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ABSTRACT 

Physiological processes in multicellular organisms depend on the function and 

interactions of a multitude of specialized cell types operating in context. 

Fluorescence-activated cell sorting (FACS) provides a powerful tool to determine 

the cell type composition of complex mixtures and to purify highly homogeneous 

cell populations using a small number of differentially expressed marker proteins. 

These populations can be further characterized, e.g. by phenotypic or molecular 

analyses. 

We describe an ultra-sensitive mass spectrometric method for the robust 

quantitative and reproducible proteomic analysis of cohorts of FACS-isolated cell 

samples. It uses a minimum of post-sorting sample processing steps prior to data-

independent acquisition MS on a current generation Orbitrap hybrid mass 

spectrometer. The method provides highly accurate and reproducible 

quantitative proteome profiles across the cohort with an average coefficient of 

variance <15% from as little as 150 ng of total peptide mass. We quantified the 

proteome of 25,000 sorted human hematopoietic stem/multipotent progenitor 

cell and three committed progenitor cell subpopulations (common myeloid 

progenitors, megakaryocyte-erythrocyte progenitors and granulocyte-

macrophage progenitors) isolated from five healthy donors. On average, 5,851 

protein groups were identified per sample. After stringent filtering, a subset of 

4,131 protein groups (≥2 peptides) was used for differential comparison across 

the 20 samples, defining unique proteomic signatures for each cell type tested. A 

comparison of proteomic and transcriptomic profiles of the four cell types 

indicated hematopoietic stem/multipotent progenitor cell-specific divergent 
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regulation of biochemical processes that are essential for maintaining stemness 

and were detected at the proteome rather than the transcriptome level. 

The technology supports the generation of extensive and accurate 

quantitative proteomic profiles from low numbers of FACS-purified cells 

providing new information about the biochemical state of the analyzed cell types 

that is essential for basic and translational research. 
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INTRODUCTION 

In multicellular organisms, normal physiological functions and pathophysiological 

mechanisms are the result of the interplay of multiple cell types at various stages 

of differentiation. A prototypic example is the mammalian hematopoietic system 

where hematopoietic stem/multipotent progenitor cells (HSCs/MPPs) can 

differentiate into various functionally divergent cell lineages including the 

downstream formation of common myeloid progenitors (CMPs), megakaryocyte-

erythrocyte progenitors (MEPs) or granulocyte-macrophage progenitors (GMPs) 

1,2. When this process is altered, e.g. upon genetic or epigenetic changes in HSCs, 

abnormal (pre)leukemic stem cell subpopulations may form, eventually resulting 

in clonal hematopoiesis and in the onset of acute myeloid leukemia 3-5. To gain 

insight into the biochemical changes underlying cellular differentiation and to 

unravel factors involved in the early development of malignant hematopoietic 

diseases, highly refined analysis of the different subpopulations of the 

hematopoietic cell system is critically needed 6. 

Fluorescence-activating cell sorting (FACS) is an established technology for 

the characterization of cell types. FACS operates by monitoring the differential 

quantity of few specific antigens at the surface of single cells, thus determining the 

cell type composition of a sample and supporting the isolation of live, 

homogeneous populations for further phenotypic or molecular analyses. The 

hematopoietic cell types mentioned above are characterized by specific 

expression patterns of the cluster of differentiation molecules CD34, CD38, CD123, 

CD45RA and CD10 7-9. For many clinically relevant samples, no more than few 

thousand cells per subpopulation can be obtained with reasonable effort after 

FACS from a person. For example, the preparation of 25,000 sorted human HSCs 
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requires up to four liters of steady-state blood or a leukapheresis procedure 

following hematopoietic stem and progenitor cell (HSPC) mobilization, making 

further upscaling difficult. 

Whereas a few thousand cells are routinely analyzed by modern imaging 

and genomic profiling technologies 1,2,8-11, proteomic measurement, particularly 

the reproducible measurement across sample cohorts, has remained challenging 

due to larger sample requirement of prevailing mass spectrometric methods. 

Proteomic analysis of FACS-isolated cells has nonetheless been reported in several 

studies. Most of those focused on optimizing specific technical parts of the 

workflow, such as the cell sorting step itself 12, sample preparation 13,14 or sample 

fractionation 15. Others used 400,000 cells as starting material which restricted 

the scope of the analyses to large pools of murine samples 16 or in vitro model 

systems. To our knowledge, no systematic assessment of the reproducibility or 

consistency of the proteomic results of sorted cells has been performed, other 

than comparing protein identification numbers. It is therefore evident that the 

robustness of the proteomic analysis of such samples should be of high concern 

because it is not always possible to obtain replicates for many clinically relevant 

samples. 

Here, we present an integrated workflow for the high-coverage, 

quantitative proteome profiling of sorted cells that uses data independent 

acquisition (DIA)-MS on the Orbitrap Lumos platform. DIA-MS is a massively-

parallel-in-time acquisition method of fragment ion mass spectra of all detectable 

precursors in a sample. It provides a complete, yet convoluted, quantitative 

fragment ion map record of a sample 17. Peptide-centric analysis 18,19 of DIA 

datasets results in quantitative peptide matrices 17 of sufficient consistency and 
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reproducibility to support cross sample label-free proteomic comparisons of large 

sample cohorts. To date, DIA studies on hybrid quadrupole-time-of-flight (QqTOF) 

18,20,21 or Orbitrap 22,23 platforms used microgram amounts of total peptide mass 

for analysis (and even larger amounts of actually processed starting material), a 

quantity that is one to two orders of magnitude above the quantity achievable by 

FACS isolation of rare cell types. 

With an integrated sample preparation strategy and thorough 

optimization of the MS acquisition scheme, we established a method that 

reproducibly identifies and quantifies nearly 6,000 protein groups with a median 

coefficient of variance (CV) of 9% for 125 ng of HEK293 tryptic peptides. This 

unprecedented performance was used to profile 25,000 cells from sorted highly 

enriched HSC/MPP, CMP, MEP and GMP subpopulations from five genetically 

different donors. The method consistently quantified 4,131 protein groups across 

all samples and identified factors and biochemical pathways involved in 

quiescence, stemness maintenance and cell differentiation. 
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RESULTS 

Optimization of DIA-MS for small sample loads. Most DIA-MS applications 

reported so far used 0.5-2 μg of total peptide mass per injection 18,20-23. Therefore, 

we first optimized the acquisition scheme on an Orbitrap Fusion Lumos mass 

spectrometer to extend the application of DIA-MS to lower sample quantities 

while minimizing attrition of quantified proteins. 

The instrument platforms used for DIA-MS differ fundamentally in the way 

they transmit ions and acquire mass spectra: QqTOF instruments are typically 

operated with fixed tandem mass spectra (MS2) acquisition times and therefore 

duty cycles, because ions are transmitted to the detector without any 

accumulation step, offering relatively few parameters for fine tuning. In contrast, 

newer generation instruments equipped with Orbitrap analyzers allow the 

optimization of data acquisition at several stages, e.g. by varying the scan time 

(resolution is directly proportional to the detection time of the transient), by 

optimizing the number of accumulated target ions and/or the maximum 

accumulation (injection) time prior to the detection event, and finally by executing 

accumulation and detection steps in parallel, as implemented on the Lumos 

instrument. Depending on the intended application and the available sample 

amounts, optimization of these parameters may yield substantial gains in 

performance. 

We therefore studied the dependency of fill times to reach a desired ion 

population on the amount of tryptic peptides from a HEK293 cell lysate loaded on 

column. We used a 40 DIA isolation window scheme spanning 400-1000 m/z that 

showed optimal identification results for 500 ng peptide load in combination with 

a 2 h long chromatographic gradient (data not shown). The data confirm 
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(Supplementary Fig. 1) that, as expected, the time required to reach the target 

value of accumulated ions varied considerably per scan. For the peptide-rich 

regions of the retention time (RT) vs. m/z graph, specifically between 400-800 

m/z and a RT range of 10-80 min, the target was reached within a few ms on 

average at the highest sample loads. Thus, the accumulation time was much lower 

than the actual scan time of 64 ms (to reach 30,000 resolution at m/z 200). To 

optimize the use of ions within the time constraint of each Orbitrap scan event 

(ions for the next scan are accumulated in parallel to the fragment ion acquisition 

of the current scan), we selected a scheme that took advantage of a median 

injection time of 30-50 ms (Fig. 1a). At 250 ng sample load this already 

corresponded to a six- to nine-fold increase of the fill time compared to a 2 μg 

sample load (Supplementary Fig. 1b). To assess the performance limits of the 

optimized acquisition scheme, we compared the number of protein identifications 

of a standard data-dependent acquisition (DDA) method to the optimized DIA 

protocol with triplicate injections of a dilution series (in steps of ½) of HEK293 

peptides ranging from 2 μg to 3.9 ng. The results indicate that the DIA mode 

systematically identified a higher number of peptide precursors and proteins than 

DDA at all sample loads (Fig. 1b and Supplementary Fig. 2). The average number 

of identified protein groups decreased by only 12% (from 7,406 to 6,472 applying 

a precursor Q- value cutoff of 0.01 (see Online Methods)) in DIA when reducing 

the sample amount from 2 μg to 125 ng of peptide mass on column. For the same 

concentration range, the fraction of protein groups consistently identified in all 

three injections remained above 85% in DIA (Supplementary Fig. 3a-b, 

Supplementary Table 1) and >98% of protein groups identified at low sample 

loads were also found with the highest loads (Supplementary Fig. 3c). 
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Next, we assessed the quantitative reproducibility and accuracy of the 

dilution series data generated in DIA mode. An average peptide quantification 

coefficient of variation (CV) of less than 10% was obtained for triplicate injections 

across the whole dilution series, even at a level of 3.9 ng (Fig. 1c). The run-to-run 

correlation coefficient was above 0.96 throughout the dilution series 

(Supplementary Fig. 4). The peptide quantification values obtained for the 

consecutive dilution steps retained linearity throughout the entire dilution range 

(Fig. 1d), and deviated by less than 20% in accuracy compared to the values at the 

highest sample load. It is noteworthy that for lower sample amounts (<125 ng) we 

observed a reduction in signal intensity for late eluting hydrophobic peptides 

(Supplementary Fig. 5), which we attribute to adsorption effects (e.g. to the walls 

of the sample tubes). To maintain sufficient robustness for the measurement of all 

peptides irrespective of their hydrophobicity, we therefore decided to set 100-200 

ng of peptides as the practical lower limit for the subsequent measurements. 

In summary, these results indicate that an optimal management of fill time 

on the Orbitrap Lumos significantly extends the performance of DIA proteomics 

towards sample amounts in the low ng range with minimum attrition in terms of 

identified proteins and quantitative accuracy. 

 

Optimization of sample handling for low cell numbers prior to MS analysis. 

To adapt the sample workup procedure for the low number of sorted cells 

required to yield the 100-200 ng of peptide mass per DIA measurement we 

devised a single tube procedure that minimized sample losses (Supplementary 

Fig. 6a). We identified several steps that were critical for the generation of high 

quality peptide samples, including: (i) FACS in the absence of fetal bovine serum 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 17, 2018. ; https://doi.org/10.1101/371161doi: bioRxiv preprint 

https://doi.org/10.1101/371161


10 
 

(FBS), (ii) the use of low protein-binding plastic-ware to minimize the loss of 

hydrophobic peptides, (iii) careful pelleting of the non-adherent sorted cells, (iv) 

freeze-drying of the pellets and subsequent lysis and digestion in the smallest 

volume that can be handled practically (Supplementary Fig. 6b-c and expanded 

details in method section). 

This optimized sample processing protocol was used to prepare triplicate 

samples of 200,000, 100,000, 50,000, 25,000 and 12,500 and 6,250 CD34+ cells 

obtained by FACS. We determined that ca. 3.2 μg of total peptide mass could be 

recovered from 200,000 sorted cells after the entire process of which 

approximately 73% (8/11 μl) could be injected by the autosampler for DIA 

measurements. By extrapolation, we therefore estimated that we injected 

approximately 2,327, 1,164, 582, 291, 145, and 73 ng of peptides, respectively, 

from the lower number of sorted cells. In comparison, 26.8 µg of peptide mass was 

obtained from 200,000 HEK293 cells when processed in bulk. This is in agreement 

with the 4-5 times smaller cell volume expected for the CD34+ cells compared to 

HEK293 cells 24,25. 

The average number of identified protein groups decreased from 6,955 for 

200,000 to 4,833 for 12,500 CD34+ sorted cells. A median CV below 14% (Fig. 2b, 

Supplementary Table 2) and a good linearity of quantification was also maintained 

for these measurements (Fig. 2c). At 6,250 cells, the number of identified protein 

groups decreased to 2,248 and the CV of quantification increased to above 17%. 

However, the overall peptide quantification remained relatively well correlated 

throughout the entire CD34+ series (Supplementary Fig. 7), indicating that protein 

quantification remained quite accurate even for samples containing as few as 

6,250 cells. These 2,709 protein groups were almost entirely subsumed in the set 
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of proteins identified at higher sample loads (Supplementary Fig. 8), indicating 

that meaningful comparisons across sample cohorts are feasible even in cases in 

which one or several samples are only available in minute quantities. 

Relating the results from sorted cells to those of the HEK293 peptide 

dilution series, we noted an attrition in the number of identified proteins and their 

quantification accuracy for cell numbers below 25,000, corresponding to <300 ng 

of peptide mass on column. Overall, the optimized DIA and sample preparation 

method provided reproducible identification and quantification results (in all 

three replicates) for more than 5,100 proteins from as little as 25,000 CD34+ 

FACS-isolated cells. 

 

Proteomic analysis of human hematopoietic cell subpopulations 

underscores ontogenetic distance between individual cell types. We applied 

the optimized method to profile the proteome of CD34+ cell subpopulations 

isolated from the peripheral blood of five HSPC donors (age 28-57 y, see 

Supplementary Table 3). Four highly enriched subpopulations (HSCs/MPPs, 

CMPs, MEPs and GMPs), respectively, were isolated by FACS, processed (for 

details, see Online Methods) and analyzed by DIA-MS (Fig. 3a and 3b). Guided by 

the cell dilution experiment described above, 25,000 cells were collected for each 

subpopulation. To support peptide-centric analysis of the DIA data, we generated 

a spectral library specific for the cell types of this study (see method section). We 

identified on average 5,851 protein groups for the different hematopoietic stem 

cell and progenitor cell populations (Supplementary Fig. 9, Supplementary Table 

4). To increase the robustness of the following differential comparison, we applied 

additional stringent filtering criteria that resulted in a final list of 4,131 protein 
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groups (from 39,264 peptide precursors) that were quantified consistently with 

at least two peptides across the samples. 

Because the cell samples were derived from non-related donors of 

different age and the analyzed cell populations are relatively close in the cell 

differentiation tree, we first tested whether the quantitative protein 

measurements were sufficiently accurate and reproducible (see Supp. Fig. 10 and 

11 for further details) to confidently detect cell subtype specific differences 

despite the expected inter-person variability. The summary heat map of these 

comparisons (Fig. 3c) indicates that the proteome profiles clustered according to 

cell subtype rather than donor. HSCs/MPPs clustered the furthest away from the 

other cell subpopulations, while CMPs were found to be more similar to GMPs and 

MEPs for some donors, in agreement with the ontogenetic distances expected 

between the different cell lineages (Fig. 3a). 

Proteins identified as differentially expressed in the various cell 

subpopulations were distributed with homogenous abundance range with a 

significant proportion lying beyond the cut-offs of FDR <0.01 and log2(fold 

change)>0.5 (Fig. 3d and Supplementary Fig. 12). Using these cut-offs and 

comparing HSCs/MPPs to the average of the remaining three subpopulations, 

1,008 proteins were determined to be differentially regulated in HSCs/MPPs. In 

accordance with the close ontogenetic distance of CMPs to GMPs and MEPs, the 

number of proteins with significantly changed expression was somewhat lower 

for GMPs (489) and MEPs (370) and even lower for CMPs (64). 

Overall, these results show the consistent identification of quantitative 

protein patterns that are characteristic for ontogenetically close cell types, even 

within the genetic variability of a human population. 
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Gene ontology enrichment analyses recapitulate the expected changes for 

proteomics and transcriptomics data. From the same sorting experiments, a 

further 10,000 cells were isolated for RNAseq. Similar to the proteomic results, 

the transcriptomic data also revealed clear clustering according to cell type rather 

than donor (Fig. 4a), with the HSCs/MPPs clustering furthest apart from the other 

cell subpopulations, while CMPs were more similar to GMPs and MEPs. 

To further assess our proteomic and transcriptomic results, we performed 

gene set enrichment analyses for specific gene ontology (GO) processes involved 

in hematopoietic stem cell differentiation for the enriched cell subtypes according 

to previous studies and functional annotations 1,2,10,11,16,26-28. The transcriptomic 

and proteomic data recapitulated well most of the expected changes in GO 

processes (Fig. 4b and Supplementary Fig. 13, Supplementary Fig. 14). Cell 

cycle/DNA replication/DNA damage response was found downregulated for the 

overall more quiescent HSCs/MPPs both on mRNA and protein level. Erythrocyte 

differentiation/ megakaryocyte development and differentiation/heme 

biosynthesis were observed to be upregulated in MEPs on mRNA and protein 

level. (Innate) immune responses were found upregulated in GMPs on mRNA and 

protein level. The canonical WNT pathway was observed to be upregulated in 

MEPs on the mRNA level. Mitogen-activated protein kinase, phosphoinositide-3-

kinase and phospholipase C pathways were all shown to be upregulated in HSCs 

at the mRNA level 1,2,10,11,27,28. 

Of note, the transcriptomic and proteomic results showed highest 

agreement of the GO enrichments for the GMPs and MEPs, both in terms of 

directionality (up or down) and significance of the pathway enrichments. For the 
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CMPs, only few significant pathway enrichments were observed, probably due to 

the composite nature of the CMPs between GMPs and MEPs. Interestingly, the 

HSCs/MPPs showed fewer significantly up- or downregulated gene ontology 

processes for the proteomics data compared to the transcriptomics results (e.g. 

HSC proliferation, MAPK activity and regulation, PI3K signaling, PLC activity, see 

Fig. 4b), highlighting the importance of identifying a large number of entities 

(close to 20,000 mRNAs versus a few thousand proteins) as well as the possibility 

of alternative methods of regulation for proteins (e.g. localization, post-

translational modification etc.). For specific pathways (e.g. oxidoreductase 

activity, erythrocyte differentiation and regulation, neutrophil degranulation, see 

Fig. 4b), discordant directionality of enrichment between the proteomics and 

transcriptomics results was observed, despite not reaching significance, 

emphasizing the complementary value of the protein quantitative information for 

quiescent cells in which the transcription machinery is known to be strongly 

reduced. 

Overall, the GO pathway analysis was in agreement with the expected 

properties of the respective cell types, thereby validating our mRNA and protein 

results against former studies. 

 

Discrepant mRNA and protein regulation in highly enriched HSCs/MPPs. To 

investigate the potential discrepancy between the RNA and protein patterns 

suggested by the GO enrichment analysis, we decided to examine the proteins that 

were found differentially regulated compared to their mRNAs in more detail (Fig. 

4c). 
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The protein vs mRNA fold-change plots (Fig. 4c) showed good correlation 

for MEPs (R2 of 0.50) and GMPs (R2 of 0.41), but somewhat less for the HSCs/MPPs 

(R2 of 0.32) and CMPs (R2 of 0.06), in line with the results from GO enrichment 

analysis (Fig. 4b). 

The STRING analysis of proteins differentially regulated at the transcript 

and protein level revealed two major protein-protein association networks, one 

including the small nucleolar ribonucleoproteins (snoRNPs) and telomerase 

maintenance proteins GAR1, DKC1, NOP10, NHP2, and the other the quiescence-

inducing NAD(P)H-producing isocitrate dehydrogenase proteins IDH1, IDH3A, 

IDH3B (Fig. 4d, Online Methods). Both association networks were upregulated on 

protein and downregulated on mRNA level in HSCs/MPPs (see also 

Supplementary Fig. 15).  
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DISCUSSION 

One of the frontiers of modern biology lies in deciphering how individual cells 

operate in context. Typically, due to a lack of sufficiently sensitive analytical 

techniques, averaged measurements of pools of cells that are heterogeneous in 

cell type, localization or cell cycle state have been carried out. Nowadays, modern 

technologies promise to dissect the biochemical processes in play at the single cell 

level with unprecedented resolution. Extensive transcript data can indeed be 

readily obtained at the single cell level 29. This cannot be achieved yet at the 

proteome level, even though quantitative protein patterns should provide 

invaluable complementary information about the biochemical state of small cell 

populations, compared to transcript profiles 30. 

Using characteristic markers for cellular differentiation, FACS is not only a 

tool for the analysis of individual cells, but also provides homogeneous, live, 

sorted cell subpopulations, thereby offering an ideal link between complex cell 

samples, their cell type composition and their respective biochemical/pathway 

and phenotypic analysis. In most cases, sorted cells from biologically relevant 

samples (e.g. patients) are only available in minute amounts and without 

replicates. To achieve the most comprehensive and accurate protein 

quantification possible for those precious samples, we adopted DIA acquisition on 

an Orbitrap instrument to maximize the sensitivity of the workflow. 

We show that the external ion accumulation on such a platform is best 

exploited when using DIA at very low sample loads. Once the fill times approach 

the Orbitrap scan time, the degree of parallelization is maximized, and highly 

accurate and reproducible protein quantification even for sub-100 ng of total 

peptide mass loaded on column can be realized. Importantly, our results also 
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demonstrate that even though the number of protein identifications decreased 

when lowering the amount of material injected, protein quantification retained a 

very high level of accuracy (Fig. 1d, Fig. 2c, Supplementary Fig. 4, Supplementary 

Fig. 7). In practice, this means that even if less than 25,000 cells are available from 

FACS, protein quantification results can still be confidently compared to those 

from higher cell counts, if the proteins are detectable in both samples. 

We applied the developed DIA acquisition scheme to the analysis of 25,000 

FACS-isolated human hematopoietic stem and progenitor cell (HSPC) 

subpopulations and could quantify more than 5,800 protein groups per cell 

subtype, of which we used a stringently filtered subset for further analysis. 

Proteome and corresponding transcriptome data showed the same clustering 

pattern. Interestingly, while the GO analysis showed high levels of agreement for 

the mRNA and protein data of GMPs and MEPs, there were discrepancies for the 

HSC/MPP subpopulation. Given the similar data quality (no. of protein groups 

identified, quantification, coefficient of variation) for the various analyzed cell 

types, the different behavior of HSCs/MPPs is likely to be biologically significant. 

HSCs are mostly quiescent cells, i.e. with major fractions in G0 of cell cycle, 

which have been shown to contain very low levels of mRNA, while still 

maintaining a relatively constant protein mass overall. Proteins may therefore 

provide a better read-out of the cellular state of quiescent cells than the mRNAs. 

We therefore decided to focus our analysis on the proteins that showed discrepant 

regulations between their proteomic and transcriptomic data 31 and identified two 

strongly interconnected nodes which are upregulated on the protein level whilst 

downregulated on the mRNA level in HSCs/MPPs. The first protein-protein 

association network includes several snoRNPs and telomerase maintenance 
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proteins deemed essential for long lived stem cells and demonstrated to be 

differentially regulated on protein and mRNA level 32-34. Telomerase activity in 

hematopoietic cells is associated with self-renewal potential and has been shown 

to decrease upon myeloid differentiation 33. Mutations in these telomerase 

maintenance proteins result in dyskeratosis congenita, a syndrome characterized 

by bone marrow failure and an increased risk for acute myeloid leukemia and 

myelodysplastic syndromes 35. Members of the second cluster include the 

isocitrate dehydrogenase (IDH) proteins IDH1, IDH3A and IDH3B that have 

previously been shown to maintain quiescence in hair follicle stem cells 36. IDHs 

are also thought to play a key role in hematopoietic stem cell homeostasis and 

were reported to be mutated in approximately 20% of acute myeloid leukemias 

37,38. In line with those observations, low IDH mRNA levels had also been described 

in cultured hematopoietic stem cells 39. 

These two examples illustrate the relevance of generating high quality 

proteomic data for well-defined cell subpopulations with the goal to identify 

biological processes that cannot be detected by genomic or transcriptomic 

analysis. Though this seems particularly evident for quiescent cells, we expect that 

proteomic data will bring an invaluable layer of biological information 

complementary to that of the transcriptomic data for many other cell subtypes. 

The presented methodology can thus be expected to increase our understanding 

of the dynamics of cell type-specific networks and to complete our knowledge on 

differentiation processes at play in healthy and pathological cells 11,27.  

It will be important to further refine the different cell subpopulations. 

CD34+CD38-CD45RA- HSCs/MPPs, CD34+CD38+CD123+CD45RA- CMPs, 

CD34+CD38+CD123+CD45RA+ GMPs and CD34+CD38+CD123-CD45RA- MEPs 
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could indeed be further divided into biologically even more refined 

subpopulations 2,8. Also, proteomic data from cell types isolated directly from 

bone marrow or from cord blood rather than from mobilized HSPCs obtained from 

donors after artificial stimulation will need to be obtained. For both cases, further 

fine-tuning of the sample handling steps may be necessary to cope with possibly 

lower sample amounts. This concerns, among other parameters, the observed 

adsorptive losses to surfaces. Possible avenues to explore would be the use of 

novel microfluidic devices 40 and the use of LC columns with further reduced inner 

diameters 41, strategies that have recently been used in combination with Orbitrap 

Lumos instruments operated in DDA mode. Thereby, the ultimate goal is the 

application of the proteomic profiling technology to clinically relevant rare cell 

types such as (pre)leukemic stem cells in hematopoietic malignancies as well as 

cancer stem cells from solid tumors. 

In summary, we describe an ultra-sensitive mass spectrometric method 

that allows to generate highly accurate and reproducible protein quantification 

data from minute amounts of highly homogeneous cell subpopulations enriched 

by fluorescence-activated cell soring (FACS). This technology bridges the gap 

between the proteome profiling of samples containing multiple cell types and 

single cell analysis by allowing to dissect the biochemical processes in play in 

specific cell subpopulations of interest with unprecedented sensitivity, depth of 

coverage and reproducibility. 
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METHODS 

Methods and any associated references are available in the online version of the 

paper. 
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FIGURE LEGENDS 

Figure 1. a. Distribution of the fill times for the peptide-rich regions of retention 

time (RT) vs. m/z diagram between 400-800 m/z and RT 10-80 min for decreasing 

loads of HEK293 tryptic peptides (see also Supplementary Fig 1.a). b. Number of 

proteins identified in DDA (blue) and DIA (red) acquisition mode, respectively for 

decreasing loads of HEK293 tryptic peptides. The bars in the negative and positive 

directions represent the number of protein groups identified in common 

(intersection) or in total (union) for the technical triplicate injections at the 

indicated peptide loads, respectively. c. Distribution of the coefficients of variance 

(CV) for the peptide precursor intensities for the technical triplicate injections for 

each sample load. d. Distribution of the fold change (log2 scale) of the average 

precursor intensities between a given sample load and that at 2,000 ng sample 

load. 

Figure 2. a. Number of protein groups cumulatively identified across the technical 

replicates for decreasing numbers of FACS-isolated CD34+ cells. The color scale 

represents the consistency of protein group identifications across the runs b. 

Distribution of the coefficients of variance (CV) for the peptide precursor 

intensities for the technical triplicate injections for FACS-isolated cells. c. 

Distribution of the fold change (in log2 scale) of the average precursor intensities 

between a given sample load and that at 200,000 FACS-isolated CD34+ cells. 

Figure 3. a. Human hematopoietic cell hierarchy with respective cell surface 

markers depicted in blue 7-9. b. Fluorescence-activated cell sorting (FACS) 

strategy, depicted on magnetic-activated cell sorting (MACS)-preselected CD34+ 

cells isolated from healthy HSPC donors. Shown are the analysis gates. Highly 

enriched HSCs/MPPs (referred to as HSCs) are CD34+CD38-CD45RA-, highly 
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enriched CMPs are CD34+CD38+CD123+CD45RA-, highly enriched GMPs are 

CD34+CD38+CD123+CD45RA+ and highly enriched MEPs are 

CD34+CD38+CD123-CD45RA- c. Non-hierarchical clustering (Manhattan 

distance) heatmap of intensities for the peptides identified in HSCs, CMPs, GMPs, 

MEPs (shades of red) isolated from five different donors (shades of blue). The 

peptide intensities are centered and scaled and depicted in color shades from red 

to blue. The missing peptide intensity values are shown in white. d. Volcano plot 

of differential analysis of proteins. Comparison of HSCs to the average of the three 

other cell types. Abbreviations: HSPC – hematopoietic stem and progenitor cell; 

HSC - hematopoietic stem/multipotent progenitor cell; CMP - common myeloid 

progenitor; CLP/MLP - common/multipotent lymphoid progenitor; GMP - 

granulocyte-macrophage progenitor; MEP - megakaryocyte-erythrocyte 

progenitor; SSC - side scatter; FSC - forward scatter 

Figure 4. a. Non-hierarchical clustering (Manhattan distance) heatmap of the 

intensity for the transcripts identified in HSCs/MPPs (referred to as HSCs), CMPs, 

GMPs, MEPs (shades of red) isolated from five different HSPC donors (shades of 

blue). The transcript intensities are centered and scaled and depicted in color 

shades from red to blue. The missing transcript intensity values are removed 

because they could not be handled by the clustering algorithm. Clustering was 

observed according to cell type, not according to donor. b. Gene Ontology 

Enrichment Analysis showed good alignment of protein and mRNA data. Gene set 

enrichment analysis (GSEA) was performed for ranked mRNA and protein lists 

using GO processes from the Gene Ontology Consortium database as gene sets. 

Shown are normalized enrichment scores (NES) for the individual gene sets. 

Significantly upregulated gene sets are marked in blue color, significantly 
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downregulated gene sets are marked in red color. Significance was defined as FDR 

< 0.25, specific cell subpopulations were compared to the average of the 

remaining three cell types, and log2(fold change) was used as ranking criterium. 

Abbreviations: MEGA – megakaryocyte; MAPK - mitogen-activated protein kinase; 

PI3K - phosphoinositide-3-kinase; PLC - phospholipase C. c. Correlation between 

proteomics and transcriptomics data for HSCs/MPPs (referred to as HSCs), CMPs, 

GMPs and MEPs. Dots are depicted in red when the FDR was below 0.01 both for 

protein and RNA data, orange when FDR < 0.01 for protein data, purple when FDR 

< 0.01 for RNA data < 0.01, and grey when FDR ≥ 0.01 for both protein and RNA 

data d. Network analysis of significantly upregulated proteins with concomitant 

significantly downregulated mRNA in HSCs/MPPs. Two clusters were especially 

prominent including the snoRNPs and telomerase complex proteins GAR1, DKC1, 

NOP10, NHP2 and the quiescence-inducing NAD(P)H-producing proteins IDH1, 

IDH3A, IDH3B. HSCs/MPPs were compared to the average of the other three 

subpopulations; cut-offs were set at FDR < 0.01 for protein and RNA data.  
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DNA Damage Response -1.89 -1.89 -0.66 1.13 1.36 1.44 1.40 -0.66

Oxidoreductase Activity -0.81 1.12 -0.83 0.99 -1.07 -1.23 -0.77 -0.92

Hematopoietic Progenitor Cell Differentiation&Regulation -1.26 -1.65 -1.26 1.30 -1.07 0.77 -1.05 1.23

Hematopoietic Progenitor Cell Differentiation -1.29 -1.53 -1.03 1.23 -0.97 1.12 -0.99 0.86

Erythrocyte Differentiation&Regulation 1.30 -1.28 -1.16 -0.94 -1.96 -1.46 1.39 1.73

Erythrocyte Differentiation 0.83 -1.14 -0.79 -1.24 -1.76 -1.49 1.48 1.73

MEGA Differentiation&Regulation -1.17 -1.31 -0.78 -0.82 -1.77 -1.84 1.67 2.07

MEGA Development 0.98 -0.51 -0.89 1.01 -1.82 -1.41 1.40 1.54

MEGA Differentiation -1.62 -1.24 1.11 -1.38 -1.71 -1.54 1.90 1.67

Granulocyte Differentiation&Regulation -1.47 -1.39 0.84 -0.90 -1.44 -1.90 1.19 2.06

Hemoglobin Complex -1.62 1.37 -0.98 0.97 -1.64 -1.36 2.33 -1.36

Heme Biosynthetic Pathway -1.57 -0.84 -1.23 -1.37 -1.35 -1.48 2.35 1.72

Innate Immune Response 0.94 -0.97 -1.08 -1.25 1.82 1.32 -1.69 -1.62

Neutrophil Degranulation -1.17 2.00 -1.02 -1.50 1.67 -1.16 -1.69 -2.61

Immune Response 1.50 -0.92 -1.02 -0.95 1.70 1.84 -2.00 -1.93

WNT Signaling Pathway 0.93 -1.21 -0.77 0.66 -1.31 0.70 -0.76 0.90

Canonical WNT Signaling Pathway 0.89 -0.83 1.01 1.50 -1.67 -0.64 1.23 0.94

Positive Regulation of WNT -1.28 -0.89 -0.87 -0.63 1.14 1.25 0.70 -0.92

Negative Regulation of WNT -1.12 -0.92 -0.91 -0.75 0.94 1.33 -0.78 0.96

MAPK Activity & Regulation 1.39 0.84 -1.11 -1.31 -1.26 0.97 -1.42 -1.25

Activation of MAPK Activity 1.36 -0.75 -0.93 -1.60 -0.95 1.57 -1.60 -1.33

PI3K Signaling & Regulation 1.93 -0.41 -1.20 -0.59 -1.45 1.14 -1.51 -1.22

PI3K Signaling 1.35 -0.90 -0.92 0.99 -1.14 1.40 -1.34 -1.03

PLC Activity & Regulation 1.65 0.75 0.80 0.82 -0.95 -0.88 -1.74 0.78

PLC Activity 1.28 0.90 0.73 -1.08 0.90 0.86 -1.59 -1.14
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