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Major histocompatibility complex (MHC) molecules mediate
the adaptive immune response against pathogens. Certain MHC
alleles are generalists: they present an exceptionally large va-
riety of antigenic peptides. However, the functional implica-
tions of such elevated epitope binding promiscuity in the MHC
molecules are largely unknown. According to what we term the
pathogen-driven promiscuity hypothesis, exposure to a broad
range of pathogens favors the evolution of highly promiscu-
ous MHC variants. Consistent with this hypothesis, we found
that in pathogen-rich geographical regions, humans are more
likely to carry promiscuous MHC class II DRB1 alleles, and the
switch between high and low promiscuity levels has occurred
repeatedly and in a rapid manner during human evolution. We
also show that selection for promiscuous peptide binding shapes
MHC genetic diversity. In sum, our study offers a conceptu-
ally novel mechanism to explain the global distribution of allelic
variants of a key human immune gene by demonstrating that
pathogen pressure maintains promiscuous MHC class II alleles.
More generally, our work highlights the hitherto neglected role
of epitope binding promiscuity in immune defense, with impli-
cations for medical genetics and epidemiology.
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The major histocompatibility complex (MHC) genes in ver-
tebrates encode cell-surface proteins and are essential com-
ponents of adaptive immune recognition (1). MHC proteins
are endowed with highly variable peptide-binding domains
that bind short protein fragments. The MHC region is one
of the most polymorphic gene clusters in vertebrate genomes
(2). Pathogen-driven balancing selection (PDBS) is consid-
ered largely responsible for the observed exceptionally high
levels of genetic diversity (3–5) (Fig. 1A). Balancing selec-
tion may act through heterozygote advantage or frequency-
dependent selection favoring rare MHC alleles (6).

Multiple lines of evidence from humans and other verte-
brates are consistent with the PDBS hypothesis (7). How-
ever, the PDBS hypothesis cannot account for a phenomenon
that has only recently been appreciated in its full significance.
There is a substantial variation in the size of the bound and
presented antigen repertoire among different MHC variants.
Certain MHC alleles appear to be promiscuous and are ca-
pable of binding an exceptionally large set of epitope pep-
tide segments, with implications on immunocompetence and
pathogen resistance (8).

According to what we here term the pathogen-driven
promiscuity (PDP) hypothesis (Fig. 1B), selection should fa-
vor such promiscuous alleles in pathogen-rich geographical
regions, as they promote immune response against a poten-
tially broader range of pathogens (8). This selection process
is analogous to PDBS-based processes in the way it is driven
by pathogen diversity. However, while PDBS leads to a larger
number of alleles in a given population, PDP hypothesis af-
fects the binding properties of individual alleles. Therefore,
PDBS and PDP represent two complementary ways in which
MHC genes respond to pathogen-driven selection, with al-
lelic diversity and increased epitope binding repertoire of in-
dividual MHC variants jointly shaping the recognition of for-
eign peptide segments (Fig. 1).

Fig. 1. Allelic diversity and epitope binding promiscuity of HLA molecules
jointly shape pathogen recognition. During the co-evolution of the human
immune system and pathogens, HLA molecules evolved to recognize emerging
pathogens. (A) HLA allelic diversity is maintained by pathogen-driven balancing
selection (PDBS). (B) We propose that high pathogen diversity also selects for alle-
les with elevated epitope binding promiscuity in these areas (PDP: pathogen-driven
promiscuity).

The proposed hypothesis (PDP) predicts that MHC
promiscuity should provide protection against a broad range
of pathogens at the individual level and at the same time
shape the geographical distribution of MHC alleles. As a
consequence, in regions of high pathogen diversity, human
populations should carry promiscuous MHC alleles. More-
over, as migrating human populations have been exposed to
changing sets of pathogens (9), shifts in MHC promiscuity
level should have occurred repeatedly and in a rapid manner
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during the course of human evolution.
To test these predictions, we first focused on the human

HLA class II DRB1 gene, for four reasons. First, DRB1 is the
most variable HLA class II locus with over 2000 registered
alleles (10). Together with HLA-DRA, HLA-DRB1 encodes
the heterodimeric HLA-DR protein complex, but HLA-DRA
is basically invariant. Second, DRB1 shows the strongest
signature of selection among HLA class II loci (11), and it
has diversified very rapidly in the human lineage (12). Many
of these alleles appear to be human-specific and most likely
evolved after the migration of ancestral human populations
out of Africa (12). These periods have been associated with
human populations encountering numerous new pathogens
(9, 13). For other HLA class II loci, the level of genetic
diversity is lower (10, 11), probably driven by evolutionary
forces unrelated to pathogens (14). Third, epitope binding
prediction algorithms show higher accuracy for DRB1, than
for other HLA class II loci (15, 16). Finally, the abundance
of DRB1 on the cell surface is especially high compared to
other HLA class II receptors, indicating special significance
of these molecules in antigen presentation (17).

As HLA-DR presents peptide epitopes derived mainly
from extracellular proteins to T-cells (1), the pathogen-driven
promiscuity hypothesis additionally predicts that primarily
extracellular pathogen richness should influence the geo-
graphical distribution of promiscuous HLA-DRB1 alleles.
Estimates on epitope binding promiscuity were derived from
two sources: experimental assays that measured individual
peptide-MHC interactions in vitro and systematic computa-
tional predictions. In a series of analyses, we show that pre-
dictions of the pathogen-driven promiscuity hypothesis are
upheld, regardless of how HLA-DRB1 promiscuity level is
estimated.

Results
Estimating HLA promiscuity level.
Given that large-scale experimental assays to measure indi-
vidual peptide-MHC interactions are extremely tedious, we
first employed established bioinformatics tools to predict the
binding affinities of experimentally verified epitope peptides
for a panel of 160 nonsynonymous HLA-DRB1 alleles, all
of which are present at detectable frequencies in at least one
human population (18–20). The set of investigated epitopes
was derived from the Immune Epitope Database (IEDB) and
contains 2691 peptide epitopes of 71 pathogens known to be
bound by certain HLA II variants (21) (Dataset S1). Epi-
topes showing high levels of amino acid similarity to each
other were excluded from the analysis (See Methods). Most
included epitopes are 15 to 20 amino acids long, and are
found in only one of the 71 pathogens (SI Appendix, Fig.
S1, Dataset S1). The NetMHCIIpan algorithm was used to
predict individual epitope-MHC interactions (15), not least
because it outperforms other prediction algorithms (16). The
breadth of epitope binding repertoire or, shortly, the level of
promiscuity of individual HLA-DRB1 alleles was estimated
as the fraction of epitopes with a binding affinity stronger
than 50 nM to the given MHC molecule. This thresh-

old corresponds to high-affinity binding, which is frequently
observed in MHC molecules displaying immunodominance
(22). We found large variation in promiscuity levels across
HLA-DRB1 alleles (SI Appendix, Fig. S2). Using a smaller
dataset with information from both approaches, we show that
the computationally predicted and the empirically estimated
promiscuity values are strongly correlated with each other
(Spearman’s rho: 0.78, P = 0.004, SI Appendix, Fig. S3).
Moreover, our results are robust to changes in the affinity
threshold (SI Appendix, Fig. S4, A to C), usage of other
prediction algorithms (SI Appendix, Fig. 4D) and differ-
ent epitope data sets (SI Appendix, Fig. 4E). As expected,
promiscuous HLA-DRB1 alleles can present epitopes from
a broader range of pathogen species (SI Appendix, Fig. S5).
Reassuringly, there was no correlation between allele promis-
cuity values and the amount of data per allele used for the
training of the algorithm (Spearman’s rho: -0.38, P = 0.21).

Global distribution of promiscuous HLA alleles.
Taking advantage of the confirmed reliability of computa-
tional predictions, we next investigated the geographic distri-
bution of HLA-DRB1 alleles. We first collected high qual-
ity HLA-DRB1 allele prevalence data of 96 human popu-
lations residing in 43 countries from two databases and an
article (18–20). The weighted average of promiscuity level
in each population was calculated based on the promiscuity
values and allele frequencies of individual alleles in the pop-
ulation (See Methods). The analysis revealed a large varia-
tion in mean promiscuity across geographical regions and the
corresponding human populations (SI Appendix, Table S1).
Importantly, several distantly related, but highly promiscuous
alleles contribute to this pattern (SI Appendix, Table S1). No-
tably, an especially high allelic promiscuity level was found
in South East Asia, an important hotspot of emerging infec-
tious diseases (23). To minimize any potential confounding
effect of high genetic relatedness between neighboring popu-
lations, we merged populations with similar HLA allele com-
positions for all further analyses (See Methods).

Link between pathogen diversity and HLA promiscuity
level.
Using the Global Infectious Diseases and Epidemiology Net-
work (GIDEON), we compiled a dataset on pathogen rich-
ness in the corresponding 43 geographic regions (24). It con-
sists of 95 diseases caused by 168 extracellular pathogens,
including diverse bacterial species, fungi, protozoa and
helminthes. Using the same protocol, we additionally com-
piled a dataset on the prevalence of 149 diseases in the same
regions caused by 214 viral and other obligate intracellular
pathogens. The dataset and methodology employed for the
analysis are standardized and have been used previously in
similar contexts (7, 25).

We report a strong positive correlation between extra-
cellular pathogen diversity and mean promiscuity: HLA-
DRB1 alleles that can bind epitopes from a broader range of
pathogens are more likely to be found in regions of elevated
pathogen diversity (Fig. 2A). As mentioned above, the pro-
posed hypothesis also predicts that HLA-DRB1 promiscuity
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should be specifically associated with extracellular, but not
intracellular pathogen diversity. In line with this expectation,
we found no significant association between HLA-DRB1
promiscuity level and diversity of intracellular pathogens
(Fig. 2B). We conclude that the geographical distribution
of promiscuous HLA-DRB1 alleles has been shaped by the
diversity of extracellular pathogens.

Fig. 2. Relationship between epitope binding promiscuity and pathogen di-
versity. Normalized population-level promiscuity of HLA-DRB1 alleles is shown as
the function of extracellular pathogen diversity as approximated by species count.
Promiscuity scores were calculated based on standardized (i.e. z-score) allele
promiscuity values and were averaged in each population group (see Methods).
Significant correlations were found between extracellular pathogen species count
and (A) predicted allele promiscuity level in 37 groups (Spearman’s rho: 0.5, P =
0.002) and (C) in vitro promiscuity level in 28 groups (Spearman’s rho: 0.7, P =
3 × 10−5). No significant correlation was found between intracellular pathogen di-
versity and (B) predicted and (D) in vitro promiscuity at the HLA-DRB1 locus (Spear-
man’s rho: 0.04 and 0.21, P = 0.81 and 0.29, respectively). Dashed lines indicate
smooth curve fitted using cubic smoothing spline method in R (see Methods). Pop-
ulation groups were created using the 15th percentile genetic distance cutoff (see
Methods). For results obtained upon using alternative distance cutoff values, see
Supplementary Data 2.

The above results hold – and are even stronger – when
estimates on promiscuity were derived from data of empiri-
cal in vitro binding affinity assays (shortly in vitro promiscu-
ity), downloaded from the IEDB database (21) (Fig. 2, C and
D, SI Appendix, Table S2 and Dataset S2). However, these
results do not exclude the possibility that the geographical
link between pathogen diversity and promiscuity is indirect.
More direct support on the causal relationship between the
two variables comes from analysis of prior human genetic
studies. The data indicate that multiple allele groups with
high promiscuity levels are associated with protection against
a broad range of infectious diseases (SI Appendix, Table S3).

The data also indicate local adaptation towards elevated
promiscuity under diverse pathogen pressure. The HLA-
DRB1*12:02 allele is prevalent in specific regions of South
East Asia. Compared to other alleles detected in this region,
HLA-DRB1*12:02 has an exceptionally high promiscuity

value (Fig. 3A). The high frequency of HLA-DRB1*12:02
has been previously suggested to reflect pathogen-driven se-
lection during migration of a Mongolian population to South
China (26). Indeed, this allele is associated with protec-
tion from several infectious diseases caused by extracellu-
lar pathogens (SI Appendix, Table S3), many of which are
endemic in South East Asia (27, 28). Remarkably, the fre-
quency of this allele increases with extracellular pathogen di-
versity in this region (Fig. 3B). Together, these observations
support the hypothesis that promiscuous epitope binding of
HLA-DRB1 alleles is favored by selection when extracellu-
lar pathogen diversity is high.

Fig. 3. HLA-DRB1*12:02 allele promiscuity level and extracellular pathogen
diversity in Southeast Asia. (A) HLA-DRB1*12:02 has exceptionally high promis-
cuity level compared to other alleles. The figure shows alleles with at least 10%
frequency in at least one population in Southeast Asia. Predicted allele promiscuity
values are shown. (B) The frequency of DRB1*12:02 increases with extracellular
pathogen diversity across populations (Spearman’s rho: 0.57, P = 0.017). Popula-
tions resided in China, Japan, South Korea, Indonesia, Malaysia and the Philippines
were included in the analysis. Red curve indicates smooth curve fitted using cubic
smoothing spline method in R (see Methods).

Evolution of promiscuous HLA alleles.
An important unresolved issue is how promiscuity has
changed during the course of human evolution. Under the as-
sumption that local pathogen diversity drives the evolution of
epitope recognition of HLA class II alleles, promiscuity as a
molecular trait should have evolved rapidly as human popula-
tions expanded into new territories. To investigate this issue,
we combined an established phylogeny of HLA-DRB1 alle-
les (29) with predicted epitope binding promiscuity values.
We found that alleles with a high promiscuity level have a
patchy distribution across the tree (SI Appendix, Fig. S6), in-
dicating that high promiscuity has multiple independent ori-
gins. To investigate this observation further, we selected a
set of 96 HLA-DRB1 alleles with a detectable frequency in
at least one human population and appropriate sequence data
(See Methods). A comparison of all pairs of these alleles re-
vealed that even very closely related alleles show major dif-
ferences in promiscuity levels (Fig. 4A). For example, alle-
les belonging to the HLA-DRB1*13 group show over 98%
amino acid sequence identity to each other, but display as
much as 57-fold variation in the predicted promiscuity levels.
We conclude that the switch between high and low promis-
cuity levels has occurred repeatedly and in a rapid manner
during the allelic diversification of the HLA-DRB1 locus.

We next asked how selection on promiscuity has shaped
the genetic diversity along the epitope binding region of HLA
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molecules. To quantify protein sequence variability at each
amino acid position, we calculated the Shannon entropy in-
dex based on the alignment of the 96 selected HLA-DRB1
alleles from above. For each position, we also calculated
promiscuity fragility, that is the median impact of single
amino acid substitutions on promiscuity (See Methods). A
strong positive correlation was found between Shannon en-
tropy and promiscuity fragility (Fig. 4B, Spearman’s rho =
0.76, P = 0.0001). Importantly, this conclusion does not de-
pend on how sequence polymorphism was estimated (SI Ap-
pendix, Fig. S7). Accordingly, amino acid positions with a
large impact on epitope binding promiscuity are highly vari-
able in human populations. Furthermore, those sites in the
epitope binding region that are under positive selection (30)
tend to have high promiscuity fragility values (Wilcoxon rank
sum test, P = 0.0012, Fig. 4B). The above data suggests a link
between allele promiscuity and HLA diversification, proba-
bly as an outcome of positive selection.

Fig. 4. Promiscuity changes rapidly during evolution and might be a se-
lectable trait. (A) For all pairs of selected alleles, predicted promiscuity difference
between two HLA-DRB1 alleles is shown as a function of amino acid distance mea-
sured after excluding the epitope binding region. Large differences in promiscuity
can be observed even between closely related pairs of alleles (e.g. at zero amino
acid distance). As a result, there is no correlation between amino acid distance
and promiscuity fold difference (Spearman’s rho = 0.02, P = 0.19). Amino acid
distances were binned as shown on the figure (n = 308, 1168, 564, 654, 1492).
Violin plots show the density function of promiscuity fold difference values for allele
pairs in the given bin. White circles show median values, bold black lines show the
interquartile range. (B) Sequence variability of an amino acid site in the epitope
binding region of HLA-DRB1 (measured as Shannon entropy) correlates positively
with the site’s promiscuity fragility, measured as the median predicted promiscuity
fold difference caused by a random amino acid change at the given site (see inset,
Spearman’s rho: 0.76, P = 0.0001). Sites that have a larger impact on promiscuity
are more diverse in human populations. Line in inset represents linear regression
between the two variables. The same result was obtained when promiscuity fragility
was calculated based on nucleotide substitutions instead of amino acid substitutions
(Spearman’s rho: 0.73, P = 0.0004, see Methods) or when sequence variability was
measured as nonsynonymous nucleotide diversity (ΠA), instead of sequence en-
tropy (SI Appendix, Fig S7). Sites under positive selection as identified by Furlong
et al.(30) show significantly higher promiscuity fragility (Wilcoxon rank sum test, P
= 0.0012) and are marked with asterisks.

Discussion
Central players of the adaptive immune system are the groups
of proteins encoded in the major histocompatibility complex
(MHC). By binding short peptide segments (epitopes), MHC
molecules guide both immune response against pathogens
and tolerance to self-peptides. The genomic region encod-
ing these MHC molecules is of special interest, for two rea-
sons. It harbors more disease associations than any other re-
gions in the human genome, including associations to infec-
tious diseases, autoimmune disorders, tumors and neuropsy-

chiatric diseases (31). A growing body of literature is now re-
vealing that certain MHC molecule variants can bind a wider
range of epitopes than others, but the functional implications
of this variation remain unknown (32). In this paper, we argue
that by recognizing a larger variety of epitopes, such promis-
cuous MHC variants promote immune response against a
broader range of pathogens at the individual level. There-
fore, promiscuous epitope binding of MHC molecules should
be favored by selection in geographic regions where extracel-
lular pathogen diversity is high. Importantly, this mechanism
is completely independent of the well-established concept of
heterozygote advantage at the MHC, as it concerns individual
alleles and not allele combinations or genotypes.

To test this hypothesis, we combined data on the geo-
graphic distribution of human MHC-II variants and preva-
lence of extracellular pathogens, empirical/computational es-
timates of epitope binding promiscuity and phylogenetic
analyses. Our main findings, strongly supporting our hypoth-
esis, are as follows.

First, in geographical regions of high extracellular
pathogen diversity, human HLA DRB1 alleles have excep-
tionally high epitope binding repertoires. This suggests that
the geographical distribution of promiscuous HLA-DRB1
alleles has been shaped by the diversity of extracellular
pathogens. The HLA-DRB1*12:02 allele highlights this
point. HLA-DRB1*12:02 is a promiscuous allele variant
that has been associated with protection from certain infec-
tious diseases. As expected, this allele is especially preva-
lent in regions of South East Asia with elevated parasite load
(Fig. 3B). Notably, the relationship between pathogen diver-
sity and epitope binding promiscuity may be more general as
similar results hold for the HLA-A locus. HLA-A is one of
the three major types of human MHC class I cell surface re-
ceptors, and is mainly involved in the presentation of epitopes
from intracellular pathogens (33). In agreement with expec-
tation, there is a strong positive correlation between local
intracellular pathogen diversity and the HLA-A promiscuity
level of the corresponding human populations (SI Appendix,
Fig. S8, A and B, Dataset S2). No strong positive correla-
tion was found for two other MHC class I genes (HLA-B and
HLA-C, see SI Appendix, Fig. S8, C to F and Dataset S2).
Therefore, other unrelated evolutionary forces may shape the
geographical distribution of promiscuous HLA-B and HLA-
C alleles (SI Appendix, Suppl. Text).

Second, a phylogenetic analysis revealed major differ-
ences in promiscuity levels of very closely related HLA-
DRB1 alleles. This suggests that high promiscuity level in
HLA-DRB1 has evolved rapidly and repeatedly during hu-
man evolution. Finally, amino acid positions with a promi-
nent role in shaping HLA-DRB1 promiscuity level are es-
pecially variable in human populations and tend to be under
positive selection. In sum, we conclude that HLA promiscu-
ity level is a human trait with paramount importance during
adaptation to local pathogens.

Our work has important ramifications for future stud-
ies. MHC is the most variable region of the human genome,
and the variation is associated with numerous infectious and
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immune-mediated diseases (34–38). Pathogen-driven bal-
ancing selection is considered to generate the exceptionally
high levels of genetic diversity, yet it cannot fully account for
the observed geographic differences in human MHC genetic
diversity (7, 25). Here we offer a complementary mechanism
that provides protection against a broad range of pathogens
at the individual level and shapes MHC genetic diversity at
the same time. Therefore, promiscuity level may shape the
global distribution pattern of human MHC II alleles.

We note that promiscuous MHC alleles are rare in cer-
tain human populations (SI Appendix, Table S1), suggesting
that they are not always favoured by natural selection. Why
should it be so? First, the advantage provided by individual
promiscuous MHC alleles may be relatively small in regions
with an exceptionally high MHC genetic diversity. Second,
elevated promiscuity may not be able to cope with the rise of
novel and highly virulent pathogens. In such cases, display-
ing a particular epitope might be the most efficient way to
achieve resistance and high promiscuity might be suboptimal
due to a reduced specificity (8). Third, high promiscuity level
may elevate the risk of immune reactions against host tissues
and non-harmful proteins (8, 39). Clearly, future work should
elucidate the evolutionary trade-offs between protection from
pathogens and genetic susceptibility to autoimmune diseases.
This will require high-throughput experimental methods to
determine epitope binding repertoire (40), and HLA trans-
genic mice studies on the role of promiscuity in immune re-
sponse (41).

Finally, prior works indicate that genetic variations within
particular MHC genes are known to influence vaccine effi-
cacy (42), rejection rates of transplanted organs (43), suscep-
tibility to autoimmune diseases (44) and antitumor immunity
(45, 46). Our work raises the possibility that, by altering the
maturation and functionality of the immune system, the size
of the epitope binding repertoire of MHC variants itself could
have an impact on these processes. The exact role of MHC
promiscuity in these crucial public health issues is an exciting
future research area.

Methods
Computational prediction of epitope-binding promis-
cuity.
Epitopes of all available viral, bacterial and eukaryotic
pathogens known to be bound by at least one HLA-I or HLA-
II allele were collected from the Immune Epitope Database
(IEDB) (21). Reference proteomes of pathogenic species that
carry at least one of the collected epitope sequences were re-
trieved from the Uniprot database (102 for HLA-I and 71 for
HLA-II epitopes) (47). Only epitopes of these species were
analyzed further. All proteomes were scanned for each epi-
tope sequence, and epitope sequences found in only one pro-
teome (i.e. species-specific epitopes) were kept for further
analysis. Highly similar epitope sequences were identified
using Clustal Omega (48) and excluded as follows. A pro-
tein distance matrix was created and epitopes were discarded
iteratively. In each iteration, the epitope pairs with the low-
est k-tuple distance were identified. Then, the epitope with

the highest average similarity to all other sequences was ex-
cluded. Iterations were repeated until distance values less
than 0.5 (corresponding to greater than 50% sequence iden-
tity) were eliminated from the matrix (49). Note that this
filtering procedure was carried out separately for epitope se-
quences bound by HLA-I and HLA-II.

Binding affinities of the remaining 3265 HLA-I epitope
sequences to 346 HLA-A, 532 HLA-B and 225 HLA-C alle-
les were predicted with the NetMHCpan-4.0 algorithm. The
binding of 2691 HLA-II epitope sequences to 606 HLA-
DRB1 alleles was predicted with the NetMHCIIpan-3.1 al-
gorithm (15). The “pep” sequence input format was used for
both HLA-I and HLA-II epitope binding prediction. A bind-
ing affinity threshold of 50 nM was applied, yielding peptides
that are likely to be immunodominant (22). For alternative
binding threshold definitions, see SI Appendix, Fig. S4. For
each binding threshold, epitope-binding promiscuity was de-
fined as the fraction of the epitope set bound by a given allele.

Calculating epitope-binding promiscuity using in vitro
data.
To determine the epitope binding promiscuity of HLA-DRB1
alleles based on previously published experimental data, we
used the IEDB database (21). Specifically, we downloaded
all MHC ligand and T cell assay data available for 48 HLA-
DRB1 alleles. Binding data of 20 alleles screened for at least
100 ligands were further analyzed. The epitope set of each
allele was filtered for highly similar sequences as described
above. As the majority of in vitro assay data were available in
a binary format (i.e. presence or absence of binding), promis-
cuity was calculated as the fraction of positive binding assays
for a given allele.

Calculating promiscuity levels of human populations.
To calculate population-level promiscuity values, we ob-
tained HLA allele frequency data from the Allele Frequency
Net Database (AFND) and the International Histocompatibil-
ity Working Group (IHWG) populations (18, 19). Haplotype-
level data of the 13th International HLA and Immunogenet-
ics Workshop (IHIW) populations were downloaded from
dbMHC (National Center for Biotechnology Information
[NCBI]; http://www.ncbi.nlm.nih.gov/mhc/). Additionally,
allele frequency data of the 14th and 16th IHIW popula-
tions as published by Riccio et al. (20) and populations in
the AFND were used in the analyses. To avoid potential
confounding effects of recent genetic admixture and migra-
tion, we focused on native populations, similarly to previ-
ous studies (SI Appendix, Table S1) (7, 25). We excluded
IHWG populations reported to deviate from Hardy-Weinberg
equilibrium (20). Among the AFND populations and IHWG
populations without haplotype-resolution data (14th and 16th
IHIW), those comprising less than 100 genotyped individuals
or those in which the sum of allele frequencies deviated from
1 by more than 1% were excluded. Populations reported in
multiple databases were included only once in the analysis.

For each HLA loci, we calculated mean population
promiscuity by averaging promiscuity values of alleles
weighted by their relative frequencies in the populations.
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In all of these calculations, we used standardized (i.e. z-
score) promiscuity values to make the in silico and in vitro
values more easily comparable. Finally, when calculating
population-level promiscuity based on in vitro promiscuity
data, we excluded populations for which in vitro promiscuity
values could be assigned to less than 50% cumulative allele
frequency.

To tackle the issue of non-independence of data points,
we focused on populations instead of countries and grouped
those populations that have highly similar HLA allele compo-
sitions, based on standard measures of genetic distance (see
below). We merged populations with highly similar HLA al-
lele compositions, allowing us to avoid pseudoreplication of
data points while retaining informative allele frequency dif-
ferences between populations residing in the same broad ge-
ographical areas.

To this end, we first generated a genetic distance matrix
between populations with the adegenet R library using allele
frequency data of the examined locus. We used the Rogers’
genetic distance measure (50) because it doesn’t assume that
allele frequency changes are driven by genetic drift only, an
unlikely scenario for HLA genes. Next, populations were
merged using a network-based approach. Populations were
treated as nodes and two nodes were connected if their ge-
netic distance was under a cutoff value. Populations were
grouped in an iterative manner. In each iteration, all maxi-
mal cliques (i.e. subsets of nodes that are fully connected to
each other) in the network were identified. Maximal cliques
represent groups of populations where all populations have
similar allele compositions to each other. Then, mean ge-
netic distance within each clique was calculated. The clique
with the lowest average distance was selected and its popu-
lations were grouped together. Then, this clique was deleted
from the network. Iterations were repeated until no maximal
cliques remained in the network. Grouping of populations
was carried out using different distance value cutoffs (1st,
5th, 10th and 15th rank percentile of all distance values).
The resulting population groups and the individual popula-
tions remained in the network were treated as independent
data points in subsequent statistical analyses. Mean promis-
cuity level in population groups was calculated by averaging
population promiscuity values.

Unless otherwise indicated, all figures are based on popu-
lation groups using the 15th percentile genetic distance cutoff
value. Importantly, using different cut-offs has no impact on
our results (Dataset S2). Finally, we note that genetic dif-
ferences among human populations mostly come from gra-
dations in allele frequencies rather than from the presence of
distinctive alleles (51). Therefore, traditional clustering of
populations based on HLA composition would have been ill-
suited for our purposes, yielding only a small number (3-4)
of clearly distinct clusters (data not shown).

Pathogen diversity.
Data on 309 infectious diseases were collected from the
Global Infectious Diseases and Epidemiology Network
(GIDEON) (24). For each disease, the number of causative
species or genera (when species were not listed for the genus)

was determined using disease information in the GIDEON
database as described previously (52). Causative agents
were classified into obligate intracellular and extracellular
pathogen groups based on a previous study (7) and literature
information. Putative facultative intracellular pathogens were
excluded from the analysis. Diseases caused by agents that
could not be clearly classified were also excluded from the
analysis. Extracellular and intracellular pathogen diversity
(richness) of each country was approximated by the number
of identified endemic extracellular and intracellular species,
respectively.

Finally, we assigned country-level measures of pathogen
and HLA diversity to population groups as follows. For each
population group, extracellular and intracellular pathogen
counts were calculated by averaging the corresponding
country-level values across the populations within the group.
For example, if a population group contained two popula-
tions residing in neighboring countries then we assigned the
average pathogen diversity of the two countries to it.

Amino acid distance between DRB1 alleles.
We used amino acid distance as a proxy for phylogenetic
distance between pairs of DRB1 alleles. To this end, nu-
cleotide sequences of DRB1 alleles that contained full exon
2 and 3 regions were downloaded from the IPD-IMGT/HLA
database (10). To limit our analyses to alleles that have an
impact on the inferred promiscuity level of a population, we
considered only those sequences that had a non-zero fre-
quency in at least one human population (see above). From
allele groups that code for the same protein sequence (syn-
onymous differences, differentiated by the third set of digits
in the HLA nomenclature), one of the alleles was randomly
chosen. This selection procedure resulted in 96 alleles. Mul-
tiple alignment of nucleotide sequences was performed us-
ing the MUSCLE algorithm as implemented in the MEGA
software (53) and converted to protein sequence alignments.
Amino acid distance was calculated using the Jones-Taylor-
Thornton substitution model in MEGA (53) (Fig. 4A). Epi-
tope binding region sites - as defined previously (15) - were
excluded when calculating amino acid distance. The ratio-
nale behind this exclusion is that these sites are known to be
under positive selection (54, 55) and are therefore less infor-
mative on evolutionary distance. Additionally, by removing
these sites, the amino acid distance remains independent of
promiscuity predictions. Finally, as intragenic recombination
may distort the inference of evolutionary distance, we iden-
tified such events across all alleles following the protocol of
Satta et al. (56) using GENECONV (57) and RDP algorithms
(58) as implemented in the RDP software (59). Recombinant
alleles were removed when calculating amino acid distance.

Sequence diversity and promiscuity fragility.
We first defined the epitope binding region of HLA DRB1 al-
leles as previously (15). To estimate sequence diversity along
the epitope binding region, we employed two measures: stan-
dard Shannon entropy (60) and nucleotide diversity (Π), a
widely employed measure of genetic variation (61).
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Using the protein sequence alignment of the 96 alleles de-
fined above, we calculated amino acid sequence variability as
the Shannon entropy of the given amino acid site as follows:

M∑
i=1

Pilog2Pi

where Pi is the fraction of residues of amino acid type i at a
given site and M is the number of amino acid types observed
at that site.

Nonsynonymous nucleotide diversity (ΠA) measures the
average number of nonsynonymous nucleotide differences
per nonsynonymous site between two randomly chosen pro-
tein coding DNA sequences from the same population (61,
62). ΠA was calculated for each amino acid site in the epi-
tope binding region for each population using DnaSP soft-
ware (63) and custom-written R scripts. Nucleotide se-
quences of DRB1 alleles were downloaded from the IPD-
IMGT/HLA database (10).

The calculation is based on the work of Nei et al. (61)
using the equation:

ΠA =
∑
i,j

xi ·xj ·ΠAij

where xi and xj are the frequencies of the ith and jth alle-
les in the population, respectively and ΠAij

is the number of
nonsynonymous nucleotide differences per nonsynonymous
nucleotide site between the two codon sequences of the given
amino acid site in the ith and jth alleles. To calculate ΠA for
each population, allele frequency data of human populations
was obtained, as described earlier (see above). An overall
nucleotide diversity index was calculated by averaging ΠA
across populations.

To calculate each amino acid site’s impact on epitope
binding promiscuity (promiscuity fragility), promiscuity was
predicted for each 19 possible amino acid change along the
epitope binding region of each 96 alleles. The fold differ-
ence in promiscuity resulting from each amino acid substi-
tution was calculated. The median promiscuity fold differ-
ence of each possible allele and amino acid change combi-
nation (96×19) was used to estimate promiscuity fragility at
each amino acid position. As some of the 19 possible amino
acid changes are not accessible via a single nucleotide mu-
tation and the accessible amino acid changes can have dif-
ferent likelihoods based on the codon sequence of the site
and the genetic code, we also calculated promiscuity fragility
based on each non-synonymous nucleotide substitution of the
codon instead of each amino acid substitution of the site.

Statistical analysis and graphical representation.
All statistical analyses were carried out in R version 3.2.0
(64). Smooth curves were fitted using the cubic smoothing
spline method (65).
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