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Abstract 

Background: Cross-species studies of epigenetic regulation have great potential, yet most epige-

nome mapping has focused on human, mouse, and a small number of other model organisms. 

Here we explore whether existing reference epigenome collections can be leveraged for analyz-

ing other species, by extrapolation and predictive transfer of epigenome information from estab-

lished model organisms to less well annotated non-model organisms. 

Results: We developed a methodology for cross-species mapping of epigenome data, which we 

used for predicting tissue-specific gene expression across twelve mammalian and one avian spe-

cies. Specifically, we trained gradient boosting classifiers to predict gene expression status from 

reference epigenome data in human and mouse, and we applied these classifiers to epigenome 

profiles that were computationally transferred between species. The resulting predictions indeed 

identified tissue-specific differences in gene expression in the target species, thus providing initial 

validation of the concept of cross-species epigenome extrapolation.   

Conclusions: Our study establishes a workflow for cross-species epigenome mapping and epige-

nome-based prediction of gene expression, highlighting the future potential of using epigenome 

maps from reference species to annotate a potentially large number of target species. 

Keywords: Epigenome mapping, cross-species analysis, prediction of gene expression, bioinfor-

matics, machine learning, computational epigenetics 
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Background 

Cross-species genome analysis is widely used for dissecting evolutionary processes, identifying 

regulatory elements, improving genomic annotations, and studying the mechanisms underlying 

human diseases [1–7]. Recent progress with epigenome profiling technology has added a new 

dimension to genome comparisons. Large international consortia such as the International Hu-

man Epigenome Consortium [8] (which includes BLUEPRINT [9] and DEEP [10]) and the ENCODE 

project [11,12] produce an ever-increasing number of reference epigenomes, focused largely on 

human and mouse. The analysis of the resulting datasets has greatly enhanced our understanding 

of genomic functional elements and tissue-specific gene regulation [13–15].  

 

Cross-species comparisons that incorporate epigenomics and functional genomics data have 

opened up new ways of investigating evolutionary processes, looking beyond genomic sequence 

conservation [16,17]. However, due to the high cost of generating epigenome data, as well as the 

cell-type specific and dynamic nature of epigenomic marks, current reference epigenome da-

tasets have been limited to a handful of species, most notably human and mouse. Genome se-

quencing efforts for other vertebrate species rarely include epigenome profiling [18,19], which 

has hampered the investigation of epigenome regulation in non-model organisms and precluded 

systematic cross-species epigenome analyses (with a few notable exceptions [16,20,21]). 

 

The goal of this study was to explore and evaluate cross-species extrapolation of epigenome data 

and epigenome-based inference of gene expression in a range of target species, based on existing 

reference epigenome maps for human and mouse. To that end, we established computational 

epigenome transfer and prediction of gene expression (Figure 1) for twelve mammalian and one 

avian species (Additional file 1: Figure S1). We first transferred epigenome data from our refer-

ence species (human or mouse) to the target species using whole-genome alignments. Based on 

the transferred epigenome data, we predicted tissue-specific gene expression in the target spe-

cies using machine learning models trained and cross-validated on data from the reference spe-

cies. For validation, the predictions were compared with tissue-specific expression profiles of the 

target species, confirming that such cross-species predictions can be useful and informative. 
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Results 

Cross-species transfer of reference epigenome data using whole-genome alignments 

To test the feasibility of extrapolating and transferring epigenome data across species, we as-

sembled a dataset comprising two reference species with extensive epigenome data (human and 

mouse) as well as eleven additional target species, for which we required only a reference ge-

nome and whole-genome alignments with at least one of the two reference species (Additional 

file 1: Figure S1). While many more vertebrate genomes have been sequenced [19,22], our spe-

cies selection was based on the availability of standardized genome resources for fair and con-

sistent performance evaluation (see Materials and Methods). The epigenome data for the refer-

ence species were obtained from public sources and include the following cell types  (Additional 

file 2: Table S1): embryonic stem cells (human and mouse) [11,23]; CD4+ T cells (human and 

mouse) [9,10,24]; hepatocytes (human) [10]; whole-organ samples of liver, kidney, and heart 

(mouse) [23]. For each cell type, ChIP-seq profiles for three histone marks were included in the 

analysis: histone H3K4me3 (which marks open chromatin at gene promoters), H3K27ac (open 

chromatin at promoter and enhancer regions), and H3K36me3 (actively transcribed regions). 

 

Our bioinformatics pipeline uses epigenome profiles for the reference species as input and ex-

ploits whole-genome alignments to transfer these data to conserved genomic regions in the tar-

get species. To that end, we prepared reciprocally symmetric whole-genome alignments for each 

pair of reference species and target species, and we used these alignments to transfer histone 

signal intensities. Our approach is based on the hypothesis that sequence conservation is an in-

dicator of broader regulatory conservation within a genomic region, and that tissue-specific pat-

terns of epigenome regulation are frequently maintained across species in sequence-conserved 

regions. (We tested and confirmed this hypothesis by using the transferred epigenome data to 

predict tissue-specific gene expression in the target species – as described further below.) 

 

Using alignment-based epigenome transfer, we produced genome-wide, cell-type specific epige-

nome profiles for each target species. The non-zero part of the transferred histone signal covers 

a substantial amount of the overall aligned bases in the target species (ranging from human and 
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mouse to opossum and chicken), based on the two reference species human (Figure 2) and 

mouse (Additional file 1: Figure S2). The distribution of the transferred histone signal followed 

patterns similar to that of the measured histone signal in the reference species: H3K4me3 signal 

was present at the smallest number of bases, consistent with this mark’s focus on gene promot-

ers. The more widespread occurrence of H3K27ac and H3K36me3 is similarly consistent with the 

focus of H3K27ac on a broader set of regulatory regions (including enhancer elements) compared 

to H3K4me3, and H3K36me3 covers the gene body of actively transcribed genes. 

 

Further analysis of average histone signal strength in gene promoters, gene bodies, and other 

genomic regions showed that, after cross-species transfer, the histone signal strength in the tar-

get species still resemble the distribution in the reference species (Additional file 1: Figure 

S3A/B): The transferred signal was generally strongest in gene bodies and in gene promoters, 

while it was weak outside of protein-coding genes. Since we only used the histone signal in gene 

promoters and in gene bodies for predictive modeling of gene expression, the low histone signal 

outside of these two region types is unlikely to impact the prediction analysis described below. 

 

As a first validation for the cross-species mapping of epigenome data (Additional file 3 and 4), we 

examined whether the transferred epigenomes retain detectable cell-type specificity in gene pro-

moters (for H3K4me3 and H3K27ac) and gene bodies (for H3K36me3). To that end, we focused 

on the comparison between human and mouse, where we have reference epigenome data for 

both species, and we found that correlations between transferred and measured epigenomes 

were usually highest when the cell type was matched (Figure 3). For example, the comparison 

between transferred and measured epigenomes in mouse resulted in a Pearson correlation of 

0.75 for H3K4me3, 0.61 for H3K27ac, and 0.71 for H3K36me3 in CD4+ T cells. 

 

To substantiate these findings, we performed region set enrichment using the LOLA software [25] 

on the top 5% gene promoters with the strongest transferred signal for H3K4me3, and on the top 

5% gene bodies with strongest signal for H3K36me3. We consistently observed cell type specific 

enrichments (Addition file 5), as illustrated by the LOLA enrichments for CD4+ T cells using mouse 
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as reference and human as target species (Figure 4A/B) and by the LOLA enrichments for 

liver/hepatocytes using human as reference and mouse as target species (Figure 4C/D). In both 

cases, the LOLA results showed the expected enrichment for tissue-specific histone marks asso-

ciated with active promoters (H3K4me3) and actively transcribed genes (H3K36me3), respec-

tively. The annotated cell type of the enriched region sets was the same as (or closely related to) 

the cell type of the transferred epigenomes, supporting that our cross-species epigenome trans-

fer method retained the characteristic cell-type specificity of epigenome data. 

 

Prediction of gene expression using epigenome data transferred across species 

To assess the biological information carried by the transferred epigenomes in a larger number of 

species (namely in those for which no suitable epigenome data are available for validation), we 

tested whether we could predict gene expression in the target species based on the transferred 

epigenomes. It is well-established that gene expression can be predicted from epigenome data 

[26–28], and we would expect to observe better-than-random accuracies predicting gene expres-

sion based on transferred epigenome profiles if these profiles indeed captured relevant regula-

tory biology. Moreover, to make the validation more stringent, we can exploit the cell-type spe-

cific character of epigenome data and try to predict cell-type specific patterns of gene expression.  

 

As our experimental reference dataset against which we evaluated the epigenome-based predic-

tions, we obtained transcriptome data from various public sources covering a range of species 

and cell types: embryonic stem cells for human and mouse [11,12]; CD4+ T cells for human and 

mouse [24,29]; hepatocytes for human [10]; whole-organ samples of liver, kidney and heart for 

all species except human [30–32]; and a blood sample for opossum (Additional file 2). In this 

transcriptome dataset, we observed consistent clustering by cell type rather than by species, 

both for 1-to-1 gene orthologs [33] between each pair of species (Figure 5) and for those genes 

that were conserved across all 13 species (Additional file 1: Figure S4). 

 

We implemented a machine learning approach to predict gene expression profiles in the target 

species based on epigenome data in the reference species (see Figure 1 for an overview). Using 
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only data from the reference species, binary classifiers were trained to predict gene expression 

as either on/high or off/low. The prediction attributes were obtained by averaging histone signals 

for H3K4me3/H3K27ac in gene promoters and for H3K36me3 within the gene body, restricted to 

those subregions that were covered by the cross-species alignment used for epigenome transfer. 

A threshold of one transcript per million (1 TPM) was applied to label genes as on/high or off/low. 

We observed consistently high prediction performance for the two reference species, with cross-

validated, test-set only, receiver operating characteristic (ROC) area under curve (AUC) values of 

0.89 (human to mouse) and 0.90 (mouse to human), resulting in a sensitivity of 78% (human) and 

76% (mouse) at a specificity of 90% (Figure 6A/B). 

 

Having validated the epigenome-based classifiers in the reference species, we next applied them 

to all target species, using the transferred epigenome data as input. First, we predicted gene 

expression in each target species independent of cell type, averaging across transferred epige-

nome profiles and transcriptomes in each target species. We observed high prediction accuracies 

for all target species, with ROC AUC values ranging from 0.87 to 0.81 when using human as ref-

erence (Figure 7A), and from 0.89 to 0.83 when using mouse as reference (Figure 7B). The aver-

age sensitivity was 67% (human reference) and 73% (mouse reference) at a specificity of 90%. 

 

As an additional evaluation, we tested to what degree our gene expression predictions were cell-

type specific, and whether they indeed showed the highest accuracy for the matched cell type in 

the target species. When comparing AUC values for tissue-matched prediction to those obtained 

by cross-tissue prediction, the tissue-specific predictions consistently outperformed the tissue-

agnostic predictions across all investigated target species and for both human (Figure 8A) and 

mouse (Figure 8B) as our reference species. Aggregating AUC values across species, the differ-

ence between the mean AUC values for the tissue-matched tests and the cross-tissue controls 

was highly statistically significant (one-sided Mann-Whitney-U, p-value < 10e-9). 
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Comparison of epigenome-based and orthology-based prediction of tissue-specific expression 

To benchmark our epigenome-based predictions of gene expression, we compared their perfor-

mance to that of an alternative (and complementary) approach that is based on gene orthology. 

Specifically, for all 1-to-1 gene orthologs between each pair of species, the orthology-based 

method predicts a gene to be expressed in a certain cell type of the target species if – and only if 

– it is expressed in the corresponding cell type of the reference species. This method can predict 

expression only for genes that have an annotated 1-to-1 ortholog in the reference species, which 

limits its scope and applicability to a subset of genes (Annotation file 2: Figure S5). 

 

For a systematic comparison between the epigenome-based and orthology-based methods, we 

evaluated their performance on various subsets of genes selected using the following approach: 

we ordered all genes in the target species by increasing levels of DNA sequence conservation in 

the gene body, and we used all genes above a certain threshold as our evaluation set. We then 

plotted the performance gain of the epigenome-based method (calculated as the surplus of cor-

rect predictions over the orthology-based method across all target species) for human and mouse 

as our reference. In this analysis, the epigenome-based method resulted in approx. 20% more 

correct predictions than the orthology-based method (Figure 9A). 

 

Both methods displayed stable prediction accuracy over a broad range of gene conservation val-

ues (Figure 9B). While the performance gain of epigenome-based prediction was higher for strin-

gent thresholds on gene body conservation (Figure 9A), only relatively few genes pass these strin-

gent thresholds, and a more inclusive threshold may increase the scope and utility of our predic-

tions. For example, lowering the threshold on gene body conservation to 10-15% makes it possi-

ble for the epigenome-based method to predict the expression status for approx. 90% of all genes 

in the target species, compared to approx. 80% for the orthology-based method. Given that both 

methods showed similar median accuracies of 75.1% and 79.9% (human reference) and of 71.5% 

and 78.1% (mouse reference), the epigenome-based provides a clear advantage over the orthol-

ogy-based method by providing a substantially larger number of accurate predictions. 
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Finally, we evaluated the tradeoff between sensitivity and specificity in more detail for the epige-

nome-based method. We interpreted the class probabilities of its classifier as a measure of pre-

diction confidence. We observed that the advantage of the epigenome-based method over the 

orthology-based method was strongest for relatively lenient thresholds (~0.5), at the cost of a 

slightly reduced accuracy (Figure 10; Additional file 1: Figure S6). For the most stringent thresh-

olds (>0.9), the epigenome-based method continued to show a higher number of correct predic-

tions than the orthology-based method, while the difference in accuracy between both methods 

approached zero. Based on the shape of the curves, a relatively stringent threshold of 0.75 is 

likely to constitute a suitable and broadly applicable tradeoff between sensitivity and specificity. 

 

Limitations of cross-species epigenome data transfer and prediction of gene expression 

Despite these promising results using cross-species epigenome transfer and epigenome-based 

prediction of gene expression, the approach has certain limitations. Most importantly, whole-

genome alignments cover only those genomic regions for which there is discernable conservation 

of the DNA sequence. For example, roughly 1 Gbp of DNA sequence were aligned between the 

human and mouse genome (90 million years of evolutionary distance), which corresponds to ap-

proximately a third of the human genome. At a threshold of at least 100 conserved base pairs for 

both the gene promoter and gene body, 92.2% (mouse) and 97.2% (human) of genes were ame-

nable to cross-species transfer of reference epigenome data. These values remained high across 

larger evolutionary distances (Figure 11; Additional file 1: Figure S7), for example amounting to 

98.8% in the comparison between human and opossum (160 million years) and 90.7% between 

human and chicken (312 million years). 

 

We investigated the 487 human and 1,435 mouse genes that failed to meet our minimum align-

ment thresholds and which we therefore cannot predict using the epigenome-based method. 

Functionally characterization of these gene sets using the enrichR web service [34,35] identified 

an enrichment for Gene Ontology categories related to olfactory reception (Additional file 1: Fig-

ure S8A/B; Additional file 6), which is consistent with large species-specific differences in the 

repertoire of olfactory receptor genes between human and mouse [36]. We also analyzed the 
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corresponding promoter regions for region set enrichment using the LOLA software [25], and we  

detected an enrichment of repetitive DNA elements (genomic duplications, satellite repeats, long 

terminal repeats, LINE repeats) as well as regions characterized by the heterochromatin mark 

H3K9me3 (Additional file 7). These results indicate that cross-species epigenome transfer is not 

well suited for analyzing species-specific gene families and repetitive heterochromatin regions. 

 

Finally, we investigated whether the evolutionary age of individual genes may be associated with 

the accuracy of the epigenome-based predictions. Using a recently published dataset of gene age 

annotations [37], we found that genes whose expression status was predicted incorrectly tend 

to have a younger evolutionary age than those for which the expression status was predicted 

correctly (Figure 12; Additional file 1: Figure S9A/B). For example, the group of genes specific to 

mammals contained 52% more incorrectly predicted genes than would be expected based on the 

background distribution of gene ages; in contrast, the much larger group of genes shared across 

eukaryotes contained 7% more correctly predicted genes compared to expectation. 

 

 

Discussion 

Epigenome profiling is costly and labor-intensive, and comprehensive tissue-specific epigenome 

maps are currently available for only a few species. Here we explored cross-species extrapolation 

of epigenome data as a new approach that utilizes the large catalogs of human and mouse refer-

ence epigenomes to support research in non-model organisms. 

 

We have developed a method for transferring epigenomes across species based on whole ge-

nome alignments, which we applied and validated in two complementary ways. First, we com-

pared transferred and measured epigenomes for matched cell types between human and mouse 

(extensive epigenome profiles are available for validation in these two species), and we found 

that our method indeed retained the epigenome’s characteristic cell type specificity. Second, we 

combined cross-species epigenome transfer with epigenome-based prediction of gene expres-

sion, which adds an important dimension in the cross-species analysis of gene regulation and 
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allowed us to validate our predictions in a larger number of target species for which transcrip-

tome but no epigenome data were available. Again, we obtained high prediction accuracies, and 

our method accurately retained cell type specific regulatory patterns across species. 

 

We observed broadly consistent results across twelve mammalian and one avian species included 

in our study, which span a spectrum of 20 million (mouse-rat) to 312 million (human-chicken and 

mouse-chicken) years of evolutionary distance. While it may be surprising that there was not a 

stronger deterioration of prediction performance as evolutionary distances increased, all of the 

species included in our study share a highly conserved epigenetic machinery, and their genomes 

are sufficiently conserved that it is still possible to identify cross-species homology in gene pro-

moters and gene bodies using whole genome alignments. Moreover, we found that evolutionary 

old genes were predicted with higher accuracy than more recently evolved genes, which is likely 

to contribute to the robustness of predictions across a wide evolutionary range. 

  

Our method does not have major limitations that would hinder its broad application, except that 

it requires a reference genome for all included species. The more complete and more accurate 

the reference genome assemblies of the target species, the higher will be the quality of whole 

genome alignments, and – as a direct consequence – the performance of our method. Neverthe-

less, because our method transfers epigenome data between locally aligned regions, it is not 

restricted to high-quality genomes and can be expected to cope well with highly fragmented ge-

nome assemblies, thus facilitating its application to understudied non-model organisms.  

 

 

Conclusion 

Our results show that cross-species transfer of epigenome data is possible among mammalian 

(and avian) species, and that the transferred epigenomes not only retain tissue specificity but 

also enable tissue-specific prediction of gene expression. We can thus conclude that the tissue-

specific links between epigenome profiles and gene expression are well conserved across the 

analyzed species. Cross-species epigenome transfer and prediction can help address the current 
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dearth of epigenome data for non-model organisms. Importantly, computational prediction is 

not meant to replace experimental analysis, but to complement it by providing access to a larger 

number of species and more tissues within each species. It will also be interesting to compare 

predicted epigenome data with experimentally measured epigenome data, in order to find ge-

nomic regions in which the measurement deviates from the prediction. Such regions would be 

strong candidates for species-specific epigenome regulation and promising targets for in-depth 

biological investigation. We thus conclude that bioinformatic approaches for cross-species epige-

nome mapping can reasonably complement well-established experimental methods. 

 

 

Materials and Methods 

Included species, genome assemblies, and gene models 

We included twelve mammalian species (human [hg19], rhesus [rheMac2], mouse [mm9], rat 

[rn5], rabbit [oryCun2], pig [susScr2], cow [bosTau7], sheep [oviAri3], horse [equCab2], dog 

[canFam3], cat [felCat5], opossum [monDom5]) and one avian species (chicken [galGal3]), based 

on the following selection criteria: (i) complete genome assemblies and whole-genome align-

ments with at least one of the two reference species (human, mouse) were available from the 

UCSC Genome Browser [39]; (ii) gene models for the relevant assemblies were available from 

one of three sources (GENCODE [40]: human v19, mouse vM1; The Bovine Genome Database 

[41]: cow Ensembl75; UCSC Genome Browser tables ensGene, ensemblSource and ensemblTo-

GeneName: all other species); (iii) epigenome profiles including histone H3K4me3, H3K27ac, and 

H3K36me3 as well as transcriptome data were available for defined tissues / cell types in the 

reference species (Additional file 2); and (iv) transcriptome data were available for at least some 

of these tissues / cell types in the target species. An overview of the evolutionary relationships 

for all species included in this study is provided as a phylogenetic tree generated using the Time-

Tree service [42] (Additional file 1: Figure S1). To alleviate the effect of differences in annotation 

quality, all gene models were reduced to protein-coding transcripts/genes. Additionally, only 

transcripts tagged as “Consensus CDS (CCDS)” were selected in the GENCODE annotations. All 

analyses were restricted to genes located on the autosomes, excluding the sex chromosomes. 
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Promoter regions were defined as 1.5 kilobase windows around the transcription start site (-

1,000 bp to +500 bp), and genes with a gene body length of less than 750 bp were discarded. 

 

Whole-genome alignments, gene orthologs, and evolutionary conservation 

Whole-genome alignments between the reference species (human, mouse) and target species 

were downloaded from the UCSC Genome Browser in the form of chain files [43] and processed 

as described in the UCSC Genome Wiki to derive reciprocal best chains [44]. The reciprocal best 

chains were further processed using CrossMap [45] and custom scripts to build pairwise symmet-

ric alignment blocks. Genes with less than 100 aligned bases in their promoter and in their body 

were considered weakly aligned. Information on gene orthologs was downloaded from OrthoDB 

[33], and lists of 1-to-1 orthologs for each pair of species and, separately, for all 13 species com-

bined were extracted from the annotation data using custom scripts. 

 

Epigenome and transcriptome data preprocessing 

Publicly available reference epigenomes for the reference species (human, mouse) were ob-

tained from ENCODE, DEEP, and BLUEPRINT projects (Additional file 2). The resulting dataset in-

cluded three histone marks (H3K4me3, H3K27ac, H3K36me3), three cell types (embryonic stem 

cells, naïve CD4+ T cells and hepatocytes), and a total of nine epigenome profiles for human, as 

well as three histone marks (H3K4me3, H3K27ac, H3K36me3), five cell/tissue types (embryonic 

stem cells, naïve CD4+ T cells, whole liver, kidney and heart), and a total of 17 epigenome profiles 

for mouse. Tissue-specific transcriptome profiles were obtained from ENCODE, DEEP, and public 

repositories (SRA/ENA). Where available, epigenome profiles were downloaded in form of his-

tone signal tracks (bigWig format). For the BLUEPRINT mouse data, which were not available in 

preprocessed form, reads were mapped using bowtie2 v2.3.3.1 with the preset --sensitive, and 

signal tracks were generated using bamCoverage v2.5.3 from the deepTools software suite [46]. 

To prepare the epigenome profiles for the analysis, biological replicates from the same laboratory 

were merged by taking the mean. All resulting epigenome signal tracks were quantile normalized 

per project and clipped at the 99.95 percentile to alleviate the effect of outliers. Transcriptome 

data were processed with Salmon v0.8.2 using the following parameters: --forgettingFactor 0.8 -
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-useVBOpt --seqBias --gcBias --geneMap, aggregating transcript-level abundance estimates into 

gene-level estimates. Finally, the gene expression values were subjected to quantile normaliza-

tion, resulting in transcript per million (TPM) values that were used for further analysis. 

 

Epigenome-based prediction of gene expression  

All prediction models were implemented in Python3, using libraries from the SciPy ecosystem for 

scientific computing [47,48]. Histone signal tracks were masked to exclude non-conserved re-

gions according to pairwise genome alignments between the reference and target species. Pre-

diction attributes were derived from these masked signal tracks by averaging the signal across 

each gene promoter (H3K4me3, H3K27ac) and gene body (H3K36me3). Gradient boosting classi-

fiers from the scikit-learn library [49] were trained using these histone signal intensities as pre-

diction attributes and the gene expression status (on/high: TPM ≥ 1; off/low: TPM < 1) as target 

variable (this binary thresholding strategy was motivated by previous studies [28,50–52]). Each 

training dataset was randomly subsampled to balance class frequencies, and model hyperparam-

eters were tuned using 5-fold cross-validation on this subsampled training dataset. The best 

model according to the results of the cross-validation was refit using the full set of training data. 

 

Genomic region enrichment analysis 

Region sets were analyzed for significant enrichment using the LOLA software [25]. For the hu-

man genome, the LOLA Core region set was used. In addition, we created a custom region set for 

both the human and mouse genome, comprising various sets of transcription factor binding sites 

as well as histone modification peaks from the DeepBlue repository [53]. For each LOLA analysis, 

we filtered the results and retained enriched region sets only if the support (i.e., number of re-

gions covered) was at least 5 and the multiple-testing corrected statistical significance (q-value) 

was below 0.05. We manually selected 10-15 entries from the top ranking region sets for visual-

ization and provide the full list of LOLA enrichments in Additional files 5 and 7. 
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Gene age annotation 

To evaluate the evolutionary age of each gene, we obtained gene age annotations for the follow-

ing species from a recent publication [37]: chicken, cow, dog, human, mouse, opossum, rat, and 

rhesus macaque. UniProt identifiers were mapped to Ensembl gene identifiers using a web-based 

service [54]. For visualization, we selected all species for which at least 80% of the identifiers 

could be mapped (human 97%; mouse 83%; rhesus 81%) and plotted the observed gene age dis-

tribution relative to the expected distribution based on the priors for the different gene age labels 

(Figure 12, Additional file 1: Figure S9A/B). 
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Main figures 

 

Figure 1 

 

Epigenome-based prediction of gene expression across species (conceptual outline) 

(1) Top to middle: epigenome data from the reference species are transferred to the target spe-

cies using pairwise whole-genome alignments. (2) Top to right: epigenome data in the reference 

species are used to train machine learning classifiers that predict gene expression status (on/high 

versus off/low). (3) Bottom: prediction of gene expression in the target species based on the 

transferred epigenome data (yellow box) and the trained machine learning classifier (red box). 
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Figure 2 

 

Genome-wide coverage of epigenome profiles transferred across species 

Colored points indicate the average number of base pairs with non-zero signal after cross-species 

transfer for each histone mark (error bars denote +/- one standard deviation around the mean) 

between human as the reference species and twelve target species. The number of aligned bases 

genome-wide (black bars) and at gene loci (gene promoters and gene bodies combined, grey 

bars) are shown for comparison. Target species are sorted by increasing evolutionary distance to 

the human reference (x-axis, million years since last common ancestor indicated in parentheses).  
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Figure 3 

 

Tissue-specific correlation of measured and transferred epigenomes 

Heatmaps showing pairwise Pearson correlations of measured and transferred histone signals 

for H3K4me3 and H3K27ac at gene promoters (panel A) and for H3K36me3 in gene bodies (panel 

B), using human as reference species and mouse as target species. 
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Figure 4 

 

Genomic region enrichment analysis for transferred epigenomes 

Selected results of LOLA analyses for gene promoters (panel A and C) and gene bodies (panel B 

and D) that were ranked among the top 5% based on transferred epigenome signal intensities 

for H3K4me3 (gene promoters) or H3K36me3 (gene bodies). Top panels show region set enrich-

ment for CD4+ T cell epigenomes transferred from mouse to human (panel A and B); and bottom 

panels show region set enrichment for hepatocyte (liver) epigenomes transferred from human 

to mouse (panel C and D). Effect size (log2 of the odds ratio) is indicated on the x-axis. The false 

discovery rate estimate (q-value) is smaller than 10e-12 in all cases. Complete results of the LOLA 

analysis are shown in Additional file 5. 
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Figure 5 

 

Tissue-specific clustering of the cross-species transcriptome dataset 

Hierarchical clustering of pairwise Pearson correlation coefficients between transcriptome pro-

files of 13 species used for gene expression prediction and model validation. Correlations were 

calculated across all 1-to-1 orthologous genes for each species pair. Color bars at the top indicate 

tissue of origin. Columns are labeled with species of origin, and row labels indicate data source 

(project name or “SRA” for data downloaded from SRA/ENA; see Additional file 2 for details). 
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Figure 6 

 

Performance for predicting gene expression from transferred epigenomes in human/mouse  

ROC curves showing the cross-validated test-set performance predicting gene expression status 

in mouse based on transferred epigenome data from human (panel A) and vice versa (panel B), 

averaged across all included samples and cell types in both the reference and the target species. 

The dashed diagonal line represents the expected performance of a random classifier (AUC = 0.5). 
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Figure 7 

 

Performance for predicting gene expression from transferred epigenomes in all species 

ROC curves showing the cross-validated test-set performance predicting gene expression status 

based on transferred epigenomes from human (panel A) or mouse (panel B) as reference species 

and the remaining twelve species as target species. Epigenomes and transcriptomes were aver-

aged across all included samples and cell types in both the reference and the target species. 

Shaded areas represents +/- 1 standard deviation around the mean ROC curve. The dashed diag-

onal line represents the expected performance of a random classifier (AUC = 0.5). 
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Figure 8 

 

Performance gain of tissue-specific prediction of gene expression from transferred epigenomes 

ROC AUC values (calculated as in Figure 7) comparing the performance of gene expression pre-

diction based on tissue-specific (dark grey) as well as average (light grey) transferred epigenomes, 

using human (panel A) or mouse (panel B) as reference species and the remaining twelve species 

as target species. The first bar shows the aggregation of mean AUC values across all species. The 

difference in mean AUC for these aggregated values is statistically significant for both reference 

species (one-sided Mann-Whitney-U, *** p-value < 10e-9). 
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Figure 9 

 

Comparison of gene expression prediction based on transferred epigenomes vs. gene orthology 

(A) Performance gain of epigenome-based prediction of gene expression over the orthology-

based approach using human (blue) or mouse (orange) as reference species, plotted for different 

thresholds on the gene body conservation (x-axis). The number of selected genes for each thresh-

old is also indicated (black and grey lines). Performance is measured as number of correct pre-

dictions (true positives and true negatives), and the surplus of correct predictions of the epige-

nome-based prediction models over the orthology-based approach is transformed into a per-

centage value that is comparable across species. (B) Prediction accuracy of epigenome-based 

(solid lines) and orthology-based (dashed lines) prediction of gene expression (solid lines) and 

the corresponding orthology-based predictions (dashed lines) using human (blue) or mouse (or-

ange) as reference species, plotted for different thresholds on the gene body conservation (x-

axis). All curves (panel A and B) represent median values of all gene expression predictions ag-

gregated per reference species over all target species and over all cell types. Genes in the target 

species are sorted by increasing gene body conservation along the x-axis. 
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Figure 10 

 

Effect of the classifier confidence threshold on prediction performance 

Prediction performance of the epigenome-based approach (dark grey lines) and the orthology-

based approach (light grey lines), as measured by the number of correct predictions (true posi-

tives and true negatives, left y-axis) and percent accuracy (right y-axis) for increasingly stringent 

cutoffs on the class probability estimates of the epigenome-based approach (x-axis, range from 

0.5 to 0.95). Dotted line represent the number of genes selected at each threshold. Results are 

shown for human as reference and mouse as target species. 
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Figure 11 

 

Epigenome-based prediction of gene expression for different target species 

Bar plots showing for each species the total number of genes in the genome, the number of un-

aligned or weakly aligned genes relative to the reference species, and the average number of 

genes correctly predicted by the epigenome-based approach for two classifier confidence thresh-

olds. Target species are sorted by evolutionary distance to the human reference along the x-axis 

(million years since last common ancestor indicated in parentheses). 
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Figure 12 

 

Association between gene age and epigenome-based prediction performance 

Genes were stratified by their tendency to be predicted correctly or incorrectly by the epige-

nome-based approach and labeled with their annotated age. Bar heights indicate relative differ-

ence to the expected number of genes in each age group (percent values are shown for compa-

rability across species). Error bars indicate +/- one standard deviation estimated by 1,000 boot-

strap iterations. Numbers in parentheses indicate divergence time in million years relative to the 

family of Hominidae (great apes including human). Because of horizontal gene transfer, no diver-

gence time estimates are given for the archaea and the bacteria group. The number of expected 

genes in each group is derived from the prior distribution for the respective gene age label.  
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Additional files 

Name: Additional file 1 

Format: doc text document (MS Word / LibreOffice Writer) 

Title: Supplementary figures 

Description: Supplementary figures 

 

Name: Additional file 2 

Format: tsv tab-separated values (MS Excel / LibreOffice Calc) 

Title: Datasets overview 

Description: Summary of epigenome and transcriptome datasets used in this study 

 

Name: Additional file 3 

Format: tsv tab-separated values (MS Excel / LibreOffice Calc) 

Title: Epigenome predictions (human reference) 

Description: Epigenome data for gene promoters and gene bodies transferred from human (as 

the reference species) to twelve target species 

 

Name: Additional file 4 

Format: tsv tab-separated values (MS Excel / LibreOffice Calc) 

Title: Epigenome predictions (mouse reference) 

Description: Epigenome data for gene promoters and gene bodies transferred from mouse (as 

the reference species) to twelve target species 
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Name: Additional file 5 

Format: zip compressed tab-separated values (7-Zip, MS Excel / LibreOffice Calc) 

Title: LOLA results for transferred epigenome data 

Description: Region set enrichment analysis using LOLA for tissue-specific epigenome transfer 

between human and mouse (and vice versa) 

 

Name: Additional file 6 

Format: zip compressed tab-separated values (7-Zip, MS Excel / LibreOffice Calc) 

Title: enrichR results for weakly aligned genes 

Description: Gene set enrichment analysis using enrichR for weakly aligned genes in human and 

mouse 

 

Name: Additional file 7 

Format: zip compressed tab-separated values 

Title: LOLA results for weakly aligned genes 

Description: Region set enrichment analysis using LOLA for weakly aligned genes in human and 

mouse 
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