theobald, Douglas L. 2010. “A Formal Test of the Theory of Universal Common Ancestry.” Nature718

465 (7295). Nature Publishing Group: 219.719

Villarreal, Juan Carlos, and Susanne S Renner. 2012. “Hornwort Pyrenoids, Carbon-Concentrating720

Structures, Evolved and Were Lost at Least Five Times During the Last 100 Million Years.” Proceedings721

of the National Academy of Sciences 109 (46). National Acad Sciences: 18873–8.722

Walker, Joseph F, Joseph W Brown, and Stephen A Smith. 2018. “Analyzing Contentious Relationships723

and Outlier Genes in Phylogenomics.” Systematic Biology syy043. Oxford University Press. https:724

//doi.org/10.1093/sysbio/syy043.725

Walker, Joseph F, Ya Yang, Tao Feng, Alfonso Timoneda, Jessica Mikenas, Vera Hutchison, Caroline726

Edwards, et al. 2018. “From Cacti to Carnivores: Improved Phylotranscriptomic Sampling and727

Hierarchical Homology Inference Provide Further Insight into the Evolution of Caryophyllales.” American728

Journal of Botany 105 (3). Wiley Online Library: 446–62.729

Walker, Joseph F, Ya Yang, Michael J Moore, Jessica Mikenas, Alfonso Timoneda, Samuel F Brockington,730

and Stephen A Smith. 2017. “Widespread Paleopolyploidy, Gene Tree Conflict, and Recalcitrant731

Relationships Among the Carnivorous Caryophyllales.” American Journal of Botany 104 (6). Botanical732

Soc America: 858–67.733

Wen, Dingqiao, Yun Yu, Jiafan Zhu, and Luay Nakhleh. 2018. “Inferring Phylogenetic Networks Using734

Phylonet.” Systematic Biology 67 (4): 735–40. https://doi.org/10.1093/sysbio/syy015.735

Whelan, Nathan V, Kevin M Kocot, Tatiana P Moroz, Krishanu Mukherjee, Peter Williams, Gustav736

Paulay, Leonid L Moroz, and Kenneth M Halanych. 2017. “Ctenophore Relationships and Their737

Placement as the Sister Group to All Other Animals.” Nature Ecology & Evolution 1 (11). Nature738

Publishing Group: 1737.739

Wickett, Norman J, Siavash Mirarab, Nam Nguyen, Tandy Warnow, Eric Carpenter, Naim Matasci,740

Saravanaraj Ayyampalayam, et al. 2014. “Phylotranscriptomic Analysis of the Origin and Early741

Diversification of Land Plants.” Proceedings of the National Academy of Sciences 111 (45). National742

Acad Sciences: E4859–E4868.743

Xi, Zhenxiang, Liang Liu, Joshua S Rest, and Charles C Davis. 2014. “Coalescent Versus Concatenation744

Methods and the Placement of Amborella as Sister to Water Lilies.” Systematic Biology 63 (6). Oxford745

University Press: 919–32.746

Yang, Ya, and Stephen A Smith. 2014. “Orthology Inference in Nonmodel Organisms Using Transcrip-747

tomes and Low-Coverage Genomes: Improving Accuracy and Matrix Occupancy for Phylogenomics.”748

Molecular Biology and Evolution 31 (11). Oxford University Press: 3081–92.749

23

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2018. ; https://doi.org/10.1101/371930doi: bioRxiv preprint 

https://doi.org/10.1371/journal.pgen.1005896
https://doi.org/10.1093/sysbio/syy043
https://doi.org/10.1093/sysbio/syy043
https://doi.org/10.1093/sysbio/syy043
https://doi.org/10.1093/sysbio/syy015
https://doi.org/10.1101/371930
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Nested phylogenetic conflicts, combinability, and deep phylogenomics in plants
	Abstract
	Introduction
	Materials and Methods
	Datasets
	Phylogenetic analyses
	Conflict analyses
	Combinability test
	Simulations
	Empirical Demonstration

	Results
	Conflict analyses
	Nested analyses
	Simulations of combinability
	Empirical combinability of genes

	Discussion
	Conflict analysis
	Nested analysis
	A test for the combinability of genes
	Combinability of empirical data
	Implications for plant phylogenetics
	Implications for future phylogenomic studies

	Acknowledgments
	Literature Cited


