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Abstract  17 

 18 

Genes are one of the most powerful windows into the biology of autism, and it has been 19 

estimated that perhaps a thousand or more genes may confer risk. However, less than 20 

100 genes are currently viewed as having robust enough evidence to be considered 21 

true "autism genes".  Massive genetic studies are underway to produce data to 22 

implicate additional genes, but this approach, although necessary, is costly and slow-23 
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moving. Here, we approach autism gene discovery as a machine learning problem, 24 

rather than a genetic association problem, and use genome-scale data as predictors for 25 

identifying further genes that have similar properties in the feature space compared to 26 

established autism risk genes. This approach, which we call forecASD, integrates 27 

spatiotemporal gene expression, heterogeneous network data, and previous gene-level 28 

predictors of autism association to yield a single score that represents each gene's 29 

likelihood of being involved in the etiology of autism. We demonstrate that forecASD 30 

has substantially increased sensitivity and specificity compared to previous gene-level 31 

predictors of autism association, including genetic-based measures such as TADA.  On 32 

an independent test set, consisting of newly-released pilot data from the SPARK 33 

Genomics Consortium, we show that forecASD best predicts which genes will have an 34 

excess of likely gene disrupting (LGD) mutations. Using forecASD results, we show 35 

which molecular pathways are currently under-represented in the autism literature and 36 

likely represent under-appreciated biological mechanisms of autism. Finally, the larger 37 

importance of this work is that by enumerating the genes that are most likely involved in 38 

the pathogenesis of autism, we have an opportunity to consider what molecular 39 

research in autism might look like in a post-gene discovery era.     40 

 41 

  42 
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Introduction 43 

 44 

Autism Spectrum Disorder (ASD) is a heterogeneous grouping of developmental 45 

disorders caused by a range of genetic and environmental factors. The core diagnostic 46 

features of ASD, which manifest at a young age, are impairments in social 47 

communication and restrictive and repetitive behaviors and interests. Evidence for the 48 

role of genetics in ASD is strong, with monozygotic twins having near 90% concordance 49 

of ASD diagnosis1. Further population and twin studies have confirmed these findings2, 50 

and further estimated the narrow-sense heritability of ASD to be in the range of 50-95%. 51 

 52 

While there is an abundance of evidence for the role of genetics in autism, our 53 

understanding of the genetic etiology of the disorder is still limited. It is estimated that 54 

there may over 1000 genes which contribute to autism risk3. However, the current list of 55 

high-confidence autism genes stands at 84 genes4. This discrepancy is partly explained 56 

by the relatively limited number of genomic studies compared with the vast genetic 57 

heterogeneity underlying autism. 58 

 59 

To close this gap between the number of anticipated and known autism genes, several 60 

network-biology approaches have been applied in the past decade. These studies 61 

leverage large, publicly-available datasets to add context and amplify the genetic 62 

signals observed through sequencing studies. These network-biology studies have 63 

predicted genes that then became bona fide autism genes5, but have fallen short of 64 

providing a useful genome-wide metric that indicates the evidence of autism 65 
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involvement for every gene. More recently, machine learning based methods have used 66 

gene interaction networks6 and cell-specific expression profiles7 to predict gene 67 

involvement in autism. Importantly, the results of these studies lead to a quantitative 68 

metric that scores every gene in the genome according to evidence of a role in autism. 69 

Despite the demonstrated effectiveness of these studies in prioritizing autism risk 70 

genes, our preliminary investigations suggested there was still room for appreciable 71 

improvement in the form of the classification algorithm, the training set, and the 72 

predictors used. In particular, these approaches do not incorporate indicators of autism 73 

involvement that are based on genetic association (e.g., TADA scores) into their 74 

predictive features.  75 

 76 

We introduce a new score, forecASD, that integrates prior network-biology approaches, 77 

scores of genetic association, brain gene expression, and topological information from 78 

large gene interaction networks relevant to the brain into a single gene-level score for 79 

autism involvement. We show that forecASD successfully outperforms existing methods 80 

in a diverse range of gene and mutation prioritization tasks. Further, using the recent 81 

sequencing studies MSSNG8 and SPARK9, we show that forecASD generalizes to 82 

previously unseen data. Importantly, this generalization holds even when excluding 83 

genes with known links to autism, emphasizing forecASD's ability to identify novel ASD 84 

genes. Through comparing the top decile of forecASD identified genes (1787 genes; 85 

hereafter forecASD genes) with known autism genes, we identify numerous biological 86 

pathways that are currently underrepresented in our understanding of autism risk. By 87 

reanalyzing the results of autism brain differential gene expression studies, we show 88 
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that the current list of known autism genes is significantly depleted for upregulated 89 

biological pathways, whereas forecASD captures both up- and downregulated 90 

pathways. We show that direction of differential expression is related to 91 

haploinsufficiency status, with low pLI genes showing a trend towards upregulation. 92 

Importantly, this relationship between direction of differential expression and pLI is 93 

dependent on forecASD gene inclusion, signifying forecASD’s ability to capture low- and 94 

high-pLI disease genes. Through these studies, we show evidence that current methods 95 

of autism gene discovery have biases, and that forecASD mitigates these biases 96 

through its integrative approach, thus providing a view of the full spectrum of genes and 97 

biological pathways underlying autism.  98 

 99 

Methods 100 

 101 

Overview: 102 

The forecASD method relies upon stacked Random Forest models, organized in two 103 

levels (shown in Figure 1). In the first level, two models are trained using BrainSpan10 104 

gene expression and the STRING11 shortest paths network as features, respectively. 105 

Our training dataset consists of high-confidence genes scored in SFARI gene4 as either 106 

1 or 2 (SFARI HC genes), and 1,000 random background genes not contained within 107 

SFARI gene. These two models produce genome-wide predictions for autism 108 

involvement. These scores are then used as features in the second level’s Random 109 

Forest model, along with other genome-wide scores obtained from previous studies. 110 

 111 
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BrainSpan, STRING, and TADA data assembly 112 

BrainSpan data was obtained from the Allen Institute, and brain regions containing 113 

fewer than 20 samples were excluded. This filtered BrainSpan dataset was loess-114 

smoothed, with the purpose of reducing noise and imputing missing data points.  115 

 116 

The STRING database11 was thresholded at their recommended score of 0.4, and 117 

transformed into a gene by gene matrix with each cell representing the shortest path 118 

between two genes.  119 

 120 

TADA summary statistics were downloaded from the largest meta-analysis for autism 121 

available at the time of publication12. TADA summary statistics were also obtained from 122 

the secondary supplementary table of another comprehensive study of autism risk3. All 123 

available TADA summary statistics were used as features in the final model, with 124 

tadaFdrAscSscExomeSscAgpSmallDel12 used as a representative comparator in the 125 

ROC curve displayed in Figure 3. 126 

 127 

Model training and genome wide prediction 128 

We used a stacked Random Forest classifier to generate genome-wide predictions of 129 

autism gene involvement. All models were trained using SFARI HC genes as positive 130 

examples (of which there are 76 common to both STRING & BrainSpan), and a 131 

randomly sampled set of 1,000 background genes (i.e., not listed in the SFARI Gene 132 

database) as negative examples. 133 

 134 
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The first level of our stacked model consists of two genome-wide scores based on data 135 

from BrainSpan or the STRING interaction network. The features used in training these 136 

two models include the loess-smoothed observations in the BrainSpan database, and 137 

the STRING shortest path matrix, respectively. The random forest models were trained 138 

with 1000 total trees constructed, and the strata option enabled to insure a balance of 139 

70 positive and 70 negative training examples during the construction of each tree. 140 

Given the large number of features for the STRING-based random forest model, we 141 

performed feature selection, wherein each feature not used in any of the constructed 142 

trees was dropped. This variable selection step was repeated until the final model 143 

contained only features which were selected at least once during tree construction. With 144 

the STRING and BrainSpan models, we then predicted autism involvement scores for 145 

the remaining genes not included in our training set. These scores are in 146 

Supplementary Table 1 in the columns BrainSpan_score and STRING_score. Scores 147 

for training set genes are the out-of-bag estimates.  148 

 149 

We used these scores, along with DAWN5, TADA12,3, DAMAGES7, and the score from 150 

Krishnan et al.6 score, as predictive features in a final Random Forest, using the same 151 

training labels described previously. Genome-wide predictions were then obtained, 152 

again using out-of-bag estimates for training set genes. This final score is listed under 153 

forecASD_score in Supplementary Table 1.  154 

 155 

SPARK and MSSNG data sources 156 
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De novo mutation (DNM) data from the MSSNG dataset was obtained through the de 157 

novo db database6. Mutations were filtered for LGD or missense status. De novo 158 

mutation data was obtained from the SPARK dataset from the consortium’s recently 159 

released de novo mutation table. For both SPARK and MSSNG, only DNMs for 160 

probands were used. 161 

 162 

Pathway enrichment and comparison with case/control brain gene expression data 163 

We used Reactome annotations13, and unless otherwise noted, PantherDB14 to assess 164 

functional enrichment in both forecASD genes and SFARI HC genes using Fisher’s 165 

method. Odds ratios and p-values were used to compare these two prioritization 166 

methods (Fig. 4) in terms of the pathways they implicate. The full list of results of these 167 

enrichment analyses are provided in Supplemental Table 2.  Statistical analyses 168 

described in results and discussion were all performed in R15 using either glm() or 169 

fisher.test(). Pathway-summarized haploinsufficiency (pLI: probability of loss-of-function 170 

intolerance16) was calculated by counting the proportion of genes in a Reactome 171 

pathway satisfying pLI>0.9.  Gene-wise and pathway-level comparisons with ASD 172 

case/control brain gene expression data were performed using frontal cortex RNA-seq 173 

summary statistics from Gandal et al.17.  Our preliminary tests showed that both SFARI 174 

HC and forecASD showed the highest agreement with expression data from the frontal 175 

cortex. 176 

 177 

Class and functional enrichment of top forecASD genes 178 
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Data used for functional enrichment in Figure 2D was taken from PubMed, STRING11, 179 

and BrainSpan10, using forecASD genes as the subject. PubMed literature enrichment 180 

scores were calculated by summing total mentions of the gene list in abstracts also 181 

containing the word autism. The network interaction scores were derived using the 182 

STRING database, accessed via the STRINGdb package18 in R15. Using a score 183 

threshold of 0.4, we keep all STRING interactions between top forecASD genes. The 184 

total number of interactions above this threshold is then summed. Fetal brain 185 

coexpression scores are based on average Pearson correlation between top scoring 186 

forecASD genes in early developmental timepoints in the BrainSpan dataset. Given 187 

these three functional enrichment scores, average background values were permuted 188 

by randomly drawing a set of 1787 genes 1000 times. P-values and enrichment were 189 

computed relative to the permuted samples. Datasets used in the class enrichment in 190 

Figure 2D were taken from Sugathan et al.19, Darnel et al.20, and Abrahams et al.4. P-191 

values were computed by the hypergeometric statistical test of overlap between 192 

forecASD genes and these three gene sets.  193 

 194 

Cluster analysis of top scoring forecASD genes 195 

Using the STRING database, interactions were obtained for forecASD genes and 196 

loaded into a network using the igraph package21 in R15.  No filter for interaction 197 

strength was enforced.  Hierarchical greedy clustering based on optimization of the 198 

modularity score22 was performed using the fastgreedy.community function in the igraph 199 

package. Clustering was performed iteratively, with clusters containing more than 200 200 

genes being subject to further clustering. Clusters with fewer than 30 genes were 201 
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discarded. The annotated network of clusters was loaded into Cytoscape23, using the 202 

STRING application18. Functional enrichment of clusters was assessed using the 203 

STRING application in Cytoscape, with the p-value threshold set to 0.05. For annotation 204 

of the network plot shown in figure 6A, either the top annotated term or commonality 205 

between several top terms was chosen as representative. The p-value of enrichment 206 

with pLI scores was performed using  Fisher's exact test of genes within each cluster 207 

with a pLI score above 0.5. The p-value for overlap with SFARI HC genes was 208 

performed using the hypergeometric test, assuming a background of 18,000 total 209 

genes.  210 

 211 

Results 212 

 213 

forecASD model and performance 214 

The goal of our approach was to create a gene-wise score that indexes the level of 215 

evidence for involvement in ASD using both systems biology (i.e., network and 216 

transcriptional data) and genetic features. An initial forecASD systems biology model 217 

was built (forecASD:sys) using only BrainSpan expression  and the STRING database 218 

shortest paths matrices as features. This model was trained on the high confidence set 219 

of 76 SFARI genes scoring 1 or 2 (SFARI HC genes), with negative training labels 220 

assigned to 1,000 background genes that were not listed in the SFARI gene database. 221 

 222 

As an initial test of performance, we scored genes hit by coding de novo mutations 223 

(DNMs) in the recently published MSSNG study. As shown in Figure 2A, there is a 224 
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significant enrichment of likely gene disrupting (LGD) DNMs in the 90th percentile of 225 

both the TADA p-value (OR = 3.76, P = 5.45 x 10-9) and the forecASD:sys scores (OR 226 

= 3.15, P = 7.33 x 10-8) . However, by far the greatest enrichment (OR = 12.81, P < 2.2 227 

x 10-16)  is seen when restricting to DNMs passing both a TADA q-value and 228 

forecASD:sys 90th percentile threshold.  229 

 230 

To leverage both the genetic signal and the systems biology signal, we next built the 231 

final forecASD model, which incorporates forecASD:sys, the Krishnan et al. score6, 232 

DAMAGES7, DAWN5, and several TADA genetic scores from two recent studies3,12. 233 

After training the forecASD model, we visualized the variable importance in figure 2B by 234 

mean decrease in the Gini impurity measure. The most informative feature was the 235 

STRING score from the forecASD:sys model, followed closely by two TADA score 236 

variables.   237 

 238 

To facilitate a comparison with manually curated gene prioritizations, we scored all 239 

genes in the SFARI gene database using forecASD, forecASD:sys, and the most 240 

comprehensive TADA feature in the forecASD model. Shown in figure 2C, the forecASD 241 

model ranks SFARI genes scoring 3, 4, 5 and syndromic-only as significantly more 242 

autism-related than TADA (P: 7.7x10-4, 4.7x10-11, 2.3x10-4, 7.7x10-6). The forecASD 243 

model also significantly outperforms the limited forecASD:sys model in gene categories 244 

2, 3, and 4 (P: 8.4x10-5, 2.15x10-7, 4.0x10-5, respectively). In all cases, forecASD 245 

prioritizes SFARI genes as well, or better than TADA and forecASD:sys. 246 

 247 
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As an initial validation of genes prioritized by forecASD, we tested for an enrichment of 248 

gene sets and characteristics well known to be overrepresented in autism genes (Fig. 249 

2D). We first performed several overrepresentation tests and found that genes receiving 250 

forecASD scores in the top decile (1,787 genes, referred to as forecASD genes) had a 251 

significant overlap with known targets of CHD8 (P < 1 x 10-16), FMRP (P < 1 x 10-16), 252 

and the full SFARI gene database (P < 1 x 10-16). We next performed a series of 253 

functional enrichment tests, comparing forecASD genes to randomly sampled sets of 254 

background genes. Text mining in PubMed showed that forecASD genes were 255 

significantly overrepresented in abstracts which mention autism (P < 0.001). Given the 256 

established role of autism genes early in fetal development, we next tested and found 257 

that forecASD genes showed significantly higher rates of coexpression across all 258 

regions of the fetal brain (P < 0.001). Lastly, forecASD genes were shown to have 259 

significantly enriched rates of interaction in the STRING database (P < 0.001).   260 

 261 

We next tested the ability of these scores to discriminate both high confidence (Fig. 3A) 262 

and trending (Fig. 3B) autism genes from negative background genes. High confidence 263 

autism genes (SFARI HC) are defined as scoring 1 or 2 in SFARI Gene, with trending 264 

autism genes scoring 3. Importantly, the negative set of non-autism genes was sampled 265 

to have the same background mutation rate as the autism genes (P>0.1 by the 266 

Kolmogorov-Smirnov test). In both comparisons, forecASD showed the highest level of 267 

performance of all methods tested (AUC=0.97 for SFARI 1+2 and AUC=0.82 for SFARI 268 

Gene score 3; Fig. 3). Furthermore, while the SFARI HC genes were used to train the 269 

forecASD model, only “out of bag” predictions were used as the forecASD score for 270 
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those genes, i.e., only those trees where the gene was not included in the bootstrap 271 

sample voted for the class of the gene.  None of the trending autism genes (Fig. 3B) 272 

were used to train forecASD, and consequently they provide an unbiased estimate of 273 

performance. 274 

 275 

Generalization to new data: de novo mutation enrichment 276 

To compare forecASD and prior methods’ ability to generalize to new data, we 277 

combined two recently released autism genetics resources. Specifically, we used de 278 

novo mutations in gene regions from the SPARK9 and MSSNG8 cohorts. Importantly, 279 

none of our model training used information from these studies, thus any subsequent 280 

validation is unbiased. 281 

 282 

We first compared forecASD and competing ASD gene scores with respect to 283 

enrichment of genes with recurrent de novo loss of function and damaging missense 284 

mutations in probands. forecASD significantly outperformed all prior approaches 285 

(OR=26.8, P=3.1x10-24; Fig. 3C). We next tested whether forecASD continued to show 286 

significant enrichment when known autism genes (here, any gene listed in the SFARI 287 

gene database, regardless of score) were excluded (Fig. 3D), since the ideal method 288 

should detect both known and potentially novel autism genes. forecASD had superior 289 

performance in this test as well (OR=6.7, P=0.0004), with most of the other external 290 

methods lacking a statistically significant enrichment over baseline.  291 

 292 

Functional enrichment and clustering of forecASD genes 293 
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Having demonstrated the predictive performance characteristics of forecASD, we next 294 

turned to practical applications that could further illuminate the underlying biological 295 

mechanisms at play in autism. Functional enrichment using Reactome annotations 296 

showed that forecASD genes are highly enriched for pathways known to play an 297 

important role in autism etiology, including chromatin modification, synaptic 298 

transmission, and developmental biology (full list in Supplemental Table 2).  To highlight 299 

new biological themes that forecASD detects but that are not clear from the list of 300 

SFARI HC genes, we prioritized pathways based on differential enrichment (Fig. 4).  301 

Figure 4A highlights pathways that were represented in SFARI HC genes, but that 302 

showed significantly greater enrichment in forecASD genes. Figure 4B shows a 303 

sampling of the most significant forecASD pathways not represented by any SFARI HC 304 

gene, thus highlighting under-appreciated mechanisms in autism. 305 

 306 

While SFARI HC genes show a strong bias toward genes with high pLI (P<0.001, 307 

Fisher’s exact test; Fig. 5A), forecASD is significantly less biased (P<0.001, Fisher’s 308 

exact test). We also discovered a significant relationship between pLI and differential 309 

expression (DE) t-statistics in case/control brain gene expression studies17 (beta=-0.13, 310 

t-statistic-4.3, P=1.9x10-5, Fig. 5B), potentially exposing a form of bias in current gene 311 

discovery approaches that leads to under-ascertainment of ASD risk genes with low pLI 312 

and upregulation in ASD cases. We also found a significant interaction between 313 

forecASD and pLI (F=54.1, P=3.9x10-24) such that the pLI-expression relationship exists 314 

among forecASD genes (beta=-0.24, t=-2.6, P=0.009; Fig. 5D) but is absent in non-315 

forecASD genes (beta=0.004, t=0.1, P=0.91; Fig. 5C). 316 
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 317 

Lastly, forecASD genes were loaded into the STRING network and clustered using a 318 

greedy hierarchical approach which maximizes the modularity score. The resulting 319 

networks consisted of 17 clusters composed of 1452 genes. All clusters were found to 320 

be significantly enriched with numerous GO and KEGG pathways. Similarly, all clusters 321 

contained a significant enrichment of haploinsufficiency genes (pLI > 0.5), except for the 322 

small cluster of 31 genes with functions related to the mediator complex. Clusters were 323 

also tested for overlap with SFARI HC genes, of which 8 clusters failed to reach 324 

significance, suggesting groupings of genes currently missing from the known list of 325 

autism genes. Clusters lacking significant overlap includes those with functions: signal 326 

transduction, cytoskeleton, cell migration, neuron projection, steroid signaling, neuron 327 

differentiation, potassium signaling, development and morphogenesis. A marginally 328 

significant correlation was seen between a clusters enrichment for high pLI genes and 329 

its overlap with SFARI HC genes (Spearman’s r = 0.48, p-value = 0.053), further 330 

suggesting a bias in SFARI HC genes towards haploinsufficiency status.  331 

 332 

Discussion 333 

 334 

We present forecASD, a machine learning approach that combines systems biology and 335 

genetic models into a single score that indexes the strength of evidence for a gene’s 336 

involvement in autism. This genome-wide score can be a useful prior, filter, or positive 337 

control in molecular studies of autism. It can also be used as a starting point to generate 338 

new hypotheses to investigate currently under-appreciated aspects of the molecular 339 
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etiology of autism. In our tests of predictive performance and generalization, forecASD 340 

outperformed other systems biology and genetic approaches for autism gene 341 

prioritization.   342 

Because it draws upon multiple approaches for identifying autism genes, forecASD is 343 

less biased than gene discovery based only on one form of data (e.g., genetic data).  344 

This is particularly important because current SFARI HC genes, which rely heavily on 345 

studies of de novo mutation, are strongly biased towards genes that are loss-of-function 346 

intolerant (Fig. 5A). While these haploinsufficient genes represent a sizable and 347 

important component of genetic risk for autism, this ascertainment bias has led to 348 

molecular “blind spots” that will not be resolved simply by sequencing more probands. 349 

For instance, pathways implicated preferentially by SFARI HC genes had significantly 350 

higher pLI, whereas pathways with lower pLI were under-represented (compared to 351 

forecASD-implicated pathways; OR=0.38, P=5.6x10-7). Furthermore, while SFARI HC 352 

pathways significantly predicted case/control expression-implicated pathways (Z=4.5, 353 

P=7.9x10-6, binomial model), only 3% of the deviance could be explained. In contrast, 354 

forecASD pathways explained an order of magnitude more deviance (31%, Z=12.1, 355 

P=1.5x10-33) when predicting expression-implicated pathways. When a model of 356 

dichotomous DE significance was fit that included terms from both SFARI HC and 357 

forecASD pathways, the SFARI HC term became redundant, and the forecASD-only 358 

model yielded a superior Bayesian information criterion (BIC; 518 for forecASD-only vs. 359 

521 for full model and 720 for the SFARI HC-only model). When considering 360 

directionality, SFARI HC gene pathways were significantly depleted for ASD-361 

upregulated pathways (OR=0.48, P=1.3x10-6), further illustrating the bias in SFARI HC 362 
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genes. These results demonstrate that forecASD showed greater representation of low 363 

pLI and ASD-upregulated pathways, without sacrificing sensitivity to well-known ASD 364 

risk pathways where haploinsufficiency plays a dominant role. 365 

Notably, pLI is significantly negatively correlated with previously published frontal cortex 366 

differential expression t-statistics17 (beta=-0.13, t-statistic-4.3, P=1.9x10-5), suggesting 367 

that low-pLI genes are more likely to be up-regulated and high-pLI genes are more likely 368 

to be down-regulated in ASD cases (Fig. 5B). This is consistent with our observation of 369 

SFARI HC gene pathways (which have an ascertainment bias in favor of 370 

haploinsufficiency) being significantly under-represented in both low pLI and ASD-371 

upregulated pathways. We further observed a significant interaction (F=54.1, P=3.9x10-372 

24) between forecASD and pLI when explaining variation in ASD brain gene expression: 373 

forecASD genes show the significant negative relationship between pLI and t-statistic 374 

(beta=-0.24, t=-2.6, P=0.009; Fig. 5D), while non-forecASD genes show no relationship 375 

(beta=0.004, t=0.1, P=0.91; Fig. 5C).  Consequently, we propose that this pLI-376 

expression relationship is a hallmark of robust ASD risk genes, and may be used as a 377 

criterion when identifying optimal thresholds in genome-wide scores like forecASD.  378 

Indeed, although initially chosen as a convenient but arbitrary threshold for identifying a 379 

discrete set of ASD candidate genes, the top decile proved to be the optimal split point 380 

for forecASD, maximizing the significance of the pLI/t-statistic relationship among 381 

candidate genes, while minimizing the same relationship in the remaining, non-382 

candidate genes.  Interestingly, when applying this approach to TADA FDR values, 383 

although TADA-implicated genes showed the expected pLI-expression relationship, no 384 

TADA threshold was able to eliminate the trend from non-candidate genes, suggesting 385 
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lower sensitivity in identifying ASD risk genes compared to forecASD. Taken together, 386 

these analyses demonstrate that the reduced bias in forecASD contributes to increased 387 

sensitivity to autism risk pathways identified in gene expression studies (Fig. 4C,4D) as 388 

well as those implicated by genetic studies (Fig. 3).  389 

Some pathways, although represented (but not necessarily enriched) in the current 390 

SFARI HC list, showed a substantial relative increase in enrichment when considering 391 

forecASD (Fig. 4A, Supplemental Table 2), suggesting that these pathways represent 392 

noted and plausible but still under-appreciated molecular themes in our understanding 393 

of autism. The pathway that underwent the largest relative increase in enrichment from 394 

SFARI HC to forecASD is Rho GTPase signaling (OR=2.2, P=4.8x10-5), which plays a 395 

critical role in cytoskeletal dynamics in neurodevelopment24, including interactions with 396 

SHANK proteins and the formation and maturation of dendritic spines25. As another 397 

example, although chromatin modification in general is a well-established theme in 398 

autism genetic risk, histone acetyltransferases showed relatively little representation in 399 

the SFARI HC list, but were significantly enriched in forecASD genes (OR=4.1, 400 

P=3.5x10-9). Histone acetylation was recently shown to be a pervasive genomic 401 

predictor of affected status in a large autism case/control postmortem brain study26, 402 

underscoring the importance of this mechanism that is under-represented in established 403 

risk genes but that forecASD was sensitive to. As a final example of these under-404 

appreciated molecular mechanisms, the circadian clock pathway was implicated by 405 

forecASD as an important source of risk for autism (OR=6.5, P=7.6x10-13). Sleep 406 

disturbances are a well-known and problematic comorbidity in autism, and molecular 407 

deficits in circadian regulation related to autism have been documented27,28,29. Although 408 
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literature support is available for these processes playing a role in autism, our results 409 

indicate that their current sparse representation in lists of accepted genetic risk factors 410 

is not representative of their importance in the disorder.      411 

Other pathways were identified by forecASD as significantly enriched for autism risk, but 412 

were not represented at all among SFARI HC genes (Supplemental Table 3, Figure 4B). 413 

Consequently, new insights into the molecular basis of autism will come 414 

disproportionately from these pathways as their constituent genes are associated with 415 

autism. One gene set in particular, potassium channels, showed highly significant 416 

enrichment in forecASD genes (OR=4.1, P=7.2x10-9, N=35 genes) despite the absence 417 

of potassium channel genes among currently accepted autism risk genes. However, the 418 

literature shows support for a role for potassium channels in ASD risk30,31,32,33, and the 419 

pathway was enriched for differential regulation in a recently published brain gene 420 

expression study of autism (P=0.001, downregulated)17. Notably, this pathway has a 421 

lower proportion of genes with pLI>0.9 (0.22) compared to SFARI HC gene-implicated 422 

pathways (median=0.47), potentially explaining its absence due to ascertainment bias. 423 

Overall, pathways that demonstrated forecASD-specific excess enrichment showed a 424 

significant agreement with pathway enrichment from case/control brain gene expression 425 

studies (OR=28.8; P=2.9x10-48), and were more likely to support pathways that were up-426 

regulated in the gene expression data (OR=2.1, P=1.27x10-6, Fig. 4C) compared to 427 

pathways implicated by SFARI HC. 428 

To group forecASD genes into distinct functional categories, we performed iterative 429 

clustering and identified a total of 17 clusters enriched for specific functional 430 

annotations. While nearly all clusters showed significant enrichment for 431 
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haploinsufficiency genes, many lacked a significant overlap with SFARI HC genes, after 432 

Bonferroni correction. Similar to conclusions reached above, we found an entire cluster 433 

enriched for Potassium signaling (P=1.8x10-49) which lacked significant overlap with 434 

SFARI HC genes. In addition to this cluster, there were also seven others lacking 435 

significant overlap with SFARI HC genes. Notable examples include clusters related to 436 

cell migration (P=6.0x10-11) and endocytosis (P=2.7x10-21). These pathways have more 437 

recently been explored in their ability to regulate brain connectivity34 and postsynaptic 438 

organization35, respectively. In agreement with the proposed haploinsufficiency bias of 439 

autism gene discovery, we observed a marginally significant relationship between 440 

cluster pLI enrichment and SFARI HC gene overlap (Spearman’s rho: 0.48; P=0.053).  441 

For the foreseeable future, traditional gene discovery studies will continue to add to the 442 

list of bona fide ASD risk genes. Eventually, as sample sizes saturate and gene 443 

discovery decelerates, the field will be faced with the challenge of developing new and 444 

useful applications of this acquired knowledge. By providing a glimpse of that future, 445 

forecASD gives an opportunity right now to begin thinking about what we would do with 446 

a definitive list of autism genes.   447 
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 448 

 449 

Figure 1 - Overview of forecASD. Two Random Forest classifiers, one using BrainSpan gene expression 
and the other using the STRING network as predictors, are trained to discriminate high confidence 
autism genes (SFARI HC, scores 1 and 2) from a set of 1,000 genes drawn randomly from those not listed 
at all in the SFARI Gene database. Predictions are then made on the remainder of the genome, and 
these are combined with the out-of-bag (OOB) estimates from the training process to yield a prediction 
for each gene in the genome.  A subsequent classifier is then trained using the output of these two RFs 
and previously published autism gene scores as predictive features, and again predictions are made on 
the remainder of the genome, with OOB predictions being used for those genes in the training set. The 
RF vote proportion for class “autism gene” is then the final forecASD score. 
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 450 

Figure 2 - Prioritization of de novo likely gene-disrupting mutations and enrichment of gene sets in 
forecASD. Training a limited model, forecASD:sys, using brain gene expression and interaction data 
shows optimal prioritization of de novo LGDs when combined with a genetic measure of autism 
association (a). Building the full forecASD model, we test all features for their informativeness, finding 
that the STRING score is primary (b). Using the three mentioned scores, we assess their genome-wide 
ranking of SFARI genes at all levels, and find that the full forecASD model at least ties, and often 
significantly outperforms TADA and forecASD:sys in the prioritization of SFARI genes (c). As an initial 
assessment of forecASD prioritized genes, we find the top decile of genes ranked by forecASD (1787 
genes) shows enrichment typical of classical autism genes (d).   

 451 

 452 

 453 
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 454 

Figure 3 - Comparison of forecASD with prior models of autism gene prioritization. To compare 
forecASD with competitors, we evaluate performance by each methods’ ability to prioritize SFARI genes 
and genes which were subject to recurrent de novo loss-of-function or missense mutations. Starting 
with SFARI genes scoring 1 or 2 as a positive set and size-matched random background genes as the 
negative set, forecASD out-of-bag estimates showed superior classification over all methods (a). In a 
fully unbiased test, forecASD estimates also showed superior classification of trending SFARI genes 
(score: 3) over all other methods (b). Using two sequencing cohorts which no methods draw information 
from, the top decile of forecASD genes (1787 genes) shows the greatest overlap with genes containing 
recurrent de novo loss-of-function and missense mutations (c). When excluding genes in the SFARI gene 
database, forecASD still shows superior prioritization of genes accumulating de novo mutations (d).  
 455 
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 457 

  458 

Figure 4 - forecASD-specific pathway enrichment and sensitivity to gene expression-implicated 
pathways. When testing the top-decile genes according to forecASD for Reactome pathway enrichment, 
pathways emerged that were represented, but not enriched in the SFARI HC list (a).  Other pathways 
were highly enriched in forecASD genes that were not represented at all in the SFARI HC list, even 
though they have associated literature suggesting a role in autism (b).  forecASD is more sensitive than 
SFARI HC to pathways that are differentially regulated in the brains of individuals with autism, 
particularly in ASD-upregulated pathways (c), but also in downregulated pathways (d). Using the top 
decile of TADA -log10 FDR genes showed similar sensitivity to SFARI HC (not shown), suggesting that rare 
variant approaches may be less sensitive in implicating genes found through gene expression studies. 
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 460 

Figure 5 - Relationship between pLI and ASD-specific up- and down-regulation of brain gene 
expression. SFARI HC is strongly biased toward genes with high pLI (a), while forecASD is significantly 
less biased. We found a significant relationship between pLI and differential expression (DE) in the 
brains of autism cases (b), such that low pLI genes tend toward upregulation in cases, while high pLI 
genes tend to be downregulated.  We also observed a significant interaction between forecASD and pLI 
such that the observed pLI-DE trend (b) is absent in non-forecASD genes (c), and present and significant 
among forecASD genes (d). We propose that the presence of the pLI-DE trend is a hallmark of ASD risk 
genes, and an optimal ASD gene prioritization method will concentrate the trend among risk genes and 
remove it from non-risk genes. Notably, no threshold of TADA (tested to the 50th percentile) was able to 
remove the trend from the non-prioritized genes, suggesting the persistence of residual risk genes that 
were not selected. 
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 462 

Figure 6 - Clustering of top forecASD genes with enrichment analysis of ExAC pLI and SFARI high-
confidence gene overlap. Greedy hierarchical optimization of the modularity score yielded 17 clusters 
consisting of 1452 forecASD genes (a). All clusters have several significantly enriched biological 
pathways, of which the top terms were overlaid in figure 6A. Clusters were tested for significance of 
overlap with the list of SFARI HC genes (b), and enrichment of haploinsufficiency genes (pLI > 0.5; c).  
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