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Abstract

Successful prediction of the likely paths of tumor progression is valuable for diagnostic, prog-
nostic, and treatment purposes. Cancer progression models (CPMs) use cross-sectional sam-
ples to identify restrictions in the order of accumulation of driver mutations and thus CPMs
encode the paths of tumor progression. Here we analyze the performance of four CPMs to
examine whether they can be used to predict the true distribution of paths of tumor progres-
sion and to estimate evolutionary unpredictability. Employing simulations we show that if
fitness landscapes are single peaked (have a single fitness maximum) there is good agreement
between true and predicted distributions of paths of tumor progression when sample sizes are
large, but performance is poor with the currently common much smaller sample sizes. Un-
der multi-peaked fitness landscapes (i.e., those with multiple fitness maxima), performance is
poor and improves only slightly with sample size. In all cases, detection regime (when tumors
are sampled) is a key determinant of performance. Estimates of evolutionary unpredictability
from the best performing CPM, among the four examined, tend to overestimate the true un-
predictability and the bias is affected by detection regime; CPMs could be useful for estimating
upper bounds to the true evolutionary unpredictability. Analysis of twenty-two cancer data
sets shows low evolutionary unpredictability for several of the data sets. But most of the pre-
dictions of paths of tumor progression are very unreliable, and unreliability increases with the
number of features analyzed. Our results indicate that CPMs could be valuable tools for pre-
dicting cancer progression but that, currently, obtaining useful predictions of paths of tumor
progression from CPMs is dubious, and emphasize the need for methodological work that can
account for the probably multi-peaked fitness landscapes in cancer.
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Author Summary

Knowing the likely paths of tumor progression is instrumental for cancer precision medicine
as it would allow us to identify genetic targets that block disease progression and to improve
therapeutic decisions. Direct information about paths of tumor progression is scarce, but cancer
progression models (CPMs), which use as input cross-sectional data on genetic alterations, can
be used to predict these paths. CPMs, however, make assumptions about fitness landscapes
(genotype-fitness maps) that might not be met in cancer. We examine if four CPMs can be used
to predict successfully the distribution of tumor progression paths; we find that some CPMs
work well when sample sizes are large and fitness landscapes have a single fitness maximum,
but in fitness landscapes with multiple fitness maxima prediction is poor. However, the best
performing CPM in our study could be used to estimate evolutionary unpredictability. When
we apply the best performing CPM in our study to twenty-two cancer data sets we find that
predictions are generally unreliable but that some cancer data sets show low unpredictability.
Our results highlight that CPMs could be valuable tools for predicting disease progression, but
emphasize the need for methodological work to account for multi-peaked fitness landscapes.
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1 Introduction

Improving our ability to predict the paths of tumor progression is helpful for diagnostic, prog-
nostic, and treatment purposes as, for example, it would allow us to identify genes that block
the most common paths of disease progression (Greaves, 2015; Lipinski et al., 2016; McPherson
et al., 2018; Williams et al., 2018). This interest in predicting paths of progression is, of course,
not exclusive to cancer (see e.g., reviews in Lässig et al., 2017; Losos, 2018). For example, in
some cases antibiotic resistance shows parallel evolution with mutations being acquired in a
similar order (Toprak et al., 2012), and here “Even a modest predictive power might improve
therapeutic outcomes by informing the selection of drugs, the preference between monother-
apy or combination therapy and the temporal dosing regimen (...)” (Palmer and Kishony, 2013,
p. 243i). But detailed information about the paths of tumor evolution and their distribution, ob-
tained from multiple within-patient samples with timing information, is not available.

Cancer progression models (CPMs), such as conjunctive Bayesian networks (CBN) (Ger-
stung et al., 2009, 2011; Montazeri et al., 2016), oncogenetic trees (OT) (Desper et al., 1999; Szabo
and Boucher, 2008), CAncer PRogression Inference (CAPRI) (Caravagna et al., 2016; Ramazzotti
et al., 2015), or CAncer PRogression Extraction with Single Edges (CAPRESE) (Olde Loohuis
et al., 2014), can be used to predict paths of tumor progression. CPMs were originally devel-
oped to identify restrictions in the order of accumulation of mutations during tumor progres-
sion from cross-sectional data (Beerenwinkel et al., 2015, 2016). But CPMs also encode all the
possible mutational paths or trajectories of tumor progression, from the initial genotype to the
genotype with all driver genes mutated (see Figure 1); in fact, mutational pathways and evo-
lutionary trajectories are already mentioned in the papers that describe CBN (Gerstung et al.,
2011), CAPRI (Caravagna et al., 2016; Ramazzotti et al., 2015) and in general overviews of CPMs
(Beerenwinkel et al., 2016). Thus, CPMs could improve our ability to predict disease progres-
sion by leveraging on the available, and growing, number of cross-sectional data sets.

The first question we address in this study is whether we can predict the paths of tumor
progression using CPMs. To answer this question we will examine how close to the truth are
the predictions made by four CPMs (CBN, OT, CAPRI, and CAPRESE) about the distribution
of paths of tumor progression. When addressing this question we need to take into account
possible deviations from the models assumed by CPMs. In particular, most CPMs assume that
the acquisition of a mutation in a driver gene, when all its possible dependencies on other
genes are satisfied, does not decrease the probability of gaining a mutation in another driver
gene (Misra et al., 2014). In other words, acquiring driver mutations (when their dependencies
on other genes are satisfied) cannot decrease fitness, which implies that the fitness landscapes
assumed by CPMs only have a single global fitness maximum (the genotype with all drivers
mutated —see Figure 1). But it is likely that many cancer fitness landscapes have several local
fitness maxima (i.e., they are rugged, multi-peaked landscapes): this can happen if there are
many combinations of a small number of drivers, out of a larger pool of drivers (Tomasetti
et al., 2015), that result in the escape genotypes; moreover, synthetic lethality is common in
both cancer cells (Beijersbergen et al., 2017; O’Neil et al., 2017) and the human genome (Blomen
et al., 2015), and it can lead to local fitness maxima when it affects mutations that individually
increase fitness —see also Chiotti et al., 2014. Thus, to examine if CPMs can be used to predict
paths of tumor progression we will need to assess how the quality of the predictions is affected
by multi-peaked fitness landscapes.

The second question addressed in this paper is whether we can we use CPMs to estimate
evolutionary unpredictability, regardless of the performance when predicting the actual paths
of tumor progression. A model could be useful if it suggests few paths are possible, even if its
actual predictions about the distribution of paths are not trustworthy. Conversely, predicting
correctly the distribution of paths of tumor progression might be of little importance in scenar-
ios where the true evolutionary unpredictability itself is very large (where disease progression
follows a very large number of possible paths); for practical purposes, forecasting here would
be useless.

To address the above questions (can we predict the paths of tumor progression using CPMs?;
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can we estimate evolutionary unpredictability using CPMs?) we use evolutionary simulations
on 1260 fitness landscapes that include from none to severe deviations from the assumptions
that CPMs make about the structure of fitness landscapes, and we analyze the data with four
different CPMs. This paper does not attempt to understand the determinants of evolutionary
(un)predictability (see, e.g., Bank et al., 2016; de Visser and Krug, 2014; Lässig et al., 2017; Losos,
2018; Szendro et al., 2013) but, instead, we focus on the effects of evolutionary unpredictability
for CPMs. This is why we use variation in key determinants of evolutionary unpredictability
(e.g., variation in population sizes and mutation rates) but these factors are only used to gen-
erate variability in unpredictability, and not themselves the focus of the study. To better assess
the quality of predictions, we use sample sizes that cover the range from what is commonly
used to what are much larger sample sizes than currently available. We also include variation
in the cancer detection process or detection regime (when cancer samples are taken, or when
patients are sampled), since previous studies have shown that it affects the quality of inferences
from CPMs (Diaz-Uriarte, 2018).

We have shown before (Diaz-Uriarte, 2018) that the performance of two CPMs (CBN and
CAPRI) for predicting accessible genotypes degrades considerably when the fitness landscapes
contain reciprocal sign epistasis. That study focused on predicting accessible genotypes and its
results cannot provide an answer to the questions about predicting paths of tumor progression
and estimating evolutionary unpredictability. To answer whether CPMs can be used to predict
paths of progression and to estimate evolutionary unpredictability we need to look directly at
the prediction of paths (not genotypes), and compare them with the true paths of progression,
as we do in the current work. Thus, the two studies differ in objectives, methods (here we
follow evolution until fixation, and we develop procedures to compare predicted with true
paths of tumor progression), and scenarios considered (the types fitness landscapes used and
the extent of evolutionary unpredictability); see details in S1 Text.

Here we find that the agreement between the predicted and true distributions of paths
is generally poor, unless sample sizes are very large and fitness landscapes conform to the
assumptions of CPMs. Both detection regime and evolutionary unpredictability itself have
major effects on performance. But in spite of the unreliability of the predictions of paths of
tumor progression, we find that CPMs can be useful for estimating upper bounds to the true
evolutionary unpredictability.

What are the implications of our results for the analysis and interpretation of the use of
CPMs with cancer data sets? We analyze twenty-two real cancer data sets with H-CBN, the
best performing CPM in the simulations. We cannot examine how close predictions are to the
truth, since the truth is unknown; thus, we use bootstrap samples to examine the reliability of
the inferences. Many of the cancer data sets reflect conditions where useful predictions could
be possible, based on the estimates of evolutionary unpredictability from H-CBN. But for most
data sets these results are thwarted by the unreliability of the predictions themselves, which
increases with the number of features analyzed. Our results question uncritical use of CPMs
for predicting paths of tumor progression, and suggest the need for methodological work that
can account for the probably multi-peaked fitness landscapes in cancer.

2 Materials and methods

This paper involves both a simulation study where results from four CPMs (CBN —variants
H-CBN and MCCBN—, OT, CAPRI —variants CAPRI AIC and CAPRI BIC—, and CAPRESE)
are compared to the known truth from the simulations, and the analysis of twenty-two cancer
data sets using the best performing of the above CPMs (H-CBN). Section 2.1 describes the
CPMs used and how predicted paths of tumor progression are obtained from them. Section
2.2 provides an overview of the simulation study. Sections 2.3 to 2.5 provide details on how
the simulations were conducted. How the performance of CPMs was assessed is explained in
section 2.6. Section 2.7 summarizes the main features of the simulated landscapes and data sets
used to evaluate the performance of the CPMs. The cancer data sets and the methods used to
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analyze them are described in section 2.8.

2.1 Cancer Progression Models used and paths of tumor progression

We have compared four distinct CPMs: CBN, OT, CAPRI, and CAPRESE. Two of the mod-
els used, CBN and CAPRI, have been used in two variants (H-CBN and MCCBN for CBN,
CAPRI AIC and CAPRI BIC for CAPRI), yielding a total of six different procedures for obtain-
ing CPMs. Only a brief overview of these CPMs is provided here; detailed descriptions can be
found in the original references for each model: H-CBN (Gerstung et al., 2009, 2011) , MCCBN
(Montazeri et al., 2016), OT (Desper et al., 1999; Szabo and Boucher, 2008), CAPRI (Caravagna
et al., 2016; Ramazzotti et al., 2015), and CAPRESE (Olde Loohuis et al., 2014). (Other CPMs ex-
ist but they have not been considered here because they are too slow for routine work, have no
software available, or have dependencies on non-open source external libraries —see S4 Text).

The CPMs considered try to identify restrictions in the order of accumulation of mutations
from cross-sectional data. CPMs assume that the different observations in the cross-sectional
data set constitute independent realizations of evolutionary processes where the same con-
straints hold for all tumors (Beerenwinkel et al., 2015, 2016; Gerstung et al., 2011). Thus, a data
set can be regarded as a set of replicate evolutionary experiments where all individuals are un-
der the same genetic constraints. For the four CPMs considered in this paper, the cross-sectional
data is a matrix of subjects (or individuals) by driver alteration events, where each entry in the
matrix is binary coded as mutated or not-mutated (or, equivalently, altered or non-altered).
CPMs assume there are no back mutations in these events —i.e., once gained, an alteration
is not lost. CPMs further assume that the driver genes are known. For the simulations, we
will refer to these driver alteration events as “genes”, but they can be individual genes, parts
or states of genes, or modules or pathways made from several genes (e.g. Caravagna et al.,
2016; Gerstung et al., 2011). When we analyze the twenty-two cancer data sets (see section 2.8)
we will use the generic term “features” as some of those data sets use genes whereas others
use pathway or module information. CPMs assume that all tumors start cancer progression
without any of the mutations considered in the study (the above matrix of subjects by driver
alterations), but other mutations could be present that have caused the initial tumor growth.
All these other mutations are absorbed in the root node from which cancer is initiated (Attolini
et al., 2010); note that the way the data are simulated to generate cross-sectional observations
(see section 2.2) is consistent with this assumption.

The above assumptions are common to the CPMs considered. The models examined here
differ, however, in the types of restrictions they can represent and on their model fitting pro-
cedures. Both OT (Desper et al., 1999; Szabo and Boucher, 2008) and CAPRESE (Olde Loohuis
et al., 2014) describe the accumulation of mutations with order constraints that can be repre-
sented as trees. Thus, among the “representable” fitness landscapes used in this paper (section
2.4), OT and CAPRESE can only faithfully model the subset that are trees, those where a gene
mutation has a direct dependency on only one other gene’s mutation. A key difference between
OT and CAPRESE is that CAPRESE reconstructs these models using a probability raising no-
tion of causation in the framework of Suppes’ probabilistic causation, whereas in OT weights
along edges can be directly interpreted as probabilities of transition along the edges by the
time of observation (Szabo and Boucher, 2008, p. 4). In contrast to OT and CAPRESE, both
CAPRI (Caravagna et al., 2016; Ramazzotti et al., 2015) and CBN (Gerstung et al., 2009, 2011;
Montazeri et al., 2016) allow modeling the dependence of an event on more than one previous
event: the output of the models are directed acyclic graphs (DAGs) where some nodes have
multiple parents, instead of a single parent (as in trees). CAPRI tries to identify events (alter-
ations) that constitute “selective advantage relationships”, again using probability raising in
the framework of Suppes’ probabilistic causation. We have used two versions of CAPRI, that
we will call CAPRI AIC and CAPRI BIC, that differ in the penalization used in the maximum
likelihood fit, Akaike Information Criterion (AIC), or Bayesian Information Criterion (BIC), re-
spectively. For CBN we have also used two variants, H-CBN, described in Gerstung et al. (2009,
2011) that uses simulated annealing with a nested expectation-maximization (EM) algorithm
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for estimation, and MCCBN, described in Montazeri et al. (2016), that uses a Monte-Carlo EM
algorithm. Thus, these six procedures can be divided into three groups: models that return
trees (OT and CAPRESE) and two families of models that return DAGs, CBN (H-CBN and
MCCBN) and CAPRI (CAPRI AIC and CAPRI BIC).

Because (the transitive reduction of) a DAG of restrictions determines a fitness graph (see
Figure 1 and Diaz-Uriarte, 2018), the set of paths to the maximum encoded by the output from
a CPM is obtained from the fitness graph. This we did for all models. From H-CBN and
MCCBN we can also obtain the estimated probability of each path of tumor progression to the
fitness maximum, since both H-CBN and MCCBN return the parameters of the waiting time to
occurrence of each mutation (given its restrictions are satisfied; e.g., p. i729 in Montazeri et al.,
2016, section 2.2 in Gerstung et al., 2009, or Hosseini, 2018; details and example in section 3 of S4
Text). It is also possible to perform a similar operation with the output of OT, and use the edge
weights from the fits of OT to obtain the probabilities of transition to each descendant genotype
and, from them, the probabilities of the different paths to the global maximum. It must be noted
that these probabilities are not really returned by the model, since the OTs used are untimed
oncogenetic trees (Desper et al., 1999; Szabo and Boucher, 2008). We will refer to paths with
probabilities assigned in the above way as probability-weighted paths. For CAPRESE and
CAPRI, it is not possible to map the output to different probabilities of paths of progression
(see section 3 of S4 Text) and in all computations that required probability of paths we assigned
the same probability to each path.

2.2 Overview of the simulation study

We have used simulations of tumor evolution on fitness landscapes of three different types (see
Figure 1), for landscapes of 7 and 10 genes, under different initial population sizes and mu-
tation rates. We have used a total of 1260 fitness landscapes = 35 random fitness landscapes
x 2 conditions of numbers of genes x 3 types of fitness landscapes x 3 initial population sizes
x 2 mutation regimes. For each one of the 1260 fitness landscapes, we simulated 20000 inde-
pendent evolutionary processes (with the specified parameters for initial population size and
mutation rate) using a logistic-like growth model; each simulated evolutionary process was
run until one of the genotypes at the local fitness maxima (or the single global fitness maxi-
mum) reached fixation. Each set of 20000 simulated evolutionary processes was then sampled
under three detection regimes, so that each fitness landscape generated three sets of 20000 sim-
ulated genotypes. From each of these sets, we obtained five different splits of the genotypes
for each of three sample sizes (50, 200, 4000); thus a total of 56700 (= 1260 x 3 x 3 x 5 combi-
nations of 1260 fitness landscapes, 3 detection regimes, 3 sample sizes, 5 splits) data sets were
produced. Each of these 56700 data sets was analyzed with every one of the CPMs compared
(H-CBN, MCCBN, OT, CAPRI AIC, CAPRI BIC, and CAPRESE), to obtain predicted paths of
tumor progression. These predictions were then compared with the true, recorded, paths of
tumor progression from the simulations (see section 2.6). A schematic view of the simulation
study is provided in Figure 2.

2.3 Fitness landscapes

We have used three different kinds of random fitness landscapes (see Figure 1). Representable
fitness landscapes are fitness landscapes for which a DAG of restrictions exists with the same
accessible genotypes and accessible mutational paths. (Accessible mutational path: a trajectory
through a collection of genotypes, where each genotype is separated from the preceding geno-
type by one mutation, along which fitness increases monotonically —Franke et al. (2011); acces-
sible genotypes: genotypes along accessible mutational paths). An example of a representable
fitness landscape with its corresponding DAG of restrictions and fitness graph is shown in
Figure 1A. A defining characteristic of representable fitness landscapes is that all accessible
genotypes that differ by exactly one mutation are connected in the fitness graph; thus, there
is a single global fitness maximum, the genotype with all genes mutated, and all accessible
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mutational paths in the fitness graph end in that single global maximum. For representable fit-
ness landscapes there is a one-to-one correspondence between DAGs of restrictions and fitness
graphs.

In local maxima fitness landscapes (Figure 1B) the set of accessible genotypes can be rep-
resented by a DAG of restrictions, but there are local fitness maxima and the fitness graph has
missing paths; the genotype with all genes mutated might or might not be the genotype with
largest fitness. In other words, in the local maxima fitness landscapes, the DAG of restrictions
and the fitness landscape agree on the genotypes that should and should not be accessible; what
the local maxima landscapes are missing are mutational paths to the genotype with all genes
mutated, because we have introduced local fitness maxima. Once we introduce local max-
ima there is no longer a one-to-one correspondence between DAGs of restrictions and fitness
graphs (thus, there is no longer a one-to-one correspondence between DAGs of restrictions and
sets of tumor progression paths). These local maxima landscapes should not be as challeng-
ing to CPMs as the DAG-derived non-representable fitness landscapes used in Diaz-Uriarte
(2018), as those also missed some genotypes that should exist under the DAG of restrictions.
This is by design: here we want to isolate the effect of multi-peaked landscapes or local max-
ima (or, equivalently, missing paths), without the additional burden, for the CPMs, of missing
genotypes.

The third type of fitness landscapes used are Rough Mount Fuji (RMF) fitness landscapes.
The RMF model (de Visser and Krug, 2014; Neidhart et al., 2014) combines a random House of
Cards model (where fitness is assigned to genotypes by independently sampling from a fixed
probability distribution) and an additive fitness landscape (where the reference genotype, or
the genotype with largest fitness, need not be the one with all genes mutated). The RMF model
is a very flexible one, where the ruggedness of the landscape can be modified by changing the
ratio of the additive component (the change in fitness per unit increase in Hamming distance
from the reference genotype) relative to the variance of the random fitness component (the
House of Cards component). The RMF model has been useful to model empirical fitness land-
scapes (de Visser and Krug, 2014; Franke et al., 2011; Neidhart et al., 2014). RMF fitness land-
scapes generally have multiple local fitness maxima and considerable reciprocal sign epistasis
and thus not even the set of accessible genotypes can be represented by a DAG of restrictions
(see Diaz-Uriarte, 2018, and Figure 1).

We generated the DAG-derived representable fitness landscapes by generating a random
DAG of restrictions and from it the fitness graph. We then assigned birth rates to genotypes
using an iterative procedure on the fitness graph where, starting from the genotype without
any driver mutation with a birth rate of 1, the birth rate of each descendant genotype was set
equal to the maximum fitness of its parent genotypes times a random uniform variate between
1.01 and 1.19 (U(1.01, 1.19)) yielding, therefore, an average multiplicative increase in fitness of
0.1 (which is within values previously used: Bozic et al., 2010; McFarland et al., 2013; Williams
et al., 2018). The birth rate of genotypes that were not accessible according to the DAG of
restrictions was set to 0. For example, if the DAG of restrictions was the one shown in Figure
1A, a cell with genotype “1001” would have a birth rate of 0, since the dependencies of the DAG
of restrictions are not satisfied —mutations in genes 2 and 3 must occur before a mutation in
gene 4. Therefore, this simulation scheme strictly adheres to the assumptions about accessible
and non-accessible genotypes under the CPM model. (For the growth model used here —see
below— birth rates determine fitness at any population size as death rates are identical for all
genotypes and depend only on population size. Genotypes with a birth rate of 0 are never
added to the population and, thus, they cannot mutate before dying). We generated the DAG-
derived local maxima fitness landscapes by first generating a random DAG and from it the
fitness graph, identically to what was done for representable fitness landscapes. Though in
contrast to representable fitness landscapes, before assigning fitness to genotypes a random
selection of edges of the fitness graph were removed so that all accessible genotypes remained
accessible but now from a possibly much smaller set of parents. Birth rate was then assigned
as for the representable fitness landscapes (using the iterative procedure on the fitness graph,
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where birth rate of descendant genotype = max(birth rate parent genotypes) ∗ U(1.01, 1.19),
and with all non-accessible genotypes with a birth rate of 0). For each DAG we repeated this
procedure 50 times, and kept the one that introduced the largest number of local maxima.
Creating local maxima almost always resulted in creating reciprocal sign epistasis (see also
section 2.7 and S2 Text). We generated the RMF fitness landscapes by randomly choosing the
reference genotype (i.e., the genotype with the largest fitness) and the decrease in birth rate of
a genotype per each unit increase in Hamming distance from the reference genotype (which
affects the ruggedness of the landscape); see details in S2 Text.

2.4 Evolutionary simulations

Once a fitness landscape had been generated, we simulated 20000 evolutionary processes (step
B in Figure 2). We used the continuous-time, logistic-like model of McFarland et al. (2013),
in which death rate depends on total population size, as implemented in OncoSimulR (Diaz-
Uriarte, 2017), with the specified parameters of initial population size and mutation rate (be-
low). Each individual evolutionary process was run until one of the genotypes at the local
fitness maxima (or the single global fitness maximum) reached fixation (see details in S3 Text).
We also verified that all 7 or 10 genes had appeared in at least some genotypes, i.e., were part
of the paths of tumor progression. If this condition was not fulfilled, a new fitness landscape
was generated and the processes started again. This procedure is independent of the detection
process that returns the genotypes analyzed by the CPMs (section 2.5).

We used three initial population sizes, 2000, 50000, and 1× 106 cells, for the simulations;
these cover a range of population sizes at tumor initiation that have previously been used in
the literature (e.g. Beerenwinkel et al., 2007; Gerstung et al., 2011; McFarland et al., 2013; Wodarz
and Komarova, 2014). We also used two mutation regimes; in the first one, all genes had a
common mutation rate of 1× 10−5; in the second, genes had different mutation rates, uniformly
distributed in the log scale between (1/5) 1× 10−5 and 5× 10−5 (i.e., the largest ratio between
largest and smallest mutation rates was 25), so that the arithmetic mean of mutation rates was
1.5× 10−5 and the geometric mean 1× 10−5. These mutation rates are within ranges previously
used in the literature (Bozic et al., 2010; McFarland et al., 2013; Nowak et al., 2004), with a bias
towards larger numbers (since we use only 7 or 10 genes relevant for population growth and
we could be modeling pathways, not individual genes). Initial population size and mutation
rates are not of intrinsic interest here (since our focus are not the determinants of evolutionary
predictability per se), but are used to generate variability in evolutionary predictability and to
allow for deviations from the strong-selection-weak-mutation (SSWM) regime (de Visser and
Krug, 2014); see section 2.7.

Only in the representable fitness landscapes are simulations restricted to move uphill in
the fitness landscapes. In all three types of fitness landscapes, mutations can lead to either
increases or decreases in fitness. In the representable and local maxima fitness landscapes, as
explained above, mutation events that do not fulfill the restrictions in the order of accumu-
lation of mutations lead to a birth rate (and, thus, fitness) of 0. Therefore, in the simulations
in representable and local maxima fitness landscapes, no path from the “0000” genotype to a
fitness maximum can ever go through a non-accessible genotype. This is by design, so that
these fitness landscapes strictly adhere to the assumption of CPMs about restrictions in the ac-
cumulation of mutations. But in both RMF and local maxima fitness landscapes it is possible
to move through a fitness valley (i.e., make moves from ancestor to descendant that are not
always monotonically increasing in fitness), phenomena that are more frequent as we deviate
from the SSWM assumption (de Visser and Krug, 2014; commented example in Section 5 in S3
Text). (Note that this is possible in local maxima fitness landscapes, even when non-accessible
genotypes can never be part of evolutionary paths, because with no back mutations an acces-
sible genotype can be along an uphill path when coming from one ancestor but in a valley
when coming from another ancestor; no such genotypes can exist in the representable fitness
landscape as in the representable landscapes all accessible genotypes that differ by exactly one
mutation are connected in the fitness graph). In addition, in the RMF fitness landscape, we can
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move through fitness valleys of non-accessible genotypes as non-accessible genotypes need not
have a birth rate of 0 in the RMF; see Section 5 in S3 Text).

2.5 Detection regimes and obtaining data sets from the simulations

To obtain the genotypes that were analyzed by the CPMs, we first sampled the simulated evolu-
tionary processes, obtaining one observation per evolutionary processes, using three different
detection regimes (Figure 2, C and D); then, for each observation of each detection regime, we
obtained the genotype corresponding to each observation (Figure 2E), which lead to matrices
of 20000 genotypes (Figure 2F); finally we split these matrices into non-overlapping subsets to
be analyzed with the CPMs (Figure 2G).

The three detection regimes differ in the distribution of sizes of the sampled tumors (Figure
2D). Under the large detection regime a large fraction of the samples correspond to large tu-
mors. In contrast, under the small detection regime a large fraction of the samples correspond
to small tumors. Finally, under the uniform detection regime the distribution of sizes of the
sampled tumors is approximately uniform. Thus, the large detection regime would emulate
scenarios where cancer tends to be detected at late, advanced stages, and the small detection
regime would emulate scenarios where cancer tends to be detected at early stages.

To implement these detection regimes, we drew random deviates from beta distributions
with parameters B(1, 1), B(5, 3), and B(3, 5) (for uniform, large, and small, respectively), rescaled
them to the range of the log-transformed distribution of observed tumor sizes (log of number of
cells), and obtained the observation with population size closest to the target (see details in sec-
tion 2 in S3 Text). (We used the log-scale of tumor size because in the model of McFarland et al.,
2013 tumor population size increases logarithmically with number of driver mutations; thus,
distributions of sampled tumors that are biased towards large sizes in the log scale will mimic
sampling of late-stage tumors —tumors with a large number of drivers—, and distributions
of sampled tumors that are biased towards small sizes in the log scale will mimic sampling of
early-stage tumors, as intended.).

For each observation, the genotype returned was the genotype of the most abundant clone
(Figure 2E). Finally, the set of 20000 genotypes (Figure 2F) was then split into five sets of non-
overlapping data sets for each of the three sample sizes of 50, 200, and 4000 (Figure 2G). These
are the data sets that were analyzed with the CPMs.

2.6 Measures of performance and predictability

We have characterized evolutionary unpredictability using the diversity of Lines of Descent
(LODs). LODs were introduced by Szendro et al. (2013) and ”(...) represent the lineages that
arrive at the most populated genotype at the final time” (p. 572). In other words, in our sim-
ulations a LOD is a sequence of parent-child genotypes, from the initial genotype to a local
maximum: a LOD is the path that a tumor has taken until fixation. The final genotype in a
LOD is a local fitness maximum, but there are no guarantees that any intermediate genotype
in the LOD will have been the most common genotype at any time point (especially under
deviations from SSWM such as clonal interference and stochastic tunneling —de Visser and
Krug, 2014; Sniegowski and Gerrish, 2010; Szendro et al., 2013). As in Szendro et al. (2013), we
can use the entropy of these paths to measure the indeterminism of the paths of evolution, or
evolutionary unpredictability, and we will define Sp = −∑ pi ln pi, where pi is the observed
probability of each LOD (each path) computed from the 20000 simulations, and the sum is over
all paths or LODs. Evolutionary unpredictability, as estimated by the CPMs, will analogously
be defined as Sc = −∑ qj ln qj, where qj is the probability of each path to the maximum accord-
ing to the cancer progression model considered, and the sum is over all paths predicted by the
CPMs . (Hosseini, 2018, normalizes predictability by dividing by the maximum entropy, simi-
lar to dividing by the prior entropy in the “information gain” statistic in Lässig et al., 2017; but
the maximum entropy is a constant for each number of genes, i.e., 7! or 10! for our simulations).
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To measure how well CPMs predict tumor progression, we used three different statistics. To
compare the overall similarity of the distribution of paths predicted by CPMs with the true ob-
served one (i.e., the distribution of LODs) we used the Jensen-Shannon divergence (JS) (Crooks,
2017; Lin, 1991), scaled between 0 and 1 (equivalent to using the logarithm of base 2). JS is a
symmetrized Kullback-Leibler divergence between two distributions and is defined even if the
two distributions do not have the same sample space, i.e., even if P(i) 6= 0 and Q(i) = 0 (or
Q(i) 6= 0 and P(i) = 0), as can often be the case for our data. A JS value of 0 means that
the distributions are identical, and a value of 1 that they do not overlap. Therefore, predic-
tions of CPMs are closer to the truth the smaller the value of JS. The sum of the probabilities
of the paths in the LODs that are not among the paths allowed by the CPMs, P(¬DAG|LOD),
is equivalent to 1 - recall. Larger values of 1-recall mean that the CPM is not capturing a large
fraction of the evolutionary paths to the maximum (or maxima). The sum of the predicted
probabilities of paths according to the CPMs that are not used by evolution (i.e., that are not
LODs), P(¬LOD|DAG), is equivalent to 1 - precision. Larger values of 1-precision mean that
the CPMs predict larger numbers of paths to the maximum that are not used by evolution. In
S6 Text we also use as statistic the probability of recovering the most common LOD; we will
rarely refer to this statistic in the main paper since it follows a pattern very similar to recall
(Section 2 in S6 Text). Statistics 1-recall and 1-precision can overestimate performance: they
could both have a value of 0, even when JS is very close to 1 (see example in Section 4 in S4
Text). Thus, the main overall performance measure will be JS.

2.6.1 Comparing paths from CPMs with LODs of different lengths

When all paths from the CPM and the LOD have equal length (they end in a genotype with
the same number of genes mutated, K) computing the above statistics is straightforward. But
paths could differ in length. In fitness landscapes with local maxima, LODs can differ in length;
some LODs could have a length (or number of mutations of the fixated genotype), Ki, shorter
than the length of the paths from the CPM, KC (all paths from a CPM have the same number of
mutations, since all arrive at the genotype with all KC genes mutated). It is also possible that
some or all Ki > KC, i.e., some or all LODs have a length larger than the length of the paths
from the CPM. This will happen if the CPM has been built from a data set that contains fewer
genes than the number of genes in the landscape (e.g., because one or more genes were absent
—see Section 2 in S4 Text); if the sampled data set has fewer genes than the landscape in a
representable fitness landscape, then all Ki > KC (as Ki will be equal to either 7 or 10).

To compute JS, 1-recall, and 1-precision that will cover all those cases we used the following
procedure (that reduces to the simpler procedure in the previous section when all Ki = KC). Let
i and j denote two paths, one from the LOD and the other from the CPM, with corresponding
probabilities pi and qj; in contrast to the previous section, and to minimize notation, i, j (and
pi, qj) could refer to a path from the LOD and a path from the CPM or, alternatively, a path
from the CPM and a path from a LOD. Let Ki, Kj denote the length of paths i and j, respectively.
At least one set of either Kis or Kjs has all elements identical (e.g., if j refers to indices of the
paths from the CPM, it is necessarily the case that K1 = K2 = . . . = Km = KC, with m the total
number of different paths from the CPM).

Now if Ki > Kj and the path i up to Kj mutations (i.e., from the “0000” genotype to the
genotype with Kj mutations) is identical to j, then path j is included in path i: all of qj is
accounted for by i. This also means that path i is partially included in (or accounted for by)
path j, but a fraction of it, (Ki − Kj)/Ki, is missing or unaccounted for. The above applies
directly to calculations of 1-recall and 1-precision. For computing JS, there will be two entries
in the vectors with the probability distributions that will be compared: P =

[
pi

Kj
Ki

, pi
Ki−Kj

Ki

]
,

Q =
[
qi, 0

]
. This procedure can be applied to all elements i, j, summing all unmatched entries:

∑ pi
Ki−Kj

Ki
is the total flow in the set of paths i that cannot be matched by the js because they

are shorter. To simplify computations, that unmatched term can also include ∑ pu, where u
denotes those paths i that do not match any j. Conversely, all paths i with Ki > Kj such that

10

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2019. ; https://doi.org/10.1101/371039doi: bioRxiv preprint 

https://doi.org/10.1101/371039
http://creativecommons.org/licenses/by/4.0/


the paths become indistinguishable up to Kj can be summed in a single entry so that we obtain

∑ pi
Kj
Ki

and ∑ pi
Ki−Kj

Ki
for the matched and unmatched fractions, respectively. All computations

have their corresponding counterparts for elements i, j when Ki < Kj. The above procedure is
applied at all distinct k, the number of mutations of the final genotypes of the true LODs. The
final JS (and 1-precision and 1-recall) is the weighted sum of each of those JS (and 1-precision
and 1-recall), weighted by wk, the frequency of all paths from the LOD that end at k mutations.
This procedure results in unique JS (remember the K are all the same for at least one of the
sets of paths) as well as unique 1-precision and 1-recall, and it reduces to the procedure (see
above) when all Ki are equal and equal to all Kj. A commented example and further details are
provided in the Supporting Information (Section 5.1 in S4 Text).

2.6.2 Statistical modeling of performance

We have used generalized linear mixed-effects models, with a beta model for the dependent
variable (Ferrari and Cribari-Neto, 2004; Grün et al., 2012; Smithson and Verkuilen, 2006), to
model how JS, 1-recall, and 1-precision, are affected by Sp, detection regime, sample size, num-
ber of genes, type of fitness landscape, and CPM. In all models, the response variable was
the average from the five split replicates of each fitness landscape by sample size by detec-
tion regime combination, and fitness landscape id (not type) was a random effect. When the
dependent variable had values exactly equal to 0 or 1, we used the transformation suggested
in Smithson and Verkuilen (2006). Models were fitted using sum-to-zero contrasts (McCullagh
and Nelder, 1989) and all regressors were used as discrete regressors, except Sp, which has been
scaled (mean 0, variance 1) for easier interpretation; the coefficients of the main effect terms of
the discrete regressors are the deviations from the average (see further details in Section 6 in
S4 Text). We have used the glmmTMB (Brooks et al., 2017) and car (Fox and Weisberg, 2011)
packages for R (R Core Team, 2018) for statistical model fitting and analysis.

2.7 Characteristics of the simulated fitness landscapes and genotypes

All the fitness landscapes used are shown in S1 Figure. We provide here a brief description
of the main features of the three different fitness landscapes and the simulated data sets. The
three types of fitness landscapes had comparable numbers of accessible genotypes but differed
in the number of local fitness maxima and reciprocal sign epistasis, as shown in Figures 1 to 3
in S2 Figure (representable fitness landscapes had a single fitness maximum with no reciprocal
sign epistasis, whereas RMF landscapes had the largest of both, and local maxima landscapes
were intermediate).

Simulations resulted in varied amounts of clonal interference, as measured by the average
frequency of the most common genotype (Figures 4 and 5 in S2 Figure); scenarios where clonal
sweeps dominated (i.e., those characterized by the smallest clonal interference) corresponded
to initial population sizes of 2000, with clonal interference being much larger at the other pop-
ulation sizes (Figure 4 in S2 Figure).

Simulations resulted in a wide range of numbers of paths to the maximum (number of dis-
tinct LODs: Figure 6 in S2 Figure). LOD diversities (Sp) ranged from 0.3 to 8.7 (Figure 7 in
S2 Figure) with RMF models showing smaller Sp; RMF landscapes had the largest number and
diversity of observed local fitness maxima (Figures 8 and 9 in S2 Figure and Sp was strongly as-
sociated to the number of accessible genotypes (Figure 10 in S2 Figure). Of course, the number
of mutations of the fitness maxima were 7 and 10 in the representable landscapes, and smaller
in the local maxima and RMF landscapes (Figure 11 in S2 Figure).

The number of different sampled genotypes was comparable between detection regimes
(Figure 12 in S2 Figure), but diversity differed (Figure 13 in S2 Figure), with the uniform de-
tection regime showing generally larger sampled diversity. The mean and median number
of mutations of sampled genotypes (Figures 14 and 15 in S2 Figure) differed between detec-
tion regimes, being largest in the large detection regime, and smallest in the small detection
regime; the standard deviation and coefficient of variation in the number of mutations (Figures
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16 and 17 in S2 Figure) were largest in the uniform detection regime (thus, the uniform detec-
tion regime showed both the largest variation in number of mutations of genotypes and the
largest diversity of genotypes). Sample characteristics and the difference in sample character-
istics between detection regimes were affected by type of fitness landscape (Figures 13 and 16
in S2 Figure).

2.8 Cancer data sets

We have used twenty-two cancer data sets (including six different cancer types: breast, glioblas-
toma, lung, ovarian, colorectal, and pancreatic cancer). All of these data sets, except for the
breast cancer data sets BRCA ba s and BRCA he s (from Cancer Genome Atlas Research Net-
work, 2012b), have been used previously as input for some CPM algorithms in Attolini et al.
(2010); Caravagna et al. (2016); Cheng et al. (2012); Gerstung et al. (2011); Misra et al. (2014);
Olde Loohuis et al. (2014); Ramazzotti et al. (2015), with the original sources of the data being
Bamford et al. (2004); Brennan et al. (2013); Cancer Genome Atlas Research Network (2008, 2011,
2012a); Ding et al. (2008); Jones et al. (2008); Knutsen et al. (2005); Parsons et al. (2008); Piazza
et al. (2013); Wood et al. (2007). Details on sources, names, and how the data were obtained and
processed are provided in S5 Text.

These data sets vary in sample size (27 to 594 samples), number of features (from 7 to over
100), data types (nonsynonymous somatic mutations and copy number aberrations or both),
levels of analysis (genes, modules and pathways, exclusivity groups), patterns of number of
mutations per subject and frequency of mutations analyzed, and procedures for driver selec-
tion, and restriction of patient subtypes. The data sets, therefore, are a large representative
ensemble of data sets to which researchers have previously applied or might apply CPMs.

We have run the CPM analyses three times per data set, limiting the number of features
analyzed to the 7, 10, and 12 most common ones, so as to examine how our assessments depend
on the number of features analyzed; the first two thresholds use the same number of features
as the simulations. (Of course, for data sets with 7 or fewer features, there are no differences
in the data sets used under the 7, 10, and 12 thresholds; ditto for data sets with 8 to 10 features
with respect to thresholds 10 and 12).

We do not know the true paths of tumor progression, but we can use the bootstrap to assess
the robustness or reliability of the inferences. To do so, we repeated the process above with
100 bootstrap samples (Section 1.2 in S5 Text). We computed JSo,b, the average JS between the
distribution of paths to the maximum from the original data set and each of the bootstrapped
samples. Large differences in the distribution of paths between the analyses with the bootstrap
samples and the analysis with the original sample (i.e., large JSo,b) would suggest that the
inferences are unreliable and cannot be trusted (but small differences do not indicate that the
inferred paths match the distribution of the true ones).

3 Results

3.1 Predicting paths of evolution with CPMs

The CPMs used (four, two with two variants, yielding a total of six different procedures for ob-
taining CPMs: H-CBN, MCCBN, OT, CAPRI AIC, CAPRI BIC, and CAPRESE) can be divided
into three groups: models that return trees (OT and CAPRESE) and two families of models that
return DAGs, CBN (H-CBN and MCCBN) and CAPRI (CAPRI AIC and CAPRI BIC). Com-
paring within groups with respect to JS one member of the pair consistently outperformed the
other (see Figure 1 in S6 Text). OT (using probability-weighted paths, see below) was signifi-
cantly better than CAPRESE (paired t-test over all non-missing 56595 pairs of results: t56594 =
−161.1, P < 0.0001), H-CBN was significantly better than MCCBN (t56593 = −42.6, P < 0.0001),
and CAPRI AIC was significantly better than CAPRI BIC (t56594 = −41.9, P < 0.0001). In what
follows, therefore, and for the sake of brevity, we will focus on OT, H-CBN, and CAPRI AIC,
since the overall performance of their alternatives is worse.
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Figure 3 shows how the performance measures for OT, H-CBN, and CAPRI AIC change
with sample size for all combinations of type of landscape, detection regime, and number of
genes (see Figure 2 in S6 Text for the probability of recovering the most common LOD). The
measures of JS and 1-precision for OT and H-CBN (and MCCBN) use probability-weighted
paths computed as explained in 2.6, because there was strong evidence for all three models
that the probability-weighted paths led to better results (JS, paired t-test over all pairs: OT,
t56594 = −195.8, P < 0.0001; H-CBN: t56594 = −222.3, P < 0.0001; MCCBN: t56593 = −149.0,
P < 0.0001; 1-precision: OT: t56594 = −187.6, P < 0.0001; H-CBN: t56594 = −217.6, P <
0.0001; MCCBN: t56593 = −130.3, P < 0.0001). (See also Figures 4 to 6 in S6 Text). Overall,
H-CBN was the model with the best performance (P < 0.0001 from all pairwise comparisons
between the six procedures with Tukey’s contrasts and single-step multiple testing p-value
adjustment —Hothorn et al., 2008— on linear mixed-effects models with landscape by split
replicate as random effect). It must be noted, however, that all CPMs can show large variability
in performance (Figure 7 in S6 Text).

JS differed between type of landscape, number of genes, detection regime, and sample size,
but the magnitude and even direction of effects differed between combinations of those factors,
as seen in Figures 3 and 4. Generalized linear mixed-effects models fitted to the complete data
set and to the different combinations of CPM and type of landscape (see Section 11 in S6 Text)
also showed highly significant (P < 0.0001) two-, three-, and four-way interactions between
most of the factors, in particular those involving type of landscape and detection regime. Type
of landscape and detection regime also had very strong effects in the variability of the estimates,
with relative variabilities that could reach 20% with small sample sizes (Figure 7 in S6 Text).

Under representable fitness landscapes, performance improved with increasing sample size
and with the uniform detection regime. Performance was worse in fitness landscapes of 10
genes (Figure 3, panel A; Figure 4, top row); the decrease in performance with increasing num-
ber of genes is related to CPMs both missing evolutionary paths (Figure 3B), and allowing paths
that are not used by evolution (Figure 3C). With CAPRI AIC the effect of sample size was much
weaker and increases in sample size could lead to decreases in performance, specially under the
uniform detection regime (highly significant, P < 0.0001, interactions of detection and sample
size —Section 11 in S6 Text). This is attributable to CAPRI AIC excluding many paths taken
during evolution (Figure 3B). This behavior was caused by CAPRI AIC sometimes allowing
only a few or even just one path to the maximum (Figure 8 in S6 Text); see also next section.

Under the RMF landscape overall performance was worse. Increasing sample size for OT
and H-CBN led to minor decreases in performance (Figure 3 and Figure 4 bottom row). CPMs
failed to capture about 50% of the evolutionary paths (or fractions of paths) to the local maxima
(Figure 3B) and included more than 75% of paths (or fractions of paths) that were never taken
by evolution (Figure 3C). The behavior under local maxima was similar to that of representable
fitness landscapes in terms of the direction of most effects, but effects were generally weaker,
with the exception of evolutionary unpredictability.

Evolutionary unpredictability itself had a strong effect on performance. There were highly
significant interactions (P < 0.0001) between evolutionary unpredictability (as measured with
Sp), detection regime, and sample size, within representable and local maxima landscapes,
as well as in the overall models (Section 11 in S6 Text). In most scenarios, performance was
worse with larger unpredictability (larger Sp) as seen by the positive slopes of JS on Sp (Figure
5). But under representable landscapes, in the large detection regime and for sample sizes 50
and 200, larger evolutionary unpredictability was associated with better performance. Under
RMF fitness landscapes, large evolutionary unpredictability was associated with poorer perfor-
mance over all sample sizes. Under local maxima, the effect of evolutionary unpredictability
depended strongly on sample size and detection regime, with reversal of effects from sample
size of 50 compared to 4000 under the large detection regime, similar to the ones in repre-
sentable landscapes.
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3.2 Inferring evolutionary unpredictability from CPMs

Figure 6A shows the ratio of inferred to true evolutionary unpredictability, Sc/Sp. Under rep-
resentable fitness landscapes, for H-CBN this ratio remained close to 1 over all combinations of
detection regime, number of genes, and sample size; the values were closest to one with sample
size 4000 and under the uniform detection regime. This is in spite of large differences in the
ratio of estimated number of paths to the maximum over true number of paths to the maxi-
mum (Figure 6B). This good performance is a consequence of both using probability-weighted
paths by H-CBN (and OT) and of changes in scale (diversities use logarithms). Patterns for
CAPRI AIC seemed dominated by the tendency of CAPRI AIC to only allow very few paths
as the sample size grows large (see also Figure 8 in S6 Text) and were also the consequence
of CAPRI AIC’s inability to produce probability-weighted paths. For all CPMs type of land-
scape affected the quality of estimates: under local maxima and specially RMF the number and
diversity of paths tended to be overestimated, sometimes by large factors. In summary, and re-
gardless of fitness landscape, the estimates of evolutionary unpredictability from H-CBN (Sc)
could be used to obtain an upper bound of the true evolutionary unpredictability.

And how does the estimated evolutionary unpredictability change with the true evolution-
ary unpredictability? Figure 6C shows that the slopes of regressions of estimated unpredictabil-
ity from CPMs (Sc) on true unpredictability (Sp) changed depending on fitness landscape, de-
tection regime, and sample size, including slopes over and under 1, and even inversion of
signs.

3.3 Cancer data sets

We have used H-CBN (the best performing model in the simulations) on twenty-two cancer
data sets to examine the estimated evolutionary unpredictability, and assess the reliability of
the estimates. The results are shown in Figure 7 (see Figure 1 in S5 Text for ranges of bootstrap
runs). Unreliability (JSo,b —section 2.8) was large for most data sets, and very large for some of
them. These results would be expected, even if the true fitness landscapes were representable
ones, as most of the data sets have small sample sizes (less than 1000), and we have seen that
performance is poor (large JS) for that range of sample sizes (Figure 3A). For these data sets
there was no relationship between JSo,b and sample size (Figure 7A), and when the same data
set was analyzed using pathways/modules and genes, performance was generally better using
pathways or modules (Pan pa vs. Pan ge, Col pa vs. Col g, GBM pa vs. GBM ge, GBM mo
vs. GBM CNA). Within data sets, and for all data sets, as the number of features analyzed
increased performance either decreased or stayed the same (i.e., for data sets with more than
7 features, unreliability at the 10 feature threshold, JS10

o,b, was larger or equal to unreliability at
the 7 feature threshold, JS7

o,b; for data sets with more than 10 features, JS7
o,b ≤ JS10

o,b ≤ JS12
o,b:

Figure 1A in S5 Text).
There were mild trends for an association between smaller JSo,b and smaller numbers of

features and smaller Sc (Figure 7B, C), with notable exceptions: the Pancreas Pathways (Pan pa)
data set had very small JSo,b even for moderate number of features, and the All Pathways
(all pa) data set had a relatively small JSo,b even though it used 12 features and had a large
Sc; the GBM CNA modules (GBM mo) data set also showed moderate JSo,b in spite of having
nine features and relatively large Sc. Conversely, some data sets with small Sc had extremely
unreliable path predictions (e.g., BRCA ba s, Col mss co, Col msi co, GBM ge).

Values for Sc were well within the ranges of Sc estimated by H-CBN for the simulated data
(Figure 11 in S6 Text). Of course, Sc increased with number of features analyzed (see also Fig-
ure 4 in S5 Text). Given the results from section 3.2, where generally Sp < Sc, this suggests
that the true evolutionary unpredictability (when analyzing up to 12 features) for 13 of the
data sets should be less than that corresponding to about 100 equiprobable paths to the maxi-
mum, but only eight are below the much more manageable, and useful, 20 equiprobable paths
(Figure 7D). The Pan pa, GBM coo, and BRCA he s show outstanding patterns in Figure 7. Ex-
amination of the output from H-CBN revealed that there was one single path with estimated
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probability > 0.97 for Pan pa, and two paths to the maximum of about equal probability that
together added > 0.95 for GBM coo. BRCA he s had only four features but mutations in SR-
PRA and PIK3R1 were present each in only four individuals (different individuals for the two
mutations); repeated runs of H-CBN led to different sets of restrictions being inferred which,
because there are few paths to the maximum, and some had large probabilities (> 0.5), resulted
in large differences in JS statistic between runs.

4 Discussion

Can we predict the likely course of tumor progression using CPMs? We have examined the
performance of six different procedures for obtaining CPMs (four CPMs, two of them with two
variants: H-CBN and MCCBN, OT, CAPRI AIC and CAPRI BIC, and CAPRESE). H-CBN was
the best performing CPM in our study. Using H-CBN under the representable fitness land-
scapes (the scenarios that agree with CPMs’ assumptions) returned estimates of the probability
of paths of tumor evolution that were not far from the true distribution of paths of evolution
(Figure 3A) when sample size was very large. But we find that, even under representable
fitness landscapes, performance with moderate (and more realistic) sample sizes was consider-
ably worse and was affected by detection regime. The analysis of the twenty-two cancer data
sets revealed that performance (as measured by JSo,b, an indicator of unreliability of inferences)
was poor or very poor for most data sets. Even data sets with few features and small estimated
diversity of paths to the maximum, Sc, showed very unreliable predictions.

What factors, and how, affect performance? Under representable fitness landscapes, perfor-
mance on simulated data was of course affected by the number of features, the dimension of
the fitness landscape: JS was worse with 10 than with 7 genes (Figures 3, 4). Increasing sample
size improved performance (Figures 3). Detection regime and evolutionary unpredictability, as
measured by LOD diversity (Sp), affected individually and jointly all performance measures
(Figures 3, 5). Increased evolutionary unpredictability hurt performance under most condi-
tions (Figure 5). Detection regime was a key determinant of performance, as already found in
previous work (Diaz-Uriarte, 2015, 2018); performance was better under the uniform detection
regime and, more importantly, detection regime affected how the rest of the factors (evolution-
ary unpredictability, sample size, and number of features) impacted on performance (Figures 3
to 5).

The analysis of the twenty-two cancer data sets also indicated number of features as a ma-
jor determinant of performance. Across data sets, unreliability of inferences (JSo,b) increased
with number of features (Figure 7). Within data set unreliability also increased as the num-
ber of features increased (Figure 1 in S5 Text; note that an increase in the number of features
analyzed leads to an increase in the number of features with low frequency events). Inter-
estingly, the driver-selected data sets (Col mss, Col msi, BRCA he s, BRCA ba s) did not per-
form much better than data sets with a simple frequency-based selection of features (e.g., Lu,
Ov, or comparison Ov with Ov drv). Even data sets with very careful, manually-curated se-
lection of drivers and “exclusivity groups” and where variability due to subtypes has been
minimized (Col msi, Col msi co, Col mss, Col mss co, ACML co, BRCA he s and BRCA ba s)
showed very large JSo,b. And BRCA he s, with only four features, showed much larger JSo,b
than GBM coo and Pan pa (with 3 and 7 features, respectively), due to the presence of two low
frequency alterations.

These results bring forth the problem of the selection of the relevant features for analy-
sis (Caravagna et al., 2016; Cristea et al., 2016; Gerstung et al., 2011) and whether sample size
is large enough relative to the number and frequency of features considered. We have pre-
viously shown that feature selection can have a very detrimental impact on the performance
of CPMs (Diaz-Uriarte, 2015). Using pathways instead of genes in the analyses (e.g., Cristea
et al., 2016; Raphael and Vandin, 2015) can alleviate some of the problems of feature selection.
Data sets coded as pathways or modules generally reduced the presence of low-frequency al-
terations (Figures 2 and 3 in S5 Text). Pathways can also improve predictability and how close
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the estimates of path distributions are to the truth because they are more similar to herita-
ble phenotypes, which often have smoother phenotype-fitness maps and tend to show more
repeatable evolution (Lässig et al., 2017; see also Wang et al., 2015, but also Chebib and Guil-
laume, 2017; Sailer and Harms, 2017). Gerstung et al. (2011) found that analysis using pathways
gave stronger evidence for order constraints than analysis using genes, and we also see in Fig-
ure 7 that both Sc and JSo,b tend to decrease if we use pathways or modules (Pan pa vs. Pan ge,
Col pa vs. Col g, GBM ge vs. GBM pa, GBM mo vs. GBM CNA). Using so-called “exclusivity
groups” (sensu Caravagna et al., 2016) to identify “fitness equivalent alterations” is a similar,
though not identical, procedure that in this paper showed only modest improvements in JSo,b
(Col mss co vs. Col mss, Col msi co vs. Col msi, ACML co vs. ACML). This can of course be
due to particularities of these data sets (e.g., large number of features relative to number of sub-
jects) or the intrinsic difficulties of identifying true fitness equivalent groups via “hard/soft ex-
clusivities”. However, although analysis using pathways/modules/exclusivity groups might
lead to more reliable results from the predictability point of view, the identification of paths at
the gene level is still the ultimate goal for therapeutic interventions (see Ashworth et al., 2011).
Regardless of the details of the procedure for collapsing and reducing features, our results sug-
gest that further work on feature selection should consider reduction of variability of estimates
of evolutionary paths as a key component.

Hosseini (2018) has reanalized the DAG-derived representable and a subset (those where
the fully mutated genotype has the largest fitness) of the DAG-derived non-representable fit-
ness landscapes in Diaz-Uriarte (2018). He finds good agreement between the distributions of
paths to the maximum from H-CBN and the fitness landscape-based probability distribution
of paths to the maximum computed assuming SSWM. Our results for H-CBN under the best
conditions are not as optimistic. Two differences in the studies explain the differences. First,
Hosseini (2018) computes the fitness landscape-based probability of paths assuming a SSWM
regime and restricting the analysis to fitness landscapes where the fully mutated genotype has
the largest fitness, while our analyses directly examine the distribution of the paths to the max-
imum in each simulation (LODs), without restricting the evolutionary regime and the fitness
landscapes; second, he uses H-CBN with the very large sample size of 20000 (the full data sets
in Diaz-Uriarte, 2018), while we use a more realistic range of sample sizes.

Even very good performance, though, needs to be interpreted with care. Very good per-
formance simply tells us that the true and estimated probability distributions of the paths to
the maximum agree closely. If the true evolutionary unpredictability is large, then for practi-
cal purposes our capacity to predict what will happen (in the sense of providing a small set
of likely outcomes) is very limited. Ranges of diversities of 3.2 to 6.0, equivalent to 25 to 400
equiprobable paths, were common in the simulated data (Figure 11 in S6 Text) and are com-
parable to the ranges in most cancer data sets with 7 and 10 feature thresholds (Figure 1 in S5
Text). The inability to narrow down the likely paths to a small set of paths in these cases is, of
course, not a limitation of the CPMs, but a problem inherent to the unpredictability of the evo-
lutionary process in many scenarios, which could severely limit the usefulness of even perfect
predictions.

The discussion above has centered on representable fitness landscapes. As argued before,
fitness landscapes with local fitness maxima are probably common in cancer. With local fitness
maxima, achieving good recall involves the relatively easier task of getting right the first part of
short paths to the maximum. But good recall was more than offset by low precision and overall
predictability was very poor. In fitness landscapes with local maxima, CPMs are fitting models
with paths of tumor progression that extend beyond the true end point of the progression. In
RMF fitness landscapes, in addition to local peaks, not even the set of accessible genotypes can
be represented by DAGs of restrictions (see Diaz-Uriarte, 2018, and Figure 1). The violations of
assumptions in RMF and local maxima fitness landscapes explain the decreases in the relevance
of sampling regime and why increasing sample size has negligible (or even detrimental) effects
in these fitness landscapes (Figures 3 and 4). Remarkably, regardless of type of fitness landscape
(i.e., even under violation of assumptions), and for the two tasks considered (prediction of
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paths and estimating unpredictability) performance of CPMs that could return probability-
weighted paths (H-CBN, MCCBN, OT) was better when using probability-weighted paths;
thus, further improvement in these CPMs, even under violations of assumptions, might be
possible by recalibrating their output.

And we return to our second original question, as even if achieving good performance in
predicting the paths of tumor progression is unlikely, inferring evolutionary unpredictability
could be an easier task. Can we use inferences of evolutionary unpredictability from CPMs
as estimates of the true evolutionary unpredictability? Under representable fitness landscapes,
H-CBN, the best performing model also for this task (Figure 6B), returned values of Sc very
similar to Sp, the evolutionary unpredictability estimated from the diversity of paths, and this
held over detection regimes and sample sizes. Hosseini (2018) also finds that the estimates of
predictability from H-CBN correlate well with the fitness landscape-based evolutionary pre-
dictability (estimated assuming SSWM in fitness landscapes where the fully mutated genotype
has largest fitness), with slopes of the regression of CPM-based on landscape-based predictabil-
ity generally slightly below 1, similar to our findings (Figure 6C). These good results do not
hold under the other two types of two fitness landscapes that we analyzed: evolutionary un-
predictability is overestimated, and increasing sample sizes made the problems worse and dif-
ferent evolutionary scenarios, sample sizes, and detection regimes have different relationships
of estimated and true unpredictability (Figure 6C). But our results indicate that we can use H-
CBN to set upper bounds on the true Sp; obtaining tighter estimates is an objective for further
research to explore. And here our analysis of twenty-two cancer data sets suggests that the
true evolutionary unpredictability of at least some cancer scenarios might be reasonably small,
specially if Sc is overestimating the true unpredictability.

4.1 Conclusion

The answer to the question “can we predict the likely course of tumor progression using
CPMs?” is, unfortunately, at least for the models examined, “only with moderate success and
only under representable fitness landscapes and with very large sample sizes; but even perfect
predictions might be of little use if evolutionary unpredictability is large”. Estimating up-
per bounds to evolutionary unpredictability is a more modest, though more likely to succeed,
use of CPMs. Promisingly, several cancer data sets showed low evolutionary unpredictability.
There are three key difficulties for successful prediction: the sheer size of the problem even
for moderate numbers of genes, the intrinsic evolutionary unpredictability in many scenarios,
and the deviations from the assumptions of CPMs that are likely to hold in most cancer data.
Further methodological work to allow CPMs to deal with rugged, multi-peaked, fitness land-
scapes could improve their usefulness to predict tumor evolution. In addition to the caveat
about using these models under scenarios where performance is very poor, this paper raises
the general question of what can we really predict about likely paths of tumor progression
from cross-sectional data, for instance to guide therapeutic interventions. At a minimum, mea-
sures such as JSo,b and Sc with CPMs that return probability-weighted paths should probably
become routine as ways of providing a sense of the reliability of predictions and for assessing
whether the predictions could be of any practical use.
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8 Figure legends

22

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2019. ; https://doi.org/10.1101/371039doi: bioRxiv preprint 

https://doi.org/10.1101/371039
http://creativecommons.org/licenses/by/4.0/


F
itn

es
s 

la
nd

sc
ap

e

0000

1000

0100

0010 1100
1010

0110

1110

0111

1111

F
itn

es
s

(A) Representable

0000

1000

0100

0010

1100

1010

0110
1110

0111

1111

F
itn

es
s

(B) Local maxima

0000

1000

0100

0010

0110

1110

0111

F
itn

es
s

(C) RMF

F
itn

es
s 

gr
ap

h

DAG of restrictions

1 2 3

4

0000

1000

0100

0010 1100

1010

0110

1110

0111

1111

0000

1000

0100

0010 1100

1010

0110

1110

0111

1111

0000

1000

0100

0010 1100

1010

0110

1110

0111

1111

Figure 1: Fitness landscapes, paths of tumor progression, and directed acyclic graphs (DAGs) of restrictions in the order of
accumulation of mutations for the three types of landscapes used. (A) Representable; (B) Local maxima; (C) Rough Mount Fuji
(RMF). Top row: fitness landscapes (representation based on Brouillet et al., 2015); genotypes are shown as sequences of 0s and
1s, where “1010” means a genotype with the first and third genes mutated; the vertical position of a genotype is its fitness; its
horizontal position on the x-axis is given by its Hamming distance to the “0000” genotype. Green segments connect mutational
neighbors of increasing fitness. The inset in the first row shows the DAG of restrictions in the order of accumulation of mutations
that applies to (A) and (B). A DAG of restrictions shows genes (not genotypes) in the nodes; an arrow from gene i to gene j means
that a mutation in i must occur before a mutation in j can occur; an arrow indicates a direct dependency of a mutation in gene
j on a mutation in gene i. In the figure, a mutation in the fourth gene can be observed only if both the second and third genes
are mutated. Note that among the models considered in this paper, CAPRESE and OT can only represent trees (so they can not
account for the fourth gene having two, or more, incoming arrows). The absence of an arrow between two genes means that
there are no direct dependencies between the two genes. Bottom row: fitness graphs or graphs of mutational paths; in fitness
graphs nodes are genotypes and arrows point toward mutational neighbors of higher fitness (i.e., two genotypes connected by
an arrow differ in one mutation that increases fitness —Crona et al., 2013; de Visser and Krug, 2014; Franke et al., 2011). These
fitness graphs show all the paths of tumor progression, the set of accessible mutational paths and adaptive walks that, under the
restriction that there can be no back mutations, start from the “0000” genotype and end in a fitness maximum. When evolution
runs until fixation in a fitness maximum, each path from “0000” to a fitness maximum corresponds to a different Line of Descent
(LOD). For (B) and (C), gray edges and nodes in the fitness graphs show edges and nodes that are present in (A) but missing in
(B) or (C). Under CPMs, since each new driver mutation with its dependencies satisfied increases fitness, all accessible genotypes
that differ by exactly one mutation are connected in the fitness graph, as shown in (A), and the genotype with all genes mutated
is the single global fitness maximum. For (B), the fitness landscape —and its fitness graph— has the same accessible genotypes as
the fitness landscape in (A). But the fitness landscape in (B) has three maxima and, compared to (A), there are fewer paths to the
genotype with all genes mutated, “1111”, and several paths end in the other two maxima (“1100”, “1010”). Thus, the fitness graph
of (B) does not fulfill the assumptions of CPMs. Compared to the fitness graph of (A), in the fitness graph of (B) not all accessible
genotypes that differ by one mutation are connected —e.g., genotypes “1100” and “1110”. In terms of acquisition of mutations, in
(B), and in contrast to (A), we cannot reach genotype “1110” from genotype “1100”, even when a mutation in the third gene does
not depend on any previous mutation according to the DAG of restrictions. So if we go from “1000” to “1100”, the acquisition
of the second mutation precludes acquiring the third mutation (a violation of an assumption of CPMs), and this creates a local
fitness maximum. The fitness landscape in (C) cannot be represented by any DAG of restrictions; e.g., no DAG of restrictions can
account at the same time for the presence of genotypes “1000”, “0100”, “0010”, and the absence of every double mutant with the
first gene mutated. Relative to (A), the fitness graph in (C) is missing both paths and genotypes (relative to the fitness graph from
any possible DAG of restrictions it could either be missing and/or adding genotypes and paths).
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Figure 2: Scheme of the simulation study. (A) On each of the 1260 fitness landscapes, (B) 20000
evolutionary processes were simulated. The set of 20000 evolutionary processes from a fitness
landscape were then (C) sampled under three detection regimes, obtaining one observation per
simulation under each detection regime, (D) leading to 20000 observations that are enriched in
large-sized tumors —large detection regime—, 20000 observations enriched on small-sized tumors
—small detection regime—, and 20000 observations with uniform distribution with respect to the
logarithm of tumor size (so that the large and small detection regimes emulates cases when cancer
tends to be detected at late or early stages, respectively —see text). (E) From each of the individual
observations, we obtained the genotype of the most common clone; therefore, (F) each fitness
landscape provides 3 sets of 20000 genotypes, one for each detection regime. (G) These sets were
split in 5 non-overlapping sets of 50 observations, 5 non-overlapping sets of 200 observations, and
5 non-overlapping sets of 4000 observations. Each of these data sets was analyzed with each of the
CPMs considered to obtain the predicted paths of tumor progression.
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Figure 3: Summary performance measures (see definitions in 2.6) for OT, CAPRI AIC, and H-CBN
for all combinations of sample size, type of landscape, detection regime, and number of genes. (A)
Jensen-Shannon divergence (JS); (B) 1 - recall; (C) 1 - precision. For all measures, smaller is better.
For OT and H-CBN, JS (panel A) and 1-precision (panel C) use probability-weighted paths (see text).
Each point represented is the average of 210 points (35 replicates of each one of the six combinations
of 3 initial size by 2 mutation rate regimes —see 2.2); we are thus marginalizing over mutation rate
by initial simulation size combinations. Each one of the 210 points is, itself, the average of five runs
on different partitions of the simulated data. See Figure 1 in S6 Text for results for all six procedures
used (four, two with two variants: H-CBN, MCCBN, OT, CAPRI AIC, CAPRI BIC, and CAPRESE) .
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Figure 4: Coefficients from generalized linear mixed-effects models, for JS as dependent vari-
able, with separate models fitted to each combination of CPM and type of fitness landscape. Co-
efficients are from models with sum-to-zero contrasts (see text and Section 6 in S4 Text). Within
each panel, coefficients have been ordered from left to right according to decreasing absolute
value of coefficient. The dotted horizontal gray line indicates 0 (i.e. no effect). Coefficients with
a large positive value indicate factors that lead to a large decrease in performance (increase in
JS). Only coefficients that correspond to a term with a P-value < 0.05 in Type II Wald chi-square
tests are shown. The coefficient that corresponds to Number of genes 7 is not shown (as it is
minus the coefficient for 10 genes —from using sum-to-zero contrasts). “N Genes”: number of
genes; “S Size”: sample size; “Detect”: detection regime; “Sp”: LOD diversity (Sp).
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Figure 5: Estimated slopes of the regression of Jensen-Shannon divergence (JS) on LOD di-
versity (Sp) for all combinations of sample size by type of landscape by detection regime by
number of genes. A beta regression was fitted to each subset of data. Each regression was
fitted to 210 points, each of which is itself the average of five replicates, one for each of the five
runs on different partitions of the simulated data.
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Figure 6: Path diversities and number of paths inferred from CPMs relative to the values from LODs. (A) Average
of the ratio of diversity of paths to the maximum inferred by the CPMs (Sc) relative to the true LOD diversity (Sp),
for all combinations of type of landscape by detection regime by number of genes by sample size. (B) Like (A),
but for number of paths to the maximum from the CPMs relative to the observed number of distinct LODs As in
Figure 3, each point is the average of 210 points. (C) Slope of the regression of Sc on Sp; each point is thus a slope
from a regression of 210 points, each of which is itself the average of 5 replicates (see Figure 5). (A) shows whether
evolutionary unpredictability (Sp) tends to be over- or under-estimated by Sc; (C) shows how Sc changes with Sp
—see Section 13 in S6 Text for an example of positive ratios with negative slopes.
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Figure 7: Summary patterns for JSo,b (average JS for the full data compared to the bootstrap runs) and unpredictabil-
ity for the cancer data sets. (A) JSo,b vs. sample size of data sets. (B) JSo,b vs. number of features analyzed for each
data set. (C) JSo,b vs. estimated evolutionary unpredictability; in the bottom x-axis, Sc is shown in terms of number
of equiprobable paths; orange and salmon vertical lines indicate 20 and 100 equiprobable paths, respectively. All
results shown are from analysis with up to 12 features. Values shown for JSob are the average of the 100 bootstrap
runs; values for unpredictability (Sc or equiprobable paths) are from the analysis with the original, non-bootstrapped,
data.
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9 Supporting information captions

S1 Figure. Plots of simulated fitness landscapes and fitness graphs. Plots of the 1260 fitness
landscapes (and corresponding fitness graphs) used.

S2 Figure. Simulated fitness landscapes and fitness graphs: characteristics, evolutionary
unpredictability, clonal interference, and sampled genotypes.

S1 Text. Differences in fitness landscapes, simulations, methods, and objectives, with Diaz-
Uriarte, 2018.

S2 Text. Generating random fitness landscapes.

S3 Text. Evolutionary simulations. Runs until fixation; detection regimes and sampling; other
parameters of the simulations; number of genes used; LODs through non-accessible genotypes,
LODs that go beyond a local maximum, and moving through fitness valleys.

S4 Text. CPMs: software, probabilities of paths, statistics of performance, linear models.

S5 Text. Cancer data sets: sources, characteristics, additional results.

S6 Text. Additional results.

S7 Text. Data and code availability.

S1 Dataset. Compressed file with data and code. This is the first of a two-part zip file (made
up of files S1 Dataset.zip and S2 Dataset.z01). See instructions in S7 Text (briefly: rename
S2 Dataset.z01 to S1 Dataset.z01 and uncompress the split archive.)

S2 Dataset. Compressed file with data and code. This is the second of a two-part zip file
(made up of files S1 Dataset.zip and S2 Dataset.z01). See instructions in S7 Text (briefly: re-
name S2 Dataset.z01 to S1 Dataset.z01 and uncompress the split archive.)
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