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Abstract

Cancer progression models (CPMs) use cross-sectional samples to identify restrictions in the
order of accumulation of driver mutations. CPMs implicitly encode all the possible tumor pro-
gression paths or evolutionary trajectories during cancer progression, which can be of help
for diagnostic, prognostic, and treatment purposes. Here we examine whether CPMs can be
used to predict the true distribution of tumor progression paths and to estimate evolutionary
unpredictability. Using simulations we show that the agreement between the true and the pre-
dicted distributions of paths is generally poor, unless sample sizes are very large and fitness
landscapes are single peaked (have a single global fitness maximum). Under other fitness land-
scapes, performance is poor and only improves slightly with increasing sample size. Detection
regime can be a key determinant of performance, and evolutionary unpredictability hurts per-
formance except under regimes with very low sample variability. Estimates of evolutionary
unpredictability from CPMs tend to overestimate the true unpredictability and the bias is af-
fected by detection regime; CPMs could be useful for estimating upper bounds to the true
evolutionary unpredictability. Analysis of eleven cancer data sets supports the relevance of
detection regime and shows estimates of evolutionary unpredictability in regions where useful
prediction might possible for at least some data sets. But the evolutionary trajectory predictions
themselves are unreliable. Our results indicate that, currently, obtaining useful predictions of
tumor progression paths from CPMs is dubious and emphasize the need for methodological
work that can account for the probably multi-peaked fitness landscapes in cancer.
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1 Introduction

Cancer progression models (CPMs), such as CBN (Gerstung et al., 2009), CAPRI (Ramazzotti
et al., 2015), or OT (Szabo and Boucher, 2008), have been developed to identify restrictions in
the order of accumulation of mutations during tumor progression from cross-sectional data
(Beerenwinkel et al., 2015, 2016). The identification of these constraints can help find thera-
peutic targets and disease markers. CPMs also implicitly encode all the possible mutational
paths or trajectories of tumor progression, from the initial genotype to the genotype with all
driver genes mutated, and the identification of these paths or “evolutionary trajectories” is a
prominent idea in recent CPM publications (e.g. Caravagna et al., 2016; Ramazzotti et al., 2015).

Knowing the likely paths of tumor evolution is helpful for diagnostic, prognostic, and treat-
ment purposes as, for example, it would allow us to identify genes that block the most likely
paths (Greaves, 2015; Lipinski et al., 2016; McPherson et al., 2018). This interest in predicting
paths of progression is, of course, not exclusive to cancer (see reviews in Lässig et al., 2017;
Losos, 2018). For example, in some cases antibiotic resistance shows parallel evolution with
mutations being acquired in a similar order (Toprak et al., 2012), and here “Even a modest pre-
dictive power might improve therapeutic outcomes by informing the selection of drugs, the
preference between monotherapy or combination therapy and the temporal dosing regimen
(...)” (Palmer and Kishony, 2013, p. 243 i). But detailed information about the distribution
of paths of tumor evolution is currently not available. Obtaining it requires large numbers of
multiple within-patient samples with timing information (alternatively, detailed knowledge of
the fitness landscape together with information about major determinants of dynamics such
as mutation rates, population sizes, and growth models —e.g., Bank et al., 2016; de Visser and
Krug, 2014; Lässig et al., 2017; Losos, 2018; Szendro et al., 2013— might allow us to model or sim-
ulate the evolutionary process to estimate the distribution of paths). Since CPMs can capture
the paths of tumor progression from cross-sectional data, they offer a promising alternative,
especially given the currently available and growing number of cross-sectional data sets.

The first aim of this paper is to examine if we can use CPMs to predict the likely paths of
tumor evolution. The question we will ask is how close to the truth are the predictions about the
distribution of paths of tumor evolution. When addressing this question we need to take into
account possible deviations from the models assumed by CPMs. In particular, CPMs assume
that the acquisition of a mutation in a driver gene does not decrease the probability of gaining
a mutation in another driver gene (Misra et al., 2014); this implies that the fitness landscapes
assumed by CPMs cannot have reciprocal sign epistasis (Diaz-Uriarte, 2018: under reciprocal
sign epistasis two mutations that individually increase fitness reduce it when combined Crona
et al., 2013; Poelwijk et al., 2007, 2011). This also means that the fitness landscapes assumed by
CPMs only have a single global fitness maximum (the genotype with all drivers mutated).

But reciprocal sign epistasis is likely to be common in cancer (Chiotti et al., 2014), an argu-
ment supported by how common synthetic lethality is in both cancer cells (Beijersbergen et al.,
2017; O’Neil et al., 2017) and the human genome (Blomen et al., 2015). Moreover, if there are
many combinations of a small number of drivers, out of a larger pool of drivers (Tomasetti
et al., 2015), that result in the escape genotype, it is likely that cancer landscapes will have sev-
eral local fitness maxima (i.e., be multi-peaked). As we have shown before (Diaz-Uriarte, 2018),
the performance of CPMs for predicting what genotypes can and cannot exist degrades consid-
erably when the assumption of absence of reciprocal sign epistasis is violated. Those results,
however, do not provide a direct answer to the question of predictability: if our objective is
predicting paths of tumor progression we want to measure directly the quality of the predic-
tions of paths of progression. For example, getting some of the edges of the DAG of restrictions
wrong, or predicting some of the genotypes incorrectly, might be of little importance if the
main paths of disease are captured and this happens in evolutionary scenarios where disease
progression follows only a limited set of paths. Thus, to answer the question of whether CPMs
can be used to predict paths of progression we will need to look directly at the prediction of
paths and do that both under scenarios where CPM’s assumptions are met and under scenarios
with relevant deviations from the assumptions (see Figure 1).
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And relevant scenarios highlight another key consideration when attempting predictions
of tumor progression. That a particular method can reconstruct well the actual distribution of
paths of tumor progression might be of little importance if that happens in an evolutionary sce-
nario where the true evolutionary unpredictability itself is very large; for practical purposes,
forecasting here would be useless. Which brings us to the second and third objectives of this
paper: to understand what factors, including intrinsic evolutionary unpredictability itself, af-
fect the quality of those predictions and to asses if, regardless of the performance predicting the
actual paths of tumor progression, we can use CPMs to estimate evolutionary unpredictability
itself.

To address the above three questions (can we predict the paths of tumor evolution using
CPMs?; how is predictability affected by evolutionary unpredictability?; can we estimate evo-
lutionary unpredictability using CPMs?) we use evolutionary simulations on 1260 fitness land-
scapes that include from none to severe deviations from the assumptions of CPMs. Since the
role of evolutionary unpredictability is an important focus of this paper, we simulate evolu-
tion under different population sizes and mutation rates, so as to generate varying amounts of
evolutionary unpredictability. This paper does not attempt to understand the determinants of
evolutionary predictability (see, e.g., Bank et al., 2016; de Visser and Krug, 2014; Lässig et al.,
2017; Losos, 2018; Szendro et al., 2013) but, instead, we focus on the effects of evolutionary
unpredictability for CPMs. This is why we use variation in key determinants of predictability
(e.g., variation in population sizes and mutation rates) but these factors, themselves, are only
used to generate variability in unpredictability, and not themselves the focus of the study. To
better assess the quality of predictions, we use sample sizes that cover the range from what
is commonly used to what are much larger sample sizes than currently available. We also
include variation in the cancer detection process, since it has been found before to affect the
quality of inferences (Diaz-Uriarte, 2015, 2018). We find that the agreement between the true
and the predicted distributions of paths is generally poor, unless sample sizes are very large
and fitness landscapes conform to the restrictive assumptions of CPMs. Both detection regime
and evolutionary unpredictability itself have major effects on performance. But in spite of the
unreliability of the predictions of actual paths of tumor progression, CPMs can be useful for
estimating upper bounds to the true evolutionary unpredictability.

We then analyze eleven cancer data sets for which the truth is not known, but using boot-
strap samples allows us to examine the robustness of the inferences. Our results emphasize
again the relevance of detection regime. And if the estimates of evolutionary unpredictability
do indeed provide an upper bound to the true evolutionary unpredictability, the data indicate
that at least some of the data reflect conditions where useful predictions could be possible. But
for most data sets these results are thwarted by the unreliability of the predictions themselves.
Our results question the use of CPMs for predicting paths of tumor progression.

1.1 Assumptions

CPMs assume that the different individuals in a data set constitute independent realizations
of the same evolutionary process and therefore that the same constraints hold for all tumors
(Beerenwinkel et al., 2015, 2016; Gerstung et al., 2011). Thus, a data set can be regarded as a set
of replicate evolutionary experiments where all individuals are under the same genetic con-
straints, though they might later be exposed to different conditions. We also make other com-
mon assumptions in this field, listed in Diaz-Uriarte (2018) (section 1.1). Briefly, we use biallelic
loci, back mutations are not allowed, and mutations are single-gene mutations (Beerenwinkel
et al., 2007; Bozic et al., 2010; McFarland et al., 2013). All tumors start cancer progression with-
out any of the mutations considered, but other mutations could be present that have caused the
initial tumor growth, so we absorb the cancer initiation process in the root node (Attolini et al.,
2010); this is necessary to simulate data consistent with cross-sectional sampling. The driver
genes are known and there are no observational errors.
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2 Material and methods

2.1 Overview of the simulation study

We used simulations of tumor evolution on fitness landscapes of different types (see Figure 1),
for landscapes of seven and ten genes, under different initial population sizes and mutation
rates. As explained above, variation in initial population size and mutation rates is used to
generate variability in evolutionary predictability, but not of interest per se. We have used a
total of 1260 fitness landscapes = 35 random fitness landscapes x two conditions of numbers
of genes x three types of fitness landscapes x three initial population sizes x two mutation
regimes. For each one of the 1260 fitness landscapes, we simulated 20000 evolutionary runs
(with the specified parameters for initial population size and mutation rate) using a logistic-
like growth model until one of the genotypes at the local fitness maxima (or the single global
fitness maximum) reached fixation. Each set of 20000 simulated runs was then sampled under
three detection regimes (so that each fitness landscape generated three sets of 20000 simulated
genotypes). From each of these sets, we obtained five different splits of the genotypes for each
of three sample sizes (50, 200, 4000); thus a total of 56700 (= 1260 x 3 x 3 x 5 combinations of
1260 fitness landscapes, 3 detection regimes, 3 sample sizes, 5 splits) data sets were produced.
Each of these 56700 data sets was analyzed with each of six CPM methods.

2.2 Evolutionary simulations and data sampling

We used three initial population sizes, 2000, 50000, and 1× 106 cells, for the simulations; these
are ranges that have been previously used in the literature and cover a range of population sizes
at tumor initiation (e.g. Beerenwinkel et al., 2007; Gerstung et al., 2011; McFarland et al., 2013;
Wodarz and Komarova, 2014). We also used two mutation regimes; in the first one, all genes
had a common mutation rate of 1× 10−5; in the second, genes had different mutation rates, uni-
formly distributed in the log scale between (1/5) 1× 10−5 and 5× 10−5 (i.e., the largest ratio
between largest and smallest mutation rates was 25), so that the arithmetic mean of mutation
rates was 1.5× 10−5 and the geometric mean 1× 10−5. These mutation rates are within ranges
previously used in the literature (Bozic et al., 2010; McFarland et al., 2013; Nowak et al., 2004),
with a bias towards larger numbers (since we use only seven or ten genes relevant for popu-
lation growth and we could be modeling pathways, not individual genes). Initial population
size and mutation rates are not of intrinsic interest here (since our focus is not the determi-
nants of evolutionary predictability per se), but are used to generate variability in evolutionary
predictability; see section 3.1.

For each of the combinations of number of genes (seven and ten), initial population size
(50, 200, 1× 106), and mutation rate (constant, variable), we generated random fitness land-
scapes of three kinds (see Figure 1). We generated the DAG-derived representable fitness
landscapes by generating a random DAG of restrictions and from it the fitness graph. We
then assigned birth rates to genotypes using an iterative procedure on the fitness graph where,
starting from the genotype without any driver mutation with a birth rate of 1, the birth rate
of each descendant genotype was set equal to the maximum fitness of its parent genotypes
times a random uniform variate between 1.01 and 1.19 (yielding, thus, an average multiplicate
increase in fitness of 0.1, again within values previously used; Bozic et al., 2010; McFarland
et al., 2013). Birth rate of genotypes without dependencies satisfied was set to 0. (Note that
for the growth model used here —see below— birth rates determine fitness at any population
size as death rates are identical for all genotypes and depend only on population size. Note
also that genotypes with birth rate of 0 are never added to the population; thus, they cannot
mutate before dying, so this simulation scheme strictly adheres to the assumptions about acces-
sible and non-accessible genotypes under the CPM model). The DAG-derived local-maxima
fitness landscapes were obtained by generating a random DAG and from it the fitness graph.
Before assigning fitness to genotypes, a random selection of edges of the fitness graph were re-
moved so that all accessible genotypes remained accessible but from a possibly much smaller
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set of parents. Fitness was then assigned as above (with the iterative procedure on the fitness
graph, where fitness of child = max(fitness parents) U(1.01, 1.19)). For each DAG we repeated
this procedure 50 times, and kept the one that introduced the largest number of local max-
ima. Creating local maxima almost always resulted in creating reciprocal sign epistasis (but
see Supplementary Material “Generating random fitness landscapes”). The local maxima fit-
ness landscapes used in this paper are representable in the weaker sense of Diaz-Uriarte (2018),
as all genotypes that should be accessible under the DAG of restrictions are accessible. What
the local-maxima landscapes are missing are mutational paths to the genotype with all genes
mutated, because we have introduced local fitness maxima (and once we introduce local max-
ima there is no longer a one-to-one correspondence between DAGs of restrictions and fitness
graphs and, thus, there is no longer a one-to-one correspondence between DAGs of restric-
tions and sets of tumor progression paths). These local maxima landscapes are “easier” than
the DAG-derived fitness landscapes used in (Diaz-Uriarte, 2018), as those also missed some
genotypes that should exist under the DAG of restrictions. Our local maxima are easier by
design as we want to isolate the effect of multi-peaked landscapes or local maxima (or, equiva-
lently, missing paths), without the additional burden of missing genotypes. The Rough Mount
Fuji (RMF) fitness landscapes we obtained from an RMF model, a model that has been useful
to model empirical fitness landscapes (de Visser and Krug, 2014; Franke et al., 2011; Neidhart
et al., 2014), where the reference genotype and the decrease in birth rate of a genotype per each
unit increase in Hamming distance from the reference genotype were randomly chosen (see
“Random fitness landscapes” in Supplementary Material). These fitness landscape cannot be
represented by DAGs of restrictions with respect to neither paths to the maximum or accessible
genotypes (see also Diaz-Uriarte, 2018).

Once a fitness landscape had been generated, we simulated 20000 evolutionary processes.
We used the continuous-time, logistic-like model of McFarland et al. (2013), in which death rate
depends on total population size, as implemented in OncoSimulR (Diaz-Uriarte, 2017), with the
specified parameters of initial population size and mutation rate. Each individual simulation
was run until one of the genotypes at the local fitness maxima (or the single global fitness
maximum) reached fixation (see details in “Simulations” in Supplementary Material). We also
verified that all seven or ten genes had appeared in at least some genotypes, i.e., were part
of the paths of tumor progression. If this condition was not fulfilled, a new fitness landscape
was generated and the processes started again. This procedure is independent of the detection
process that generates the actual samples of genotypes (next).

To obtain the actual samples of genotypes that were analyzed by the CPMs, we used three
different detection regimes to emulate single-cell sampling at total tumor sizes (number of cells)
that are, in the log scale, approximately uniformly distributed (uniform detection regime), bi-
ased towards large sizes (large) or biased towards small sizes (small). (Working on the log-scale
of tumor size is appropriate as in the model of McFarland et al., 2013, tumor population size
increases logarithmically with number of driver mutations). We drew random deviates from
beta distributions with parameters B(1, 1), B(5, 3), and B(3, 5) (for uniform, large, and small,
respectively), rescaled them to the range of observed sizes, and obtained the sample with actual
population size closest to the target (see details in Supplementary Material “Detection regimes:
sampling”). For each sample, the genotype returned was the single genotype with the largest
frequency (so we did not introduce possible additional noise due to whole-tumor, or bulk, se-
quencing). Finally, for each of the three sample sizes of 50, 200, and 4000, we splitted the
20000 simulations into five sets of non-overlapping data sets. These are the data sets that were
analyzed with the six CPMs.

2.3 Cancer Progression Models (OT, CBN, CAPRI, CAPRESE) and paths of tumor
progression

We have used four different CPM methods (methods not considered here are either too slow
for routine work, have no software available, or have dependencies on non-open source exter-
nal libraries —see Supplementary Material “CPM software”). Two of the methods used have
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two with variants, yielding a total of six methods. Only a brief overview is provided here; de-
tailed descriptions can be found in Caravagna et al. (2016); Desper et al. (1999); Gerstung et al.
(2009, 2011); Loohuis et al. (2014); Montazeri et al. (2016); Ramazzotti et al. (2015); Szabo and
Boucher (2008). CPM methods assume that the different individuals in a data set constitute
independent realizations of the same evolutionary process —see above. These methods try to
identify restrictions in the order of accumulation of mutations from cross-sectional data. The
cross-sectional data is a matrix of subjects or samples by driver alteration events, where each
entry in the matrix is binary coded as mutated or not-mutated. For the simulations, we will
refer to these driver alteration events as “genes”, but they can be individual genes, parts or
states of genes, or modules or pathways made from several genes (e.g. Caravagna et al., 2016;
Gerstung et al., 2011). When we analyze the eleven cancer data sets (see section 2.5) we will
use the generic term “features” as some of those data sets use genes whereas others use path-
way information. Both Oncogenetic trees (OT) (Desper et al., 1999; Szabo and Boucher, 2008)
and CAPRESE (Loohuis et al., 2014) describe the accumulation of mutations with order con-
straints that can be represented as trees. A key difference between the two is that CAPRESE
reconstructs these models using a probability raising notion of causation in the framework of
Suppes probabilistic causation, whereas in OT weights along edges can be directly interpreted
as probabilities of transition along the edges by the time of observation (Szabo and Boucher,
2008, p. 4). Both CAPRI and CBN allow modeling the dependence of an event on more than
one previous event: the output of the model are graphs (DAGs) where some nodes have mul-
tiple parents, instead of a single parent (as in trees). CAPRI tries to identify events (alterations)
that constitute “selective advantage relationships” again using probability raising in the frame-
work of Suppes probabilistic causation. We have used two versions of CAPRI, that we will call
CAPRI AIC and CAPRI BIC, that differ in the penalization used in the maximum likelihood
fit (AIC or BIC, respectively). For CBN we have also used two variants, the one described
in Gerstung et al. (2009, 2011) that uses simulated annealing with a nested EM algorithm for
estimation, and MCCBN, described in Montazeri et al. (2016), that uses a Monte-Carlo EM al-
gorithm that allows it to fit data sets with many more genes. See Supplementary Material,
“CPM software” for further details.

Because (the transitive reduction of) a DAG of restrictions determines a fitness graph (see
Figure 1 and Diaz-Uriarte, 2018), the set of paths to the maximum encoded by the output from
a CPM is obtained from the fitness graph. This we did for all methods. From CBN and MC-
CBN we can also obtain the estimated probability of each path of tumor progression to the
fitness maximum, since both CBN and MCCBN return the parameters of the transition rates
between genotypes (see e.g., p. i729 in Montazeri et al., 2016, section 2.2 in Gerstung et al., 2009,
or Hosseini, 2018). It is also possible to perform a similar operation with the output of OT,
and use the edge weights from the fits of OT to obtain the probabilities of transition to each
descendant genotype and, from them, the probabilities of the different paths to the global max-
imum. It must be noted that this is really abusing the model, since the OTs used are untimed
oncogenetic trees (Desper et al., 1999; Szabo and Boucher, 2008). We will refer to paths with
probabilities assigned in the above way as probability-weighted paths. For CAPRESE and
CAPRI, it is not possible to map the output to different probabilities of paths of progression
(see also Supplementary Material “CAPRI, CAPRESE, and paths of tumor progression”) and
in all computations that require probability of paths we will assign the same probability to each
path.

2.4 Measures of performance and predictability

We have characterized evolutionary unpredictability using the diversity of Lines of Descent
(LOD). LODs were introduced by Szendro et al. (2013) and ”(...) represent the lineages that
arrive at the most populated genotype at the final time” (p. 572). In other words, a LOD is
a sequence of parent-child genotypes, from the initial genotype to a local maximum. In the
context of this paper, a LOD is the path that a tumor has taken until fixation. The final geno-
type in a LOD is a local fitness maximum, but there are no guarantees that any intermediate
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genotype in the LOD will have been the most common genotype at any time point (specially
if there is clonal interference and stochastic tunneling — de Visser and Krug, 2014; Sniegowski
and Gerrish, 2010). As in Szendro et al. (2013), we can use the entropy of these paths to measure
the indeterminism with respect to the paths of evolution, or evolutionary unpredictabilty, and
we will define Sp = −∑ pi ln pi, where pi is the observed probability of each LOD (each path)
computed from the 20000 simulations, and the sum is over all paths or LODs. Evolutionary
unpredictability, as estimated by the CPMs, will analogously be defined as Sc = −∑ qj ln qj,
where qj is the probability of each path to the maximum according to the cancer progression
model considered, and the sum is over all paths predicted by the CPMs . (Hosseini, 2018, nor-
malizes predictability by dividing by the maximum entropy, similar to dividing by the prior
entropy in the “information gain” statistic in Lässig et al., 2017; but the maximum entropy is a
constant for each number of genes, i.e., 7! or 10! for our simulations).

To measure how well CPMs predict actual tumor progression, we use three different statis-
tics. To compare the overall similarity of the distribution of paths predicted by CPMs with the
observed one (i.e., the distribution of LODs) we have used the Jensen-Shannon divergence (JS)
(Crooks, 2017; Lin, 1991), scaled between 0 and 1 (equivalent to using the logarithm of base
2). JS is a symmetrized Kullback-Leibler divergence between two distributions and is defined
even if the two distributions do not have the same sample space, i.e., even if P(i) 6= 0 and
Q(i) = 0 (or Q(i) 6= 0 and P(i) = 0), as can often be the case for our data. A value of 0 means
that the distributions are identical, and a value of 1 that they do not overlap. Therefore, pre-
dictions of CPMs are closer to the truth the smaller the value of JS. The sum of the probabilities
of the paths in the LODs that are not among the paths allowed by the CPMs, P(¬DAG|LOD),
is equivalent to 1 - recall. Larger values of 1-recall mean that the CPM is not capturing a large
fraction of the actual evolutionary paths to the maximum (or maxima). The sum of the pre-
dicted probabilities of paths according to the CPMs that are not used by evolution (i.e., that are
not LODs), P(¬LOD|DAG), is equivalent to 1 - precision. Larger values of 1-precision mean
that the CPMs predict paths to the maximum that are not used by evolution. Some figures in the
Supplementary Material also use as statistic the probability of recovering the most common
LOD; we will rarely refer to this statistic in the main paper since it follows a pattern very simi-
lar to recall (see Supplementary Material, section “Probability of recovering the most common
LOD”). Statistics 1-recall and 1-precision can, however, overestimate performance: they could
both have a value of 0, even when JS is very close to 1 (see example in Supplementary Material
“Example where perfect recall and precision do not guarantee Jensen-Shannon divergence of
0”). Thus, the basic overall performance measure will be JS.

2.4.1 Comparing paths from CPMs with LODs of different lengths

When all paths from the CPM and the LOD have equal length (they end in a genotype with
the same number of genes mutated, K) computing the above statistics is straightforward. But
paths could differ in length. In fitness landscapes with local maxima, LODs can differ in length;
some could have Ki (the number of mutations at the fixated genotype, or the length of the path)
larger than KC (all paths from a CPM have the same number of mutations, since all arrive at the
genotype with all KC genes mutated). It is also possible that Ki > KC if the CPM has been built
from a fitness landscape with a data set that contains fewer genes than the number of genes
in the landscape (e.g., because one or more genes were absent —see Supplementary material
“Preprocessing of data for CPMs”). In fact, in representable fitness landscapes, all Ki > KC
if the CPM has been built from a fitness landscape with a data set that contains fewer genes
than the number of genes in the landscape (all Ki will be equal to either seven or 10). We need a
procedure to compute JS, 1-recall, and 1-precision that will cover all those cases. This procedure
should ignore specifics of the sampling model and should reduce to the simpler procedure in
the above section when all Ki = KC.

Let i and i denote two paths, one from the LOD and the other from the CPM, with corre-
sponding probabilities pi and qj; in contrast to the previous section, and to minimize notation,
p, q could refer to a path from the LOD and a path from the CPM, xor a path from the CPM and
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a path from a LOD. Let Ki, Kj denote the length of paths i and j, respectively. At least one set of
either Ki or Kj has all elements identical (e.g., if j refers to indices of the paths from the CPM, it
is necessarily the case that K1 = K2 = . . . = Km = KC, with m the total number of paths from
the CPM).

The procedure has to fulfill two desiderata. a) If Ki > Kj, but ik, the path i up to Ki = k
mutations (i.e., from the WT genotype to the genotype with k mutations) is identical to j, then
path j is included in path i. All of qj is accounted for by i. b) Path i is partially included (or
accounted for) by path j, but a fraction of it, (Ki − Kj)/Ki, is missing or unaccounted. The
above applies directly to calculations of 1-recall and 1-precision. For computing JS, there will
be two entries in the vectors with the probability distributions that will be compared: P =[

pi
Kj
Ki

, pi
Ki−Kj

Ki

]
, Q =

[
qi, 0

]
. This procedure can be applied to all elements i, j, summing all

unmatched entries (∑ pi
Ki−Kj

Ki
: this is the total flow in the set of is that cannot be matched by the

js because they are shorter). To simplify computations, that unmatched term can include ∑ pu,
where u denote those paths in i that do not match any j. Likewise, all paths i with Ki > Kj such

that the paths become indistinguishable up to Kj can be summed in a single entry: ∑ pi
Kj
Ki

and

∑ pi
Ki−Kj

Ki
for the matched and unmatched fractions, respectively. All computations have their

corresponding counterparts for elements i, j when Ki < Kj. This procedure results in unique
JS (remember the K are all the same for at least one of the sets of paths) as well as unique 1-
precision and 1-recall, and it reduces to section 2.4 when all Ki are equal and equal to all Kj.
A commented example is provided in the Supplementary Material (“Commented example for
paths of unequal length”)

2.4.2 Statistical modeling of performance

We have used generalized linear mixed-effects models, with a beta model for the dependent
variable (Ferrari and Cribari-Neto, 2004; Grün et al., 2012; Smithson and Verkuilen, 2006), to
model how JS, 1-recall, and 1-precision, are affected by Sp, detection regime, sample size, num-
ber of genes, and type of fitness landscape. All models used, as response variables, the average
from the five split replicates of each landscape by sample size by detection regime combina-
tion, and we have used fitness landscape as random effect . When the dependent variable
had values exactly equal to 0 or 1, we have used the transformation suggested in Smithson
and Verkuilen (2006). Models were fitted using sum-to-zero contrasts (McCullagh and Nelder,
1989). All regressors have been used as discrete regressors, except Sp, which has been scaled
(mean 0, variance 1) for easier interpretation and so that the intercept term is interpreted as the
predicted response at the average value of the regressors (see further details in Supplementary
Data“Coefficients of linear models”). We have used the glmmTMB (Brooks et al., 2017) and car
(Fox and Weisberg, 2011) packages for R (R Core Team, 2018) for statistical model fitting and
analysis.

2.5 Cancer data sets

We have used eleven cancer data sets (including glioblastoma, lung, ovarian, colorectal, and
pancreatic cancer); some code mutations in terms of genes and some in terms of pathways.
These data were obtained from Caravagna et al. (2016); Gerstung et al. (2011); Misra et al. (2014),
with the original sources for the data being Bell et al. (2011); Ding et al. (2008); Jones et al. (2008);
Network (2012); Parsons (2008); Wood et al. (2007). Details on sources, names, and how the
data were obtained are provided in the the Supplementary Data (“Cancer data sets”).
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3 Results

3.1 Simulated fitness landscapes: characteristics, evolutionary predictability, clonal
interference, and sampled genotypes

In the Supplementary Material (see section “Plots of fitness landscapes and inferred DAGs”)
we show all the fitness landscapes used; in section “Fitness landscapes: characteristics, evolu-
tionary predictability, clonal interference, and sampled genotypes”) we show the main char-
acteristics of the fitness landscapes used, the variability in evolutionary predictability, and the
main characteristics of the samples obtained under the three detection regimes. The three types
of fitness landscapes had comparable numbers of accessible genotypes but differed strongly in
the number of local fitness maxima and reciprocal sign epistasis, with reciprocal sign epistasis
being associated to number local fitness maxima in the local maxima landscapes. Simulations
resulted in varied amounts of clonal interference, as measured by the average frequency of
the most common genotype (or, similarly, the inverse of the average number of clones with
frequency > 5%); as seen in the plots in the Supplementary Material, scenarios where clonal
sweeps dominate (i.e., those characterized by the smallest clonal interference) corresponded to
initial population sizes of 2000, with clonal interference being much larger at the other popula-
tion sizes.

Simulations resulted in observed numbers of paths to the maximum (number of distinct
LODs) that showed a wide range, from 2 to 3082 (median of 228, 95, and 55, for representable,
local maxima, and RMF, respectively), with fitness landscapes with 10 genes with a dispropor-
tionately larger number (105 vs. 1340, 55 vs. 261, 33 vs. 113, for representable, local maxima,
and RMF, respectively). LOD diversities (Sp) ranged from 0.3 to 8.7, with RMF models show-
ing lower Sp, although RMF landscapes had the largest number and diversity of observed local
fitness maxima. Sp was strongly associated to the number of accessible genotypes.

The number of different sampled genotypes was comparable between detection regimes,
but diversity differed, with the uniform detection regime showing generally larger sampled
diversity. The mean and median number of mutations of sampled genotypes differed between
detection regimes in the expected direction (largest in large detection regime, and smallest in
small detection regime); the standard deviation and coefficient of variation in the number of
mutations were largest in the uniform detection regime (thus, the uniform detection regime
showed both the largest variation in number of mutations of genotypes and the largest diver-
sity of genotypes). The differences in sample characteristics between detection regimes often
differed between fitness landscapes (in particular, the coefficient of variation in the number of
mutations was largest in the RMF landscapes).

3.2 Predicting paths of evolution with CPMs: overall patterns

The six methods used can be divided into three groups: methods that return trees (OT and
CAPRESE) and two families of methods that return DAGs, CAPRI (CAPRI AIC and CAPRI BIC)
and CBN (CBN and MCCBN). As seen in the Supplementary Material “Overall patterns for
the six methods”, comparing within groups with respect to JS, one member of the pair con-
sistently outperformed the other. OT was significantly better than CAPRESE (paired t-test
over all 56595 pairs: t56594 = −161.1.2, P < 0.0001), CBN was significantly better than MC-
CBN (t56593 = −42.6, P < 0.0001), and CAPRI AIC was significantly better than CAPRI BIC
(t56594 = −41.9, P < 0.0001).

This ranking within types of methods does not always apply for the other two measures
of performance, most notably CAPRESE with respect to 1-recall, where its performance can be
one of the best, and often better than that of OT. CAPRESE’s better recall, however, is more
than offset by its poor precision (often the worst or among the worst). Similar comments apply
to other reversals (e.g., MCCBN’s slightly better precision in some scenarios being offset by its
considerably worse recall). Remember we will asses performance using mainly JS (see 2.4). In
what follows, therefore, and for the sake of brevity, we will focus on OT, CBN, and CAPRI AIC,
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since the overall performance of their alternatives is worse.
Figure 2 shows how the performance measures for OT, CBN, and CAPRI AIC change with

sample size for all combinations of type of landscape by detection regime by number of genes
(results for probability of recovering the most common LOD are shown in the Supplementary
Material and the patterns are essentially those of recall). The measures of JS and 1-precision
for OT and CBN (and MCCBN) use probability-weighted paths computed as explained in 2.4,
because there was strong evidence for all three methods that the probability-weighted paths
led to better results (JS, paired t-test over all pairs: OT, t56594 = 195.8, P < 0.0001; CBN:
t56594 = 222.3, P < 0.0001; MCCBN: t56593 = 149.0, P < 0.0001; 1-precision: OT: t56594 = 187.6,
P < 0.0001; CBN: t56594 = 217.6, P < 0.0001; MCCBN: t56593 = 130.3, P < 0.0001). (See also
Supplementary Material, “OT and CBN, JS, weighted vs. unweighted”, “CAPRESE and OT, 1-
precision, unweighted” and “CAPRI and CBN, 1-precision, unweighted” for figures that show
the improvement due to weighting).

Overall, CBN was the method with the best performance (P < 0.0001 from all pairwise
comparisons between the six methods with Tukey’s contrasts and single-step multiple testing
p-value adjustment Hothorn et al., 2008). It must be noted, however, that CBN was one of the
most variable methods in performance, as shown in Figure 3 (also Supplementary Material,
“Overall patterns for the six methods”).

JS differed between type of landscape, number of genes, detection regime, and sample size,
but the magnitude and even direction of effects differed between combinations of those factors,
as seen in Figure 2 and 4. Generalized linear mixed-effects models fitted to the complete data
set and to the different combinations of method and type of landscape (see Supplementary
Material, section “Analysis of deviance tables for fitted models”) also showed highly significant
(P < 0.0001) two-, three-, and four-way interactions between most of the factors, in particular
those involving type of landscape and detection regime.

Under representable fitness landscapes, performance improved with increasing sample size
and with the uniform detection regime, but decreased as the number of genes increased (Fig-
ure 2, panel A; Figure 4, top row). The decrease in performance with the number of genes is
related both to missing evolutionary paths (Figure 2B), and allowing paths that are not used
by evolution (Figure 2C). With CAPRI, however, the effect of sample size is much weaker and
increases in sample size can even lead to decreases in performance, specially under the uniform
detection regime (highly significant, P < 0.0001, interactions of detection and sample size —
see Supplementary Material); this is attributable to CAPRI excluding many paths taken during
evolution (Figure 2B). This behavior of CAPRI can also be seen in Figure 6A, where the num-
ber of paths allowed under CAPRI goes from slight to very severe underestimation as sample
size increases under the uniform detection regime. This is itself caused by CAPRI sometimes
allowing only a few or even just one path to the maximum (Supplementary Material, section
“Number of paths inferred”).

Under the RMF landscape overall performance was worse. Increasing sample size for OT
and CBN led to minor decreases in performance (Figure 2 and Figure 4 bottom row). CPMs
failed to capture about 50% of the evolutionary paths to the local maxima (Figure 2B) and
included more than 75% of paths (or fractions of paths) that were never taken by evolution
(Figure 2C). The behavior under local maxima was similar to that of representable fitness land-
scapes in terms of the direction of most effects, but effects were generally weaker. An important
exception was evolutionary unpredictability where increasing Sp was associated to a decrease
in performance similar to, but of smaller magnitude than, in RMF landscapes (see next).

3.3 Predicting paths of evolution with CPMs: effects of evolutionary unpredictabil-
ity

There were no marginal effects of evolutionary unpredictability on performance in representable
fitness landscapes (Figure 4). But the effects of evolutionary unpredictability were, in fact, more
complex than depicted in Figure 4, as there were highly significant interactions (P < 0.0001)
between Sp, detection regime, and sample size, within representable and local maxima land-
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scapes, as well as in the overall models (see Supplementary Material, “Analysis of deviance
tables for fitted models”). In many cases, the sign of the slope was reverted from its main ef-
fect, as is shown in Figure 5 (see also Supplementary Material, “Slopes of regressions of recall
and precision on LOD diversity”).

In most scenarios, performance was worse with larger unpredictability (larger Sp) as seen
by the positive slopes of JS on Sp. But under representable landscapes, in the small and large
detection regime and for sample sizes 50 and 200, larger evolutionary unpredictability was as-
sociated with better performance; the difference in effects was itself significantly affected by the
number of genes (see also Supplementary data, section “Analysis of deviance tables for fitted
models”). Note, however, that despite the change in relationship between unpredictability and
performance, performance was still better with a sample size of 4000 than with sample sizes of
50 or 200 (Figure 2) in representable and local maxima landscapes. Under RMF fitness land-
scapes, large evolutionary unpredictability (larger Sp), in contrast to what happened in repre-
sentable landscapes, was associated with poorer performance. Under local maxima, the effect
of evolutionary unpredictability depended strongly on sample size and detection regime, with
reversal of effects from sample size of 50 compared to 4000 under the large detection regime,
similar to those mentioned above for representable landscapes.

3.4 Inferring evolutionary unpredictability from CPMs

Figure 6 shows the relationship between the estimated and true numbers and diversities of
paths of tumor progression.

Even under representable fitness landscapes, and for the two methods with the best be-
havior, CBN and OT, there was large variability in the estimates of the number of paths to the
maximum relative to the true number of paths associated to differences in sample size and
number of genes, as shown in Figure 6A.

Average ratios of estimated paths to the maximum over true paths to the maximum were 1.4
and 6.9 for 7 and 10 genes for CBN (and 0.4 and 1.9 for OT). But values for CBN range from 0.5
(7 genes, sample size 50, uniform detection regime), to 33.9 (10 genes, sample size 4000, large
detection regime); for OT they range from 0.2 (7 genes, sample size 200, uniform, detection) to
5.6 (10 genes, sample size 4000, large detection regime). In section 3.1 (see also Supplementary
Material, “Fitness landscapes: characteristics, evolutionary predictability, clonal interference”)
we saw that the true number of paths to the maximum increased with the number of genes;
what we see here is that the inferred number of evolutionary paths to the maximum from CBN
and OT often increased even faster, a consequence of worse recall under 10 genes. Detection
regime and sample size had a large effect: number of paths inferred increased with sample size,
specially under the large detection regime.

For both CBN and OT that disproportionate increase in the number of inferred paths carried
only a small penalty in terms of estimating evolutionary unpredictability (the diversity of paths
to the maximum, Sp), as can be seen from Figure 6B. For example, for CBN the ratio of inferred
to observed diversities, Sc/Sp, remained close to 1 with values from 0.68× to 1.04× over all
combinations of type of landscape by detection regime by number of genes by sample size
(averages of 0.81× and 0.93× for seven and ten genes); the values were closest to one with
sample size 4000 and under the uniform detection regime.

In contrast to CBN and OT, patterns for CAPRI seemed dominated by the tendency of
CAPRI to only allow very few paths as the sample size grows large, and mainly under the uni-
form detection regime (see also Supplementary Material, section “Number of paths inferred”).
Under representable landscapes, CAPRI underestimates, sometimes severely, the true diversity
of paths to the maximum (Figure 6B).

The above results apply to representable landscapes. Under RMF, the number of paths
tended to be overstimated by very large factors (averages over seven and ten genes: paths:
CBN 2.9× and 55.6×; OT: 5.1× and 128×; CAPRI: 3.5× and 61×), especially with 10 genes and
sample sizes of 4000 (CBN: 112×; OT: 236×; CAPRI: 61×). Diversity was also overstimated
but, as above, by smaller factors (averages over seven and ten genes: CBN 1.1× and 1.6×; OT:
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2.1× and 2.8×; CAPRI: 3.0× and 3.5×; values for 10 genes and sample sizes of 4000: CBN:
2.2×; OT: 3.5×; CAPRI: 4.0×).

And how does the estimated evolutionary unpredictability change with the true evolution-
ary unpredictability? Figure 6C shows that the slopes of regressions of estimated unpredictabil-
ity from CPMs (Sc) on true unpredictability (Sp) changed depending on fitness landscape, de-
tection regime, and sample size, including slopes over and under 1, and even inversion of signs
(ranges of slopes over all combinations of type of landscape by detection regime by number of
genes by sample size: CBN: 0.47 to 1.27; OT: 0.43 to 1.50; CAPRI: -1.04 to 1.19); in contrast, those
slopes remained basically constant over sample size if we simply regressed sample diversity
on Sp.

3.5 Cancer data sets

We will use CPMs on eleven cancer data sets to examine their usefulness for predicting tumor
evolution. These data include five different cancer types, with number of patients that range
from 27 to 326 and number of features from seven to 192. Three data sets code mutations in
terms both of genes and pathways (colon, glioblastoma, pancreas; genes, pathways). We have
analyzed all the data sets with CBN (the best performing method —see sections 3.2 and 3.4).
We have run the analysis three times per data set, limiting the number of features analyzed to
the seven, ten, and 13 most common ones, so as to examine how our assessments depend on the
number of features; the first two thresholds use the same number of features as the simulations.
(Of course, for data sets with 7 or fewer features, there are no differences in the data sets used
under the 7, 10, and 13 thresholds, so the values show below reflect variability between runs;
ditto for data sets with 8 to 10 features with respect to thresholds 10 and 13).

We do not know the true paths of tumor progression, but we can use the bootstrap to asses
the robustness of the inferences. To do so, we repeated the process above with 20 bootstrap
samples (see Supplementary Material “Bootstrapping on the cancer data sets”). We measured
the JS between the distribution of paths to the maximum from the original data set and each
of the bootstrapped samples (JSo,b). Large differences in the distribution of paths between the
analyses with the bootstrap samples and the analysis with the original sample suggests that
the inferences cannot be trusted (but small differences do not indicate that the inferred paths
match the distribution of the true ones).

The results are shown in Figure 7. Performance (JSo,b) was generally poor for most data
sets, and very poor for some of them. These results would not be unexpected, even if the true
fitness landscapes were representable ones, as most of the data sets have small sample sizes,
and we have seen that performance (JS) is poor for that range of sample sizes (Figure 2A).
When the same data set was analyzed using pathways and genes, performance was generally
better using pathways. As the number of features analyzed increased from 7 to 10 to 13, the
unreliability of the inferences generally increased too.

What determines the variation in JSo,b in Figure 7A? The pancreas pathways data has the
smallest JSo,b and this contrasts with the much larger JSo,b of the same data analyzed using
genes. A similar, though not as extreme, pattern appears in glioblastoma. Determinants of
performance are complex and related to the association between features and distribution of
genotypes. But one possible explanation is shown in Figure 7C: the data set for pancreas path-
ways contains 68 subjects with the same five pathways mutated, whereas in the pancreas genes
most subjects have only a few mutations. In general, data sets where most subjects had only
a few mutations, relative to the number of features in the data set, had very large JSo,b. When
most individuals in the sample have very few mutations, estimations of the restrictions on the
downstream mutations are probably very noisy and, thus, different between bootstrapped data
sets.

Values for Sc were well within the ranges of Sc estimated by CBN for the simulated data
(see Supplementary Material, “Estimated Sc by CBN”). Of course, Sc increased with numbers
of features analyzed. Given the results from section 3.4, where generally Sp < Sc, this sug-
gests that the true evolutionary unpredictability (when analyzing up to 13 features) for eight
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of the data sets should be less than that corresponding to about 100 equiprobable paths to the
maximum, but only four are below the much more manageable, and useful, 20 equiprobable
paths. The pancreas pathways data set is here also an extreme case: examination of the output
shows that there was one single path with estimated probability > 0.97. There was a positive
association between Sc and JSo,b between the full and bootstrapped data sets (Figure 7 D), but
some data sets with small Sc had very unreliable path predictions (e.g., colon and glioblastoma
genes, MSI, MSS); conversely, the data set with pathway information from three cancers (All
Pathways), even if it had the largest Sc had a moderate JSo,b.

4 Discussion

Can we predict the likely course of tumor progression using CPMs? CBN, the best performing
CPM method in our study, under the representable fitness landscapes (the easiest scenario, as
it fits the underlying model), returned estimates of the probability of paths of tumor evolution
that were not far from the true distribution of paths of evolution (Figure 2A) when sample size
was very large. But we find that performance with moderate (and more realistic) sample sizes
was considerably worse and was affected by detection regimen. The analysis of the cancer data
sets revealed that performance (JSo,b) was poor or very poor for most data sets. What factors,
and how, affect performance?

Detection regime and LOD diversity (Sp) affected individually and jointly all performance
measures (Figures 2, 4, 5), and increasing sample size improved all performance measures.
CBN had better performance under the uniform detection regime (where more genotypes,
with larger diversity, and larger dispersion in the number of mutations, are represented in the
samples). But all performance measures (Figure 5, Supplementary Material “Slopes of regres-
sions of recall and precision on LOD diversity”), improved with increasing unpredictability
in the large and small detection regimes, specially with smaller samples sizes. The large and
small detection regimes differ from the uniform in number of mutations, each in a different
direction. What is common to both the large and small detection regimes is that increased
evolutionary unpredictability leads to a larger range of observed genotypes. Increased unpre-
dictability is thus associated to improved performance probably because it provides a surplus
variability (but the improved performance does not rise up to the levels of the uniform detec-
tion regime). The summary messages from the simulations are, thus: a) increased evolutionary
unpredictability hurts performance, unless the sampled genotypes (because of sample size or
detection regime) have too low variability; b) detection regime can be a key determinant of
performance, as already found in previous work (Diaz-Uriarte, 2015, 2018). The analysis of the
cancer data sets reinforces the last conclusion: the distribution of mutations per sample is likely
a major determinant of performance.

Performance was also affected by the number of features analyzed, the dimension of the
fitness landscape. Performance in the simulated data sets (JS) was worse with 10 than with 7
seven genes (Figure 2) and, of course, Sp itself was larger under 10 genes (see Supplementary
Material). In the eleven cancer data sets, both estimated unpredictability (Sc) and deviations of
JS between the full and bootstrapped data sets (JSo,b) increased with number of features. This
result is not surprising, but brings forth the problem of the selection of the relevant features
for analysis (Caravagna et al., 2016; Cristea et al., 2016; Gerstung et al., 2011). We have shown
that feature selection can have a very detrimental impact on the performance of CPM methods
(Diaz-Uriarte, 2015). Using pathways instead of genes in the analyses (see, e.g., Cristea et al.,
2016; Raphael and Vandin, 2015) can alleviate some of the problems of feature selection. Path-
ways can also improve predictability and how close the estimates of path distributions are to
the truth because they are more similar to heritable phenotypes, which often have smoother
phenotype-fitness maps and tend to show more repeatable evolution (Lässig et al., 2017; see
also Wang et al., 2015, but also Chebib and Guillaume, 2017; Sailer and Harms, 2017). Gerstung
et al. (2011) found that analysis using pathways gave stronger evidence for order constraints
than analysis using genes and we also see in Figure 7 that both Sc and JSo,b tend to decrease
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if we use pathways; “All Pathways” constitutes a promising case because it has large Sc but
moderate JSo,b.

Hosseini (2018) has reanalized the DAG-derived representable and a subset (those where
the fully mutated genotype has largest fitness) of the DAG-derived non-representable fitness
landscapes in Diaz-Uriarte (2018). He finds good agreement (small Kullback-Leibler diver-
gence) between the distributions of paths to the maximum from CBN and the fitness landscape-
based probability distribution of paths to the maximum. Our results for CBN under the best
conditions are not as optimistic. Two differences in the studies explain the differences. First,
Hosseini (2018) computes the fitness landscape-based probability of paths assuming a strong
selection weak mutation regime, not by directly examining the actual distribution of the paths
to the maximum in each simulation (i.e., he does not use the LODs) and, second, he uses CBN
with the very large sample size of 20000 (the full data sets in Diaz-Uriarte, 2018).

An important caveat of the discussion so far (which also applies to Hosseini, 2018,’s results)
is that very good performance simply tells us that the true and estimated probability distri-
butions of the paths to the maximum agree closely. If the true evolutionary unpredictability
is large, then for practical purposes our capacity to predict what will happen (in the sense of
providing a small set of likely outcomes) is very limited. To give a feeling for these values, 25
equiprobable paths have a diversity of 3.2, and 400 equiprobable paths a diversity of 6.0 (see
also Figure 7), values of diversity comparable to those seen for representable fitness landscapes
of seven and ten genes in our data (see Supplementary Material), and similar to those of several
of the eleven cancer data sets. The inability to narrow down the likely paths to a small set of
paths in these cases is, of course, not a limitation of the methods, but a problem inherent to the
unpredictability of the evolutionary process in many scenarios, which could severely limit the
usefulness of even perfect predictions.

We have focused on three families of methods. The behavior of CAPRI contrasted with that
of OT and CBN in terms of recall: it improved little or even degraded with increasing sample
size. That is because CAPRI allowed few paths to the maximum (it encodes too many restric-
tions in the DAGs of restrictions), and their number decreased with sample size (Supplemen-
tary Material “Number of paths inferred” and Figure 6A). CAPRI’s precision is not surprising:
the few paths to the maximum that it allowed were actually used by evolution. This is related
to the increased false negative discoveries for CAPRI discussed in Diaz-Uriarte (2018). Briefly,
because of both the objective of CAPRI (identification of “probability raising” relationships)
and its workings (fitting a Bayesian Network using penalized likelihood after filtering relation-
ships to fit probability raising and temporal priority), it is not possible to obtain probabilities
of paths (section 2.4) but, moreover, the results of CAPRI cannot be mapped unambiguously
to sets of possible and non-possible paths of tumor evolution, in contrast to OT and CBN (see
details in Supplementary Material “CAPRI, CAPRESE, and paths of tumor progression”).

The above discussion has centered on representable fitness landscapes. As argued above, it
is reasonable to suspect fitness landscapes with local fitness maxima are common in cancer. In-
terestingly, for small sample sizes, recall was sometimes better in DAG-derived and RMF than
under representable landscapes (Figure 2): with local fitness maxima, achieving good recall in-
volves the relatively easier task of getting right the first part of short paths to the maximum (see
Supplementary Material,“Number of mutations of local maxima and performance”, where 1-
recall increases with the average number of mutations of local fitness maxima). But good recall
was more than offset by the low precision: overall predictability was very poor. The decrease
in precision is the consequence of local fitness maxima: CPMs are fitting models with paths of
tumor progression that extend beyond the true end point of the progression. In addition, RMF
fitness landscapes strongly violate the CPM assumption that acquiring a mutation in one gene
does not decrease the probability of acquiring a mutation in another gene (see Diaz-Uriarte,
2018).

Returning to our third original question, even if achieving good performance in predicting
the actual paths of tumor progression is unlikely, inferring evolutionary unpredictability could
be an easier task. Can we use inferences of evolutionary unpredictability from CPMs as esti-
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mates of the true evolutionary unpredictability? Under representable fitness landscapes, CBN,
the best performing method also for this task (Figure 6B), returned values of Sc very similar
to Sp, the evolutionary unpredictability estimated from the diversity of paths, and this held
over detection regimes and sample sizes. Hosseini (2018) also finds that the estimates of pre-
dictability from CBN correlate well with the true evolutionary predictability, and his slopes
of the regression of CPM-based on landscape-based predictability are generally slightly be-
low 1, which agrees with our Figure 6C (left-most column). These good results do not hold
under the other two fitness landscapes: evolutionary unpredictability is overestimated, and
increasing sample sizes makes the problems worse. Could we do better by trying to infer the
true evolutionary unpredictability by using an inverse regression procedure of a regression
of CPM path diversity (estimated unpredictability, Sc) on LOD diversity (true unpredictabil-
ity, Sp)? As shown in Figure 6C this is also unlikely to succeed: different scenarios, sample
sizes, and detection regimes have different relationships of estimated predictability regressed
on true unpredictability, and marginalizing over all those factors leads to a very large spread
around a single regression line (see Supplementary Material “Regression of individual CBN
unpredictability estimates on LOD diversity”). Trying the inverse regression approach prop-
erly with experimental data would require that many other details of the process (e.g., type of
landscape, detection regime) were known, and this are currently unknown (and unlikely to be
known in the future). But our results indicate that we can use CBN to set upper bounds on
the true Sp; obtaining tighter estimates is an issue for further research to explore. And here
our analysis of eleven cancer data sets suggests that the true evolutionary unpredictability of
at least some cancer scenarios might be reasonably small, specially if Sc is overestimating the
true unpredictability.

4.1 Conclusion

The answer to the question “can we predict the likely course of tumor progression using
CPMs?” is, unfortunately, “only with moderate success and only under representable fitness
landscapes and with very large sample sizes; but even perfect predictions might be of little
use if evolutionary unpredictability is large”. Estimating upper bounds to evolutionary unpre-
dictability is a more modest, though more likely to succeed, use of CPMs. There are three key
difficulties for successful prediction: the sheer size of the problem even for moderate numbers
of genes, the intrinsic evolutionary unpredictability in many scenarios, and the deviations from
the assumptions of CPMs that are likely to hold in most cancer data. In addition to the caveat
about using methods under scenarios where performance is very poor, this paper raises the
general question of what can we really predict about likely paths of tumor progression from
cross-sectional data, for instance to guide therapeutic interventions.

5 Acknowledgements

S. Alvarez-Tolcheff for help writing some of the code to generate to local maxima fitness land-
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Figure 1: Fitness landscapes, paths of tumor progression,
and DAGs of restrictions in the order of accumulation of
mutations for the three types of landscapes used. (a) repre-
sentable; (b) local maxima; (c) RMF. In each row, on the left,
the fitness landscape (representation based on Brouillet et al.,
2015) that shows the accessible genotypes (where the notation
“AB” means a genotype with both genes A and B mutated)
and on the right the fitness graphs or graphs of mutational
paths (Crona et al., 2013; de Visser and Krug, 2014; Franke
et al., 2011), where nodes are genotypes and arrows point to-
ward mutational neighbors of higher fitness. Fitness graphs
show all the paths of tumor progression, the set of accessible
mutational paths and adaptive walks that, under the restric-
tion that there can be no back mutations, start from the “wild
type” (WT) genotype —where we absorb all cancer initiation
events— and end in the local fitness maxima (or single global
fitness maximum). Each path from WT to a maximum corre-
sponds to a different Line of Descent (LOD). For (b) and (c),
gray edges and nodes denote those that are present in (a) but
missing in (b) or (c). The inset in the first row shows the DAG
of restrictions in the order of accumulation of mutations that
applies to (a) and (b). A DAG of restrictions shows genes in
the nodes; an arrow (directed edge) from gene i to gene j in-
dicates a direct dependency of a mutation in j on a mutation
on i; a mutation in j cannot be observed unless i is mutated.
In the example, a mutation in gene D can only be observed if
both A and B are mutated; the absence of an arrow between
two genes indicates a lack of direct dependencies between the
two genes. The set of genotypes that can exist under both (a)
and (b) is the same, and all of them satisfy the restrictions in
the DAG of restrictions. But the fitness landscape in (b) has
three maxima; there are fewer paths to “ABCD” and several
paths end in the other two maxima (“AC”, “BC”). Thus, the
fitness graph of (b) does not fulfil the assumptions of CPMs.
The defining features of (b) are that the set of accessible geno-
types can be represented by a DAG of restrictions, but there
are missing paths. The fitness landscape in (c) cannot be rep-
resented by any DAG of restrictions; e.g., no DAG of restric-
tions can account at the same time for the presence of geno-
types “A”, “B”, “C”, and the absence of every double mutant
with “C”. Relative to (a), (c) is missing both paths and geno-
types (relative to other DAGs of restrictions it could either be
missing and/or adding genotypes and paths).
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Figure 2: Summary performance measures (see definitions in 2.4) for OT, CAPRI (with AIC penalty)
and CBN for all combinations of sample size by type of landscape by detection regime by number
of genes. For all measures, smaller is better. For OT and CBN, Jensen-Shannon divergence (JS) and
1-precision use probability-weighted predicted paths (see text). Each point represented is the aver-
age of 210 points (35 replicates of each one of the six combinations of 3 initial size by 2 mutation rate
regimes —see 2.1); we are thus marginalizing over mutation rate by initial simulation size combi-
nations. Each one of the 210 points is, itself, the average of five runs on different partitions of the
simulated data. See Supplementary Material, “Overall patterns for the six methods” for results for
all six methods used.
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Figure 3: Coefficient of variation (standard deviation/mean) of JS for each method for all com-
binations of sample size by type of landscape by detection regime by number of genes. The
coefficient of variation has been computed from the five runs for each landscape on each com-
bination of sample size and detection regime. For OT and CBN, JS is computed using the
probability-weighted predicted paths (see text). Each point plotted is the average of 210 points
(see Figure 2).

23

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 17, 2018. ; https://doi.org/10.1101/371039doi: bioRxiv preprint 

https://doi.org/10.1101/371039
http://creativecommons.org/licenses/by/4.0/


OT CAPRI_AIC CBN

R
ep

re
se

nt
.

Lo
ca

l_
pe

ak
s

R
M

F

V
al

ue
 o

f c
oe

ffi
ci

en
t

N_Genes(10)
S_Size(50)
S_Size(200)
S_Size(4000)
Detect(Small)
Detect(Large)
Detect(Unif.)
LOD_div

Figure 4: Coefficients from generalized linear mixed-effects models, with separate models fit-
ted for each combination of method and type of fitness landscape. Coefficients are from models
with sum-to-zero contrasts (see text and Supplementary Material). Within each panel, coeffi-
cients have been ordered from left to right according to decreasing absolute value of coeffi-
cient. The dotted horizontal gray line indicates 0 (i.e. no effect). Coefficients with a large
positive value indicate factors that lead to a large decrease in performance. Only coefficients
that correspond to a term with a P-value < 0.05 in Type II Wald chi-square tests are shown. The
coefficient that corresponds to Number of genes 7 is not shown (as it is minus the coefficient for
10 genes —from using sum-to-zero contrasts). “N Genes”: number of genes; “S Size”: sample
size; “Detect”: detection regime; “LOD div”: LOD diversity (Sp).
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Figure 5: Estimated slopes of the regression of Jensen-Shannon divergence (JS) on LOD diver-
sity (Sp) for all combinations of type of landscape by detection regime by number of genes by
sample size. A beta regression was fitted to each subset of data. Slopes not significantly dif-
ferent from 0 (P > 0.05) shown as 0. Each regression was fitted to 210 points, each of which is
itself the average of five replicates, one for each of the five runs on different partitions of the
simulated data.
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Figure 6: Number of paths and path diversities inferred from CPMs relative to the true values from LODs. Panel A:
average of the ratio of number of paths to the maximum from the CPMs relative to the observed number of distinct
LODs for all combinations of type of landscape by detection regime by number of genes by sample size. Panel B
like panel A, but for diversities of paths to the maxima. As in Figure 2, each point represented is the average of 210
points. Panel C shows the slope of the regression Sc on Sp; each point is thus a slope from a regression of 210 points,
each of which is itself the average of 5 replicates (see Figure 5). For comparison, panel C shows also the regression
of diversity of the observed genotype samples on Sp (gray line). Panels B and C show different features of the data:
panel B shows whether evolutionary unpredictability (Sp) tends to be over- or under-estimated by Sc; panel C shows
how Sc changes with Sp —see Supplementary Material, “LOD and CPM diversity: ratios and slopes” for an example
of positive ratios with negative slopes.
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Figure 7: Results from the cancer data sets analyzed with CBN. In A) and B), data sets have been ordered by increas-
ing sample size, and the x-axis labels provide the acronym (shown in full in the inset legend). Below the data set
acronym are the sample size and the total number of features, respectively. We used CBN for all analyses. Analysis
were run three times, limiting the number of features analyzed to the seven, ten, and 13 most common ones; the
boxplots for each data set are shown in increasing order of number of features. For data sets such as, say, Pancreas
genes, using 7, 10, or 13 maximum features makes no difference in the actual number of features analyzed; the three
replicate runs show run-to-run variability. A) JSo,b: JS statistic for the comparison of the distribution of paths from
running CBN on the original data set against the distribution of paths from running CBN on each one of the bootstrap
runs. B) Diamonds show the Sc from the full data, and boxplots the Sc from the boostrap runs. Right axis labeled by
number of equiprobable paths equivalent to the Sc. C) Histograms of number of mutations per individual in the data
set. D) Scatterplot of the mean of the JS statistic (panel A) vs. Sc (both from analyses with up to 13 features).
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