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Abstract The ability to accurately predict the binding affinities of small organic molecules to biological15

macromolecules would greatly accelerate drug discovery by reducing the number of compounds that must16

be synthesized to realize desired potency and selectivity goals. Unfortunately, the process of assessing the17

accuracy of current quantitative physical and empirical modeling approaches to affinity prediction against18

binding data to biological macromolecules is frustrated by several challenges, such as slow conformational19

dynamics, multiple titratable groups, and the lack of high-quality blinded datasets. Over the last several20

SAMPL blind challenge exercises, host-guest systems have emerged as a practical and effective way to21

circumvent these challenges in assessing the predictive performance of current-generation quantitative22

modeling tools, while still providing systems capable of possessing tight binding affinities. Here, we present23

an overview of the SAMPL6 host-guest binding affinity prediction challenge, which featured three supramolec-24

ular hosts: octa-acid (OA), the closely related tetra-endo-methyl-octa-acid (TEMOA), and cucurbit[8]uril (CB8),25

along with 21 small organic guest molecules. A total of 119 entries were received from 10 participating26

groups employing a variety of methods that spanned electronic structure and movable type calculations27

in implicit solvent to alchemical and potential of mean force strategies using empirical force fields and28

explicit solvent models. While empirical models tended to obtain better performance, it was not possible29

to identify a single approach consistently providing superior predictions across all host-guest systems and30

statistical metrics, and the accuracy of the methodologies generally displayed a substantial dependence on31

the systems considered, arguing for the importance of considering a diverse set of hosts in blind evaluations.32

Several entries exploited previous experimental measurements of similar host-guest systems in an effort33

to improve their physical-based predictions via some manner of rudimentary machine learning; while this34

strategy succeeded in reducing systematic errors, it was not able to generated a corresponding improvement35

of correlation statistics. Comparison to previous rounds of the host-guest binding free energy challenge36

highlights an overall improvement in the correlation obtained by the affinity predictions for OA and TEMOA37

systems, but a surprising lack of improvement in root mean square error over the past several challenge38

rounds. The data suggests that further refinement of force field parameters and improved treatment of39

chemical effects (e.g., buffer salt conditions, protonation states) may be required to continue to enhance40

predictive accuracy.41
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Introduction43

Quantitative physical and empirical modeling is playing a growing role in aiding or directing the design of44

small molecule biomolecular ligands for use as potential therapeutics or chemical probes [1–6]. Despite45

these successes, the effectiveness of these calculations in prioritizing molecules for synthesis is a strong46

function of the inaccuracy of predictions [7], with retrospective estimates of accuracy suggesting current47

methodologies are around 1–2 kcal/mol inaccurate on well-behaved protein-ligand systems [8, 9].48

Assessment of how much of this inaccuracy can be attributed to fundamental limitations of the force49

field in accurately modeling energetics is complicated by the presence of numerous additional factors [10].50

Proteins are highly dynamic entities, and many common drug targets—such as kinases [11] and GPCRs [12]—51

possess slow dynamics with timescales of microseconds tomilliseconds [13] that frustrate the ability to obtain52

true equilibrium affinities. While there has been some attempt to curate benchmark sets of protein-ligand53

affinity data in well-behaved model systems that are believed to be mostly free of slow-timescale motions54

that would convolve convergence issues with forcefield inaccuracies [10], other effects can complicate55

assessment of the accuracy of physical modeling benchmarks. Ionizable residues, for example, comprise56

approximately 29% of all protein residues [14], and large-scale computational surveys suggest that 60%57

of all protein-ligand complexes undergo a change in ionization state upon binding [15]. For physical or58

empirical modeling approaches that assume fixed protonation states throughout the complexation process,59

protonation state effects are hopelessly convolved with issues of force field inaccuracy.60

Host-guest systems are a tractable model for assessing force field inaccuracies61

Over the last decade, supramolecular host-guest complexes have emerged as a practical and useful model62

system for the quantitative assessment of modeling errors for the interaction of druglike small molecules63

with receptors. Supramolecular hosts such as cucurbiturils, cavitands, and cyclodextrins can bind small64

druglike molecules with affinities similar to protein-ligand complexes [16–18]. The lack of soft conformational65

degrees of freedom of these hosts eliminates the potential for slow microsecond-to-millisecond receptor66

relaxation timescales as a source of convergence issues [10], while the small size of these systems allows67

many methodologies to take advantage of faster simulation times to rapidly assess force field quality. The68

high solubilities of these systems permit high-quality biophysical characterization of their interactions via69

gold-standard methods such as isothermal titration calorimetry (ITC) and nuclear magnetic resonance70

(NMR) [19–21]. Additionally, the stability of supramolecular hosts at extreme pH allows for strict control of71

protonation states in a manner not possible with protein-ligand systems, allowing confounding protonation72

state effects to be eliminated from consideration if desired [22]. Collectively, these properties have made73

host-guest systems a productive route for revealing deficiencies in modern force fields through blind74

community challenge exercises we have organized as part of the Statistical Assessment of the Modeling of75

Proteins and Ligands (SAMPL) series of blind prediction challenge [23–26].76

SAMPL host-guest challenges have driven advances in our understanding of sources of error77

The SAMPL (Statistical Assessment of the Modeling of Proteins and Ligands) challenges are a recurring78

series of blind prediction challenges for the computational chemistry community [27, 28]. Through these79

challenges, SAMPL aims to evaluate and advance computational tools for rational drug design: By focusing80

the community on specific phenomena relevant to drug discovery—such as the contribution of force field81

inaccuracy to binding affinity prediction failures—isolating these phenomena from other confounding factors82

in well-designed test systems, evaluating tools prospectively, enforcing data sharing to learn from failures,83

and releasing the resulting high-quality datasets into the community as benchmark sets, SAMPL has driven84

progress in a number of areas over five previous rounds of challenge cycles [23, 24, 24–26, 29–37].85

More specifically, SAMPL host-guest challenges have provided key tests for modeling of binding interac-86

tions [10], resulting in an increased focus on how co-solvents and ions modulate binding (resulting in errors87

of up to 5 kcal/mol when these effects are neglected) and the importance of adequately sampling water88

rearrangements [10, 25, 26, 38]. In turn, this detailed examination has resulted in clear improvements in89

subsequent SAMPL challenges [26], though host-guest binding remains difficult to model accurately [39], in90

part due to force field limitations (resulting in new efforts to remedy major force field deficiencies [40]).91
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SAMPL6 host-guest systems92

Three hosts were selected for the SAMPL6 host-guest binding challenge from the Gibb Deep Cavity Cavitand93

(GDCC) [41–44] and the cucurbituril (CB) [45–47] families (Figure 1). The guest ligand sets were purposefully94

selected for the SAMPL6 challenge. The utility of these particular host systems for evaluating free energy95

calculations has been reviewed in detail elsewhere [43, 44].96

The two GDCCs, octa-acid (OA) [41] and tetra-endo-methyl-octa-acid (TEMOA) [48], are low-symmetry97

hosts with a basket-shaped binding site accessible through the larger entryway located at the top. These98

hosts also appeared in two previous SAMPL host-guest challenges— SAMPL4 [25] and SAMPL5 [26]—with99

the names of OAH and OAMe respectively with different sets of guests. OA and TEMOA differ by four methyl100

groups that reduce the size of the binding site entryway (Figure 1). Both hosts expose eight carboxyl groups101

that increase their solubility. The molecular structures of the eight guests selected for the SAMPL6 challenge102

for characterization against both OA and TEMOA are shown in Figure 1 (denoted OA-G0 through OA-G7).103

These guests feature a single polar group situated at one end of the molecule that tends to be exposed to104

solvent when complexed, while the rest of the compound remains buried in the hydrophobic binding site.105

A second set of guest ligands were developed for the host cucurbit[8]uril (CB8). This host previously106

appeared in the SAMPL3 host-guest binding challenge [49], but members of the same family or analogs107

such as cucurbit[7]uril (CB7) and CBClip [50] were featured in SAMPL4 and SAMPL5 challenges as well. CB8108

is a symmetric (D8ℎ), ring-shaped host comprising eight identical glycoluril monomers linked by pairs of109

methylene bridges. Its top-bottom symmetry means that asymmetric guests have at least two symmetry-110

equivalent binding modes that can be kinetically separated by timescales not easily achievable by standard111

molecular dynamics (MD) or Monte Carlo simulations and may require special considerations, in particular in112

alchemical absolute binding free energy calculations [51]. The CB8 guest set (compounds CB8-G0 to CB8-G13113

in Figure 1) includes both fragment-like and bulkier drug-like compounds.114

Some of the general modeling challenges posed by both families of host-guest systems have been115

characterized in previous studies. While their relatively rigid structure minimizes convergence difficulties116

associated with slow receptor conformational dynamics, both families have been shown to bind guest ligands117

via a dewetting processes—in which waters must be removed from the binding site to accommodate guests—118

in a manner that can frustrate convergence for strategies based on molecular simulation. In the absence of119

tight-binding guest ligands, the octa-acid host experiences fluctuations in the number of bound waters on120

timescales of several nanoseconds [52]; a similar phenomenon was observed in alchemical absolute binding121

free energy calculations of CB7 at intermediate alchemical states with partially decoupled Lennard-Jones122

interactions [53]. In addition, both experimental measurements and computational predictions revealed123

significant sensitivity of the binding affinity to the buffer salt composition and concentration [54–58], which in124

principle requires buffer conditions to be modeled carefully for comparison to experiments to be meaningful.125

Experimental host-guest affinity measurements126

A detailed description of the experimental methodology used to collect binding affinity data for OA, TEMOA,127

and CB8 host-guest systems is described elsewhere [59? ]. Briefly, all host-guest binding affinities were deter-128

mined via direct or competitive isothermal titration calorimetry (ITC) at 298K. OA and TEMOA measurements129

were performed in 10mM sodium phosphate buffer at pH 11.7±0.1 whereas CB8 guests binding affinities130

were measured in a 25mM sodium phosphate buffer at pH 7.4. Binding stoichiometries were determined131

by 1H NMR spectral integration and/or by ITC. The ITC titration curves were fitted to a single-site model or132

a competition model for all guests, except for CB8-G12 (donepezil), for which a sequential binding model133

was used. The stoichiometry coefficient was either fitted simultaneously with the other parameters or fixed134

to the value verified by the NMR titrations, which is the case for the CB8 guest set, as well as for OA-G5,135

TEMOA-G5, and TEMOA-G7.136

To determine experimental uncertainties, we added the relative error in the nonlinear fit-derived as-137

sociation constant (Ka) or binding enthalpy (ΔH) with the relative error in the titrant concentration in138

quadrature [60]. We decided to arbitrarily assume a relative error in the titrant concentration of 3% after139

personal communication with Professor Lyle Isaacs who suggested a value inferior to 5% based on his expe-140
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Figure 1. Hosts and guests featured in the SAMPL6 host-guest blind challenge dataset. Three-dimensional struc-

tures of the three hosts featured in the SAMPL6 challenge dataset (OA, TEMOA, and CB8) are shown in stick view from top

and side perspective views. Carbon atoms are represented in gray, hydrogens in white, nitrogens in blue, and oxygens in

red. Guest ligands for each complex are shown as two-dimensional chemical structures annotated by hyphenated host

and guest names. Protonation states of the guest structures correspond to the predicted dominant microstate at the

experimental pH at which binding affinities were collected, and matches those provided in the mol2 and sdf input files
shared with the participants when the challenge was announced. The same set of guests OA-G0 through OA-G7 was

used for both OA and TEMOA hosts. The gray frame (lower right) contains the three CB8 guests that constitute the bonus

challenge.
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Figure 2. Overview of experimental binding affinities for all host-guest complexes in the SAMPL6 challenge set.

Binding free energies (ΔG) measured via isothermal titration calorimetry (ITC) are shown (filled circles), along with
experimental uncertainties denoting standard error of the mean (black error bars), for OA (yellow), TEMOA (green), and

CB8 (blue) complexes.

rience. The minimum relative nonlinear fit-derived uncertainty permitted was 1%, since the fit uncertainty141

was reported by the ITC software as smaller than this in some cases. It should be noted that the error142

propagation strategy adopted here assumes that the stoichiometry coefficient is fitted to the ITC data in143

order to absorb errors in cell volume and titrand concentration; this approach is exact only for the OA/TEMOA144

sets with the exclusion of OA-G5, TEMOA-G5, and TEMOA-G7, and an underestimate of the true error for the145

remaining cases. The error was then further propagated to the binding free energies and entropies that146

were calculated from Ka and ΔH . The final estimated experimental uncertainties are relatively small, never147

exceeding 0.1 kcal/mol.148

The resulting experimental measurements with their uncertainties are reported in Table 1 and Figure 2.149

The dynamic range of the binding free energy ΔG spans 4.25 kcal/mol for the merged OA and TEMOA guest150

set, and 7.05 kcal/mol for CB8. The relatively wide cavity of CB8 enables binding stoichiometries different151

than 1:1. This is the case for three of the CB8 guests, specifically CB8-G1 (tolterodine), CB8-G4 (gallamine152

triethiodate), and CB8-G12 (donepezil). Curiously, while CB8-G12 was found to bind in 2:1 complexes (two153

guests bound to the same host), the NMR experiments determined stoichiometries of 1:2 and 1:3 for CB8-G1154

and CB8-G4 respectively (one guest bound to multiple hosts). For the last two guests, the ITC titration155

curves fit well to a single set of sites binding model which indicates that the each of the binding events156

are equivalent. In Table 1 and Figure 2 we report the binding affinity of both the 1:1 and the 2:1 complex157

for CB8-G12, which are identified by CB8-G12a and CB8-G12b respectively, and the free energy of the 1:1158

complex for CB8-G1 and CB8-G4.159

Methods160

Challenge design and logistics161

Challenge timeline162

On August 24th, 2017, we released in a publicly accessible GitHub repository (https://github.com/MobleyLab/163

SAMPL6) a brief description of the host-guest systems and the experimental methodology, together with164

the challenge directions, and input files in mol2 and sdf formats for the three hosts and their guests. The165

instructions shared online included information about buffer concentrations, temperature, and pH used166

for the experiments. The participants were asked to submit their predicted absolute binding free energies167

and, optionally, binding enthalpies, along with a detailed description of the methodology and the software168
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employed through the Drug Design Data Resource (D3R) website (https://drugdesigndata.org/about/sampl6)169

by January 19th, 2018. We also encouraged the inclusion of uncertainties and/or standard error of the mean170

(SEM) of the predictions when available. The results of the experimental assays were released on January171

26th in the same GitHub repository. The challenge culminated in a conference held on February 22–23,172

2018 in La Jolla, CA where the participants shared lessons learned from participating in the challenge after173

performing retrospective analysis of their data.174

Bonus challenge175

Three molecules in the CB8 guest sets, namely CB8-G11, CB8-G12, and CB8-G13, were proposed to par-176

ticipants as an optional bonus challenge since they were identified in advance to present some atypical177

difficulties for molecular modeling. In particular, the initial experimental data suggested both CB8-G11 and178

CB8-G12 to bind with 2:1 binding stoichiometry while CB8-G13 was deemed to be an especially challenging179

case for modeling due to the presence of a coordinated platinum atom, which is commonly not readily han-180

dled by classical force fields and usually requires larger basis sets for quantum mechanics (QM) calculations181

than those commonly employed with simple organic molecules. Further investigation after the start date182

of the challenge revealed an error in the calibration of a CB8 solution which affected the measurement of183

CB8-G11. After correcting the error, a 1:1 stoichiometry was recovered, and the experiment was repeated184

to validate the result. Unfortunately, the new data was obtained too late to send out a correction to all185

participants, so only six entries included predictions for this guest.186

Preparation of standard input files187

Standard input files for the three hosts were generated for the previous rounds of the SAMPL host-guest188

binding challenge and uploaded to the repository unchanged, while the guests’ atomic coordinates were189

generated from their SMILES string representation through the OMEGA library [61] in the OpenEye Toolkit190

(version 2017.Oct.b5) except for oxaliplatin (CB8-G13), which was generated with OpenBabel to handle191

the platinum atom. The compounds were then docked into their hosts with OpenEye’s FRED docking192

facility [62, 63]. Stereochemistry of the 3D structures recapitulated the stereochemistry of compounds193

assayed experimentally; experimental assays for chiral compounds were enantiopure except OA-G5, which194

was measured as a racemic mixture. For this molecule, we picked at random one of the two enantiomers195

under the assumption that the guest chirality (for this guest with a single chiral center) would not affect the196

binding free energy to an achiral host such as OA and TEMOA since the system otherwise contains no chiral197

centers. This information was included in the instructions when the challenge was released. Guest mol2198

files also included AM1-BCC point charges generated with the AM1-BCC charge engine in the Quacpac tool199

from the OpenEye toolkit [64, 65]. Figure 1 shows the protonation state of the molecules as provided in the200

input files, which reflects the most likely protonation state as predicted by Epik [66, 67] from the Schrödinger201

Suite 2017-2 (Schrödinger) at experimental buffer pH (11.7 for OA and 7.4 for CB8). This resulted in all202

molecules possessing a net charge, with the exception of oxaliplatin and the CB8 host, which have no acidic203

or basic groups. Specifically, the eight carboxyl groups of OA and TEMOA were modeled as deprotonated204

and charged. The instructions stated clearly that the protonation and tautomeric states provided were not205

guaranteed to be optimal. In particular, participants in the bonus challenge were advised to treat CB8-G12206

with care as, in its protonated state, the nitrogen proton could be placed so that the substituent was axial207

or equatorial. The latter solution was arbitrarily adopted by the tools used to generate the input files for208

CB8-G12.209

Statistical analysis of challenge entries210

Performance statistics211

We computed root mean squared error (RMSE), mean signed error (ME), coefficient of determination (R2),212

and Kendall rank correlation coefficient (�) comparing experimentally determined binding free energies with213

blinded participant free energy predictions.214
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The mean signed error (ME), which quantifies the bias in predictions, was computed as215

ME = 1
N

N
∑

i=1

(

ΔG(exp)
i − ΔG(calc)

i

)

(1)

whereΔG(exp)
i andΔG(calc)

i are the experimental measurement of the binding free energy and its computational216

prediction respectively for the i-th molecule, andN is the total number of molecules in the dataset. A positive217

ME reflects an overestimated binding free energy ΔG (or underestimated affinity Kd = e−�ΔG × (1M).218

Some of the methods appearing in SAMPL6 were also used in previous rounds of the same challenge to219

predict relative binding free energies of similar host-guest systems. In order to comment on the performance220

of these methods over sequential challenges, for which statistics on absolute free energies are not readily221

available, we computed a separate set of statistics defined as offset statistics, as opposed to the absolute222

statistics defined above, in the same way they were reported in previous challenge overview papers. These223

statistics, termed RMSEo, R
2
o , and �o, were computed identically to absolute statistics but by substituting224

ΔG(calc)
i with225

ΔG(calc)
i,o = ΔG(calc)

i −ME (2)

in the estimator expressions.226

Given the similarities of the two octa-acid hosts the set of their guestmolecules, and that the largemajority227

of the submitted methodologies were applied to both sets, we decided to report here the statistics computed228

using all the 16 predictions performed for OA and TEMOA (i.e., 8 predictions for each host). This merged set229

will be referred to as OA/TEMOA set in the rest of the work. The only method used to predict the binding free230

energies of the TEMOA set but not of the OA set was US-CGenFF (see Table 2 for a schematic description231

of the methodology). We also decided to calculate separate statistics for the CB8 to highlight the general232

difference in performance between the predictions of the two host families. Statistics calculated on the two233

separate OA and TEMOA sets, as well as on the full dataset including CB8, OA, and TEMOA, are available on234

the GitHub repository (https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis).235

We generated bootstrap distributions of the statistics and computed 95-percentile bootstrap confidence236

intervals of the point estimates by generating 100 000 bootstrap samples through random sampling of237

the set of host-guest pairs with replacement. When the submission included SEMs for each prediction, we238

accounted for the statistical uncertainty in predictions by adding, for each bootstrap replicate, an additional239

Gaussian perturbation to the prediction with a standard deviation indicated by the SEM for that prediction.240

Null model241

In order to compare the results obtained by the participants to a simple model that can be evaluated242

with minimal effort, we computed the binding free energy predicted by MM-GBSA rescoring [68] using243

Prime [69, 70] with the OPLS3 forcefield [71] in the Schrödinger Suite 2018-1 (Schrödinger). We used the244

same docked poses provided in the input files that were shared with all the participants as the initial245

coordinates for all the calculations. All docked positions were minimized before being rescored with the246

OPLS3 force field and the VSGB2.1 solvent model. The only exception to this was CB8-G4, which was247

manually re-docked into the host, as the initial structure contained steric clashes that could not be relaxed by248

minimization, causing the predicted binding free energy to spike to an unreasonable value of +2443 kcal/mol.249

Results250

We received 42 submissions for the OA guest set, 43 for TEMOA, and 34 for CB8, for a total of 119 submissions,251

from 10 different participants, 5 of whom uploaded predictions for the three compounds in the bonus252

challenge as well. Only two groups submitted enthalpy predictions, which makes it impractical to draw253

general conclusions about the state of the field regarding the reliability of enthalpy predictions. Moreover,254

the predictive performance was generally poor (see Supplementary Figure 9). The results of the enthalpy255

calculations are thus not discussed in details here, but they are nevertheless available on the GitHub256

repository.257
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Overview of the methodologies258

Including the null model, 41 different methodologies were applied to one or more of the three datasets. In259

particular, the submissions included a total of 25 different variations of the movable type method exploring260

the effect of the input structures, the force field, the presence of conformational changes upon binding,261

and the introduction of previous experimental information on the free energy estimates. In order to262

facilitate the comparison among methods, we focus in this analysis on a representative subset of 7 different263

variations of the methodology. Supplementary Figure 7 and Supplementary Figure 8 show statistic bootstrap264

distributions and correlation plots for all the movable type free energy calculations submitted. As many of265

the methodologies are reported in detail elsewhere, in this section, we give a brief overview of the different266

strategies employed for the challenge to model the host-guest systems and estimate the binding free267

energies, and we leave the detailed descriptions of the various methodologies to the articles referenced in268

Table 2.269

Modeling270

The majority of the participants either used the docked poses provided in the input files or ran a separate271

docking program to generate the initial complex conformation for the calculations. In few cases, the starting272

configuration was found by manually placing the guest inside the host. Surprisingly, the most common273

solvent model used in classical simulations was still TIP3P [86], a water model parameterized by Jorgensen274

35 years ago for use with a fixed-cutoffMonte Carlo code neglecting long-range dispersion interactions and275

omitting long-range electrostatics. The only other explicit water models used in this round of the challenge276

were the significantly more modern AMOEBA [87] and TIP4P-Ew [88] water models, which was used to277

sample conformations to evaluate at the QM level. Implicit solvent models were adopted only in MMPBSA278

and for the movable type and QM calculations. We observed more variability in the treatment of buffer salt279

concentrations despite the known importance of this element in affecting the binding predictions, which280

may reflect a lack of standard practices in the field. Some entries modeled the buffer ionic strength explicitly281

with Na+ and Cl- ions while others included only the neutralizing counterions or used a uniform neutralizing282

charge. One of the participating groups submitted multiple variants of the SOMD method either utilizing283

only neutralizing counterions or including additional ions simulating the ionic strength at experimental284

conditions, which makes it possible to directly assess the effect of this modeling decision on the selected285

host-guest systems.286

Most methods employing classical force fields used GAFF [89] or GAFF2 (still under active development)287

with AM1-BCC [64, 65] or RESP [90] charges, which were usually derived at the Hartree-Fock or MP2 level288

of theory. Other approaches made use of the AMOEBA polarizable model [87], CGenFF [74] or force289

matching [91] starting from CGenFF parameters. The movable type calculations utilized either the KECSA [92]290

scoring algorithm or the more recently developed GARF [93]. Several submissions employed QM potentials291

at the semi-empirical PM6-DH+ [94, 95] or DFT level of theory either modeling the full host-guest system or292

in hybrid QM/MM approaches that treated quantum mechanically the guest only. DFT calculations employed293

B3LYP [96], B3PW91 [96], or TPSS [97] functionals and often the DFT-D3 dispersion correction [98].294

Sampling and free energy prediction295

All the challenge entries used MD to sample host-guest conformations; uses of docking were limited to296

preparation of initial bound geometries for subsequent simulations. This was also the case also for QM297

and movable type calculations, where samples generated from MD were in some cases clustered prior298

to quantum chemical energy evaluations. In a few cases, enhanced sampling techniques were used;299

in particular, the entries identified by DDM-FM and DDM-FM-QMM used Hamiltonian Replica Exchange300

(HREX) [99] as part of their double decoupling method (DDM) calculation [73] while Replica Exchange with301

Solute torsional Tempering (REST) [80, 81] was employed in FSDAM to generate from equilibrium the starting302

configurations for the fast switching protocol. Many groups used the double decoupling or the double303

annihilation method with purely classical force fields or with hybrid QM/MM potentials and either Bennett304

acceptance ratio (BAR) [100, 101] or the multistate Bennett acceptance ratio (MBAR) [102] to estimate free305

energies for the aggregated simulation data. Other classes of methodologies applied to this dataset include306
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umbrella sampling (US) [84], movable type [78], MMPBSA [103], and free energy predictions based on QM307

calculations.308

The repeat appearance of hosts chosen from the octa-acid and cucurbituril families as test systems for309

the SAMPL binding challenge, which reflects the continuous contribution of experimental data from the Gibb310

and Isaacs laboratories, led some groups to take advantage of previously available experimental data to311

improve their computational predictions. Several entries (e.g., SOMD-D, US-GAFF-C, and MovTyp-GE3L) were312

submitted with a linear1 correction of the form313

ΔG(corrected) = a ⋅ ΔG(calc) + b (3)

where the slope and offset coefficients (i.e., a and b respectively) were trained on data generated for previous314

rounds of the challenge. In some of the movable type calculations (e.g., MovTyp-GE3O), the coefficient315

a was fixed to unity and the training data used to determine a purely additive bias correction. Relatedly,316

RFEC-GAFF2 and RFEC-QMMM, which included predictions for the OA and TEMOA guest sets, calculated317

the relative binding free energy between the compound and determined the offsets necessary to obtain318

absolute free energy using binding measurements of similar OA and TEMOA guests.319

Submission performance statistics320

As mentioned above, we present here the statistics obtained by the challenge entries on the CB8 dataset and321

the merged OA and TEMOA dataset with the exception of US-CGenFF, for which we received a submission322

for the TEMOA set only. Moreover, since only a minority of entries had predictions for the bonus challenge,323

we excluded CB8-G11, CB8-G12, and CB8-G13 when computing the statistics of all the methodologies in324

order to compare them on the same set of compounds. Table 3 reports such statistics with 95-percentile325

confidence intervals and and Figure 4 show the statistics bootstrap distributions. Some of the methods326

were used to estimate the binding free energy of only one between the OA/TEMOA and the CB8 sets, and,327

as a consequence, some of the table entries are missing. For the methodologies that made predictions of328

the bonus compounds, we report the statistics obtained including them separately in Table 4. While it is329

difficult to isolate methods and models that performed very well across datasets and statistics, few patterns330

emerged from comparing the different entries.331

1Technically, this is an affine correction, but we will refer to it as linear here.
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Table 1. Summary of ITC and NMR measurements for the SAMPL6 host-guest dataset. Guest identifiers (ID),

association constants (Ka), binding free energies (ΔG), enthalpies (ΔH), entropies at room temperature (TΔS) and
stoichiometric ratios (n) as determined by ITC and NMR assays are reported for all compounds featured in the challenge.
All quantities are reported as point estimates ± statistical error obtained by error propagation. For Ka and ΔH , the
reported uncertainties incorporate both the uncertainty in the ITC enthalpogram least-squares fit and an assumed 3%

uncertainty in titrant concentration. A minimum least-squares fit uncertainty of 1% was assumed for fit errors reported by
instrumentation as < 1%. ΔG and TΔS and their uncertainties were obtained from the first two quantities. Some of the
compounds in the CB8 guest set can be bound by their hosts with stoichiometries different than 1:1. For CB8-G1 and

CB8-G4, which can form 1:2 (two hosts bound to the same guest) and 1:3 complexes with CB8, respectively, we report

the thermodynamic quantities of only one of the equivalent binding events—the value used to calculate the statistics for

challenge entries. For CB8-G12, we report the measurements of both the 1:1 (CB8-G12a) and the 2:1 (CB8-G12b) bound

complexes. The original data can be found at https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis/

ExperimentalMeasurements/experimental_measurements.csv. Eventual updates or corrections to the data will be made

available at the same URL, and anyone wishing to reuse the data should refer there.

(a) Point estimate and uncertainties computed from the Ka measurements by error propagation.
(b) All experiments were performed at 298K.
(c) The thermodynamic quantities given here represent the binding free energy and enthalpy of one of the 1/n equivalent
binding events.

(d) Units of M−2.

ID Ka (M
−1) ΔG (kcal/mol) (a) ΔH (kcal/mol) TΔS (kcal/mol) (b) n

OA-G0 (147 ± 7) × 102 -5.68 ± 0.03 -4.8 ± 0.2 0.8 ± 0.2 1

OA-G1 (26 ± 1) × 102 -4.65 ± 0.02 -5.5 ± 0.2 -0.9 ± 0.2 1

OA-G2 (140 ± 6) × 104 -8.38 ± 0.02 -12.1 ± 0.5 -3.7 ± 0.5 1

OA-G3 (62 ± 2) × 102 -5.18 ± 0.02 -7.5 ± 0.3 -2.4 ± 0.3 1

OA-G4 (164 ± 7) × 103 -7.11 ± 0.02 -6.9 ± 0.3 0.2 ± 0.3 1

OA-G5 (233 ± 9) × 10 -4.59 ± 0.02 -5.3 ± 0.2 -0.7 ± 0.2 1

OA-G6 (44 ± 2) × 102 -4.97 ± 0.02 -5.3 ± 0.2 -0.3 ± 0.2 1

OA-G7 (36 ± 1) × 103 -6.22 ± 0.02 -7.4 ± 0.3 -1.2 ± 0.3 1

TEMOA-G0 (28 ± 1) × 103 -6.06 ± 0.02 -7.8 ± 0.4 -1.8 ± 0.4 1

TEMOA-G1 (24 ± 2) × 103 -5.97 ± 0.04 -8.2 ± 0.6 -2.3 ± 0.6 1

TEMOA-G2 (98 ± 4) × 103 -6.81 ± 0.02 -9.3 ± 0.4 -2.5 ± 0.4 1

TEMOA-G3 (128 ± 9) × 102 -5.60 ± 0.04 -8.9 ± 0.4 -3.2 ± 0.4 1

TEMOA-G4 (51 ± 2) × 104 -7.79 ± 0.02 -8.9 ± 0.4 -1.1 ± 0.4 1

TEMOA-G5 (113 ± 5) × 10 -4.16 ± 0.02 -8.0 ± 0.3 -3.8 ± 0.3 1

TEMOA-G6 (91 ± 5) × 102 -5.40 ± 0.03 -6.2 ± 0.2 -0.8 ± 0.2 1

TEMOA-G7 (107 ± 4) × 10 -4.13 ± 0.02 -8.3 ± 0.3 -4.2 ± 0.3 1

CB8-G0 (81 ± 6) × 103 -6.69 ± 0.05 -4.2 ± 0.2 2.5 ± 0.2 1

CB8-G1(c) (40 ± 3) × 104 -7.65 ± 0.04 -5.0 ± 0.2 2.6 ± 0.2 0.5

CB8-G2 (41 ± 4) × 104 -7.66 ± 0.05 -6.5 ± 0.3 1.2 ± 0.3 1

CB8-G3 (53 ± 5) × 103 -6.45 ± 0.06 -2.5 ± 0.1 4.0 ± 0.2 1

CB8-G4(c) (51 ± 4) × 104 -7.80 ± 0.04 -9.8 ± 0.4 -2.0 ± 0.4 0.33

CB8-G5 (99 ± 9) × 104 -8.18 ± 0.05 -3.2 ± 0.1 5.0 ± 0.1 1

CB8-G6 (13 ± 1) × 105 -8.34 ± 0.05 -5.7 ± 0.2 2.6 ± 0.2 1

CB8-G7 (21 ± 4) × 106 -10.0 ± 0.1 -6.5 ± 0.3 3.5 ± 0.3 1

CB8-G8 (83 ± 6) × 108 -13.50 ± 0.04 -14.4 ± 0.6 -0.9 ± 0.6 1

CB8-G9 (23 ± 3) × 105 -8.68 ± 0.08 -4.6 ± 0.2 4.0 ± 0.2 1

CB8-G10 (10 ± 1) × 105 -8.22 ± 0.07 -2.00 ± 0.08 6.2 ± 0.1 1

CB8-G11 (50 ± 4) × 104 -7.77 ± 0.05 -2.11 ± 0.08 5.7 ± 0.1 1

CB8-G12a (167 ± 9) × 105 -9.86 ± 0.03 -9.2 ± 0.4 0.7 ± 0.4 1

CB8-G12b (146 ± 6) × 103 (d) -7.05 ± 0.02 -4.8 ± 0.2 2.2 ± 0.2 2

CB8-G13 (161 ± 8) × 103 -7.11 ± 0.03 -6.8 ± 0.3 0.3 ± 0.3 1
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Table 2. Summary of methodologies used by the participants in the SAMPL6 host-guest challenge.

When a method uses multiple models (e.g., MM is used to generate the conformations to evaluate at the QM level in

DFT(TPSS)-D3), only the energy and solvation models used for the final free energy prediction are listed. COSMO-RS:

conductor-like screening model for real solvents [72]; DDM: double decoupling method [73]; FM: Force Matching [74];

FSDAM: Fast switching double annihilation method [75, 76] KMTISM: KECSA-Movable Type Implicit Solvation Model [77];

MD: molecular dynamics; MovTyp Movable Type method [78]; PBSA: Poisson-Boltzmann surface area [79]; REST: replica

exchange with solute torsional tempering [80, 81]; RFEC: relative free energy calculation; QM/MM: mixed quantum

mechanics and molecular mechanics; SOMD: double annihilation or decoupling method performed with Sire/OpenMM6.3

software [82, 83]; SQM: semi-empirical quantum mechanics; US: umbrella sampling [84]; VSGB2.1: VSGB2.0 solvation

model refit to OPLS2.1/3/3e [85];

(a) Alchemical calculations are flagged by (A). All of these are absolute free energy calculations except for the RFEC entries.
(b) (E) and (I) denote explicit and implicit solvation models respectively.
(c) The corrections based on previous experimental data either apply only an additive term (offset) or both an additive

term and a multiplicative factor (linear).

(d) Only a subset of the 25 movable type variations are included here. The four-letter suffix of each movable type

submission is to be interpreted as following: first letter indicates the force field (G: GARF; K: KECSA), the second letter

input structures (E: ensemble of structures from MD sampling; T: lowest energy structure during movable type scoring),

the third letter is the number of states (1: only the complex is considered, 3: includes also the energy scores of host and

guest in solution), and the fourth letter the type of experimental correction (L: linear; O: offset; N: no correction).

(e) Both RFEC-GAFF2 and RFEC-QMMM report the results of relative free energy calculations. The offsets were determined

from experimental data for similar OA or TEMOA guests.

(f ) SOMD submissions denoted with the nobuffer suffix include only the neutralizing counterions while the others add
extra ions to model the buffer salt concentration. SOMD-A has no corrections. SOMD-B adds corrections for missing

long-range dispersion interactions and for the flat-bottomed restraint to bring the ligand to standard state concentration.

SOMD-D includes a linear correction fit to previously-available experimental data.

Method ID(a) Sampling Energy model
Solvation

model(b)
Experimental

fit correction(c)
SAMPL6

reference

DDM-AMOEBA (A) MD AMOEBA AMOEBA (E) no

DDM-FM (A) HREX; MD Force-Matching/RESP TIP3P (E) no

DDM-FM-QMMM (A) HREX; MD
Force-Matching/RESP;

DFT(B3LYP)
TIP3P (E) no

DDM-GAFF (A) MD GAFF/AM1-BCC TIP3P (E) no

DFT(B3PW91) MD; clustering DFT(B3PW91) SMD (I) no

DFT(B3PW91)-D3 MD; clustering DFT(B3PW91)-D3 SMD (I) no

DFT(TPSS)-D3 MD DFT(TPSS)-D3 COSMO-RS (I) no

FSDAM (A) REST; MD GAFF2/AM1-BCC TIP3P (E) no

NULL docking OPLS3 VSGB2.1 (I) no

MMPBSA-GAFF MD; clustering GAFF/RESP PBSA (I) no

MovTyp-GE3N(d) MD; clustering GARF KMTISM (I) no

MovTyp-GE3O MD; clustering GARF KMTISM (I) offset

MovTyp-GE3L MD; clustering GARF KMTISM (I) linear

MovTyp-GT1N MD; clustering GARF KMTISM (I) no

MovTyp-GT1L MD; clustering GARF KMTISM (I) linear

MovTyp-KT1N MD; clustering KECSA KMTISM (I) no

MovTyp-KT1L MD; clustering KECSA KMTISM (I) linear

RFEC-GAFF2 (A)(e) MD GAFF2/RESP TIP3P (E) offset

RFEC-QMMM (A) MD GAFF2/RESP; PM6-DH+ TIP3P (E) offset

SQM(PM6-DH+) MD PM6-DH+ COSMO-RS (I) no

SOMD-A (A)(f ) MD GAFF/AM1-BCC TIP3P (E) no

SOMD-A-nobuffer (A) MD GAFF/AM1-BCC TIP3P (E) no

SOMD-C (A) MD GAFF/AM1-BCC TIP3P (E) no

SOMD-C-nobuffer (A) MD GAFF/AM1-BCC TIP3P (E) no

SOMD-D (A) MD GAFF/AM1-BCC TIP3P (E) linear

SOMD-D-nobuffer (A) MD GAFF/AM1-BCC TIP3P (E) linear

US-CGenFF MD CGenFF TIP3P (E) no

US-GAFF MD GAFF/AM1-BCC TIP3P (E) no

US-GAFF-C MD GAFF/AM1-BCC TIP3P (E) linear

Source: https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis/Submissions
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Table 3. Method performance statistics and bootstrap confidence intervals on OA/TEMOA and CB8 datasets. Root mean square error (RMSE), mean signed error (ME),

coefficient of determination (R2), and Kendall correlation coefficient (�) obtained by each methodology on the merged OA/TEMOA and the CB8 datasets. The only exception is
US-CGenFF whose OA/TEMOA statistics were computed using only the TEMOA set since no submission was received for OA. Table entries are left blank for those methods that were

applied to only one of the guest sets. The predictions performed for the bonus challenge guests were excluded when computing the statistics for the CB8 dataset. Each statistic is

reported with bootstrap distribution mean (between parentheses) and 95-percentile bootstrap confidence interval (square brackets) obtained through 100 000 cycles of resampling

with replacement. The standard errors of the mean of the predictions reported in the submissions are included in the confidence intervals. The original data for the combined

OA/TEMOA and CB8 datasets can be found respectively at https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis/OA-TEMOA/StatisticsTables/statistics.csv and

https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis/CB8-NOBONUS/StatisticsTables/statistics.csv. Eventual updates or corrections to the data will be made

available at the same URL, and anyone wishing to reuse the data should refer there.

Method OA/TEMOA dataset CB8 dataset (no bonus challenge)

RMSE ME R2 � RMSE ME R2 �

DDM-AMOEBA 2.2 (2.1) [1.3, 2.9] -0.8 (-0.8) [-1.9, 0.1] 0.1 (0.2) [0.0, 0.5] -0.2 (-0.2) [-0.6, 0.2] 3.9 (3.8) [1.5, 5.7] 2.3 (2.3) [0.5, 4.3] 0.1 (0.3) [0.0, 0.8] 0.1 (0.1) [-0.5, 0.6]

DDM-FM 4.7 (4.6) [3.4, 6.0] 2.7 (2.7) [0.2, 4.8] 0.4 (0.4) [0.0, 0.9] 0.5 (0.5) [0.1, 0.9]

DDM-FM-QMMM 5.5 (5.5) [4.0, 7.3] 2.3 (2.3) [-1.1, 5.0] 0.4 (0.5) [0.1, 0.8] 0.6 (0.6) [0.1, 0.9]

DDM-GAFF 3.4 (3.3) [2.1, 4.6] 1.0 (1.0) [-0.7, 2.5] 0.1 (0.3) [0.0, 0.8] 0.4 (0.4) [-0.1, 0.8] 7.2 (7.2) [5.6, 8.5] 6.4 (6.4) [4.4, 8.2] 0.3 (0.3) [0.0, 0.7] 0.3 (0.3) [-0.2, 0.8]

DFT(B3PW91) 16.7 (15.9) [8.7, 25.2] 5.4 (5.4) [-3.4, 11.1] 0.3 (0.3) [0.0, 0.7] -0.2 (-0.2) [-0.7, 0.2] 17.7 (17.5) [11.9, 22.9] -14.8 (-14.8) [-20.6, -9.1] 0.0 (0.1) [0.0, 0.7] 0.3 (0.3) [-0.3, 0.8]

DFT(B3PW91)-D3 37.7 (37.7) [34.8, 40.1] 35.3 (35.3) [27.8, 39.9] 0.1 (0.3) [0.0, 0.8] 0.4 (0.4) [-0.1, 0.9] 36.6 (36.4) [28.7, 44.2] 33.9 (33.9) [25.7, 42.0] 0.0 (0.2) [0.0, 0.8] -0.3 (-0.3) [-0.7, 0.2]

DFT(TPSS)-D3 3.1 (3.0) [2.3, 3.7] -1.6 (-1.6) [-2.8, -0.2] 0.5 (0.5) [0.1, 0.8] 0.3 (0.4) [-0.1, 0.7]

FSDAM 2.5 (2.5) [1.5, 3.3] 0.8 (0.8) [-0.5, 1.9] 0.5 (0.5) [0.0, 0.9] 0.5 (0.5) [0.0, 0.9]

MMPBSA-GAFF 7.0 (7.0) [5.4, 8.5] 6.4 (6.4) [4.9, 7.9] 0.8 (0.8) [0.6, 0.9] 0.7 (0.6) [0.4, 0.8] 17.9 (17.8) [13.9, 21.5] 16.7 (16.7) [13.0, 20.6] 0.0 (0.3) [0.0, 0.8] -0.4 (-0.4) [-0.9, 0.1]

MovTyp-GE3L 2.3 (2.3) [1.5, 3.1] 1.9 (1.9) [1.2, 2.6] 0.3 (0.4) [0.0, 0.8] 0.3 (0.3) [-0.2, 0.7] 5.8 (5.8) [4.5, 7.0] 5.4 (5.4) [4.1, 6.7] 0.3 (0.4) [0.1, 0.8] 0.5 (0.5) [0.1, 0.8]

MovTyp-GE3N 1.8 (1.8) [1.0, 2.6] 1.2 (1.2) [0.5, 1.9] 0.3 (0.4) [0.0, 0.8] 0.3 (0.3) [-0.2, 0.7] 4.7 (4.7) [3.5, 5.8] -4.2 (-4.2) [-5.4, -2.8] 0.3 (0.4) [0.1, 0.8] 0.5 (0.5) [0.1, 0.8]

MovTyp-GE3O 1.3 (1.3) [0.8, 1.8] 0.8 (0.8) [0.3, 1.3] 0.3 (0.4) [0.0, 0.8] 0.3 (0.3) [-0.1, 0.7] 5.3 (5.3) [4.2, 6.3] 5.0 (5.0) [3.9, 6.1] 0.3 (0.4) [0.1, 0.8] 0.5 (0.5) [0.1, 0.8]

MovTyp-GT1L 3.3 (3.3) [2.8, 3.8] 3.2 (3.2) [2.7, 3.6] 0.5 (0.5) [0.1, 0.8] 0.4 (0.4) [-0.1, 0.8] 5.4 (5.4) [4.1, 6.6] -5.0 (-5.0) [-6.3, -3.7] 0.4 (0.4) [0.1, 0.7] 0.5 (0.5) [0.1, 0.9]

MovTyp-GT1N 4.4 (4.4) [3.9, 4.9] 4.3 (4.3) [3.8, 4.8] 0.5 (0.5) [0.1, 0.8] 0.4 (0.4) [-0.1, 0.8] 2.0 (2.0) [1.3, 2.6] -0.4 (-0.4) [-1.5, 0.8] 0.4 (0.4) [0.1, 0.7] 0.5 (0.5) [0.1, 0.9]

MovTyp-KT1L 1.0 (0.9) [0.7, 1.2] -0.5 (-0.5) [-0.9, -0.0] 0.6 (0.6) [0.2, 0.8] 0.4 (0.4) [-0.1, 0.7] 2.9 (2.8) [1.7, 3.8] 1.6 (1.6) [0.2, 3.0] 0.1 (0.1) [0.0, 0.5] 0.1 (0.1) [-0.4, 0.6]

MovTyp-KT1N 2.9 (2.9) [2.4, 3.3] 2.7 (2.7) [2.3, 3.2] 0.5 (0.5) [0.1, 0.8] 0.3 (0.3) [-0.1, 0.7] 4.8 (4.8) [3.9, 5.6] 4.4 (4.4) [3.3, 5.4] 0.1 (0.1) [0.0, 0.5] 0.1 (0.1) [-0.4, 0.6]

NULL 26.3 (26.2) [23.3, 29.2] 25.6 (25.6) [22.8, 28.6] 0.6 (0.6) [0.2, 0.8] 0.5 (0.6) [0.2, 0.8] 17.6 (17.6) [14.2, 21.2] 14.9 (14.9) [8.7, 19.9] 0.0 (0.1) [0.0, 0.5] -0.1 (-0.1) [-0.6, 0.5]

RFEC-GAFF2 1.5 (1.5) [1.2, 1.8] -1.2 (-1.2) [-1.6, -0.7] 0.7 (0.7) [0.3, 0.9] 0.6 (0.6) [0.2, 0.9]

RFEC-QMMM 1.6 (1.6) [1.3, 2.0] -1.0 (-1.0) [-1.6, -0.3] 0.8 (0.8) [0.6, 0.9] 0.8 (0.7) [0.5, 0.9]

SOMD-A 5.7 (5.7) [4.7, 6.6] 5.4 (5.4) [4.5, 6.3] 0.8 (0.8) [0.6, 0.9] 0.8 (0.7) [0.4, 0.9] 5.1 (5.2) [3.8, 6.8] 4.4 (4.4) [2.6, 6.1] 0.1 (0.2) [0.0, 0.8] 0.1 (0.1) [-0.6, 0.7]

SOMD-A-nobuffer 4.9 (4.9) [3.9, 5.9] 4.5 (4.5) [3.6, 5.5] 0.8 (0.8) [0.6, 0.9] 0.7 (0.7) [0.4, 0.9] 7.9 (7.9) [6.1, 9.7] 7.3 (7.3) [5.5, 9.2] 0.1 (0.2) [0.0, 0.7] 0.1 (0.0) [-0.6, 0.6]

SOMD-C 3.7 (3.7) [2.7, 4.5] 3.2 (3.2) [2.4, 4.1] 0.8 (0.8) [0.6, 0.9] 0.7 (0.7) [0.4, 0.9] 3.8 (3.9) [2.7, 5.5] 2.8 (2.8) [1.0, 4.6] 0.1 (0.2) [0.0, 0.8] 0.1 (0.1) [-0.6, 0.7]

SOMD-C-nobuffer 3.0 (3.0) [2.1, 3.9] 2.4 (2.4) [1.4, 3.3] 0.8 (0.8) [0.5, 0.9] 0.7 (0.7) [0.4, 0.9] 6.6 (6.6) [4.9, 8.4] 6.0 (6.0) [4.1, 7.8] 0.1 (0.2) [0.0, 0.7] 0.1 (0.1) [-0.6, 0.6]

SOMD-D 1.8 (1.7) [1.1, 2.4] 1.0 (1.0) [0.4, 1.8] 0.8 (0.8) [0.6, 0.9] 0.7 (0.7) [0.4, 0.9] 2.6 (2.6) [1.4, 3.8] -1.8 (-1.8) [-3.1, -0.7] 0.1 (0.2) [0.0, 0.8] 0.1 (0.1) [-0.6, 0.7]

SOMD-D-nobuffer 1.6 (1.6) [1.0, 2.2] 0.3 (0.3) [-0.5, 1.1] 0.8 (0.8) [0.5, 0.9] 0.7 (0.7) [0.4, 0.9] 1.9 (1.9) [1.2, 2.7] -0.2 (-0.2) [-1.4, 1.0] 0.1 (0.2) [0.0, 0.7] 0.1 (0.0) [-0.6, 0.6]

SQM(PM6-DH+) 2.7 (2.6) [1.8, 3.4] 1.1 (1.1) [-0.0, 2.3] 0.1 (0.2) [0.0, 0.7] 0.3 (0.3) [-0.2, 0.8]

US-CGenFF 1.3 (1.4) [0.7, 2.1] -0.1 (-0.1) [-1.1, 1.0] 0.5 (0.5) [0.0, 1.0] 0.4 (0.4) [-0.4, 1.0]

US-GAFF 2.9 (2.9) [2.2, 3.5] 2.5 (2.5) [1.8, 3.2] 0.9 (0.8) [0.6, 1.0] 0.7 (0.7) [0.4, 0.9] 8.0 (7.9) [4.9, 11.0] 6.7 (6.7) [4.3, 9.5] 0.0 (0.2) [0.0, 0.6] -0.1 (-0.1) [-0.6, 0.5]

US-GAFF-C 1.0 (0.9) [0.6, 1.2] -0.5 (-0.5) [-0.9, -0.1] 0.9 (0.8) [0.6, 1.0] 0.7 (0.7) [0.4, 0.9] 3.5 (3.4) [1.4, 5.2] 1.6 (1.6) [-0.1, 3.6] 0.0 (0.2) [0.0, 0.6] -0.1 (-0.1) [-0.6, 0.5]
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Challenge entries generally performed better on OA/TEMOA than CB8332

In general, the CB8 guest set proved to be more challenging than the OA/TEMOA set both in terms of error333

and correlation statistics. It is rarely the case that the same method scored better statistics on the former334

set, and only MovTyp-GT1N does so with statistical significance while the opposite can be observed relatively335

often. Figure 5 shows the root mean squared error (RMSE) and mean signed error (ME) with 95-percentile336

bootstrap confidence interval computed for each molecule using the ten methods that scored best in RMSE337

statistics in the merged OA/TEMOA set or the CB8 set (excluding the bonus challenge), which formed a set of338

14 different techniques employing GAFF and GAFF2 [89], CGenFF [91], force matching [74], AMOEBA [87],339

and QM/MM potentials using DFT(B3LYP) [96] or PM6-DH+ [94, 95]. These top ten methods performed340

poorly on eight out of the eleven CB8 compounds, and while confidence intervals for all the statistics are341

generally large, they also performed significantly worse on several CB8 guests than the OA/TEMOA ligands342

they accurately predicted affinities for. This loss of accuracy seems to be fairly consistent across models and343

methodologies, but the data is not sufficient to determine the exact cause of this behavior (e.g., force field344

parameters, the generally larger dimensions of the CB8 guests, protonation states). However, the results of345

the related SAMPL6 SAMPLing challenge does suggest that properly accounting for slow conformational346

dynamics for some of the CB8 guests may require longer simulation times than for the OA compounds,347

which may have contributed to poorer performance over the OA set [104]. Moreover, explicitly modeling348

the buffer salt concentration in SOMD significantly reduced the difference in error on the two guest sets349

(compare SOMD-C with SOMD-C-nobuffer), albeit without a commensurate improvement in correlation350

statistics, so the issue of missing chemical effects may also have role.351

Linear corrections fit to prior experimental data can reduce error without improving correlation352

Nine of the entries represented in Figure 4 incorporate fits to prior experimental data with the goal of either353

improving the computationally-predicted affinities or determining the offset necessary to convert relative354

free energy estimates into absolute binding affinities; of these, seven are among the top 10 methods scoring355

the lowest RMSE on the OA/TEMOA set. When considering multiple submissions of the same technique356

that differ only in whether a fit to prior experimental data was included, the entry with the lowest RMSE357

incorporates experimental data in every case. However, the results are less consistent when considering the358

CB8 guest set. The trend is the same for the SOMD, US-GAFF, and MovTyp submissions that used the KECSA359

potential, but it is reversed for the majority of the MovTyp submissions employing the GARF energy model360

(see also Supplementary Figure 8). It should be noted that many of the MovTyp corrections were trained361

on a dataset that pooled binding measurements of OA, TEMOA, and CB8 guests, so it is possible that the362

approach failed to generalize when the methodology was affected by a systematic error of opposite sign on363

the OA/TEMOA and CB8 sets (see Figure 3). The methods that scored best (in terms of lowest RMSE) are364

US-GAFF-C for OA/TEMOA, and SOMD-D-nobuffer for CB8; excluding methods utilizing fits to experimental365

data, US-CGenFF and MovTyp-GT1N have the lowest RMSE on the OA/TEMOA and CB8 sets, respectively.366

On the other hand, integrating prior experimental data did not appreciably impact correlation statistics,367

and the same methods with or without experimental correction show very similar R2 and � bootstrap368

distributions. It should be noted that a constant offset or multiplicative factor modifying all data points cannot369

alter the R2 statistic beside correcting an inverse correlation, and they can change � only if the transformation370

is such that the ranking of at least two data points is switched, which a single linear transformation with371

positive slope cannot do. However, since some of the entries trained different corrections for OA and372

TEMOA guests, the correlation statistics for the combined OA/TEMOA set were affected (see for example373

SOMD-C and SOMD-D, MovTyp-GE3N and MovTyp-GE3S in Supplementary Figure 8). It is true that the initial374

performance of these methods without the experiment-based correction on the separated OA and TEMOA375

sets was relatively similar, thus leaving a small margin of improvement for this type of correction to reduce376

the data variance around the regression line and increasing R2. However, comparing the statistics computed377

pooling together the OA/TEMOA and CB8 predictions, which displayed very different correlation statistics, did378

not show any significant improvement (data not shown). In fact, R2 for the SOMD-C calculations decreased379

from 0.47 [0.09,0.78] to 0.18 [0.01,0.48] when incorporating the experimental correction in SOMD-D, despite380

the expected drop in RMSE, and a similar observation can be made for SOMD-D-nobuffer and the � statistic.381
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Figure 3. Free energy correlation plots obtained by the methods on the three host-guest sets.

Scatter plots showing the experimental measurements of the host-guest binding free energies (horizontal axis) against

the methods’ predictions on the OA (yellow), TEMOA (green), and CB8 (blue) guest sets with the respective regression

lines of the same color. The solid black line is the regression line obtained by using all the data points. The gray shaded

area represent the points within 1.5 kcal/mol from the diagonal (dashed black line). Only a representative subset of the

movable type calculations results are shown. See Supplementary Figure 7 for the free energy correlation plots of all the
movable type predictions.
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Figure 4. Bootstrap distribution of the methods performance statistics.

Bootstrap distributions of root mean squared error (RMSE), mean signed error (ME), coefficient of determination (R2)

and Kendall rank correlation coefficient (�). For each methodology and statistic, two distributions are shown for the
merged OA/TEMOA set (yellow, pointing upwards) and the CB8 set excluding the bonus challenge compounds (blue,

downwards). The black horizontal box between the two distributions of each method shows the median (white circle)

and interquartile range (box extremes) of the overall distribution of statistics (i.e., pooling together the OA/TEMOA and

CB8 statistic distributions). The short vertical segment in each distribution is the statistic computed using all the data.

The distributions of the methods that incorporate previous experimental data into the computational prediction are

highlighted in gray. Methodologies are ordered using the statistics computed on the OA/TEMOA set, unless only data for

the CB8 set was submitted (e.g., DDM-FM), in which case the CB8 set statistic was used to determine the order. Only a

representative subset of the movable type calculations results are shown. See Supplementary Figure 8 for the bootstrap
distributions including all the movable type submissions.
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Figure 5. Free energy error statistics for ten best-performing methods RMSE by molecule.

Root mean square error (RMSE) and mean signed error (ME) computed using the ten methodologies with the lowest RMSE

on the merged OA/TEMOA and CB8 datasets (excluding bonus challenge compounds) for all guests binding to OA (yellow),

TEMOA (green), and CB8 (blue). Error bars represent 95-percentile bootstrap confidence intervals.

GAFF/AM1-BCC and TIP3P consistently overestimated the host-guest binding affinities382

Several entries used GAFF to parameterize the host-guest systems with AM1-BCC charges and TIP3P water383

molecules (i.e., SOMD, US-GAFF, DDM-GAFF) so it is possible to make relatively general observations about384

the performance of this model. Firstly, if we ignore the submissions that employ an experiment-based385

correction, every single method in this group predicted tighter binding than what supported by experiments386

with both the OA/TEMOA and the CB8 sets. This observation extends to MMPBSA-GAFF as well, which still387

used GAFF but with RESP charges and the implicit PBSA solvent model, but many of the methodologies that388

entered the challenge display a similar systematic error (see also ME in Figure 5), although GAFF is the only389

force field that was independently adopted by multiple groups and used with various classes of techniques.390

Secondly, while error statistics vary substantially among GAFF entries, the correlation statistics are quite391

similar. Most of these are among the best-performing methods for the OA/TEMOA set, with � ranging392

between 0.7–0.8, despite showing poor correlations on the CB8 set. The main exception to this pattern is393

given by DDM-GAFF, which shows moderate correlations for bot datasets. The reason for this is not entirely394

clear, as the methodology adopted for DDM-GAFF entry is very similar to SOMD-C-nobuffer. Their main395

difference appears to lie in their treatment of long-range electrostatics, with SOMD using reaction field396

electrostatics [105] and DDM-GAFF using PME [106], as well as the use of restraints, with SOMD employing397

a single flat-bottom restraint to keep the guest in the host’s cavity and DDM-GAFF restraining the relative398

orientation of the guest by means of harmonic restraining potentials applied to one distance, two angles,399

and three torsions.400

Comparison to null model and general observations401

The vast majority of the entries statistically outperformed the MMGBSA calculation we used as a null model.402

Surprisingly, while the null model correlation on the CB8 set was objectively poor (R2 = 0.6 [0.2, 0.8], � = 0.5403

[0.2, 0.8]), the R2 and � statistics obtained by the MMGBSA null model on the OA/TEMOA set was comparable404

to more expensive methods and, in fact, surpassed many of the challenge entries (Table 3). Many of the405

best-performing methods obtained essentially statistically indistinguishable correlation statistics, but US-406

GAFF and RFEC-QMMM obtained the highest R2 and � respectively on the OA/TEMOA set, while DDM-FM and407

DDM-FM-QMMM scored at the top for the CB8 guest set. When the prediction obtained from a classic force408
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field was corrected with the free energy of moving to a QM/MM potential, the correlation slightly increased,409

although this difference was not statistically significant. This is the case of RFEC-GAFF2 and DDM-FM, both of410

which included only the guest in the QM region using PM6-DH+ and DFT(B3LYP) respectively. On the other411

hand, calculations based on pure QM potentials were generally outperformed by force field and QM/MM412

models despite the usage of molecular dynamics to collect multiple samples.413
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Table 4. Performance statistics including the bonus challenge molecules. Root mean square error (RMSE), mean signed error (ME), coefficient of determination (R2), and Kendall

correlation coefficient (�) obtained by all methods applied to the bonus challenge on the full CB8 set (left super column), including the three bonus molecules. Statistics computed
excluding the bonus molecules are reported again here (right super column) for easy comparison. Bootstrap distribution mean and 95-percentile confidence intervals are reported

between parentheses and square brackets respectively.

Method CB8 dataset (with bonus challenge) CB8 dataset (no bonus challenge)

RMSE ME R2 � RMSE ME R2 �

DDM-AMOEBA 3.7 (3.6) [1.9, 5.2] 1.2 (1.2) [-0.6, 3.1] 0.1 (0.2) [0.0, 0.7] 0.1 (0.1) [-0.3, 0.6] 3.9 (3.8) [1.5, 5.7] 2.3 (2.3) [0.5, 4.3] 0.1 (0.3) [0.0, 0.8] 0.1 (0.1) [-0.5, 0.6]

DDM-FM 4.3 (4.4) [3.1, 5.6] 2.2 (2.2) [0.0, 4.2] 0.5 (0.5) [0.1, 0.8] 0.5 (0.5) [0.2, 0.8] 4.7 (4.6) [3.4, 6.0] 2.7 (2.7) [0.2, 4.8] 0.4 (0.4) [0.0, 0.9] 0.5 (0.5) [0.1, 0.9]

DDM-FM-QMMM 5.4 (5.5) [3.8, 7.3] 1.1 (1.1) [-2.0, 3.8] 0.3 (0.3) [0.0, 0.7] 0.5 (0.4) [-0.0, 0.8] 5.5 (5.5) [4.0, 7.3] 2.3 (2.3) [-1.1, 5.0] 0.4 (0.5) [0.1, 0.8] 0.6 (0.6) [0.1, 0.9]

DFT(B3PW91) 17.3 (17.1) [12.1, 21.8] -14.4 (-14.4) [-19.5, -9.5] 0.0 (0.1) [0.0, 0.5] 0.1 (0.1) [-0.4, 0.5] 17.7 (17.5) [11.9, 22.9] -14.8 (-14.8) [-20.6, -9.1] 0.0 (0.1) [0.0, 0.7] 0.3 (0.3) [-0.3, 0.8]

DFT(B3PW91)-D3 37.0 (36.8) [29.9, 43.5] 34.3 (34.3) [27.0, 41.4] 0.0 (0.1) [0.0, 0.5] -0.1 (-0.1) [-0.6, 0.2] 36.6 (36.4) [28.7, 44.2] 33.9 (33.9) [25.7, 42.0] 0.0 (0.2) [0.0, 0.8] -0.3 (-0.3) [-0.7, 0.2]

MMPBSA-GAFF 17.8 (17.7) [14.5, 20.8] 16.7 (16.7) [13.5, 19.9] 0.0 (0.1) [0.0, 0.7] -0.2 (-0.2) [-0.7, 0.2] 17.9 (17.8) [13.9, 21.5] 16.7 (16.7) [13.0, 20.6] 0.0 (0.3) [0.0, 0.8] -0.4 (-0.4) [-0.9, 0.1]

Source: https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis

Table 5. Offset statistics of the methods appearing in previous rounds of the SAMPL host-guest binding challenge.

Offset root mean square error (RMSEo), coefficient of determination (R
2
o ), and Kendall correlation coefficient (�o) computed by subtracting the mean signed error from the free energy

prediction. Absolute statistics are identical to those presented before, but, consistently with the format adopted in the SAMPL5 host-guest binding challenge overview paper, we report

mean ± standard deviation of the bootstrap distribution between parentheses.

Method dataset Absolute statistics Offset statistics

RMSE R2 � RMSEo R2o �o

DDM-AMOEBA CB8 3.9 (3.8 ± 1.0) 0.1 (0.3 ± 0.2) 0.1 (0.1 ± 0.3) 3.2 (3.0 ± 0.7) 0.1 (0.3 ± 0.2) 0.1 (0.1 ± 0.3)
DFT(TPSS)-D3 OA/TEMOA 3.1 (3.0 ± 0.4) 0.5 (0.5 ± 0.2) 0.3 (0.4 ± 0.2) 2.6 (2.5 ± 0.4) 0.5 (0.5 ± 0.2) 0.3 (0.4 ± 0.2)
MovTyp-GE3N OA/TEMOA 1.8 (1.8 ± 0.4) 0.3 (0.4 ± 0.2) 0.3 (0.3 ± 0.2) 1.4 (1.4 ± 0.3) 0.3 (0.4 ± 0.2) 0.3 (0.3 ± 0.2)
MovTyp-KT1N OA/TEMOA 2.9 (2.9 ± 0.2) 0.5 (0.5 ± 0.2) 0.3 (0.3 ± 0.2) 0.9 (0.9 ± 0.2) 0.5 (0.5 ± 0.2) 0.3 (0.3 ± 0.2)
MovTyp-KT1L OA/TEMOA 1.0 (0.9 ± 0.1) 0.6 (0.6 ± 0.2) 0.4 (0.4 ± 0.2) 0.8 (0.8 ± 0.1) 0.6 (0.6 ± 0.2) 0.4 (0.4 ± 0.2)
SOMD-A-nobuffer OA/TEMOA 4.9 (4.9 ± 0.5) 0.8 (0.8 ± 0.1) 0.7 (0.7 ± 0.1) 1.9 (1.9 ± 0.3) 0.8 (0.8 ± 0.1) 0.7 (0.7 ± 0.1)
SOMD-C-nobuffer OA/TEMOA 3.0 (3.0 ± 0.4) 0.8 (0.8 ± 0.1) 0.7 (0.7 ± 0.1) 1.9 (1.9 ± 0.3) 0.8 (0.8 ± 0.1) 0.7 (0.7 ± 0.1)
SOMD-D-nobuffer OA/TEMOA 1.6 (1.6 ± 0.3) 0.8 (0.8 ± 0.1) 0.7 (0.7 ± 0.1) 1.6 (1.5 ± 0.3) 0.8 (0.8 ± 0.1) 0.7 (0.7 ± 0.1)1
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Bonus challenge414

The platinum atom in CB8-G13 required particular attention during parameterization as this atom is not cus-415

tomarily handled by general small molecule force fields. Even in the case of DFT(B3PW91) and DFT(B3PW91)-416

D3, the configurations used for the QM calculations were generated by classical molecular dynamics requiring417

empirical parameters. In general, all the participants to the bonus challenge relied on DFT-level quantum418

mechanics calculation to address the problem. In MMPBSA-GAFF, DFT(B3PW91), and DFT(B3PW91)-D3,419

Mulliken charges were generated from DFT(B3LYP), which were subsequently used to determine AM1-BCC420

charges. A different approach was adopted in DDM-FM-QMMM in which the platinum was substituted421

by palladium, and the conformations necessary to the force matching parameterization procedure were422

obtained by MNDO(d) dynamics.423

All groups participating to the bonus challenge submitted 1:1 complex predictions also for CB8-G11 and424

CB8-G12, for which the initial experimental data suggested the possibility of 2:1 complexes (two guests425

simultaneously bound to one host). This later turned out to be correct only for CB8-G12, and several426

groups reported to have computationally tested the hypothesis for CB8-G11 with the correct outcome.427

DDM-AMOEBA was used to estimate affinity of both the 1:1 and 2:1 complexes, but in the end the first428

one was used in the submission as the two predicted binding free energies differed by only 0.1 kcal/mol.429

Accordingly, we used the experimental measurement determined for the first binding event to compute the430

statistics (CB8-G12a in Table 1).431

Summary statistics incorporating bonus challenge compounds are reported in Table 4. Although the432

RMSE generally improves in most cases, it should be noted that this effect varies greatly across the three433

molecules, and this improvement is mainly due to CB8-G11, whose predictions are regularly much closer to434

the experimental measurement than the estimates provided for the other two compounds.435

Comparison to previous rounds of the SAMPL host-guest binding challenge436

Since previous rounds of the host-guest binding challenge featured identical or similar hosts to those437

tested in SAMPL6, it is possible to compare earlier results and observe the evolution of methodological438

performance.439

Correlation improvements over SAMPL5 were largely driven by fits to prior experimental data440

SAMPL5 featured a set of compounds binding to both OA and TEMOA, which will be referred in the following441

as the OA/TEMOA-5 set to differentiate it from the combined OA/TEMOA set used in this round of the442

challenge, and, in the top row of Figure 6-A, we show median and fitted distributions of the RMSE and R2443

statistics taken from the SAMPL5 overview paper [26] together with the results from SAMPL6. OA was used444

as a test system in SAMPL4 as well, but in this case, only relative free energy predictions were submitted445

so we cannot draw a direct comparison. Prediction accuracy displays a slight improvement of the median446

RMSE from the previous round from 3.00 [2.70, 3.60] kcal/mol to 2.76 [1.85, 3.28] kcal/mol (95-percentile447

bootstrap confidence intervals of the medians not shown in Figure 6-A), but this change seems to be entirely448

driven by the methods employing experiment-based fit corrections since removing them results in a median449

RMSE that is essentially identical to SAMPL5. The data raises the question of whether the field is hitting the450

accuracy limit of current general force fields. On the other hand, the median R2 improved with respect to the451

last round from 0.0 [0.0,0.8] to 0.5 [0.4,0.8]. In this case, the slightly lower SAMPL6 median R2 obtained by452

ignoring methods incorporating experimental data is likely due not to the correction itself but to the fact453

that the top performing methods were generally submitted with and without correction, thus reducing the454

density at values closer to unit. Indeed, as already discussed, no positive effect on correlation was evident455

from the inclusion of a trained linear correction.456

For a better interpretation of these results, it should be pointed out that these statistics can be largely457

affected by the particular set of guests tested and the composition of the methods entering the challenge.458

However, one of the goals of the SAMPL challenge series is to push the community to use techniques that459

prove more reliable, and the composition of the methods entering the competition is influenced by the460

results of previous studies. Moreover, limiting the comparison to free energy-based methodologies (e.g.,461

alchemical and potential of mean force calculations) does not change the conclusion, and, in fact, it widens462
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Figure 6. CB analogues and distribution of RMSE and R2 achieved by methods in SAMPL3 and SAMPL5.

(A) Probability distribution fitting of root mean square error (RMSE, left column) and coefficient of determination (R2, right

column) achieved by all the methods entering the SAMPL6 (yellow), SAMPL5 (green), and SAMPL3 (purple) challenge. The

markers on the x-axis indicate the medians of the distributions. Distributions are shown for all the methods entering the

challenge (solid line, square marker), excluding the SAMPL6 entries that used previous experimental data (dotted line,

triangle marker), or isolating alchemical and potential of mean force methodologies that did not use an experiment-based

correction (dashed line, circle marker). The RMSE axis is truncated to 14 kcal/mol, and a few outlier submissions are not

shown. The data shows an essentially identical median RMSE and an increased median correlation on the combined

OA/TEMOA guest sets (top row) with respect to the previous round of the challenge. The comparison of the results to

different sets of guests binding few cucurbit[n]uril and cucurbit[n]uril-like hosts appearing in SAMPL3 and SAMPL5 (bottom

row) shows instead a deteriorated performance in the most recent round of the challenge, which is likely explained by the

major complexity of the SAMPL6 C8 guest set. (B) Three-dimensional structures in stick view of the CBClip (top) and H1

(bottom) hosts featuring in SAMPL5 and SAMPL3 respectively. Carbon atoms are represented in gray, nitrogens in blue,

oxygens in red, and sulfur atoms in yellow. Hydrogen atoms are not shown.
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the difference in median R2.463

Since SOMD calculations entered the SAMPL5 challenge as well [107], we can compare directly the same464

statistics obtained by the method on the two guest sets to form an idea about the relative complexity of the465

two sets for free energy methods. To this end, we report in Table 5 the uncertainties of the absolute statistics466

in terms of the mean and standard deviations (between parentheses) of the bootstrap distributions instead467

of their 95-percentile confidence intervals to allow a direct comparison to those published in the SAMPL5468

overview paper. The results of the SOMD methods applied to the OA/TEMOA-5 were submitted with a469

restraint and long-range dispersion correction, similarly to SOMD-C-nobuffer here, and without it, similarly to470

SOMD-A-nobuffer here. The two methods were referred as SOMD-3 and SOMD-1 respectively in the SAMPL5471

overview. In both cases, the calculations used GAFF with AM1-BCC charges and TIP3P water molecules as472

well as a single flat-bottom restraint. The RMSE obtained by SOMD-C-nobuffer increased with respect to473

the statistic computed for SOMD-3 on OA/TEMOA-5 from 2.1 (2.1 ± 0.3) kcal/mol to 3.0 (3.0 ± 0.4) kcal/mol.474

Incorporating experimental data into the prediction improved the error as SOMD-D-nobuffer obtained a475

RMSE of 1.6 (1.6 ± 0.3) kcal/mol. On the other hand, the Kendall correlation coefficient slightly increased on476

the SAMPL6 dataset from 0.4 (0.4 ± 0.2) to 0.7 (0.7 ± 0.4) while R2 remained more or less stationary from the477

already high value of 0.9 (0.7 ± 0.2) obtained on OA/TEMOA-5. Very similar observations can be made for478

SOMD-A-nobuffer and SOMD-1. While the improved � correlation does not rule out the possibility of system-479

dependent effects on R2, it is unlikely for the difference between the median R2 of SAMPL5 and SAMPL6480

(amounting to 0.76) to be entirely explained by the different set of guests, and the improvement is likely due,481

at least in part, to the different methodologies entering the challenge. In particular, SAMPL5 featured several482

free energy methods that scored near-zero R2 on the OA/TEMOA-5 set, affecting considerably the SAMPL5483

median statistic. One of these methods is BEDAM, which used the OPLS-2005 [108, 109] force field and the484

implicit solvent model AGBNP2 [110], none of which entered the latest round of the challenge. However,485

the rest of these methods consist of double decoupling calculations carried out either with thermodynamic486

integration (TI) [111, 112] or HREX and BAR that employed CGenFF and TIP3P, which performed relatively487

well in SAMPL6 on OA/TEMOA. It should be noted that the TI and HREX/BAR methodologies in SAMPL5488

made use of a Boresch-style restraint [113] harmonically constraining one distance, two angles, and three489

dihedrals. This is similar to the solution adopted in DDM-GAFF in SAMPL6, which also showed a relatively490

low R2 compared to the other free energy submissions in the same round of the challenge so it is natural491

to suspect that it may be particularly challenging to treat this class of host-guest systems with this type of492

restraint in alchemical calculations.493

An improvement can also be observed for themovable typemethod, which was applied to the OA/TEMOA-494

5 set as well [114] using the KECSA 1 and KECSA 2 potentials. These two submissions, identified withMovTyp-1495

and MovTyp-2 respectively in the SAMPL5 overview paper, obtained similar statistics so we will use MovTyp-2496

for the comparison. The SAMPL6 entry MovTyp-KT1N, which uses the KECSA energy model too, obtained a497

comparable RMSE of 2.9 (2.9 ± 0.2) kcal/mol against the 3.1 (2.9 ± 1.1) kcal/mol achieved by MovTyp-2 on498

OA/TEMOA-5, but, even in this case, the error becomes statistically distinguishable once the experimental-499

based correction is included (i.e., in MovTyp-KT1L), which decreases the RMSE to 1.0 kcal/mol. The correlation500

statistics generally compare favorably with respect to SAMPL5 with R2 moving from 0.0 (0.3 ± 0.3) to 0.5501

(0.5 ± 0.2) and � going from 0.1 (0.1 ± 0.3) to 0.3 (0.3 ± 0.2), although the uncertainties are too large to502

achieve statistical significance. Moreover, MovTyp-GE3N, which employs the more recently developed GARF503

energy model, obtained a better RMSE (1.8 (1.8 ± 0.4) kcal/mol) and comparable correlation statistics to504

MovTyp-KT1N.505

Finally, it seems appropriate to compare the performance of DFT(TPSS)-D3 on OA/TEMOA to DFT/TPSS-506

c [115] in SAMPL5 and RRHO-551 [116] in SAMPL4 [25]. DFT(TPSS)-D3 an DFT/TPSS-c are very similar in that507

they both use the DFT-D3 approach to include dispersion correction, but while DFT(TPSS)-D3 generated an508

ensemble of configurations with MD, DFT/TPSS-c estimated the binding free energy from a single minimized509

structure. On the other hand, RRHO-551 does use MD for conformational sampling, but it employs DTF-D to510

correct for dispersion interactions, which was developed earlier than DFT-D3. As already mentioned, SAMPL4511

featured a set of OA guests [25], but only relative free energy predictions were submitted so absolute statistics512

are not available. Thus, in order to facilitate the comparison, we decided to report offset statistics for the513
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subset of the SAMPL6 methods analyzed in this section in the same way they were computed in the previous514

two rounds of the challenge. The results are given in Table 5. The RMSE of the two models was relatively515

similar in SAMPL4 and SAMPL5: 5.8 ± 1.6 kcal/mol for RRHO-551 and 5.3 (5.2 ± 0.8) kcal/mol for DFT/TPSS-c,516

where the estimate for RRHO-551 does not include the mean of the statistic bootstrap distribution, which517

was not reported in the SAMPL4 overview paper. However, the SAMPL6 DFT(TPSS)-D3 calculations attained a518

lower error (2.6 (2.5 ± 0.4) kcal/mol) while maintaining a similar coefficient of determination of 0.5 (0.5 ± 0.2)519

against the 0.3 (0.4 ± 0.2) and 0.5 ± 0.4 of DFT/TPSS-c and RRHO-551 respectively.520

The SAMPL6 CB8 system presents significant challenges to modern methodologies521

A different perspective is offered by the history of the binding free energy predictions involving cucurbituril522

hosts. CB8 and the closely related CB7 appeared previously in SAMPL3 [49] together with an acyclic523

cucurbit[n]uril-type molecular container referred to as H1 [117]. Moreover, SAMPL5 featured another524

acyclic CB analogue called CBClip [50]. In Figure 6-A (bottom row), we show the distribution of RMSE and R2525

computed from the binding free energy predictions submitted for SAMPL3 and SAMPL5 against these four526

hosts. The 3D structures of H1 and CBClip are shown in Figure 6-B.527

An interesting pattern emerging from the data is that simulation-based free energy methods entering the528

three SAMPL challenges considered here, which encompass a variety energy models and both alchemical and529

PMF methodologies, always obtained equal or slightly greater median RMSE with respect to the global RMSE530

computed across all methods but also greater median R2 than the global median coefficient of determination.531

In general, however, both statistics appear to have deteriorated from SAMPL3 to SAMPL5. Even though532

H1 and CBClip are sufficiently different for system-dependent effects to reasonably dominate the overall533

performance, the most marked difference appears from the comparison of the SAMPL6 predictions to534

those submitted for CB7 and CB8 in SAMPL3, which achieved a much greater R2 and none of which involved535

simulation-based methods. The explanation for this inequality is likely to be found in the complexity of the536

guest sets rather than a methodological regression as SAMPL3 featured only two relatively simple fragment-537

like binders while the latest round of the challenge included compounds of moderate size and/or complex538

stereochemistry (e.g., gallamine triethiodate, quinine). That the CB8 guests in SAMPL6 were particularly539

challenging is corroborated by the comparison between the performance of DDM-AMOEBA and the results540

obtained by BAR-560, which also uses the double decoupling method and the AMOEBA polarizable force field,541

on the CB7 guests in SAMPL4 [118]. In this case as well, only offset statistics are available for comparison as542

SAMPL4 accepted exclusively relative free energy predictions. DDM-AMOEBA generally performed worse543

on the CB8 guest set featured in SAMPL6 with R2 decreasing from 0.6 ± 0.1 to 0.1 (0.3 ± 0.2) and RMSE544

increasing from 2.2 ± 0.4 to 3.2 (3.0 ± 0.7). While the CB8 guest set featured in SAMPL6 highlights the limits545

of current free energy methodologies, it also uncovers new learning opportunities that can be exploited to546

push the boundaries of the domain of applicability of these technologies.547

Discussion548

As in previous years, the SAMPL host-guest binding challenge has provided an opportunity for the computa-549

tional chemistry community to focus on a common set of systems to assess the state-of-the-art practices550

and performance of current binding free energy calculation methodologies. The value of the blind challenge551

does not lie exclusively in the comparison and benchmarking of different methods, but also in its ability552

to highlight general areas of weakness in the field as a whole on which the community can focus. The553

latter aspect, in particular, risks to become of secondary importance in retrospective studies. Moreover, the554

consistent use of octa-acid and cucurbiturils since SAMPL3, which took place in 2011, give us the opportunity555

to make general observations over a longer time span.556

The variability in difficulty highlights the need to evaluate methodologies on the same systems557

Several recurring themes have emerged from this and previous rounds of the challenge. Firstly, even for558

systems relatively simple as supramolecular host-guests, the performance of free energy methodologies559

and models can be heavily system-dependent. This is evident not only from the results of the same method560

applied to different guest sets, but also from the relative performance of the methods against different561
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molecules. For example, most of the prediction employing GAFF obtained among the highest correlation562

statistics on the OA/TEMOA set while ranking among the lowest positions on the CB8 set. This stresses the563

importance of using the same set of systems when comparing multiple methodologies, which, without any564

coordination between groups, is a difficult task to carry out on a medium-large scale given the amount of565

expertise and resources necessary to perform this type of studies.566

Force field accuracy is a dominant limiting factor for modeling affinity567

A second consideration surfacing from previous SAMPL rounds as well is the tendency of classical methods568

to overestimate the binding affinities. Since the results of the related SAMPLing challenge support the569

claim that convergence for this class of systems is achievable [104], and considering that the RMSE has not570

improved significantly across rounds of the challenge, this seem to suggest that an investment of resources571

into improving the empirical parameters of force fields and solvent models could have a dramatic impact. It572

should be noted that, while these systems do not put to the test protein parameters, they rely on general573

force fields that are routinely used in drug and small molecule design.574

Other missing chemical details may also be major limiting factors575

However, the problem of missing details of the chemical environment such as salts and alternative protomers576

cannot be ruled out as a major determinant of predictive accuracy. Explicitly modeling the buffer salt577

concentrations in the SOMD-C predictions reduced the RMSE from 7.9 to 5.1 kcal/mol for two simulations578

otherwise identical, and, curiously, it had the opposite effect of increasing the error statistics on the579

OA/TEMOA set. Despite the sensitivity of the free energy prediction to the presence of ions, a lack of standard580

best practices emerges from the challenge entries. Many participants decided to add only neutralizing581

counterions or use a uniform neutralizing charge, and others did not include information about how the582

buffer wasmodeled in the submittedmethod sections, which possibly reflects a generally minor role currently583

played by this particular aspect of the decision-making process during the modeling step in comparison to584

other elements (e.g., charges force field parameters, water model).585

Even at extreme pH, protonation state effects may still contribute586

Moreover, the possible influence on the binding free energy of multiple accessible protonation states of587

the guest compounds was left unexplored during the challenge, mirroring the widespread tendency in588

the free energy literature to neglect its effect, and participants largely used the most likely protonation589

states predicted by Epik that were provided in the input mol2 and sdf files. However, the pKa free energy590

penalties estimated by Epik for the second most probable protonation state of the CB8 guests in water591

at experimental pH (Table 6), which is obtained in all cases by the deprotonation of the charged nitrogen592

atoms as given in Figure 1, suggest that for several guests, and in particular for CB8-G3 and CB8-G11, the593

deprotonated state is accessible by paying a cost of a few kBT (where kB is the Boltzmann constant and T is594

the temperature), and a change in relative populations between the end states driven by the hydrophobic595

binding cavity may have a non-negligible effect on the binding affinity. Furthermore, even if the probability596

of having the carboxyl group of the octa-acid guests protonated at pH 11.7 is usually neglected, a previous597

study performed for SAMPL5 showed that modeling changes in protonation state populations upon binding598

resulted in improved predictive performance for a set of OA and TEMOA guests that, similarly to the latest599

round of the challenge, included several carboxylic acids and was measured at a similar buffer pH [119].600

Similarly to buffer salts, there are no established practices in the community to treat multiple protonation601

states in free energy calculations, but further development and testing of force fields and solvent models602

with the goal of improving accuracy to experiments should consider these issues as ignoring them during603

the fitting procedure could push the error caused by missing essential chemicals (e.g., ions, protonation and604

tautomeric states) to other force field parameters with the risk of decreasing the transferability of the model.605

Linear corrections fit to prior experimental measurements do not improve predictive utility606

The experimental-based correction adopted by several groups introduces a new theme in the challenge607

which pertains to strategies that can be used to inject previous knowledge into molecular simulations. Force608

field parameters are in principle capable of incorporating experimental data, but an update of the model609
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Table 6. pKa free energy penalties predicted by Epik for the second most likely protonation state of the CB8
guests.

In all cases, the second most probable protonation state predicted by Epik can be obtained by removing the nitrogen

proton of the dominant state. The estimated free energy penalties to access the deprotonated state are reported in

kcal/mol and units of kBT (between parentheses), where kB is the Boltzmann constant and T is the temperature, taken to
be 298K. For all the other compounds, including the octa-acid guests, Epik was not able to find a second protonation state

within a tolerance of 3 pH units.

Complex pKa penalty [kcal/mol (kBT )]

CB8-G0 2.86 (4.82)

CB8-G1 2.67 (4.50)

CB8-G2 3.20 (5.40)

CB8-G3 1.41 (2.37)

CB8-G11 2.76 (4.65)

CB8-G12 1.58 (2.66)

driven by binding free energy measurements or other ensemble observables is doubtlessly challenging and610

may involve calculations as expensive as the production calculations so this is normally not routinely viable,611

although previous studies indicated the validity and feasibility of such an approach [120, 121]. Other schemes612

that emerged in particular from the field of crystallographic structural refinement avoid modifying the force613

field parameters and instead add one or more biasing terms to the simulation to replicate experimental614

measurements that the underlying force field cannot reproduce [122, 123]. The simple linear corrections615

used independently by various participants in this round of the challenge had a positive impact on the616

error, but a very small effect in terms of correlation, which is often of central importance in the context of617

molecular design. However, the simplicity of its application, which is confined entirely to the post-processing618

step, was such that the participants were able to submit multiple entries with and without the correction.619

Outlook for future SAMPL host-guest challenges620

The SAMPL roadmap [124] outlines a proposal for subsequent host-guest challenges for SAMPL7–10. While621

the future of these blind exercises is uncertain given the absence of a sustainable funding source, we briefly622

review the likely future design of these host-guest challenges below.623

In one line of exploration ([124], section 2.2), SAMPL7 proposes to explore variants of Gibb deep cavity624

cavitands (related to OA/TEMOA) in which carboxylate substitutent locations are modified, comparing625

multiple host variants against a set of guests to explore how well affinities and selectivities could be predicted.626

SAMPL8 would provide a second iteration of this experiment with novel guests and a trimethylammonium-627

substituted host variant to assess how algorithmic improvements from the first round could lead to improved628

performance. SAMPL9–10 would consider the effect of common biologically relevant salts, comparing the629

effects of NaCl and NaI on various host variants, while SAMPL11 would consider the effects of cosolvents630

that might compete for the binding site or modulate the strength of the hydrophobic effect631

In another line of exploration ([124], section 2.1), SAMPL7-11 are also proposed to feature cucubituril632

variants, including methylated forms of CB8, glcoyuracil hexamer, and acyclic forms of CB[n]-type receptors.633

By comparing the constrained cyclic and less constrained acyclic forms of CB[n] hosts, the accuracy with634

which participants can model the energetics of receptor flexibility and receptor desolvation can be probed.635

SAMPL8–9 also plans to feature small molecule guests with pKa values between 3.8–7.4, which brings the636

possibility that host binding can induce substantian shifts in protonation state.637

Finally, recent work by one of the authors has demonstrated how a library of monostubstituted �-638

cyclodextrin analogues can be generated via a simple chemical route [125]. This strategy could ultimately639

lead to the attachment of chemical groups that resemble biopolymer residues, such as amino or nucleic640

acids, allowing interactions between small druglike molecules and biopolymer-like functional groups to be641

probed without the multifold challenges that protein-ligand interactions present. While development of this642

system is still ongoing, it is likely to make an appearance in upcoming SAMPL host-guest challenges.643

24 of 35

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2018. ; https://doi.org/10.1101/371724doi: bioRxiv preprint 

https://doi.org/10.1101/371724
http://creativecommons.org/licenses/by/4.0/


Preprint ahead of submission— July 18, 2018

Code and data availability644

• Input files and setup scripts: https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/645

• Analysis scripts: https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis/Scripts/646

• Analysis results: https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis/647

• Participants’ submissions: https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis/648
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• COSMO-RS: conductor-like screening model for real solvents [72]971

• DDM: double decoupling method [73]972

• DFT-D3: density functional theory with the D3 dispersion corrections [98]973

• FM: Force Matching [74]974

• FSDAM: Fast switching double annihilation method [75, 76]975

• GAFF: generalized AMBER force field [89]976

• HREX: Hamiltonian replica exchange [99]977

• KECSA: knowledge-based and empirical combined scoring algorithm [92]978

• KMTISM: KECSA-Movable Type Implicit Solvation Model [77]979

• MD: molecular dynamics980

• MMPBSA: molecular mechanics Poisson Boltzmann/solvent accessible surface area [103]981

• MovTyp Movable Type method [78]982

• OPLS3: optimized potential for liquid simulations [71]983

• PBSA: Poisson-Boltzmann surface area [79]984

• PM6-DH+: PM6 semiempirical method with dispersion and hydrogen bonding corrections [94, 95]985

• RESP: restrained electrostatic potential [90]986

• REST: replica exchange with solute torsional tempering [80, 81]987

• RFEC: relative free energy calculation988

• QM/MM: mixed quantum mechanics and molecular mechanics989

• SOMD: double annihilation or decoupling method performed with Sire/OpenMM6.3 software [82, 83]990

• SQM: semi-empirical quantum mechanics991

• TIP3P: transferable interaction potential three-point [86]992

• TPSS: Tao, Perdew, Staroverov, and Scuseria exchange functional [97]993

• US: umbrella sampling [84]994

• VSGB2.1: VSGB2.0 solvation model refit to OPLS2.1/3/3e [85]995

Supplementary figures996
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Appendix 0 Figure 7. Free energy correlation plots of all movable type submissions.

The four-letter suffix of each movable type submission is to be interpreted as following: first letter indicates the force

field (G: GARF; K: KECSA), the third letter input structures (D: final frame of MD sampling; E: ensemble of structures from

MD sampling; T: lowest energy structure during movable type scoring; U: lowest energy structure obtained during the

sampling in US-GAFF), the third letter is the number of states (1: only the complex is considered, 3: includes also host and

guest in solution), and the fourth letter the type of experimental correction (N: no correction; L: linear correction trained a

single dataset including OA, TEMOA, and CB8; O: offset correction trained a single dataset including OA, TEMOA, and CB8;

U: linear correction trained on a set excluding CB8 guests; S: two different linear corrections for OA and TEMOA predictions

trained on two separated sets including either OA or TEMOA measurements; Z: same as S but with only offset term).
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Appendix 0 Figure 8. Bootstrap distributions including all the movable type submissions.
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Appendix 0 Figure 9. Enthalpy correlation plots obtained by the methods on the three host-guest sets.

Scatter plots showing the experimental measurements of the host-guest binding enthalpies (horizontal axis) against the

methods’ predictions on the OA (yellow), TEMOA (green), and CB8 (blue) guest sets with the respective regression lines of

the same color. The solid black line is the regression line obtained by using all the data points. The gray shaded area

represent the points within 1.5 kcal/mol from the diagonal (dashed black line).
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