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Abstract 12 

Today’s increase in scientific literature requires the efficient methods of data mining for 13 

improving the extraction of the useful information from texts. In this manuscript, we used a data 14 

and text mining method to identify fusions and their protein-protein interactions from published 15 

biomedical text. The extracted fusion proteins and their protein-protein interactions are used as a 16 

training set for a Naïve Bayes classifier that is further used for final identification of testing 17 

dataset, consisting of 1817 fusions. Our method has a literature corpus, text and annotation 18 

mappers; keywords, rule bases, negative tokens, and pattern extractor; synonym tagger, 19 

normalization, regular expression mapper; and Naïve Bayes classifier. We classified 1817 unique 20 

fusion proteins and their corresponding 2908 protein-protein interactions for 18 cancer types. 21 
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Therefore, it can be used for screening literature for identifying mentions unique cases of fusions 22 

that can be further used for downstream analysis. It is available at http://protfus.md.biu.ac.il/. 23 

 24 

1 Introduction  25 

1.1 Background 26 

Fusion proteins resulting from chromosomal translocations play important roles in many types 27 

of cancer and are extensively discussed in the cancer literature. However, because they do not 28 

exist as entities in the normal, non-cancer genome, they are usually not considered when text 29 

mining the biomedical literature. 30 

To collect information about fusions, we have an in-house database, ChiTaRS [1] that covers 31 

more than 11,000 fusion breakpoints. However, this resource is still incomplete and needs to 32 

kept up-to-date with the ever-growing literature. We thus set out to extract the unique fusion 33 

proteins associated with different cancer subtypes along with their protein–protein interactions 34 

from PubMed abstracts. 35 

Currently, PubMed comprises more than 28 million citations, with approximately 14000 36 

cancer-related papers from 2018 alone and more than 3 million abstracts in total that mention 37 

cancer. However, finding the fusion proteins mentioned within these is non-trivial, because a 38 

fusion protein such as BCR–ABL1 can be represented in variable forms in the text [2]. These 39 

variations include the formatting of the fusion instances themselves (e.g., BCR-ABL1 vs. 40 

BCR:ABL1 vs. BCR/ABL1 vs. BCR-ABL1), and the keywords used to describe that they are 41 

fusions (fusions vs. fusion proteins vs. chimers vs. chimeras) [3]. Moreover, when extracting 42 

protein–protein interactions of fusions, their actions can be described in varying ways (e.g., 43 
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activate vs. interact vs. express vs. induce [4]. Fig 1 provides the overall methodology of 44 

ProtFus. 45 

 46 

1.2 Previous studies in the field 47 

Some previous work has been carried out on developing text mining approaches for modern 48 

medical text, especially cancer. For example, several annotated corpora have been created [5-7]. 49 

Likewise, various supervised-based methods have been developed, using linguistic patterns for 50 

detecting semantics in gold standard corpora, e.g., part-of-speech (nouns or verbs). NEs 51 

frequently consist of such sequences of nouns and adjectives, while NEs involved in 52 

relationships use verbs. Further, several tools are now available offering to extract specific 53 

information from literature. For example, some well-known biomedical text mining tools include 54 

MetaMap [8], WhatIzIt [9], iHOP [10], Gimli [11]. Moreover, continuous evaluations and 55 

verifications are done by the biomedical text mining community through BioCreative [12-13], 56 

BioNLP [14], i2b2 [15], to name a few. Also, a number of efforts for creating resources 57 

accounting for evolving ways have been provided, that are referenced from time-to-time. For 58 

instance, for identifying relationships among NEs, there exist certain difficulty in extracting 59 

syntactic parses. Such problems can be dealt by means of identifying co-occurrences between the 60 

NEs. 61 

Availability of resources having complete information related to fusions in cancers as well as 62 

their protein-protein interactions is less [16-17]. There are some well-known databases of fusion 63 

proteins, such as ChiTaRS-3.1 [1], ChimerDB 3.0 [18], COSMIC [19] and TICdb [20]. All these 64 

databases have limited number of fusions, which are not unique. Further, there are currently no 65 

methods that can successfully identify fusions and their interactions from scientific literature. 66 
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Thus, the success of ProtFus lies in removing these lacunae and predicting unique fusions from 67 

the literature. In this scenario, efficient methods of text mining provide us unique ways for the 68 

extraction and interpretation of information present in these scientific public resources as 69 

follows:  70 

1. We are interested in identifying fusion proteins and their interactions from published 71 

scientific articles [21-22].  72 

2. From the point-of-view of text mining, this task deals with identifying information that 73 

need to be tagged ‘concurrently’ to find ‘co-mentions’, like human fusion proteins and 74 

cancer. Let us assume that we are interested in the fusion protein BCR-ABL1. We want 75 

to find all the mentions of BCR-ABL1 in the literature. But, BCR-ABL1 can be spelled 76 

in a variety of ways BCR-ABL1, BCR/ABL1, bcr-abl1, bcr/abl1, bcr:abl1, BCR:ABL1, 77 

etc. Thus, we need a good ‘tagger’ which can identify all these jargons.  78 

3. Further, we aim to identify interaction occurrences among fusion is trickier as it requires 79 

tagging interaction tokens from literature as well as linking them to their corresponding 80 

proteins. For instance, in the text ‘Grb2 has been shown to bind NPM-ALK and ATIC-81 

ALK in previous works’, the interaction token is ‘bind’.  82 

4. We have developed Protein Fusions Server (ProtFus), a resource to identify instances of 83 

fusion proteins and their interactions from literature [23, 12], based on text mining 84 

approaches using natural language processing (NLP) methods [24-25].  85 

5. The major goal is to identify the co-occurrences of both fusions and their corresponding 86 

interactions by filtering out the false positives cases from general searches on fusion 87 

proteins using PubMed, so that a more focused and restricted result could be generated.  88 
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The resulting instances could be further used for the designing methods in Precision Medicine 89 

for fusions as cancer drug targets, combining classical natural language processing and machine 90 

learning techniques. 91 

2 Methods 92 

The basic framework of ProtFus is provided in (Fig 1). It consists of the basic computational 93 

methods, like text mining, machine learning, and a distributed database system for storing the 94 

text as well as features extracted from biomedical literature. Here, we discuss the development of 95 

ProtFus to extract fusion information (e.g., BCR-ABL1), protein-protein information (e.g., BCR-96 

ABL1 causes leukemia), prediction models (e.g., Naïve Bayes) for text classification extracted 97 

from PubMed references; as well as a list of the cancer fusions from Mitelman Database of 98 

Chromosome Aberrations and Gene Fusions in Cancer [26]; and the Breakpoints Collection of 99 

the ChiTaRS-3.1 database [1], respectively (Table 1). 100 

 101 

2.1 Initial text validation 102 

The initial text validation is performed for input from PubMed to remove false positive results, 103 

followed by segregation into ‘tokens’. We performed stemming of the words for sentences, 104 

followed by identifying named-entities within sentences with ‘porter2’ algorithm using 105 

‘stemming’ package in python [27]. The named-entities within sentences were blanked out to 106 

make it more generalized. This was followed by using a bag-of-words representation [28] based 107 

on a Frequency score ( )FS for estimating the importance of selecting a token. For the bag-of-108 

words representation, we use the FS threshold 
( )asT ,  Eq (1):  109 
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  (Eq. 1) 110 

Here, FSs,a denotes the frequency of token s in articlea ,τ is the number of articles/abstracts, σ is 111 

the number of articles having s . We used the Naïve Bayes classification method for building a 112 

prediction model [28] for categorizing the tokens in abstracts/articles to either fusion proteins or 113 

interactions in fusions, as per the Medical Subject Headings (MeSH) items. The ProtFus 114 

framework was developed on an Apache cluster, with a back-end My-SQL database and the 115 

support from ChiTaRS-3.1 [1]. The tool was developed using Python, whereas the interface was 116 

developed using CGI-Perl. 117 

 118 

2.2 Feature extraction 119 

We use the N-gram model for detecting N-words at a time from a given sentence. An N-gram 120 

model model’s sequences, notably natural languages, using the statistical properties of N-grams. 121 

This idea can be traced to an experiment by Claude Shannon’s work in information theory [29]. 122 

Particularly, using a 2-gram method, all words in a sentence are broken down into two different 123 

combinations including unigram and bigrams, i.e., one and two words [30]. For example, some 124 

possible sets of combinations are provided in (Fig 2). We extracted a set of bigrams as well as 125 

combinations of 3-grams and 4-grams from abstracts or full-text articles for training ProtFus to 126 

detect specific fusion proteins instances. Along with this, the instances of these tokens were also 127 

counted in the back-end corpus [31]. Further, when FS was the standard feature score, a 128 

considerable high threshold
( )asT ,  was given to tokens that appeared frequently in the corpus. 129 

Moreover, we also converted all abstracts or full-text articles into ‘similar-length’ feature 130 

vectors, where each feature represents a
( )asT , of the found token. 131 
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 This was followed by organizing a bag-of-words representation of the feature vectors (Table 132 

3). Thus, Tables S1-S2 (Suppl. data) include the back-end corpus considered for tagging fusions 133 

and their interactions. The word-token tagger has a back-end Synonyms (with synonyms 134 

resource, Table S3, Suppl. data) whereas the RegEx tagger has a back-end Synonyms (with 135 

rulebase, Table S4, Suppl. data). Likewise, Table 4 represents Precision and Recall for retrieval 136 

step.  137 

 138 

2.3 Named-Entity Recognition 139 

The tokens have been then used to parse the texts for performing named-entity recognition. 140 

Named-entity recognition (NER) locates and classifies named entities in text into pre-defined 141 

categories. For example, the unannotated block of text ‘CRKL binds to BCR-ABL fusion 142 

protein’ can be annotated as ‘[CRKL]protein binds to [BCR]protein -[ABL]protein [fusion protein]key’. 143 

This is followed searching for a pattern like, protein1-protein2 key or protein1/protein2 key or 144 

protein1:protein2 key. We also perform named-entity recognition of diseases to understand how 145 

a fusion may be related to a certain cancer. For example, in ‘BCR-ABL causes leukemia’, we 146 

perform annotations as ‘[BCR]protein-[ABL]protein [causes]action-verb [leukemia]cancer’. A search can 147 

be performed by using a PubMed abstract or uploading a text file or based on a specific input 148 

text. For example, in case of an input text, the result is displayed in a separate window, with the 149 

fusion proteins being highlighted. Similarly, in case of protein-protein interactions among 150 

fusions, the result window includes the input text with interactions being highlighted. Another 151 

feature of ProtFus includes directly searching using PubMed articles [27]. Users can select from 152 

the given drop-down box, the number of articles that need to be considered for searching fusions 153 

and their interactions. The result includes the abstracts of all those articles, which match best 154 
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with fusion proteins keywords. This file can be further used for highlighting the fusions and their 155 

interactions. Table 5 represents Precision and Recall for named-entity recognition. 156 

 157 

3 Results 158 

The fusion protein data were validated using ChiTaRS-3.1 [1] database of concrete known cases 159 

of fusions and interactors as well as Mitelman database of Chromosome Aberrations and Gene 160 

Fusions in Cancer. The fusion protein validation was performed by searching the corresponding 161 

occurrences of breakpoints in cancers from the ChiTaRS database and comparing them with that 162 

of the result provided using ProtFus. The Mitelman database was used mainly for identifying 163 

potential fusions, their role in cancer. Similarly, the interactions were validated using the 164 

Chimeric Protein-Protein Interaction Server (ChiPPI) [35], STRING database [32] and iHOP 165 

database [10, 3]. The interactions information that we got was compared with that of ChiPPI [35] 166 

and STRING [32], by performing a simultaneous search in both. Since, we were particularly 167 

interested in searching for instances of interactions from scientific literature, we also relied on 168 

the iHOP database. 169 

 170 

3.1 Designing the model for training and testing 171 

We downloaded abstracts and full-text articles from PubMed to generate both training and 172 

testing datasets. Separating a dataset into ‘training data’ and ‘testing data’ is an important part of 173 

evaluating text classification models. In such a dataset, a training set is used to build up a 174 

prediction model, while a testing set is used to evaluate the model built. Training data consists of 175 

abstracts as well as full-texts from PubMed database for fusions and their protein-protein 176 

interactions. To this end, for each dataset illustrated in Table 1, the 10-fold cross validation, each 177 
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time using 40% of the entities to train a prediction model and the remaining 60% to test it. We 178 

utilized 64-bit Linux CentOS operating system on a cluster platform built with four Dell servers 179 

of the 32 compute nodes and configured with 1TB RAM memory each, and 1PetaByte storage.  180 

 181 

3.2 Tokenization of bag-of-words reveals biological, miscellaneous, function and literals 182 

tokens 183 

Tokenization is performed using two specific taggers:  184 

1. Word-token tagger  185 

2. RegEx tagger  186 

The word-token tagger identifies property words from the text for fusions, like ‘fusion proteins’, 187 

‘fusion transcripts’, ‘chimeric proteins’, ‘chimeric genes’, ‘fusion gene transcripts’, etc, and 188 

action words for protein-protein interactions (PPIs), like ‘activate’, ‘block’, ‘depend’, ‘express’, 189 

‘interaction’, etc. Similarly, the RegEx tagger recognizes associates these word-tokens with their 190 

corresponding literals. For example, given the following text, The small molecule BCR-ABL-191 

selective kinase inhibitor imatinib is the single most effective medical therapy for the treatment 192 

of chronic myeloid leukemia (CML), the tokenization output is Biological Tokens: ‘small’, 193 

‘BCR-ABL-selective’, ‘single’, ‘medical’, ‘chronic’; Miscellaneous Tokens: ‘molecule’, 194 

‘kinase’, ‘imatinib’, ‘therapy’, ‘treatment’, ‘myeloid’, ‘leukemia’; Function Tokens: ‘effective’, 195 

‘inhibitor’; Literals Tokens: ‘is’, ‘the’, ‘for’, ‘of’.  196 

The tokenizer module segregates the text into ‘Biological’, ‘Miscellaneous’, ‘Function’ and 197 

‘Literals’ tokens.  The biological tokens correspond to those words which are mainly nouns; the 198 

miscellaneous tokens correspond to verbs, pro-verbs, adverbs etc; Function tokens correspond to 199 

action words or adjectives; and Literals correspond to conjunctions. The process of tokenization 200 
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is a very important step in our script, as it filters out essential tokens (like protein and function 201 

tokens) from non-essential ones (like miscellaneous and literals) for better extraction. Tables 4-5 202 

represent the Precision and Recall for retrieval step and named-entity recognition, respectively. 203 

Similarly, Table 6 provides the overall accuracy of the Naïve Bayes classifier, whereas Table 7 204 

represents a comparative analysis of overall prediction rate of fusions and their PPI among 205 

ProtFus and some other resources.  206 

 207 

3.3 Entity recognition from fusion and PPI corpus 208 

Moreover, the back-end ‘Synonyms’ (fusion corpus) consists of #entity# #relation token# like 209 

#fusion# #fusions, fusion transcript, fusion transcripts, fusion protein, fusion proteins, fusion 210 

gene, fusion genes#, whereas ‘Synonyms’ (ppi corpus) consists of #entity# #relation token# like 211 

#Activate# #activate, activates, activiated, activating, activation, activator#. Similarly, the back-212 

end ‘Synonyms’ (fusion) consists of #Fusion proteins# #Synonyms# #Alternate representations# 213 

like #EWS-FLI1# #SH2D1B EAT2, ELK1, PDGFC SCDGF, ETV2 ER71, ETSRP71# #ews 214 

fli1, EWSR1 EWS, EWSR1/FLI1, EWS FLI-1#. The ‘parser’ and entity recognition module uses 215 

‘Rulebase’ and ‘Short Form Recognition’ back-end resources for identifying the final ‘best 216 

suited’ entities and tokens as well as filtering out the false positives. The ‘Rulebase’ (for 217 

normalization) consists of #Rule# #Input# #Output# #Reg Ex# like #Normalization of case# 218 

#BCR-ABL, bcr-abl, BCR:ABL, bcr:ABL, BCR/ABL, bcr/abl# #BCR-ABL, BCR:ABL, 219 

BCR/ABL#. Similarly, the ‘Rulebase’ (for regular expression) consists of #Characteristics# 220 

#Description# #Rule# #Reg Ex# like #Fusion token# #Tokens with fusion word occurrence# 221 

#Should be separated by space/tokens# #(‘fusion|fusions|fusion genes|gene fusion|fusion 222 

protein|fusion transcripts’)# etc. Taken together, this process indicate that ProtFus considers all 223 
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possible combinations of representing the fusions in text, by considering the back-end Rulebase 224 

as well as the fusion and ppi corpus. 225 

To date, a limited number of tools exist which work on extracting and identifying fusion proteins 226 

as well as their interactions from literature. We tested ProtFus on identifying mentioned 227 

occurrences of 358 fusion proteins (based on Mitelman Database) from PubMed articles, out of 228 

which we provide the result statistics of top 100 fusion proteins based on their identification 229 

from text (Table S5, Suppl. data). For example, in case of BCR-ABL1 fusion protein (PubMed 230 

ID = 9747873), ProtFus identifies its occurrence as ‘Both Bcr-Abl fusion proteins exhibit an 231 

increased tyrosine kinase activity and their oncogenic potential has been demonstrated using in 232 

vitro cell culture systems as well as in in vivo mouse models’ (Table S5, Suppl. data). Similarly, 233 

ProtFus also identifies interactions among fusion proteins (Table S6, Suppl. data), such as in 234 

case of BCR-ABL1 fusion protein (PubMed ID = 9747873), ‘The SH2-containing adapter 235 

protein GRB10 interacts with BCR-ABL’ (Table S6, Suppl. data). The essential parameters to 236 

check the accuracy of text-mining based algorithms is to identify Precision, Recall and F-Score. 237 

ProtFus identifies fusion proteins with Precision ranging from 0.33 to 1.0 (average=0.83), Recall 238 

= 0.4 to 1.0 (average=0.84) and F-Score = 0.4 to 1.0 (average=0.81), whereas for protein-protein 239 

interactions, Precision = 0.42 to 1.0 (average=0.81), Recall = 0.5 to 1.0 (average=0.81) and F-240 

Score = 0.59 to 1.0 (average=0.83) respectively. Thus, the overall accuracy of ProtFus allows it 241 

to extract the functional as well as key attributes for fusions and their interaction appearances in 242 

the text. 243 

 244 

3.4 Training and Testing 245 
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Now, we used a classical Naïve Bayes algorithm for performing training as well as prediction. 246 

The datasets were partitioned based on known fusions and their interactors from literature that 247 

acted as training (40%) (Table 1). The rest of the data (around 60%) were used for testing from 248 

all PubMed references (2013-2017) (Table 2). There was no overlap among training and testing 249 

data. The screening was done based on distinct PubMed IDs. This is followed by modeling the 250 

decisions for assigning labels to raw input data. This kind of classification algorithms can also be 251 

thought of a convex optimization problem, where one needs to identify the minima of a convex 252 

function ρ  associated with an input vector v , havingnentries Eq (2), 253 

( ) nZvv ∈)(min ρ            (Eq. 2) 254 

Here, the objective function can be defined as Eq (3), 255 

( ))(),(;
1

)( 1 ibiav
n

Zv n
i

n μσρ =+=
   (Eq. 3) 256 

Here, vectors
nZia ∈)( are training instances ( ) nZiyn ∈≤≤ )(,1 act as labels. For checking the 257 

accuracy of our algorithm, we consider a five 10-fold cross-validation. For this purpose, we 258 

partition the input text into ten equal-sized sub-samples, of which five were retained as testing 259 

while five were used for model building. We also used the standard Precision, Recall and F-score 260 

values for validating the results. Precision ( P ) is defined as the fraction of retrieved instances 261 

that  262 

are relevant to the study. It can also be defined as the probability that a randomly selected 263 

retrieved information is relevant Eq (4). 264 

 FPTP

TP
P

+
=

      (Eq. 4) 265 
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Here, TP = true positive and FP  = false positive. Similarly, Recall ( R ) is defined as the fraction 266 

of relevant instances that are retrieved for the study. It can also be defined as the fraction of the 267 

information that are relevant to the query that are successfully retrieved Eq (5). 268 

FNTP

TP
P

+
=

      (Eq. 5) 269 

Here, FN = false negative. Finally, scoreF − is the harmonic mean of precision and recall Eq 270 

(6). 271 

⎥⎦

⎤
⎢⎣

⎡

+
⋅=−

RP

RP
scoreF 2

 (Eq. 6) 272 

For example, if the standard query text contains 3 tokens that could be categorized as fusions, 273 

and ProtFus identifies 2 out of it, the accuracy can be calculated as: True (standard) tokens = 274 

anyn ,,, ; Predicted (by ProtFus) tokens = annn ,,, (here, n = no token instance, y  = token 275 

instance, a = noise). In this case, Precision = 0:75, Recall = 0:75, F-score = 0:75, respectively. 276 

Similarly, the corresponding accuracy plot can also be drawn by providing information about 277 

Precision, Recall, F-score values and the number of runs. Thus, ProtFus provides this facility for 278 

users to visually consider the accuracy of their searches.  279 

 280 

 3.5 Big Data processing using ProtFus and ChiPPI 281 

Mining biomedical texts generates a considerable amount raw as well as informative data, where 282 

the key challenge is managing as well as storing them for data analysis tasks. For this purpose, 283 

we built the Protein-Protein Interaction of Fusions (PPI-Fus) database (ppi-284 

fus.md/biu.ac.il/bin/protfusdb.pl), supported by Apache Tomcat and My-SQL. It is an open 285 

source Big Data processing framework that supports ETL (Extract, Transform and Load), 286 

machine learning, as well as graph generation. Finally, some classical text mining tasks can also 287 
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be performed by identifying biological, functional, literals, and miscellaneous tokens, as well as 288 

chunks from text. The word-token tagger has a back-end Synonyms (with synonyms resource) 289 

whereas the RegEx tagger has a back-end Synonyms (with rulebase). This is followed by parsing 290 

the tokens for performing entity recognition. In the interface, the search can be using PubMed or 291 

uploading a text file or based on a specific input text. For example, in case of an input text, the 292 

result is displayed in a separate window, with the fusion proteins being highlighted. 293 

Further, in case of identifying protein-protein interactions among fusions, the result window 294 

includes the input text with interactions being highlighted. Another feature of ProtFus includes 295 

directly searching using PubMed articles. Users can select from the given drop-down box, the 296 

number of articles that need to be considered for searching fusions and their interactions. The 297 

result includes the abstracts of all those articles which match best with fusion proteins keywords. 298 

This file can be further used for highlighting the fusions and their interactions. These results 299 

indicate that our text mining method successfully identifies unique novel fusion protein and their 300 

interactions from text by tagging tokens, that act as entities. 301 

Considering discrete protein domains as binding sites for specific domains of interacting 302 

proteins, we have catalogued the protein interaction networks for more than 11,000 cancer 303 

fusions in order to build the Chimeric Protein-Protein-Interactions (ChiPPI) [35]. Mapping the 304 

influence of fusion proteins on cell metabolism and protein interaction networks reveals that 305 

chimeric protein-protein interaction (PPI) networks often lose tumor suppressor proteins, and 306 

gain onco-proteins. As a case study, we compared the results generated by ProtFus with the 307 

interaction prediction accuracy of ChiPPI [35]. For example, in BCR-JAK2 fusion, ProtFus 308 

provides multiple hits regarding its occurrence in literature, such as, “It was demonstrated 309 
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preclinical studies that BCR-JAK2 induces STAT5 activation elicits BCRxL gene expression” 310 

(PMC3728137), as correctly predicted by ChiPPI (Fig 4). 311 

 312 

3.6 ProtFus performs much better in compared to other text-mining resources 313 

Table 7 represents the accuracy of ProtFus as compared to iHop [10, 3], STRING [33], 314 

ChimerDB-3.0 [18], FusionCancer [22] and FusionDB [34] resources. The iHOP method is 315 

based on a dictionary approach, wherein abstracts are searched for gene synonyms using 316 

hashcodes, followed by assigning genes to precise text positions. STRING parses large scientific 317 

texts from various resources like SGD, OMIM, FlyBase, and PubMed to search for statistically 318 

relevant co-occurrences of gene names. ChimerDB-3.0 chooses fusion gene candidate sentences 319 

from PubMed which are further used for training a machine learning model. FusionCancer and 320 

FusionDB do not use text mining for fusion prediction, but we used them as a resource-based 321 

comparison for predicted fusions. The efficiency of our algorithm is around 92%. We also found 322 

the Receiver Operating Characteristic (ROC) curves [29] for quantitative representation of our 323 

method. Fig 3 shows representative ROC curves generated in a typical experiment using 324 

‘abstracts’ data. In compared to full-text articles, the prediction was better for abstracts. This is 325 

due to the fact that the size of feature space is too large for full-text articles. For text 326 

classification purposes, abstracts may work better than full-text scientific articles. 327 

 328 

Discussions and Conclusions 329 

This study focused on investigating large-scale biomedical text classification downloaded from 330 

PubMed. We utilized classical text-mining, machine learning strategies, as well as Big Data 331 

infrastructure to design and develop a distributed and scalable framework. This was used to 332 
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extract identify fusion proteins and their interactions for classifying information extracted from 333 

tens of thousands of abstracts and/or full-text articles associated MeSH terms. The accuracy of 334 

predicting a cancer type by Naïve Bayes using the abstracts was 92%, while its accuracy using 335 

the 103,908 abstracts (for fusions only); 90,639 full texts (for fusions only); 185,606 abstracts 336 

(for fusion protein interactions); 353,535 full texts (for fusion protein interactions) was 88%. 337 

This study demonstrates the potential for text mining of the large-scale scientific articles on a 338 

novel Big Data infrastructure, with the real-time update from new articles published daily. 339 

Therefore, ProtFus can be extended to other areas of biomedical research for example, the 340 

patients’ drug response, in order to improve the medical data mining in the Personalized Medical 341 

approaches. 342 
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 442 

Fig 1: The overall methodology of ProtFus. The algorithm begins with collecting abstracts and full-
text from PubMed; followed by normalization; tokenization, entity recognition; cross-references; 
databases; and machine learning classifier. 
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 463 

Fig 2: N-gram model for detecting N-words by ProtFus. The N-gram model and some possible set of 
combinations. 
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 475 

Fig 3: ROC curve for Naïve Bayes and Accuracy. The ROC curves for Naïve Bayes; Fusion and 
Fusion PPI detection; Precision, Recall and F-Score rates. 
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 476 

Fig 4: ChiPPI analysis (a) PPI-Fus/ProtFus prediction for BCR-JAK2 and STAT5B interaction (b) 
as predicted by ProtFus. 
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 478 

Table 1. Datasets considered for Training  479 

PubMed Year Abstracts Full Texts Fusions Fusions+PPI 

2017 17220 5212 43 2 

2016 352097 163884 1164 99 

2015 353972 171432 1132 104 

2014 321314 156091 1187 112 

2013 299380 141512 1203 110 

 480 

Table 2. Datasets considered for Testing ProtFus 481 

PubMed Year Abstracts Full Texts Fusions Fusions+PPI 

2017 25830 7819 65 5 

2016 528146 245826 1747 148 

2015 530960 257148 1697 155 

2014 481971 234136 1780 167 

2013 449069 212268 1805 165 

 482 

Table 3. Bag-of-words collection for 10 PubMed ID Abstracts 483 

PMID Fusions Fusion Gene Biological Token Miscellaneous Token 

24186139 1 1 20 35 

22101766 0 1 25 30 

18451133 0 1 28 38 
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 484 

Table 4. Precision and Recall for retrieval step 485 

Dataset Precision Recall F-Score Accuracy 

 Set A 0.79 0.82 0.76 0.81 

 Set B 0.81 0.83 0.78 0.8 

 Set C 0.85 0.84 0.82 0.85 

 Set D 0.72 0.76 0.72 0.74 

 Set E 0.8 0.82 0.78 0.82 

 Set F 0.81 0.81 0.78 0.82 

 Set G 0.78 0.83 0.81 0.83 

 Set H 0.75 0.81 0.78 0.8 

 Set I 0.85 0.82 0.81 0.83 

 Set J 0.73 0.78 0.76 0.75 

 486 

 487 

11930009 1 1 26 32 

15735689 0 1 21 34 

18850010 0 0 27 33 

21193423 1 0 23 33 

22570737 1 0 30 38 

18383210 1 0 29 35 

24345920 1 0 26 32 

16502585 1 0 21 33 
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Table 5. Precision and Recall for named-entity recognition 488 

Dataset Precision Recall F-Score Accuracy 

 Set A 0.79 0.82 0.77 0.81 

 Set B 0.77 0.82 0.8 0.82 

 Set C 0.87 0.83 0.82 0.89 

 Set D 0.8 0.81 0.76 0.78 

 Set E 0.84 0.83 0.82 0.82 

 Set F 0.81 0.84 0.83 0.83 

 Set G 0.81 0.89 0.85 0.84 

 Set H 0.82 0.82 0.84 0.8 

 Set I 0.82 0.84 0.83 0.87 

 Set J 0.78 0.8 0.77 0.79 

 489 

Table 6. Accuracy Score of Classifier 490 

Dataset Precision Recall F-

Score 

Accuracy 

 Set A 0.82 0.86 0.79 0.84 

 Set B 0.83 0.85 0.82 0.83 

 Set C 0.91 0.92 0.89 0.91 

 Set D 0.79 0.81 0.74 0.77 

 Set E 0.86 0.85 0.83 0.85 

 Set F 0.85 0.85 0.83 0.84 

 Set G 0.85 0.87 0.84 0.85 
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 Set H 0.81 0.83 0.83 0.82 

 Set I 0.87 0.86 0.84 0.86 

 Set J 0.75 0.81 0.79 0.78 

 491 

Table 7. Performance of ProtFus in comparison to other resource 492 

Resource Full-

Text 

Prediction 

iHop Yes 78% 

STRING Yes 88% 

ChimerDB-3.0 Yes 82% 

FusionCancer (does not use 

text mining) 

Yes NA 

FusionDB (does not use 

text mining) 

Yes NA 

ProtFus Yes 92% 

 493 
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