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Abstract

The response of quantitative characters to selection depends on their transmission from

parents to offspring. A common estimate of this transmission is the biometric heritability3

defined as the slope of the regression of offspring phenotype on same-aged mid-parent

phenotype (i.e. the ratio of the phenotypic parent-offspring covariance over the parental

phenotypic variance). This slope is often interpreted as the percentage of phenotypic6

variation due to additive genetic effects after accounting for confounding factors such

as environment, litter or parental effects. However, researchers seldom account for the

possible influence of selection on this estimate. Here we study the effect on biometric9

heritability of fertility and viability selection, as well as phenotype ontogeny (growth)

and inheritance from parents to offspring. We present exact formulas for the elasticities

of biometric heritability in age-phenotype-structured integral projection models (IPMs),12

and illustrate these for two iteroparous long-lived species. We find that both viability

and fertility selection can strongly affect heritability, mediated by growth and inheritance.

Generally, demographic processes that result in parents reproducing at large phenotypes,15

regardless of their own birth phenotype, decrease heritability. Analysed at equilibrium,

our models imply that a heritable character can show no response to selection, if parental

phenotypes affect offspring phenotypes and if phenotypes develop with age. Our results18

further highlight the importance of accounting for demographic processes when estimating

heritability.

Keywords : heritability, inheritance, parent-offspring regression, phenotypic variance,21

parent-offspring covariance, integral projection model, IPM, Soay sheep, roe deer, Trans-

mission
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Introduction24

Evolutionary biologists seek to understand how traits evolve in natural systems. Predic-

tions of trait evolution are derived from quantitative genetics theory (Falconer & Mackay,

1996). To evolve, a trait needs to vary, be under selection and transmitted to the next27

generation. A key measure of transmission, the parent-offspring phenotypic covariance, is

usually interpreted as arising from genetic similarity between parents and their offspring.

The ratio of parent-offspring phenotypic covariance over parental variance is the slope30

of the linear association between parental and offspring phenotypic traits measured at

the same point in the life cycle. Once potential confounding factors affecting offspring

phenotypic traits have been accounted for, this ratio is interpreted as the proportion of33

phenotypic variation attributable to additive genetic variation—the narrow-sense heri-

tability, or h2, of a trait (Falconer & Mackay, 1996; Kempthorne, 1957). The reason

underpinning this logic is that genotypes are inherited at birth and remain constant36

throughout life, with the offspring genotype expected to be intermediate between the

genotypes of the two parents (Lynch & Walsh, 1998). Heritability enters the breeder’s

equation to predict shifts in the population mean of a quantitative character under selec-39

tion from one generation to the next. However, this interpretation of the parent-offspring

covariance is restrictive. It excludes non-genetic inheritance (Bonduriansky & Day, 2009;

Danchin et al., 2011) and ignores trait ontogeny. However, individuals must grow and42

be sexually mature before reproducing and the resulting parental conditions influence

offspring phenotype (Mousseau & Fox 1998, Figure 1).

A key observation challenges the widespread use of the breeder’s equation to study45

evolution in the wild. Size-related traits are frequently heritable and under directional

selection in free-living populations of animals and plants, but they do not evolve as

predicted by the breeder’s equation (Merilä et al., 2001). The reason for this is that many48

assumptions underlying this equation are likely violated in natural systems. For instance,

incomplete or flawed pedigrees can bias the estimation of breeding values (Postma, 2006).
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Furthermore, the component linked to the interaction between genes and environment51

cannot be estimated in empirical studies in the wild and is therefore often assumed to be

negligible. Finally, the link between phenotype and fitness can be caused by a correlated

but unknown environmental or phenotypic trait (Morrissey et al., 2010).54

In contrast to the challenges met when applying the breeder’s equation to predict

trait development, eco-evolutionary demographers have developed data-driven popula-

tion models (Integral projection models, IPM, Easterling et al. 2000) that match ob-57

served phenotypic change over time (Coulson et al., 2011; Smallegange & Coulson, 2012;

Vindenes et al., 2014). However, these models do not comply with quantitative genetics

theory (Chevin 2015, but see Coulson et al. 2017), they do not follow the genotype and60

do not assume that the phenotype is influenced solely by additive genetic and environ-

mental effects. IPMs follow the phenotype distribution and its dynamics in populations.

They include a purely phenotypic across-age notion of inheritance (Janeiro et al., 2016).63

In this way, IPMs capture maternal and environmental effects of phenotype transmis-

sion through an inheritance function that links phenotype of the mother at reproduction

to the phenotype of the offspring (see Fig. 1). Moreover, this approach explicitly in-66

cludes ontogeny so that a new-born first grows to reach a required size at maturity, then

reproduces, and lastly transmits its phenotype to its offspring. Coulson et al. (2017)

have recently demonstrated how IPMs can track the additive genetic and environmental69

component of the phenotype, similar to approaches used in quantitative genetic models.

But here, we suggest studying how ontogeny and selection can influence the measure of

heritability using IPMs tracking directly the phenotype dynamics.72

As long as major challenges exist for the application of quantitative genetics theory

to natural systems, and without discrediting one or the other approach, the aim of this

paper is to study heritability using these data-driven population models in order to stay75

open to the question how other processes than genetic inheritance could affect estimates

of heritability. We calculate heritability from the modelled phenotype distributions at

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 17, 2018. ; https://doi.org/10.1101/370866doi: bioRxiv preprint 

https://doi.org/10.1101/370866
http://creativecommons.org/licenses/by-nc-nd/4.0/


equilibrium as the ratio of parent-offspring phenotypic covariance over parental variance,78

which is the exact same mathematical definition of the slope of the parent-offspring re-

gression as developed in quantitative genetics theory (Falconer & Mackay, 1996). While

the estimate of the slope is usually corrected for non-genetic effects, when calculated from81

an IMP it explicitly includes both genetic and non-genetic mechanisms of inheritance.

IPMs furthermore explicitly model ontogeny to estimate the parent-offspring covariance.

To indicate that heritabilities reported here contain non-genetic mechanisms of inher-84

itance, and are affected by fertility and viability selection and growth, we denote the

quantity as “biometric heritability” (after Jacquard, 1983).

To study biometric heritability, we begin with a general IPM that describes changes87

in a trait (e.g. body mass) with age. For any such IPM, we derive analytical expressions

for biometric heritability and for the elasticity of heritability to changes in any model

parameter (intercept and slope of the different functions constituting the IPM). Elasticity90

of heritability measures the proportional change in heritability caused by an infinitesimal

change of one of the model parameter and is estimated using the derivative of heritability

with respect to this trait over heritability. These expressions will apply to any IPM of this93

type, and can be extended to IPMs that describe multivariate traits. We apply our general

results to analyse two published age-body mass-structured IPMs, one parameterised for

Soay Sheep (Ovis aries) (Coulson et al., 2010) and one for roe deer (Capreolus capreolus)96

(Plard et al., 2015). In these iteroparous species, body mass is under positive selection and

develops with age. Surviving parents produce offspring that inherit a birth phenotype,

which may be a function of the environment and parental age, phenotype, and condition99

(Mousseau & Fox, 1998; Skibiel et al., 2009). As a consequence, the parent-offspring

phenotypic covariance arises out of complex interactions between ontogeny, demography,

and selection. We report and compare how the biometric heritability of body mass for102

both species depends on selection processes, growth, and inheritance. By doing this, we

show how demographic processes could influence estimates of heritability.
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Methods105

The biometric heritability h2 of a phenotypic trait is the slope of the regression of

offspring phenotype values Ya (“offspring phenotype”) at age a on mid-parent phenotype

values Xa (“parent phenotype”) at age a (Jacquard, 1983) (referred to as “heritability”108

from now on). We estimate heritability of traits at birth using phenotypic and life history

information from all ages. Our approach can be used for traits measured at any age,

which have to be the same for parents and offspring. Coulson et al. (2010) generate111

parent-offspring phenotype patterns using IPMs and estimate the regression slope of

the phenotypes of offspring born to one parent cohort over its lifetime regressed on the

phenotypes of parents at their own birth. The heritability can be calculated using the114

formula for a regression slope

b =
Cov(YaXa)

V ar(Xa)
. (1)

If parents of only one sex are considered, the heritability h2 equals twice the slope b, since

one parent only contributes half of the offspring genome (Falconer & Mackay, 1996). From117

(1), it follows that the elasticity of the biometric heritability, defined as the proportional

change in b, is

Eb =
∆b

b
=

∆Cov(YaXa)

Cov(YaXa)
− ∆Var(Xa)

Var(Xa)
. (2)

The elasticity of heritability Eb is the derivative of the heritability ∆b with respect to120

one of the parameter of the model, divided by this heritability. The precise forms of the

elasticity of heritability Eb depend on which model parameter is changed. The quantities

in (1) and (2) can be derived for an age-phenotype-structured population model, where123

phenotype is a quantitative character whose phenotypic values are discrete elements of

the vector z = {zi}. In the following, we describe how the quantities for calculating the

6
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elasticity of heritability can be computed. Detailed derivations of the described quantities126

are given in the supplemental material (equations A1-A9).

Stable cohort birth phenotype distribution

The age and phenotype structure of a population that experiences time-invariant fertility129

and mortality rates converges to a stable age and phenotype distribution with a growth

rate r (Keyfitz & Caswell, 2005). Stable populations have therefore stable proportions of

newborns in each phenotype class, here represented by a vector u = {u(i)} ≡ {u(zi)} and132

referred to as the stable cohort birth phenotype distribution, which contains all the

newborns of a given year. Note that we set (eT u) = 1, using the vector eT = (1, 1, . . . , 1).

If we define for any r a renewal matrix135

A(r) =
∑
a

e−ra Fa La , (3)

where Fa is a matrix describing fertility for parents of age a, and La is a matrix describing

survivorship from birth to age a (both matrices are described in detail in the next section),

then the stable cohort birth phenotype distribution u and growth rate r are together138

determined by

A(r) u = u. (4)

For details on the renewal matrix and the stable cohort birth phenotype distributions see

Steiner et al. (2014).141

Phenotype-demography matrices

Fertility of parents aged a is a matrix Fa = DaM̂a, where M̂a is a diagonal matrix whose

(i, i) entry is the total number of offspring that a parent of phenotype zi will produce144

at age a. The inheritance of the phenotype from a parent of phenotype zi at age a to
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offspring is captured in the parent-offspring phenotypic transition matrix Da whose (i, j)

element is147

Da(i, z) ≡ Da(zi | zj) (5)

= Prob.[Offspring phenotype is zi | Parental phenotype is zj at age a].

Note that eT Da = eT so that the probabilities for the transitions out of one parental

phenotype zj sum to one.

Survival and growth together from age a to age a+ 1 are given by a matrix Pa whose150

(i, j) element is

Pa(i, z) ≡ Pa(zi | zj) (6)

= Prob.[Alive at age a+ 1 with phenotype zi | Alive at age a with zj].

Survivorship from birth at age a = 0 to any age a is a matrix La whose (i, j) element is

La(i, j) ≡ La(zi | zj) (7)

= Prob.[Alive at age a with phenotype zi | Born age 0 with zj].

Parent-offspring covariance and parental variance153

In the first part of the appendix (A1) we derive a formula for the covariance between

offspring phenotype Y and parent birth phenotype X that is computable in terms of

Fa,La, and u. As a consequence, the parent-offspring phenotypic covariance arises out156

of complex interactions between ontogeny, demography, and selection.

In a stable age-phenotype-structured population, the lifetime number of offspring

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 17, 2018. ; https://doi.org/10.1101/370866doi: bioRxiv preprint 

https://doi.org/10.1101/370866
http://creativecommons.org/licenses/by-nc-nd/4.0/


produced by a birth cohort that has the stable cohort birth phenotype distribution u is159

K =
∑
a

(eTFaLa u) =
∑
a

(eTM̂aLa u). (8)

Using this, the phenotype-demography matrices M̂a, and La, and the stable cohort birth

phenotype distribution u as defined in (4), the parent-offspring covariance between

offspring and parent birth phenotypes is given by162

Cov(Y0X0) =
1

K

∑
a

{
eT Ẑ FaLa

(
I− u eT

1

K

∑
a

M̂a La

)
Ẑ u

}
, (9)

= eT ẐH

(
I− u eT

1

K

∑
a

M̂a La

)
Ẑ u, (10)

where Ẑ is a diagonal matrix of the phenotypic values Ẑ = diag(zi), and where we use,

for brevity,

H =
1

K

∑
a

FaLa. (11)

Details on the derivations are given in the appendix A1, particularly in (A-14 to A-17).165

The variance in parent birth phenotype is

Var(X0) =
1

K

∑
a

(eT M̂a La Ẑ Ẑu)− 1

K2
(
∑
a

eT M̂a La Ẑu)2. (12)

Details on the derivation of the variance is given in the appendix A2, particularly in

(A-18 to A-23).168

Computing the elasticity of heritability

A change in biometric heritability ∆b occurs if we change the model parameters that

govern the strength of the phenotype selection and transition processes by a small amount171

ε > 0. This change was estimated by the derivative of b in relation to the parameter that

9
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has changed. This causes changes in the phenotype-demography matrices

Fa La → Fa La + ε∆a, (13)

where ∆ represent the derivative of a matrix. In the following, we also use ∆ and δ to174

represent the derivative of a number and a vector, respectively. The appendix A4 and A9

give the details on the computation of the changes in the phenotype-demography matrices

with respect to changes in viability selection, fertility selection, growth, and inheritance.177

The changes in (13) change the stable population so that the stable cohort birth phe-

notype distribution u changes by ε δu (see A3, A6, A7 and A8 for the computation of δu).

From here on, we leave off the ε (constant proportional factor) since it multiplies every180

change. In addition to changes in u, the parent-offspring covariance Cov(Y0X0) changes

by ∆Cov(Y0X0) and the variance in parent birth phenotype Var(X0) by ∆Var(X0) (see

A5 for details on the perturbations of the parent birth phenotype variance).183

The perturbation of the parent-offspring covariance as given in (10) requires the per-

turbation of matrix H (11), which in turn needs the perturbation of K (8). From (11)

see that the change in H is186

∆H = −
(

∆K

K

)
H +

[
∑

a ∆a]

K
. (14)

And from (8) we have

∆K =
∑
a

(eT∆au) +
∑
a

(eTFa La)δu (15)

Putting these together, the change in parent-offspring covariance between offspring and

10
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parent birth phenotypes using (10) and δu (A3) is189

∆Cov(Y0X0) = eT Ẑ [∆H]

(
I− u eT

1

K

∑
a

M̂a La

)
Ẑ u

+ eT ẐH

(
I− u eT

1

K

∑
a

M̂a La

)
Ẑ δu

− eT ẐH

(
1

K

∑
a

u eT ∆M̂a La

+
δuK −∆K u

K2

∑
a

eT M̂a La

)
Ẑ u.

(16)

Finally, the change in parent birth phenotypic variance (Appendix A5) is

∆Var(X0) = eT
∑
a

{
∆M̂a La

K −∆K M̂a La

K2
Ẑ Ẑu

}

+
1

K

∑
a

(eT M̂a La Ẑ Ẑδu)

− 2
eT

K

∑
a

{
∆M̂a La

K −∆K M̂a La

K
Ẑu + M̂a La Ẑ δu

}
zT u.

(17)

Using (10), (12), (16), and (17), we can now compute the biometric heritability in (1)

and its elasticity in (2).192

We also compare our analytical framework to numerical evaluation of elasticities of

heritability with respect to changes in the model parameters. We numerically computed

the elasticities from simulations by adding 10−5 to each model parameter, one at a time,195

dividing the resulting change in the perturbed elasticity by the unperturbed elasticity,

and then scaling it back up by 105. This approach is described in detail in Coulson et al.

(2010).198

We analyse the model at its equilibrium state when the phenotype distribution has

stable, time-invariant proportions in each age and phenotype class. This stable pheno-

type distribution changes if model parameters are altered. As a consequence, changes201

in model parameters can affect heritability at population equilibrium by affecting one
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of three phenotype distributions: the stable cohort at birth phenotype distribution, the

stable parent (at own) birth phenotype distribution, or the offspring birth phenotype204

distribution. The offspring produced by a stable population in one time step has the

stable cohort birth phenotype distribution. Each such cohort contains individuals who

may become parents if they survive and reproduce. Which of these potential parents207

reproduce, and how often, during their lifetimes determines the stable parent (at own)

birth phenotype distribution. The latter is shifted to higher phenotype values when com-

pared to the stable cohort birth phenotype distribution, if viability and fertility selection210

are positive. Finally, the offspring born to one cohort of parents over their lifetimes form

the offspring birth phenotype distribution.

Application to Soay sheep and roe deer IPMs213

We computed the biometric heritability of body mass in Soay sheep and roe deer and

the elasticities of heritability to changes in model parameters for two published age-

phenotype-structured IPMs (Coulson et al., 2010; Plard et al., 2015). Both IPMs used216

data from the female component of the population and categorised those ages with sta-

tistically indistinguishable fertility, survival, growth, and inheritance functions into age-

classes. The Soay sheep IPM divided individuals into four age-classes: lambs (aged219

0 to < 1, census at 4 months old), yearlings (aged 1 to < 2) , adults (aged 2 to < 8),

and senescent individuals (aged 8+). Whereas the roe deer IPM distinguished three age-

classes: yearlings (aged 0 to < 1, census at 8 month old), adults (aged 1 to < 7), and222

senescent individuals (aged 7+). For consistency among the IPMs and the above nota-

tion, where age 0 refers to age at birth (i.e. census age), we define the roe deer age-classes

starting at age 0 to denote the census age of 8 months, instead of age 1 as in Plard et al.225

(2015). This is purely a question of notation. For both species, we calculate heritability

for their respective census ages of 4 months in Soay sheep and 8 months in roe deer.

The IPM phenotype-demography matrices were constructed by predicting from the228

12
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relevant phenotype-demography functions. The functions were statistically determined

using life history and body mass data while controlling for confounding temporal variation

in demographic rates. The functions inferred, by body weight and age-class, were yearly231

probability of survival, yearly probability of recruitment, probability of twinning, mean

and variance of annual growth, and mean and variance of parent-offspring body weight

inheritance. The survival, probability of recruitment, and twinning rate functions were234

estimated with a logit transformation while the mean and the variance of the growth

and the inheritance functions used linear functions. Every function has an intercept and

a slope per age-class. The total number of model parameters is the total number of237

coefficients of all functions. For a detailed description of the construction of IPMs see

Merow et al. (2014) or Rees et al. (2014).

We now provide a brief summary of the data. The feral population of Soay sheep240

lives on the Island of Hirta in the St. Kilda archipelago, Scotland, and fluctuates as a

food-limited population between 600 and 2000 individuals, of which about one-third

live in the 250ha study area (Clutton-Brock & Pemberton, 2004). The population has243

been studied in detail since 1985. During this time, life-history and body mass data

were collected during the yearly capture and year-round censuses. A detailed description

of the population and data collection protocols is provided elsewhere (Clutton-Brock &246

Pemberton, 2004).

The roe deer population of Trois Fontaines lives in an enclosed forest of 1360 ha in

North Eastern France (48◦3′N, 2◦61′W). The size of the population has been kept rela-249

tively constant around 250 individuals by yearly removals (mainly through exportation

of captured individuals) except between 2001-2005 when an experimental manipulation

of density was performed and population size peaked at 450 individuals. The population252

has been monitored by the Office National de la Chasse et de la Faune Sauvage since

1975. Each year, half of the population of roe deer is caught between December and

March. Each individual is sexed and weighed. All individuals included in this study255

13
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are of known age. The population and the study site has been described in details by

Gaillard et al. (1993, 2013).

Results258

The estimated heritabilities of body mass were 0.20 for Soay sheep and 0.34 for roe

deer. While the parent birth phenotypic variances (denominator used in the estimation

of heritability) were similar (5.59 and 5.39 for roe deer and Soay sheep, respectively),261

the parent-offspring covariance (numerator) was smaller in Soay sheep (0.53) than in

roe deer (0.94). This is because Soay sheep can give birth at 1 year of age and so give

birth to offspring of different body masses at different ages, whereas roe deer give birth264

from 2 years of age onwards to more similar offspring each year. The elasticities of

the heritabilities varied between -6% and 2.5%. Both the analytically and numerically

calculated elasticities provided equivalent results (Figs. S1 and S2). In general, perturbing267

slopes had larger effects on heritability than perturbing intercepts (Figs. 2 and 3). In the

following, we will discuss the analytically calculated elasticities with respect to changes

in fertility and viability selection, growth, and inheritance. To understand the elasticities270

of heritability, we also discuss the underlying elasticities in the means and variances of

the three phenotype distributions that contribute to determining heritability: the stable

cohort birth phenotype distribution, the parent birth phenotype distribution, and the273

offspring birth phenotype distribution (Tables 1, S1, and S2).

Elasticities of heritability with respect to viability selection

Increasing the slopes of the survival function and thus increasing survival and altering276

viability selection resulted in large negative elasticities of heritability for both species

and almost all age-classes (Figs. 2 and 3). Changes to the slopes for the adult age-classes

had the most pronounced effects. Increasing these slopes increased survival across all279
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phenotype values but decreased the strength of viability selection because these changes

increased survival of small adults more than survival of large adults. This is because

the survival probabilities predicted by the unperturbed logit survival models were al-282

ready approaching the boundary of one for larger adults (Figs. 4, 5, also see Fig. S3 for

a schematic of this “linearisation effect”). In contrast to this, increasing the survival

slope for Soay sheep lambs, for example, increased survival and the strength of viability285

selection, meaning that survival increased more for larger lambs than for smaller lambs

(Figs. S3 and 4).

Regardless of the direction of the change in viability selection, increasing the adult288

survival slopes decreased heritability because more individuals survived and grew to re-

produce at larger size. This surplus of adult individuals reproducing at large phenotype

values, and producing relatively large offspring, increased the mean offspring phenotype291

and decreased the variance among offspring. This meant that potential parents were

larger and more similar at birth (Table 1). As a consequence, the variance in parent

birth phenotype decreased. However, the covariance between parent and offspring birth294

phenotype decreased substantially. Due to the overall higher survival probabilities and

the reduced viability selection, more parents with small birth phenotypes grew to large

adult sizes where they gave birth to large offspring. Defined by the ratio of this covariance297

and the parent birth phenotypic variance, heritability overall decreased for both species

as the survival slope increased (Table 1).

Increasing the survival slopes for Soay sheep lambs and yearlings had comparable300

effects (Table 1). However, perturbing the survival slope for roe deer yearlings had little

effect because the decrease in the covariance between parent and offspring birth phenotype

was relatively weak.303

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 17, 2018. ; https://doi.org/10.1101/370866doi: bioRxiv preprint 

https://doi.org/10.1101/370866
http://creativecommons.org/licenses/by-nc-nd/4.0/


Elasticities of heritability with respect to fertility selection

Changing fertility and fertility selection had much larger effects on heritability for Soay

sheep than for roe deer (Figs. 2 and 3). For Soay sheep, fertility selection mostly operated306

through the probability of recruitment because the twinning rates were very low (Fig. 4).

Another idiosyncrasy of the Soay sheep model was that the probability of recruitment

for adults was similar across all phenotypes (Fig. 4). Therefore, fertility selection in the309

adult age-class was low. Introducing fertility selection by increasing the slope of this

function by an infinitesimal change of about 0.01 had the largest effect on heritability of

all perturbations for Soay sheep (Fig. 2). It decreased heritability by approximately 5 %.312

Similarly to the effect of increasing the adult survival slope, increasing fertility and

positive fertility selection among adult Soay sheep resulted in more adults reproducing at

large phenotype values. This increased the mean of the stable cohort birth phenotype dis-315

tribution and decreased its variance (Table 1). The increase in fertility selection resulted

in an increase in the mean parent birth phenotype, but the overall increase in fertility also

led to smaller adults having higher fertility and therefore to an increase in the variance318

in birth phenotype among parents. The offspring birth phenotype increased due to the

increase in fertility selection, and the variance in offspring birth phenotype decreased.

The parent and offspring birth phenotypic covariance therefore decreased substantially,321

which resulted in a large decrease in heritability (Table 1). In Soay sheep, lambs have a

small probability of recruitment (Fig. 4). Increasing this probability, and simultaneously

increasing fertility selection by increasing the slope of the function, increased heritabil-324

ity (Fig. 2). The increase in the slope drastically increased the parent-offspring birth

phenotypic covariance, because small-born parents were now more likely to give birth at

small lamb sizes to small offspring. More lambs reproducing also caused a decrease in the327

mean and an increase in the variance of all three distributions: potential parents, parents,

and offspring were on average smaller and less similar at birth. As a result, heritability

increased (Table 1).330
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For roe deer, altering the probability of recruitment had less pronounced effects (Fig.

3). Increasing fertility and decreasing fertility selection for adults, due to the linearisation

effect (Fig. S3), increased heritability. Supposedly, the decrease in fertility selection re-333

sulted in a decrease in the mean stable cohort birth phenotype because smaller adults had

an increase in the probability of recruitment and a higher increase in the probability of

recruitment than larger adults. At the same time, the variance in the stable cohort birth336

phenotype decreased; potential parents were smaller and more similar when compared to

the unperturbed model. This smaller mean and variance translated into smaller means

and variances for both the parent and offspring birth phenotype. The parent-offspring339

covariance increased, because parents that were born small, and therefore took longer to

grow to the asymptotic size than large-born parents, had a higher probability of recruit-

ment as small adults, resulting in small-born parents having a higher probability to give342

birth to small offspring (Table 1).

Elasticities of heritability with respect to growth

Changing both intercepts or slopes of the functions that determined the variances in345

growth had little effect on heritability for both species (Figs. 2 and 3). These perturba-

tions changed the variances in parent and offspring birth phenotype and in the parent-

offspring covariance to similar proportions, which then overall had no effect on heritability348

(Tables S1 and S2). These findings even held for Soay sheep, where the growth variances

have slopes that deviate from 0 (Fig. 4).

Increasing the slope of the mean growth function for adult and senescent Soay sheep351

had pronounced negative effects on heritability (Fig. 2). Increasing the slope of the mean

growth function in an IPM has generally two consequences. First, all individuals of

the relevant age-class attain faster their asymptotic body mass, with this acceleration354

being even larger for large individuals. Second, the mean maximum body mass increases

because the mean growth rate function crosses the y = x line at higher phenotype values.
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When the adult mean growth slope for Soay sheep was increased, individuals grew357

faster to larger phenotype values at which they had higher survival. This caused an

increase in the number of adults reproducing at large phenotype values and therefore

increased the mean size of potential parents, but also the variance in size among them360

(Table 1).

The increase in variance may have been caused by the increase in the asymptotic size

of adults, which increased the range of phenotype values over which adults reproduce.363

This change in the phenotype mean and variance of the potential parent cohort cascaded

through and led to similar increases in the mean and variance of parent and offspring

birth phenotypes. The increase in the asymptotic size of adults, and the increase in how366

fast individuals grow to this size, increased the number of individuals that reproduce at

large phenotype values regardless of their birth phenotype. Consequently, the covariance

between parent and birth phenotype decreased, which divided by a much larger variance369

in birth phenotype, resulted in lower heritability (Table 1).

In order to understand how increasing the mean growth slope for senescent Soay sheep

influenced heritability, it is important to notice that the slope for mean inheritance is neg-372

ative for senescent individuals; the larger they are, the smaller is their offspring (Fig. 4).

As a result, shifting the asymptotic size for senescent individuals towards larger pheno-

type values, at which individuals had higher probabilities of recruitment and survival yet375

gave birth to smaller offspring, decreased the mean and the variance in the stable cohort

birth phenotype distribution. The variance further decreased because the variance of the

growth function decreases with body mass in the senescent age-class. The decrease in378

the mean and variance in the stable cohort birth phenotype distribution was again fol-

lowed by similar developments in the parent and offspring birth phenotype distributions.

However, overall heritability decreased (Table 1) because the parent-offspring covariance381

decreased even more.

For roe deer, only increasing the growth mean slope for yearlings had a notable effect
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on heritability, since most of the growth towards the asymptotic body mass occurs in this384

age class (Fig. 3). Increasing the slope of yearling growth resulted in individuals growing

faster to larger sizes at which they recruited to the adult age-class. They therefore

experienced higher probabilities of survival, recruitment, and twinning rates during the387

first time step as adults. Due to the positive slope of the mean inheritance function

(Fig. 5), this increased the mean and decreased the variance in the stable cohort birth

phenotype distribution. Since potential parents were larger and more similar at birth,390

plus they were exposed to higher growth rates during the yearling age-class, both parents

and offspring were also larger and more similar in birth phenotype, which increased the

parent-offspring covariance (Table 1). Divided by a smaller parental variance, this led to393

higher heritability.

Elasticities of heritability with respect to parent-offspring phe-

notype inheritance396

The only direct relationship between offspring and parent phenotype (at birth of offspring)

is modelled by the inheritance function. Nevertheless, perturbing this relationship by

increasing the slopes of the mean inheritance functions had only moderate effects on399

heritability (Figs. 2 and 3). Increasing the slope of the mean inheritance function for Soay

sheep yearlings and roe deer adults increased the mean stable cohort birth phenotype and

decreased the associated variance. It supposedly decreased the variance because both age-402

classes had high probabilities of recruitment for the upper part of the stable phenotype

distribution of the respective age-class (Figs. 4 and 5). Offspring produced were therefore

larger and more similar. Since potential parents started out larger and more similar, the405

mean birth phenotype of parents was also larger and its variance smaller. Since parents

were larger, they gave birth to larger and more similar offspring. The covariance between

parent and offspring phenotype increased, while the variance in parent birth phenotype408

decreased, resulting in higher heritabilities caused by these perturbations.
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However, increasing the slope of the mean inheritance function for adult Soay sheep

actually decreased heritability (Fig. 2) because it increased the variance of the parent birth411

distribution. Since both small and large adult Soay sheep have about the same number of

offspring due to the probability of recruitment being almost constant, increasing the slope

of the mean inheritance function shifted the mean of the stable cohort birth phenotype414

distribution to larger sizes while spreading out the distribution. Since the stable cohort

was larger and less similar in birth phenotype, the mean and variance in the parent birth

phenotype distribution also increased. The covariance between parent and offspring birth417

phenotype also increased, but less than the variance in parent birth phenotype, which

overall resulted in a lower heritability.

Discussion420

By studying two species of large vertebrates in an IPM framework, we have demonstrated

how the effect of all four processes – viability and fertility selection, growth, and inheri-

tance – on biometric heritability can be quantified and compared. Our results show that423

viability and fertility selection influence heritability more than growth and inheritance,

which dampen or amplify the effect of selection. Interestingly, inheritance played the

least important role. Our method allows us to understand if these processes influence426

heritability by influencing the phenotypic covariance among offspring and parents, the

variance among parents, or both. Generally, processes that lead to individuals giving

birth to offspring of different sizes decrease heritability. Accordingly, we estimated her-429

itability of body mass at first census age to be lower in Soay sheep than in roe deer.

Within-individual variation in offspring body mass is 67% and 44% for Soay sheep and

roe deer, respectively. While Soay sheep can reproduce at different sizes in different age432

classes, giving birth to offspring of different sizes, roe deer mostly reproduce at sizes close

to the mean asymptotic body size, resulting in more similar offspring. In the following, we

discuss our main findings and the use of IPMs to study heritability in free-living animal435
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populations. First, however, we summarise some general insights that provide guidance

in distilling these insights from our varied results.

First, perturbing intercepts had smaller effects on heritability than perturbing slopes,438

because perturbing intercepts mostly affects the means of phenotype distributions, while

perturbing slopes affects the means and the variances of phenotype distributions. Second,

perturbations of the same parameter, but for different age classes, do not always change441

processes in the same way. Increasing the slope of the survival function, for example,

increased viability selection for Soay sheep lambs yet decreased it for adults. Indeed, the

slope of the survival function is not directly a measure of the strength of the viability444

selection. Their particular effects depend on the shape of the functions and on the stable

age-class phenotype distributions (see the result part on Elasticities of heritability with

respect to viability selection and Fig. S3). Third, the different functions interact. An447

increase in viability selection, for example, increases mean offspring size depending on

the slope of the mean inheritance function. Finally, the more the functions vary among

the different age classes, the less predictable are their interactions. This may explain why450

we see more and mostly stronger responses in heritability to perturbations for Soay sheep

when compared to roe deer (Figs. 4 and 5).

Effects of viability and fertility selection453

Decreasing viability selection generally decreased heritability, as we have observed for

both Soay sheep and roe deer in the adult and senescent age classes. This is because more

parents of different birth phenotypes survive to grow and give birth to large offspring. In456

reality, however, strong changes in viability selection acting on adult Soay sheep and roe

deer are unlikely to occur (Gaillard et al., 2000). More realistic is variation in viability

selection among young individuals such as Soay sheep lambs, which we have observed459

would result in a decrease in heritability. In both species, viability selection up until the

census age (8 months in roe deer, 4 months in Soay sheep) is part of the fertility selection,
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because the parental probabilities of recruitment and twinning include the probability for462

offspring of surviving to the census age. Increasing fertility selection had the strongest

heritability-decreasing effect for Soay sheep. Many studies found that heritability is

generally lower under poor than under favourable environmental conditions (reviewed465

in Charmantier & Garant, 2005; Merilä & Sheldon, 2001). Wilson et al. (2006) showed

that additive genetic variance decreased with increased viability selection on offspring

phenotype in Soay sheep. In line with their findings, we observed that increasing adult468

and senescent fertility selection, which includes viability selection on offspring before first

census, decreased heritability. Moreover, given positive viability selection among adults,

increasing fertility selection among adults is also likely to decrease directly heritability471

because it reduces the probability that small individuals reproduce.

Effects of growth and inheritance

The effects of viability and fertility selection on heritability are mediated by ontogeny.474

If individuals grow slowly, then any effect of selection on heritability has more time

to act via the still-growing individuals. If however individuals grow fast to large sizes,

then selection has less opportunity to influence heritability. Therefore, we observed a477

decrease in heritability with an increase in the mean growth rate of Soay sheep adults.

Furthermore, we found that fertility selection had less effect on heritability of roe deer

than Soay sheep because roe deer were recruited at 8 months of age when most growth480

had already taken place (∼ 70% of the asymptotic mass, Hewison et al., 2011).

Inheritance captures processes that directly relate variation in parental body condi-

tion and other maternal effects to offspring birth phenotype. Despite it being the only483

direct relationship between parental and offspring phenotype, the effect of inheritance

on heritability is small. The mean inheritance function determines the variation in off-

spring phenotypes, which then results in the variation among parents through growth486

and selection processes. We found that increasing the slope of the mean inheritance
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function always increased the parent-offspring covariance. Remarkably though, this did

not always result in an increase in heritability. For Soay sheep adults, the increase in489

phenotypic variance among potential parents also resulted in an increase in the variance

in parent birth phenotype, which overall decreased heritability. The variance around the

mean inheritance function captures reproductive allocation. Changing this variance has492

little effect on heritability because it changes the variances in parent phenotype and the

parent-offspring covariances to similar proportions. In some species such as wild boars, in-

dividuals allocate resources differently to siblings as an evolutionary bet hedging strategy,495

called coin-flipping (Kaplan & Cooper, 1984), to minimise the variance in reproductive

success (Gamelon et al., 2013). Our results show that this has no effect on heritability in

roe deer and Soay sheep, but may play a role in species with larger litter sizes.498

Evolutionary and demographic effects on heritability estimates

Estimates of heritability for roe deer and soay sheep were within the range of heritabilities

estimated from animal model (Soay sheep: 0.20 here vs 0.03-0.32 from animal model,501

Wilson et al. 2006; roe deer: 0.34 here vs. 0.07 and 0.44 in two other populations of

roe deer, Quemere et. al, unpublished data). Because our model includes a growth

and an inheritance function that link an offspring’s phenotype at birth to its mother’s504

phenotype at the age of reproduction (Chevin, 2015; Janeiro et al., 2016), it allows us to

understand how and how much selection and growth can influence the parent-offspring

regression. Heritability can increase both because the covariance among parents and507

offspring increases or because the total phenotypic variance among parents decreases. Our

results show that demography influences always both the numerator and the denominator

of this ratio. As illustrated by our results, the evolution of a phenotypic continuous trait510

is a complex interaction between transmission and selection. The pool of potential future

parents used to quantify the total phenotypic variance and to estimate heritability is

directly influenced by viability and fertility selection (Hadfield, 2008). The influence of513
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selection on heritability has already been recognized in quantitative genetics (Hadfield,

2008; Nakagawa & Freckleton, 2008; Steinsland et al., 2014). Heywood (2005) derived

a theoretical decomposition of the evolution of a trait, taking selection into account.516

However, it remains difficult to quantify each component of the decomposition given the

currently available data from natural systems. Given the large influence of selection in

roe deer and Soay sheep, it might partly explain why the predictions of the breeder’s519

equation are more accurate in lab or domestic populations with controlled selection than

in wild populations where many and variable selective pressures can influence a trait

(Bonnet et al., 2017). Thus, IPMs present a relevant approach to study the evolution522

of a continuous trait in natural systems, taking into account the interaction between

environment and the dynamics of the trait.

According to quantitative genetics, the parent-offspring phenotypic covariance rep-525

resents exclusively genetic similarity because the genotype does not develop with age.

While this definition can be used as measuring heritability for traits that remain fixed

for life, it is questionable for traits that develop with age. Indeed, parental effects often528

influence offspring body mass or size in addition to genetic and environmental effects

(Mousseau & Fox, 1998). Parental effects may change according to parental age, condi-

tion, and experience. As a result, offspring phenotype cannot be predicted from additive531

genetic and environmental effects only (Fig. 1). Under the assumption that body mass

is determined by a genotype that remains constant throughout life plus some environ-

mental variation, a regression slope of unity would be expected. However, the slope of534

the growth function, where body mass at age a is regressed against body mass at age

a + 1, is often estimated to be about 0.7 in IPMs (Coulson et al., 2010; Plard et al.,

2015). The two ways out of this conundrum are for body mass to be determined by537

different but correlated genetic effects at different ages (Chevin, 2015) or for developmen-

tal trajectories to be controlled by genetic effects. Research to date has revealed strong

positive genetic covariances across ages (Wilson et al., 2005) suggesting that this high540
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genetic correlation across ages is not an explanation for the low regression slopes observed

when consecutive body masses are regressed against one another. Instead such traits are

likely strongly determined by the environment. Because the same genotype can attain543

different body masses in different environments, genotype-by-environment processes are

also likely to be influential in size-related traits. Then, if developmental trajectories are

genetically determined a useful approach is to break transmission down into contributions546

from growth increments, survival, reproduction and the correlation between parents and

offspring. To better understand the evolution of phenotypic traits, we need to focus on

the heritability of trajectories over life. In the future, our findings hopefully will spark fur-549

ther advances into understanding evolution in natural systems by challenging empiricists,

eco-evolutionary, and quantitative geneticists to join forces.
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Supporting information

Appendix S1: Methods A1–A9 Details of the analytical framework.558

Table S1 Change in key population parameters when model parameters are perturbed

(Soay sheep).

Table S2 Change in key population parameters when model parameters are perturbed561

(roe deer).

Figure S1 Comparison of the analytically and numerically computed elasticities of her-

itability for Soay sheep.564
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Figure S2 Comparison of the analytically and numerically computed elasticities of her-

itability for roe deer.

Figure S3 Schematic of the linearisation effect.567

Code S1 R code for analytically computing heritability and its elasticities. Download

from http://tinyurl.com/gr8fgju.
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Figures and Tables672

Figure 1: Differences between heritabilities directly measured from data and parent-
offspring regression (h2) and derived from IPMs (h2’). In the demographic approach,
survival and ontogeny covary during the growing stage.
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Figure 2: The analytically derived elasticities of heritability with respect to changes in
the model parameters of the Soay sheep IPM.
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Figure 3: The analytically derived elasticities of heritability with respect to changes in
the model parameters of the roe deer IPM.

34

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 17, 2018. ; https://doi.org/10.1101/370866doi: bioRxiv preprint 

https://doi.org/10.1101/370866
http://creativecommons.org/licenses/by-nc-nd/4.0/


f f f f f

f

0.000

0.005

0.010

0.015

0.020

0.025

y

ei
L

S
ta

bl
e 

ph
en

ot
yp

e
di

st
rib

ut
io

n

Lambs

y

ei
Y

Yearlings

y

ei
A

Prime−aged adults

y

ei
S

Senescents

f

0.0

0.2

0.4

0.6

0.8

1.0

y

su
rv

iv
al

L
S

ur
vi

va
l p

ro
ba

bi
lit

y

y

su
rv

iv
al

Y

y

su
rv

iv
al

A

y

su
rv

iv
al

S
f

0.0

0.2

0.4

0.6

0.8

1.0

y

re
pL

P
ro

ba
bi

lit
y 

of
re

cr
ui

tm
en

t

y

re
pY

y

re
pA

y
re

pS

f

0.0

0.2

0.4

0.6

0.8

1.0

y

re
pL

Tw
in

ni
ng

 r
at

e

y

re
pY

y

re
pA

y

re
pS

f

0

5

10

15

20

25

30

35

y

gr
L

B
od

y 
m

as
s 

t+
1

y

gr
Y

y

gr
A

y

gr
S

f

0

5

10

15

20

25

30

35

y

in
he

rL
O

ffs
pr

in
g 

m
as

s 
t+

1

0 10 20 30 0 10 20 30

y

in
he

rY

Body mass year t (kg)

0 10 20 30

y

in
he

rA

0 10 20 30

y

in
he

rS

Figure 4: The phenotype-demography relationships used to parameterise the matrices in
the IPM and the predicted stable phenotype distributions for Soay sheep. The age-class
phenotype distributions together sum up to 1. For the phenotype-demography functions,
lines represent predictions from regressions and dashed contours distributions around the
mean.
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Figure 5: The phenotype-demography relationships used to parameterise the matrices in
the IPM and the predicted stable phenotype distributions for roe deer. The age-class
phenotype distributions together sum up to 1. For the phenotype-demography functions,
lines represent predictions from regressions and dashed contours distributions around the
mean. Roe deer yearlings do not reproduce.
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Table 1: Change in key population parameters (%): expected and variance values of the
stable cohort phenotype distribution (Xc0), the stable parent (at own) birth phenotype
distribution (X0), and offspring birth phenotype distribution (Y0) when selected model
parameters are perturbed (see Tables S1 and S2 for perturbations of all parameters).
Note that shown values were calculated numerically by adding 0.01 to model parameters.

E(Xc0) Var(Xc0) E(X0) Var(X0) E(Y0) Var(Y0) Cov(Y0X0) h2 Effect†

S
oa

y
sh

ee
p

SurvSlpL* 0.00 -0.30 -0.15 -0.71 0.15 -1.24 -4.38 -3.69 −−
SurvSlpY 0.01 -0.09 -0.07 0.05 0.05 -0.38 -1.73 -1.79 −
SurvSlpA 0.04 -0.14 -0.01 -0.11 0.15 -0.94 -3.75 -3.65 −−
PrSlpL -0.41 2.84 -0.13 1.37 -0.35 2.59 4.53 3.12 ++
PrSlpA 0.15 -0.03 0.14 0.11 0.40 -1.58 -4.11 -4.21 −−
GrMSlpA 0.30 1.55 0.39 2.01 0.38 0.90 -0.71 -2.67 −−
GrMSlpS -0.04 -0.15 -0.03 -0.14 -0.01 -0.57 -2.09 -1.95 −
InMSlpY 0.13 -0.10 0.09 -0.29 0.12 -0.17 1.45 1.75 +
InMSlpA 1.30 2.55 1.25 2.13 1.35 1.87 1.52 -0.60 −

ro
e

d
ee

r

SurvSlpY -0.11 0.00 -0.17 -0.12 -0.03 0.07 -0.09 0.02 0
SurvSlpA 0.13 -0.13 0.02 -0.16 0.36 -0.10 -6.02 -5.87 −−
PrSlpA -0.27 -0.14 -0.29 -0.15 -0.16 -0.03 0.86 1.01 +
GrMSlpY 0.32 -0.68 0.28 -0.69 0.30 -0.72 0.50 1.21 +
InMSlpA 1.64 -0.71 1.51 -0.84 1.54 -1.33 0.70 1.56 +

* Model parameter labels are written in CamelCase forming compounds of the following abbreviations
in order of appearance: survival (Surv), slope (Slp), lambs (L), yearlings (Y), adults (A), probability
of recruitment (Pr), growth mean (GrM), senescents (S), inheritance mean (InM)). †Effect size
classification based on the elasticities of h2: minimum to −2 (−−), −2 to 0.25 (−), 0.25 to +0.25 (0),
0.25 to 2 (+), 2 to maximum (++).
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Supporting Information

Appendix S1: Methods

A1 Parent-offspring covariance675

The expected birth phenotype Y0 of offspring born to parents of age a and phenotype Xa

can be described by fitting a model of the form

E [Y0|Xa] = αa + βaXa. (A-1)

The expected offspring birth phenotype Y0 produced by a parent of age a and phenotype678

zi can also be calculated from the parent-offspring phenotype transition matrix as

E [Y0|Xa = zj] =
∑
i

ziDa(i, j), (A-2)

and so it follows that

zT Da = eT ẐDa = αa eT + βa zT . (A-3)

Since the lifetime production of offspring by a birth cohort is given by (8) in the main681

article, the probability that a newborn has a parent of age a is

φa =
eTFaLa u

K
=

eTM̂aLa u

K
. (A-4)

To derive a formula for the covariance between offspring birth phenotype Y0 and parent

birth phenotype X0 that is computable in terms of Fa,La, and u, we first derive the same684

covariance in terms of φa, αa, and βa. Consider parents of age a and use (A-1) to see
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that

E(Y0 | parent is age a) = αa + βaE(Xa). (A-5)

Hence, for lifetime reproduction, writing α =
∑

a φaαa,687

E(Y0) = α +
∑
a

φaβa E(Xa), (A-6)

E(Y0X0) = α E(X0) +
∑
a

φaβa E(XaX0). (A-7)

Using (A-6) and (A-7) the formula for the offspring-parent phenotype covariance in terms

of the linear relationship in (A-1) is

Cov(Y0X0) =
∑
a

φa βa Cov(XaX0). (A-8)

Next, to make the covariance computable in terms of our phenotype-demography matri-690

ces, the joint distribution of parent phenotype Xa at age a and parent birth phenotype

X0 is

Prob. [Xa = w2, X0 = w1] =
Ma(w2)La(w2 | w1)u(w1)

(eTM̂aLau)
. (A-9)

So given parents of age a with phenotype Xa and birth phenotype X0,693

E(Xa) =
eT Ẑ M̂a La u

(eTM̂aLau)
, (A-10)

E(XaX0) =
eT Ẑ M̂a La Ẑ u

(eTM̂aLau)
, (A-11)
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The joint distribution of offspring birth phenotype, parental phenotype at age a, and

parent birth phenotype is

Prob. [Y0 = W3, Xa = w2, X0 = w1] =
Da(w3 | w2)Ma(w2)La(w2 | w1)u(w1)

(eTFaLau)
. (A-12)

So we have696

E(Y0) =
∑
a

φa
eT ẐFa La u

(eTFaLau)
, (A-13)

=
1

K

∑
a

{eT Ẑ Fa La u}. (A-14)

Next we have

E(Y0X0) =
1

K

∑
a

{eT Ẑ Fa La Ẑ u}. (A-15)

Now we use (A-14), (A-15), and (A-21) to obtain (10) in the main article, which is a

formula for the parent-offspring birth phenotype covariance that is computable in terms699

of the phenotype-demography matrices.

Cov(Y0X0) = E(Y0X0)− E(Y0)E(X0), (A-16)

=
1

K

∑
a

{
eT Ẑ FaLa Ẑ u−

(
eT Ẑ FaLa u

)( 1

K

∑
a

eT M̂a La Ẑ u

)}
,

(A-17)

=
1

K

∑
a

{
eT Ẑ FaLa

(
I− u eT

∑
a M̂a La

K

)
Ẑ u

}
, (9)

= eT ẐH

(
I− u eT

∑
a M̂a La

K

)
Ẑ u. (10)
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A2 Parent birth phenotype variance

In computing the variance, we need to account for the dispersion of lifetime reproduction702

across different ages. The parent cohort is born with the stable cohort birth phenotype

distribution u. From (A-9) it follows that for parents aged a their average birth phenotype

is705

E(Xa
0 ) =

∑
w2

∑
w1

w1 Prob. [Xa = w2, X0 = w1] .

Therefore,

E(Xa
0 ) =

eT M̂a La Ẑ u

(eTM̂aLau)
=

eT M̂a La Ẑ u

(K φa)
, (A-18)

where the last equality uses (8) in the main article. The average squared birth phenotype

for parents aged a is708

E (Xa
0 )2 =

eT M̂a La Ẑ Ẑ u

(eTM̂aLau)
=

eT M̂a La Ẑ Ẑ u

(K φa)
. (A-19)

The variance of birth phenotype for parents of age a is

V a
0 = Var(Xa

0 ) = E [Xa
0 ]2 − [E(Xa

0 )]2 . (A-20)

Now the average birth phenotype for all parents (i.e. of all ages) is

E(X0) =
∑
a

φa E(Xa
0 ) =

1

K

∑
a

eT M̂a La Ẑ u. (A-21)
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Finally, the variance of birth phenotype for all parents is711

Var(X0) =

{∑
a

φa [E(Xa
0 )]2 − [E(X0)]

2

}
+

{∑
a

φaV
a
0

}
(A-22)

=
∑
a

{
φaE [Xa

0 ]2 − [E(X0)]
2} (A-23)

=
1

K

∑
a

{
eT M̂a La Ẑ Ẑu− 1

K
(eT M̂a La Ẑu)2

}
. (12)

A3 Perturbation of u

For the unperturbed matrix A(r) we have defined the right eigenvector u as in (4) in the

main article but also need the left eigenvector v,714

vT A(r) = vT . (A-24)

For convenience we normalize so that (vT u) = 1. Then define the projection matrix

Z = u vT , (A-25)

and the matrix

Q = A(r)−Z. (A-26)

Now suppose that we change parameters with a small 0 < ε� 1 so that717

Fa La → Fa La + ε∆a. (A-27)
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Then we have the resulting changes

r → r + ε r1,

A(r)→ A(r) + ε∆A, (A-28)

u→ u + ε δu.

Note that the change δu must be orthogonal to u, so that Zδu = 0. From (4) in the main

article ∆A and δu are given by720

∆A =
∑
a

e−ra ∆a − r1
∑
a

e−ra aFa La = D1 − r1D2. (A-29)

Clearly

δu = A(r) δu + ∆A u. (A-30)

A standard argument (we multiply above on left by vT ) yields the change

r1 =
vT D1 u

vT D2 u
. (A-31)

Next we observe that723

ZA(r) = A(r)Z; QA(r) = A(r)Q. (A-32)

Recall that Zδu = 0 so δu = (I− Z) δu. This is why we multiply (A-30) on the left by

(I−Z) to find

(I−Z) A(r) δu + (I−Z) ∆A u = (I−Z) δu = δu. (A-33)
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Next,726

(I−Z) A(r) = A(r)−ZA(r) = (A(r)−Z), (A-34)

where we use (A-25). Hence (A-31) becomes

(I−Z) ∆A u = δu − (A(r)−Z) δu = [I− (A−Z)] δu.

We now multiply across by [I− (A−Z)]−1 on both sides to obtain

δu = [I− (A−Z)]−1 (I−Z) ∆A u. (A-35)

A4 Perturbation matrices

The perturbations in (A-27) come from changes in the fertility or survival matrices, as729

we explain in this subsection.

Selection on modifiers of fertility A small change in fertility results from a change

in total recruitment and/or in the phenotype distribution of offspring: thus at a given732

age a, there is a change in the fertility matrix Fa to (Fa + ε∆Fa), with

∆Fa = Da ∆M̂ + ∆D M̂a. (A-36)

Selection on modifiers of phenotype transition rates Phenotype transition rates

Pa are made up of age-phenotype specific survival rates (Sa(x)) and probabilities of735

growth from phenotype x’ to x (Ga(x|x′)). A small change in one or more of these rates

at age a means that we change Pa to Pa → Pa + ε∆Pa with

∆Pa = Ga ∆S + ∆G Sa. (A-37)
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But notice that this change at age a in Pa will also change every survivorship Lb at ages738

b > a. The change in survivorship is and

∆Lb
=


0 for ages b ≤ a,

Lb|(a+1) ∆Pa La for ages b ≥ (a+ 1).

(A-38)

A5 Perturbation of parental variance

A small change in the phenotype-demography matrices as described in (A-27) results741

in a change in in the covariance between offspring birth phenotype and parent birth

phenotype. Similarly, the change in the parent birth phenotype variance is

∆Var(X0) = ∆

(∑
a

φaE [Xa
0 ]2
)
− 2∆(E [X0]) E(X0), (A-39)

which gives with (A-19),744

∆(
∑
a

φaE [Xa
0 ]2) = eT

∑
a

{
∆M̂a La

K −∆K M̂a La

K2
Ẑ Ẑu

}

+
1

K

∑
a

(eT M̂a La Ẑ Ẑδu),

(A-40)

and

∆(E(X0)) =
eT

K

∑
a

{
∆M̂a La

K −∆K M̂a La

K
Ẑu + M̂a La Ẑ δu

}
, (A-41)

the equation (17) of the main article.
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A6 Closure of terms747

A general result we will use is: given a matrix Q and a real variable w,

define H = [I− zQ]−1 ,

then
dH
dz

= HQH. (A-42)

For our calculations in terms of the phenotype-demography matrices, suppose there is an

age m after which fertility Fa = Fm and survival Pa = Pm. Each sum in (A-29) can be750

written in two parts,

D1 =

a=(m−1)∑
a=1

e−ra ∆a +
∑
a≥m

e−ra ∆a = D11 +D12, (A-43)

D2 =

a=(m−1)∑
a=1

e−ra aFa La +
∑
a≥m

e−ra aFa La = D21 +D22. (A-44)

We have to do the sums to age (m− 1) as written. We seek explicit expressions for the

sums that start at m. In the latter we have constant fertility and survival so753

Fm+k = Fm, and Lm+k = Pk
m Lm, k ≥ 0. (A-45)

A7 Explicit form of D22

First we do the easier term D22, shown in (A-44). For a real variable w, define the matrix

sum756

A(w) =
∑
a≥m

wa Fa La, (A-46)

= Fmw
m

[∑
k≥0

wk Pk
m

]
Lm, (A-47)

= Fmw
m [I− wPm]−1 Lm, . (A-48)
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We can write A(w) in a computable closed form in two steps:

Hm(w) = [I− wPm]−1, (Step 1) (A-49)

A(w) = wm FmHm(w) Lm. (Step 2) (A-50)

Next we use (A-46) to see that

w
dA(w)

dw
=
∑
a≥m

awa Fa La. (A-51)

From (A-42) and (A-49) we find that759

w dA(w)

dw
= mA(w) + wm+1 FmHm(w) PmHm(w) Lm. (A-52)

Hence the final expression: we use (A-49) and (A-50), and set w = e−r, to get

D22 =
∑
a≥m

e−ra aFa La

= mA(e−r) + e−(m+1)r FmHm(e−r) PmHm(e−r) Lm. (A-53)

A8 Explicit form of D12

Second we turn to the more involved term D12 in (A-43) which is762

D12 =
∑
a≥m

e−ra ∆a = e−rm
∑
k≥0

e−rk ∆m+k. (A-54)

To sort this out we need to get explicit about perturbations to fertility and survival. In

general we must consider the following perturbations:

fertility Fm at ages ≥ m changes to (Fm + ε∆F );765

survival Pm at ages ≥ m changes to (Pm + ε∆P );
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and cumulative survival Lm up to age m changes to (Lm + ε∆L). It is important

to recognise that the change ∆L depends only on changes at ages < m.768

Step 1: we need the change in Pk
m. This is just the coefficient of y in (Pm + y∆P )k

where y is just a real variable. For the present, we write this coefficient as ∆Pk
. Step 2:

we recall (A-45): for k ≥ 0 we have Fm+k Lm+k = Fm Pk
m Lm and therefore the linear771

change in this product is

∆m+k = ∆F Pk
m Lm + Fm Pk

m ∆L + Fm ∆Pk
Lm. (A-55)

Step 3: we use (A-55) to rewrite the sum in (A-54) as

D12 = e−rm
∑
k≥0

e−rk ∆m+k,

= e−rm ∆F

[∑
k≥0

e−rk Pk
m

]
Lm

+ e−rm Fm

[∑
k≥0

e−rk Pk
m

]
∆L

+ e−rm Fm

[∑
k≥0

e−rk ∆Pk

]
Lm (A-56)

Step 4: we recall from (A-49) that Hm(w) = [I− wPm]−1 and rewrite (A-56) as774

D12 = e−rm ∆F Hm(e−r) Lm + e−rm FmHm(e−r) ∆L

+ e−rm Fm

[∑
k≥0

e−rk ∆Pk

]
Lm (A-57)

Step 5: now we just want a closed form for the sum in the second line of (A-57). Recall

that ∆Pk
is just the coefficient of y in (Pm + y∆P )k . So we define the function

G(w, y) =
∑
k≥0

e−rk (Pm + y∆P )k = [I− w (Pm + y∆P )]−1. (A-58)
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Then we must have777

∑
k≥0

e−rk ∆Pk
=
∂G
∂y

∣∣∣∣
y=0

,

= w G(w, 0) ∆P G(w, 0)

= wHm(w) ∆P Hm(w). (A-59)

Finally, using (A-59) in (A-57) we have

D12 = e−rm ∆F Hm(e−r) Lm + e−rm FmHm(e−r) ∆L

+ e−r(m+1) FmHm(e−r) ∆P Hm(e−r) Lm. (A-60)

For the final expressions, we use (A-43) and (A-44). For the sums up to age (m− 1) we

use D11,D21 as written. Then we use (A-60) to get D12 and (A-53) to get D12.780

A9 Perturbation of transition densities

Growth and parent-offspring transition involve transition densities for a variable y con-

ditional on a known variable x, usually taken to be proportional to a standard normal f783

with a mean µ(x) and variance s(x). The values of y are constrained to an interval [A,B]

and we call the constrained transition density f̂ ,

f =
1

σ
√

2π
exp

[
−(x− µ)2

2σ2

]
(A-61)

f̂ =
f

K
, K =

∫ B

A

f, (A-62)∫ B

A

f̂ = 1,

∫ B

A

xf̂ = µ1,

∫ B

A

(x− µ1)
2 f̂ = σ2

1 (A-63)

49

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 17, 2018. ; https://doi.org/10.1101/370866doi: bioRxiv preprint 

https://doi.org/10.1101/370866
http://creativecommons.org/licenses/by-nc-nd/4.0/


The mean µ(x) and variance s(x) depend on parameters that we call θ. A change in any786

parameter θ affects f̂ via µ or s, so here we simply consider changes in the latter.

∂θf̂ =
δθf

K
− f̂ δθK

K
(A-64)

∂µf = +
(x− µ)

σ2
f, δσf =

(x− µ)2

σ3
f − f

σ
(A-65)

=

(
1

σ

)[
(x− µ)2

σ2
− 1

]
f (A-66)

∂µK = +

(
K

σ2

)∫
(x− µ) f̂ = +K

(µ1 − µ)

σ2
(A-67)

∂σK = K

(
1

σ

)[∫
(x− µ)2

σ2
f̂ − 1

]
= K

(
1

σ

)[
σ2
1 + (µ1 − µ)2

σ2
− 1

]
(A-68)

∂µf̂ =

[
+

(x− µ)

σ2
− (µ1 − µ)

σ2

]
f̂ = +

(x− µ1)

σ2
f̂ (A-69)

∂σf̂ =

(
f̂

σ

)[
(x− µ)2 − (µ1 − µ)2 − σ2

1

]( 1

σ2

)
(A-70)

=

(
f̂

σ

)(
1

σ2

)[
(x− µ1)

2 − 2 (x− µ1) (µ1 − µ)− σ2
1

]
(A-71)

=

(
1

σ

)[
(x− µ1)

2 − σ2
1

σ2
+ 2

(x− µ1) (µ1 − µ)

σ2

]
(A-72)

The final equations may be used to construct the perturbation matrices in (A-27)/(13).
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Appendix: Supplemental tables789
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Table S1: Change in key population parameters (%): expected and variance values of
the stable cohort phenotype distribution (Xc0), the stable parent (at own) birth phe-
notype distribution (X0) and offspring birth phenotype distribution (Y0) when selected
model parameters are perturbed (Soay sheep). Note that shown values were calculated
numerically by adding 0.01 to model parameters.

E(Xc0) Var(Xc0) E(X0) Var(X0) E(Y0) Var(Y0) Cov(Y0X0) h2

SurvIntL* 0.00 -0.03 -0.02 0.00 0.01 -0.11 -0.46 -0.46
SurvIntY 0.00 -0.01 -0.01 0.01 0.00 -0.03 -0.13 -0.14
SurvIntA 0.00 -0.01 0.00 0.00 0.01 -0.05 -0.21 -0.20
SurvIntS 0.00 -0.01 0.00 -0.01 0.00 -0.03 -0.11 -0.10
SurvSlpL 0.00 -0.30 -0.15 -0.71 0.15 -1.24 -4.38 -3.69
SurvSlpY 0.01 -0.09 -0.07 0.05 0.05 -0.38 -1.73 -1.79
SurvSlpA 0.04 -0.14 -0.01 -0.11 0.15 -0.94 -3.75 -3.65
SurvSlpS -0.02 -0.27 -0.03 -0.32 0.04 -0.83 -2.67 -2.36
TwIntL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TwIntY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TwIntA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TwIntS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TwSlpL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TwSlpY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TwSlpA 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.01
TwSlpS 0.00 -0.01 0.00 -0.01 0.00 -0.04 -0.13 -0.11
PrIntL -0.03 0.24 -0.01 0.11 -0.03 0.22 0.66 0.54
PrIntY 0.00 -0.01 0.00 0.00 0.00 -0.02 0.04 0.04
PrIntA 0.01 -0.01 0.00 0.00 0.02 -0.08 -0.22 -0.22
PrIntS 0.00 -0.02 0.00 -0.02 0.00 -0.05 -0.15 -0.13
PrSlpL -0.41 2.84 -0.13 1.37 -0.35 2.59 4.53 3.12
PrSlpY -0.08 -0.20 -0.04 -0.10 -0.04 -0.34 0.53 0.62
PrSlpA 0.15 -0.03 0.14 0.11 0.40 -1.58 -4.11 -4.21
PrSlpS -0.04 -0.41 -0.05 -0.46 0.04 -1.13 -3.76 -3.31
GrMIntL 0.01 0.01 0.00 0.02 0.01 0.00 -0.01 -0.03
GrMIntY 0.01 0.02 0.01 0.03 0.01 0.02 -0.01 -0.03
GrMIntA 0.01 0.07 0.02 0.09 0.02 0.04 -0.06 -0.15
GrMIntS 0.00 -0.01 0.00 -0.01 0.00 -0.02 -0.08 -0.07
GrMSlpL 0.07 0.19 0.08 0.17 0.09 0.02 0.67 0.49
GrMSlpY 0.10 0.43 0.12 0.45 0.11 0.30 0.40 -0.05
GrMSlpA 0.30 1.55 0.39 2.01 0.38 0.90 -0.71 -2.67
GrMSlpS -0.04 -0.15 -0.03 -0.14 -0.01 -0.57 -2.09 -1.95
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Table S1: continued.
E(Xc0) Var(Xc0) E(X0) Var(X0) E(Y0) Var(Y0) Cov(Y0X0) h2

GrVIntL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GrVIntY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GrVIntA 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00
GrVIntS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GrVSlpL 0.01 0.03 0.01 0.04 0.01 0.03 0.11 0.07
GrVSlpY 0.00 0.03 0.00 0.05 0.00 0.02 0.05 -0.01
GrVSlpA 0.00 0.09 0.01 0.21 0.00 0.08 0.12 -0.09
GrVSlpS 0.00 0.00 0.00 0.00 0.00 -0.01 -0.07 -0.07
InMIntL 0.01 -0.11 0.00 -0.02 0.01 -0.10 -0.06 -0.04
InMIntY 0.01 -0.01 0.00 -0.02 0.01 -0.01 0.05 0.07
InMIntA 0.06 0.10 0.05 0.07 0.06 0.07 -0.04 -0.12
InMIntS 0.01 0.01 0.01 -0.01 0.02 0.00 0.00 0.01
InMSlpL 0.09 -1.35 0.00 -0.30 0.08 -1.25 0.02 0.33
InMSlpY 0.13 -0.10 0.09 -0.29 0.12 -0.17 1.45 1.75
InMSlpA 1.30 2.55 1.25 2.13 1.35 1.87 1.52 -0.60
InMSlpS 0.30 0.28 0.26 -0.13 0.38 0.16 0.19 0.32
InV1L 0.00 0.01 0.00 0.00 0.00 0.01 -0.01 0.00
InVIntY 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00
InVIntA 0.00 0.10 0.01 0.13 0.00 0.10 0.12 -0.01
InVIntS 0.00 0.02 0.00 0.02 0.00 0.03 0.02 0.00
InVSlpL 0.00 0.15 0.00 -0.05 0.00 0.13 -0.06 -0.01
InVSlpY 0.00 0.22 0.02 0.17 0.00 0.20 0.18 0.01
InVSlpA 0.01 2.13 0.20 2.86 0.02 2.17 2.68 -0.18
InVSlpS 0.00 0.50 0.05 0.55 0.00 0.62 0.53 -0.02

*Model parameters were perturbed upwards by adding 0.01. Quantities were calculated numerically.
Model parameter names are written in CamelCase forming compounds of the following abbreviations in
order of appearance: survival (Surv), intercept (int), lambs (L), yearlings (Y), prime-aged adults (A),
senescents (S), slope (slp), twinning rate (Tw), probability of reproduction (Pr), growth (Gr), mean
(M), variance (V), inheritance (In).
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Table S2: Change in key population parameters (%): expected and variance values of the
stable cohort phenotype distribution (Xc0), the stable parent (at own) birth phenotype
distribution (X0) and offspring birth phenotype distribution (Y0) when selected model
parameters are perturbed (roe deer). Note that shown values were calculated numerically
by adding 0.01 to model parameters.

E(X0) Var(X0) E(XP
0 ) Var(XP

0 ) E(Y ) Var(Y ) Cov(Y Xp
0 ) h2

SurvIntY* -0.01 0.00 -0.02 0.01 0.00 0.01 0.02 0.00
SurvIntA 0.00 -0.01 0.00 0.00 0.02 0.00 -0.30 -0.30
SurvIntS 0.00 0.01 0.00 0.01 0.01 0.01 -0.05 -0.06
SurvSlpY -0.11 0.00 -0.17 -0.12 -0.03 0.07 -0.09 0.02
SurvSlpA 0.13 -0.13 0.02 -0.16 0.36 -0.10 -6.02 -5.87
SurvSlpS 0.07 0.20 0.08 0.21 0.16 0.31 -1.32 -1.52
TwIntY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TwIntA -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.01 0.02
TwIntS 0.00 0.00 0.00 0.00 0.00 0.01 -0.01 -0.02
TwSlpY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TwSlpA -0.12 -0.20 -0.12 -0.24 -0.06 -0.15 -0.12 0.12
TwSlpS 0.04 0.12 0.04 0.12 0.06 0.15 -0.33 -0.45
PrIntY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PrIntA -0.02 0.00 -0.02 0.00 -0.01 0.01 0.08 0.08
PrIntS 0.00 0.00 0.00 0.00 0.00 0.01 -0.02 -0.03
PrSlpY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PrSlpA -0.27 -0.14 -0.29 -0.15 -0.16 -0.03 0.86 1.01
PrSlpS 0.04 0.12 0.05 0.12 0.08 0.14 -0.54 -0.66
GrMIntY 0.02 -0.05 0.02 -0.05 0.02 -0.05 -0.07 -0.02
GrMIntA 0.05 0.09 0.05 0.09 0.06 0.09 -0.01 -0.10
GrMIntS 0.00 0.02 0.00 0.02 0.00 0.03 0.01 -0.01
GrMSlpY 0.32 -0.68 0.28 -0.69 0.30 -0.72 0.50 1.21
GrMSlpA 1.25 2.83 1.26 2.72 1.52 2.81 2.33 -0.38
GrMSlpS 0.07 0.44 0.08 0.50 0.13 0.80 0.31 -0.19
GrVIntY 0.00 0.02 0.00 0.01 0.00 0.01 0.01 0.00
GrVIntA 0.00 0.05 0.00 0.05 0.00 0.05 0.05 -0.01
GrVIntS 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
GrVSlpY 0.02 0.25 0.03 0.21 0.02 0.19 0.23 0.02
GrVSlpA 0.08 1.17 0.11 1.26 0.09 1.28 1.24 -0.02
GrVSlpS 0.00 0.08 0.01 0.10 0.01 0.15 0.09 0.00
InMIntY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
InMIntA 0.07 -0.08 0.06 -0.08 0.07 -0.10 -0.10 -0.02
InMIntS 0.01 0.05 0.01 0.05 0.01 0.07 0.06 0.01
InMSlpY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
InMSlpA 1.64 -0.71 1.51 -0.84 1.54 -1.33 0.70 1.56
InMSlpS 0.16 1.28 0.19 1.50 0.25 1.95 1.67 0.17
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Table S2: continued.
E(X0) Var(X0) E(XP

0 ) Var(XP
0 ) E(Y ) Var(Y ) Cov(Y Xp

0 ) h2

InVIntY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
InVIntA 0.00 0.16 0.01 0.15 0.00 0.15 0.15 0.00
InVIntS 0.00 0.01 0.00 0.02 0.00 0.02 0.02 0.00
InVSlpY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
InVSlpA 0.03 3.79 0.14 3.63 0.02 3.52 3.62 -0.01
InVSlpS 0.00 0.35 0.01 0.50 0.00 0.59 0.49 -0.01

*Model parameters were perturbed upwards by adding 0.01. Quantities were calculated numerically.
Model parameter names are written in CamelCase forming compounds of the following abbreviations in
order of appearance: survival (Surv), intercept (Int), yearlings (Y), prime-aged adults (A), senescents
(S), slope (slp), twinning rate (Tw), probability of reproduction (Pr), growth (Gr), mean (M), variance
(V), inheritance (In).
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Appendix: Supplemental figures
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Figure S1: The analytically (a) and numerically (b) computed elasticities of heritability
with respect to changes in the model parameters of the Soay sheep IPM. The two ways
of computation give very similar results. Note that the values are not summed up within
age classes.
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Figure S2: The analytically (a) and numerically (b) computed elasticities of heritability
with respect to changes in the model parameters of the roe deer IPM. As for Soay sheep,
the two ways of computation give very similar results.
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Figure S3: Schematic of the linearisation effect using a linearised survival function as
an example. The effect of perturbing the slope of the survival function (a) on viability
selection depends on the phenotype distribution (b). The same perturbation in (a) makes
survival probabilities less equal across the lamb phenotype values and more equal across
the adult phenotype values (b). Therefore the same perturbation increases viability
selection for lambs and decreases viability selection for adults.
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