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Abstract: The molecular components governing neural induction remain largely unknown. Here, 

we applied a suite of genomic and computational tools to comprehensively identify these 

components. We performed RNA-seq, ChIP-seq (H3K27ac, H3K27me3) and ATAC-seq on 

human embryonic stem cells (hESCs) at seven early neural differentiation time points (0-72 hours) 

and identified thousands of induced genes and regulatory regions. We analyzed the function of 

~2,500 selected regions using massively parallel reporter assays at all time points. We found 

numerous temporal enhancers that correlated with similarly timed epigenetic marks and gene 

expression. Development of a prioritization method that incorporated all genomic data identified 

key transcription factors (TFs) involved in neural induction. Individual overexpression of eleven 

TFs and several combinations in hESCs found novel neural induction regulators. Combined, our 

results provide a comprehensive map of genes and functional regulatory elements involved in 

neural induction and identify master regulator TFs that are instrumental for this process. 

 

One Sentence Summary: Using numerous genomic assays and computational tools we 

characterized the dynamic changes that take place during neural induction. 
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Main Text:  

Pluripotent cells differentiate into a neural lineage as a default when BMP and TGFβ signals are 

inhibited (1). Neural induction is the initial step of this process, priming these cells to later become 

neural progenitor cells (NPCs). Human embryonic stem cells (hESCs) can also be differentiated 

into NPCs when BMP and TGFβ inhibitors are added into culture media (2). As such, neural 

induction of hESC is widely used as a model system to study the mechanism of neural 

differentiation and neurodevelopmental diseases. However, we currently have a limited 

understanding of the molecular components governing this process; in particular, the regulatory 

elements orchestrating it. Changes in enhancer activity are thought to play a pivotal role in cell 

fate specification (3). For example, multiple temporal enhancers are thought to sequentially 

function in orthodenticle homeobox 2 (Otx2) gene expression in epiblast, anterior neuroectoderm 

and fore- and midbrain during development (4-6).  

Mutations in genes and regulatory elements involved in neural induction and development have 

been associated with human disease. For example, dysfunction of cortical GABA neurons in 

schizophrenia begins during prenatal development (7). Similarly, autism spectrum disorders 

(ASD) are associated with de novo mutations in developmental genes (8) and alterations in 

canonical Wnt signaling in developing embryos (9). Furthermore, copy number variations (CNVs) 

overlapping neurodevelopmental genes linked to ASD and schizophrenia were found to be 

associated with attention-deficit hyperactivity disorder (ADHD) (10) and genetic factors that lead 

to prefrontal-subcortical network dysfunction are thought to be associated with pediatric bipolar 

disorder (11). In addition, the majority of disease-risk loci discovered through genome-wide 

association studies (GWAS) in general and specifically for neuropsychiatric and 

neurodevelopmental disorders reside in noncoding regions (12-14), suggesting an important role 

for enhancers in disease susceptibility. Several large-scale mapping efforts have characterized in 

a genome-wide manner the transcriptional and epigenetic landscape of hESC-derived NPCs or 

neural tissues and have annotated numerous genes and potential regulatory elements that could be 

important in neural differentiation (15-21). However, while these studies have identified putative 

regulatory elements, they have not comprehensively analyzed them for their function. 

Furthermore, none of these genomic studies focused on the early stages of neural differentiation 

when neural induction takes place. Thus, the intrinsic mechanism that governs neural induction 

remains largely unknown. 

Here, we set out to generate a genomic map of the transcriptional and epigenetic landscape of 

neural induction, and then couple these observations with comprehensive functional assays, with 

the aim of identifying the key regulatory elements (enhancers, transcription factors) involved in 

this process. To this end, we measured gene expression levels (RNA-seq), chromatin accessibility 

(ATAC-seq), and histone modifications (ChIP-seq) indicative of active (H3K27ac) and repressed 

(H3K27me3) regions at seven time points, spanning the early stages of neural differentiation (0-

72 hours). We first used these datasets to identify genes that are regulated during (and thus 

potentially associated with) neural induction, as well as their associated regulatory regions. Next, 

we prioritized and tested 2,464 candidate regions using a lentivirus-based massively parallel 

reporter assay (lentiMPRA;(22)) for regulatory activity. LentiMPRA found 62% (1, 547/2,464) of 

the assayed sequences to be temporally active, namely, capable of driving reporter transcription 

while showing differential activity over time. The majority (92%) of these sequences are novel 

enhancers that were not tested for enhancer activity in previous studies. Importantly, the activity 

of over two thirds of the temporal enhancers matched with the temporal profiles observed in the 
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endogenous genome, either in terms of chromatin accessibility, H3K27 acetylation or mRNA 

expression. We integrated all of the resulting data modalities (genomics maps and MPRA) to 

computationally infer the activity of transcription factors (TFs) over time and nominate candidate 

TFs that could be important drivers of neural induction. Overexpression of eleven of these TFs 

along with selected combinations, found three novel TFs (OTX2, LHX5 and IRX3) that can induce 

neural differentiation in hESCs. Combined, our work provides a comprehensive gene and 

regulatory map of sequences involved in neural induction and identifies novel functional enhancers 

and TFs involved in this process. 

 

The neural induction-associated transcriptome 

To characterize the neural induction transcriptome, we performed deep RNA sequencing (average 

of 200 million reads per replicate) on undifferentiated H1-ESCs (0 hour) and six different time 

points of early neural differentiation (3, 6, 12, 24, 48, and 72 hours) following dual-Smad inhibition 

(2). As expected, we observed neural marker genes (SOX1, PAX6, OTX2, LHX5, IRX3, POU3F2, 

DLK1, MAP2 and CDH2) to be upregulated after 12 hours (Fig. 1A), with limited expression 

changes in mesendoderm (EOMES), mesoderm (T and TBX6), endoderm (SOX17 and GATA4), 

and neural crest markers (FOXD3 and SNAI1/2). Pluripotent markers (NANOG, POU5F1) and 

direct targets of TGFβ and BMP signaling (SMAD7, ID1, LEFTY2) were downregulated and 

immediate early genes (ATF3, FOS, FOSB and EGR1/2/3) were transiently upregulated at 3 hours, 

corresponding to the cell's stress response against differentiation stimuli. For a more general 

analysis, we used two different methods for the identification of differential expression over time 

(SigmoDE  (23) and DESeq2 with time covariates (24)) and considered only genes that were called 

by both [using a false discovery rate (FDR) cutoff of 1% and 5% respectively; Methods]. 

Altogether, we found 2,172 genes that are differentially expressed over time (henceforth referred 

to as temporal genes), with 85% of these genes being induced at some point in time (Fig. 1B). 

Gene set enrichment analysis (25) of the resulting temporal clusters found that genes induced at 

the early time points (0-12 hours, FDR<0.05 hypergeometric test) are enriched for regulation of 

multicellular organismal development, indicating that pluripotent response genes are enriched in 

these processes. Conversely, genes induced at later time points (>24 hours, FDR<0.05) are 

enriched for neurogenesis processes, consistent with the progression of the cells toward a neural 

lineage fate (table S1). Combined, our transcriptomic analyses validated the ability of the dual-

Smad inhibition protocol to obtain the expected neural trajectory and provides a catalog of genes 

involved in neural induction. 

 

The neural induction-associated regulome 

To comprehensively identify candidate enhancers involved in regulating these genes (and thus 

driving neural induction), we performed ATAC-seq as well as ChIP-seq for the active histone mark 

H3K27ac and the silencing mark H3K27me3 at all seven time points. We then identified regions 

that are enriched (i.e., peak regions) in each one of these assays (FDR< 0.05) by analyzing each 

time point separately and then taking the merged set of peaks over all time points. Overall, we 

identified 40,486 ATAC-seq peaks, 40,170 H3K27ac peaks and 4,446 H3K27me3 peaks that are 

enriched in at least one time point. To exclude potentially inactive regions from further analysis, 

we removed H3K27ac peaks that overlap a H3K27me3 peak at all the time points in which that 

peak was detected. This resulted in a filtered set of 40,042 H3K27ac peaks, indicating that the two 
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chromatin marks have little overlap in our data. Conversely, we observed a substantial overlap 

between the H3K27ac peaks and the ATAC-seq peaks, with an overall 60% (23,294) of the 

H3K27ac peaks overlapping an accessible region at the same point in time. Using strict criteria 

[FDR< 0.05; FDR<0.01 Methods; table S1; (23, 24)], as in the gene expression analysis, we found 

2,435 ATAC-seq and 2,024 H3K27ac peaks that were differentially enriched between time points, 

henceforth referred to as temporal H3K27ac or ATAC-seq peaks. Similar clustering of H3K27me3 

peaks showed weaker temporal signal (Methods) and a smaller number of temporal peaks (fig. 

S1A). 

We next set out to study the association between the temporal changes observed at the epigenome 

level, and those observed at the gene expression level. We clustered the two sets of temporal 

regions (in terms of accessibility and H3K27ac) into several prototypical patterns (Fig. 1C, D) as 

we have done for the temporal genes (Fig. 1B). Functional enrichment analysis using the Genomic 

Regions Enrichment of Annotations Tool [GREAT; (26) FDR<0.05] on the accessibility and 

H3K27ac clusters was overall consistent with the results observed with the gene expression 

clusters, with an enrichment for pluripotent factors and nervous system development processes in 

early and late response regions respectively (table S1). Interestingly, we observed that the 

temporal changes to the epigenome were highly correlated to each other (Fig. 1E and fig. S1B). 

Furthermore, for a large fraction of the induced genes, chromatin accessibility was found to be 

acquired first or simultaneously with H3K27ac modification followed by an increase in mRNA 

expression (using the expression of the nearest gene; Fig. 1E). For example, the DNA accessibility 

cluster 4 that peaks at 24 hours showed the strongest overlap with H3K27ac clusters 5-6 that peak 

at 48-72 hours and this cluster significantly overlaps (in terms of genes; p-value<0.0014; 

hypergeometric test) with gene expression cluster 6 which peaks at 72 hours (Fig. 1E). 

Specifically, examination of potential enhancers within these clusters that are located near 

microtubule associated protein 2 (MAP2), a gene that is involved in microtubule assembly (27), or 

receptor tyrosine kinase like orphan receptor 2 (ROR2), that regulates the maintenance of NPCs 

(28), found them to be enriched for ATAC-seq signal at 12-24 hours, H3K27ac signal at 48-72 

hours and their expression to peak at 72 hours (Fig. S2). Combined, these results suggest that 

regions that are associated with changes to chromatin structure during neural induction are 

statistically related to changes in gene expression. 

 

Neurological disorder associated variants are enriched in temporal H3K27ac marked 

sequences 

As genes and regulatory elements involved in neural development may be associated with 

neurological disorders, we tested whether our neural induction regulome overlaps disease-

associated variants. We first analyzed whether our temporal accessibility or H3K27ac peaks are 

specifically enriched for GWAS variants associated with neurological disorders using the complete 

set of peaks (temporal and non-temporal) as background and variants associated with height as 

negative controls. We observed a significant enrichment for H3K27ac (but not accessibility) 

temporal peaks with neurological disorders (table S2; Methods; p-value<0.05; Fisher’s exact test) 

but not with height variants. Specifically, we observe significant enrichment when examining 

variants associated with a combined set of neuropsychological disorders (schizophrenia, attention-

deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder and major depressive 

disorder) as well as enrichment when examining for individual disorders (i.e. Bipolar and 

Psychosis disorders). As the smaller size of ATAC-seq peaks might account for the lack of 
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enrichment in ATAC-seq temporal peaks, we expanded the ATAC-seq peaks to the average size 

of H3K27ac peaks, but observed similar results. 

Expression quantitative trait loci (eQTLs) mark variants that can be associated with modulating 

the regulation of nearby genes. We tested for overlap between eQTLs found in various tissues (29) 

and our temporal ATAC-seq or H3K27ac peaks. We found the temporal H3K27ac peaks to be  

significantly enriched for eQTL variants (30) in general and specifically for those from brain 

tissues (29) (table S2; Methods; p-value<0.05; Fisher’s exact test using all peaks, temporal and 

non-temporal, as background). Similarly to GWAS variants, we did not observe an enrichment of 

eQTLs in temporal ATAC-seq peaks even upon their expansion. Combined, these results suggest 

that our temporal H3K27ac regions could be functional enhancers that harbor neurological disease 

risk variants. They also suggest that temporal changes to the chromatin early in the differentiation 

process can be used as a tool for identifying potentially functional regions (more so than a single 

time point). 

 

LentiMPRA identifies regulatory regions that are active during neural induction. 

In order to test whether our candidate regulatory sequences can in fact induce temporal 

transcriptional response, we carried out lentiMPRA at all seven time points. Overall, we 

investigated 2,464 candidate sequences, covering both promoters (N=386 (15.7%)) and putative 

enhancers (N=2,078 (84.3%)). As the number of potential candidate regulatory regions is large, 

we developed a prioritization scheme to select the set of assayed regions, (Fig. 2A; table S3; 

Methods) using the following criteria: 1) Manually curated list of enhancers that are next to genes 

involved in neural differentiation (N=102; table S3); 2) Sequences that overlap a temporal 

H3K27ac ChIP-seq peak that also overlap an ATAC-seq peak (not necessarily temporal) and that 

their closest gene shows increased expression due to neural induction (N=1,596); 3) Sequences 

that overlap non-temporal H3K27ac peaks and temporal ATAC-seq peaks and their closest gene 

shows increased expression due to neural induction (N=441); 4) Among the regions not included 

in the first three groups, we select sequences that showed the strongest difference in signal of either 

H3K27ac ChIP-seq, ATAC-seq or mRNA of the closest genes (N=132; comparing either 0 vs. 3 

hours or 0 vs. 72 hours); and 5) Positive control sequences (N=193) that included previously 

reported sequences that were validated forebrain enhancers in the VISTA Enhancer Browser (Visel 

et al., 2009) (N=105), sequences near pluripotent factors (N=42) and commonly used positive 

controls from the ENCODE project (N=46) (table S3). Notably, the criteria were applied 

sequentially (in the order in which they were described), and the respective sets of candidate 

enhancers are mutually exclusive. For negative controls, we randomly selected 200 of our 

candidate sequences and shuffled their nucleotides obtaining scrambled sequences. Overall, we 

chose 2,664 sequences using this process. As our assayed sequences were 171 base pairs (bp) long, 

due to oligonucleotide synthesis limitations, we chose the 171bp window within a peak of interest 

by maximizing the number of motifs in it (Methods; (31, 32)). 

The selected oligonucleotides were generated and cloned upstream of a minimal promoter (mP) 

and EGFP reporter gene into a lentivirus-based enhancer assay vector (Fig. 2B) as previously 

described (22). Previous work has shown this assay to also provide a good indication for promoter 

activity (33, 34). Each individual enhancer sequence was designed to be associated with 90 

different 15-bp barcodes, thus allowing robust evaluation of the pertaining expression output. In 

total 239,760 sequences (2,664 enhancers x 90 barcodes) were included in the library (Fig. 2B). 
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The cloned library was sequenced in order to evaluate the quality of the designed oligonucleotides 

and the representation of individual barcodes (Methods; fig. S3). We found small deviations of 

the sequence design from observed length (fig. S3A) and distributions of alignment errors to be 

minimal and evenly distributed along the sequence (fig. S3B). These results were comparable to a 

previous library generated in a similar manner (22). 

hESCs were infected with the library with an average of 5-8 integrations per cell (fig. S4), cultured 

for 3 days to clean out for unintegrated lentivirus and then subsequently induced into a neural 

lineage via dual-Smad inhibition. LentiMPRA was performed at all seven time points of neural 

differentiation with three replicates (two biological replicates, one of which was split into two 

technical replicates; see Methods, figs. S5-10 and table S4). Due to the short time spans between 

some conditions, we collected nuclear RNA in all time points so as to detect their immediate 

expression. We observed an average of 70 barcodes per candidate enhancer sequence in each 

replicate (out of 90 barcodes programmed on the array; fig. S6). These results were comparable to 

a previous library generated in a similar manner (22). By aggregating these barcodes (Methods), 

we were able to get highly reproducible results across both technical and biological replicates (figs. 

S7; S8A-C). We then combined replicates to produce a normalized RNA/DNA ratio for each 

enhancer (Methods; henceforth referred to as MPRA signal). We observed low correlation 

between RNA/DNA ratios and DNA counts, indicating that enhancer activity was not influenced 

by the number of DNA integrations (fig. S9). Examination of the signal observed for regions 

nominated by the different experimental design criteria found that temporal H3K27ac signal 

(criterion 2) provides an effective predictor of functional enhancer activity, while as expected, the 

negative controls showed the lowest activity (Fig. 3A; fig. S8D). 

 

LentiMPRA identifies temporal enhancers 

We next set out to examine whether the enhancer activity observed in our assay changes over time, 

and then characterize these changes with respect to the cell- endogenous temporal processes 

observed in Fig. 1. As a starting point, we considered each time point separately and applied 

MPRAnalyze (Note S1) a new tool for statistical analysis of MPRA data developed in our group, 

to identify active enhancers, namely enhancers whose activity significantly deviates from that of 

the negative controls (median-based z-score; FDR < 0.05). From the 2,464 candidate sequences 

that we tested via lentiMPRA, 1,681 (68%) were called significant in at least one of the time points 

and on average 1,141 (46.3%) sequences were active per each individual time point (table S3). 

While we saw similar levels of activity at each time point, the sets of responsive enhancers may 

differ greatly between time points. Reassuringly, we observed a correlation between the time 

points and temporal order; namely, the overlap between the sets of active enhancers (Fig. 3B) and 

the correlation of MPRA signal for all enhancers is decreased as the distance between the 

respective time points increases (Fig. 3C; fig. S10). This indicated that regulatory programs 

carried out by enhancers are far from fixed, but instead change over the course of neural induction. 

As an example, we observed that a known enhancer and the promoter of NANOG (35, 36) have 

activity only at the early time points (Fig. 3D), as expected. We also found novel enhancers near 

SRY-box 1 (SOX1) that showed increased activity at 24-48 hours (Fig. 3E), corresponding to the 

respective mRNA expression changes over time (2) (Fig. 1A). 

We next carried out a more global analysis that aims to identify enhancers whose MPRA signal 

significantly changed over time (Note S1). This alternative approach pools together information 
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from all time points rather than considering each time point individually, and therefore has the 

potential to identify effects that may otherwise be missed. In this analysis, the temporal activity of 

each candidate enhancer was compared with a null temporal behavior displayed by the set of 

negative controls. Regions with significantly different temporal activity were called temporally 

active using a likelihood ratio test (FDR< 0.05; Methods; Note S1). We found that 1,547 

sequences out of the 2,464 we tested (63%) showed temporal enhancer activity (henceforth 

referred to as temporal enhancers). Out of these temporal enhancers 1,261 (82%) were also 

detected by the per- time point analysis. In the following analyses we focused on the complete set 

of temporal enhancers. Importantly, we observed consistent results when limiting our analyses to 

the smaller and more stringent set of 1,261 regions. 

 

Enhancer activity is consistent with the endogenous temporal profiles 

We set out to test whether the MPRA signal of the temporal enhancers correlates with gene 

expression and endogenous enhancer marks. To this end, we clustered the temporal enhancers into 

four patterns of activity: 1) early (mainly active at 0-6 hours); 2) mid-early (primarily active at 12-

24 hours); 3) mid-late (mainly active at 24-48 hours); and 4) late response (primarily active at 48-

72 hours) (Fig. 4A). To facilitate direct comparison to the temporal profiles observed in the 

endogenous genome, we quantified for each temporal enhancer the expression of its closest gene 

and the epigenetic signal (accessibility, H3K27ac) in the respective endogenous position over time. 

We then stratified the resulting profiles into clusters, in a similar way to that of the MPRA (Fig. 

4B-D) and tested the overlap between the resulting endogenous clusters (Fig. 4B-D) and the 

MPRA- based clusters (Fig. 4A). 

Starting with the expression of the closest gene, we find significant levels of overlap between the 

respective clusters (lentiMPRA and RNA-seq; Bonferroni corrected hypergeometric p-

value<0.05; Fig. 4E). The significant overlap is observed primarily in time- matched clusters, 

indicating that an overall trend in the data is that the temporal enhancers are capable of inducing 

reporter gene expression that is similar to the (postulated) endogenous target gene. Indeed, in an 

alternative analysis, we defined the maximal segment of each enhancer as the two subsequent time 

points in which it reaches its maximal expression. Comparing the MPRA and the endogenous 

mRNA, we found that in 48% (752/1,547) of the temporal enhancers the respective maximal 

segments overlap. Gene ontology enrichment analyses for the genes associated by proximity with 

the regions in the different clusters, also found gene categories fitting with the temporal expression 

(table S5). For instance, the early cluster is enriched for recruitment of histone acetyltransferases 

(HATs) and expression of pluripotent genes (e.g. KLF4), indicative of stem cell differentiation 

processes that take place during these early time points (19). The mid-early and mid-late clusters 

are enriched with early chromatin response and genes that are involved in developmental 

processes. The late cluster is enriched for open chromatin, HAT recruitment and expression of 

neural genes (e.g. OTX1). We observe similar results for the more restricted set of regions that are 

temporal and active in at least one time point (fig. S11). 

We next set out to compare the temporal patterns observed with MPRA to those observed at the 

chromatin level. As expected, we find that the temporal enhancer regions rarely overlap with 

H3K27me3 peaks (fig. S1C). Conversely, using the concept of maximal segments as above, we 

find that 50% of the temporal enhancers reach their maximum level around the same time as the 

respective H3K27ac peak (i.e., 604 out of 1,208 temporal enhancers that intersect with a H3K27ac 
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peak). We also observe a similar level of agreement when comparing lentiMPRA to the temporal 

profiles of chromatin accessibility (48% or 553 out of 1,140 temporal enhancers that intersect with 

an ATAC-seq peak). Overall, we observe a substantial level of agreement between MPRA and the 

endogenous transcriptional changes, with 67% of the temporal enhances (1,038/1,547) consistent 

with the temporal patters of least one of the endogenous signals (H3K27ac, accessibility, or mRNA 

expression). These results suggest that the signal captured by lentiMPRA could be relevant for 

neural induction and that the activity of the endogenous counterparts of the temporal enhancers 

may be functional during this process. 

The overlaps that we observed, however, are not perfect and the temporal profiles of many other 

MPRA regions are in fact different from their endogenous counterparts. While this may result from 

inaccuracies in the various assays, it may also point to a biologically- driven cause. To investigate 

this phenomenon at the chromatin level, we turned to the cluster- level analysis (Fig. 4E and fig. 

S12). This analysis was designed to identify cases where regions that exhibit a certain temporal 

pattern with MPRA are likely to exhibit another pattern in their accessibility or H3K27 acetylation 

(adjusted p-value<0.05). As a general trend, the results indicate that `inconsistent’ temporal 

regions tend to become induced (when assayed by MPRA) after the occurrence of chromatin 

changes in their respective endogenous loci. For instance, we observe a significant overlap 

between the set of regions that become induced after 24 hours when examined by MPRA (MPRA 

cluster 3; Fig. 4A), and the set of regions that become (or remain) accessible during the preceding 

time points (ATAC-seq cluster 1; Fig. 4D). Furthermore, this pattern of delay is observed more 

often with chromatin accessibility, compared with H3K27ac. These results could potentially be 

explained by our previous observations that DNA accessibility precedes H3K27ac during neural 

induction, which is followed by gene expression changes (Fig. 1E), and that the temporal H3K27ac 

signal is a stronger indicator for MPRA enhancer activity (Fig. 3A). 

In addition to inconsistency with the chromatin readouts, we also observe temporal enhancers that 

were active several time points before their postulated target genes (fig. S12B) and the opposite, 

where genes were active before the enhancer (fig. S12C). The pattern of MPRA induction before 

the endogenous mRNA can be rationalized by additional constraints that may exist in the 

endogenous regions, but not necessarily in the (random) integration sites such as dependence on a 

wider chromatin context, which may be required to enable transcription. Conversely, the latter 

pattern (mRNA before MPRA) is harder to rationalize and is more likely a result of the assay’s 

inaccuracy. To further investigate this, we first excluded cases where there was another nearby 

gene (looking at the closest four) that was more correlated with the MPRA signal but showed 

inconsistency with the closest gene mRNA signal (Methods), thus accounting for possible 

enhancer- gene miss-assignment. Counting the number of occurrences of each of the two patterns, 

we find that the second one (mRNA before MPRA) is of a substantially lower abundance (137 vs. 

358 enhancers), and that it is in fact at the level of overlap between random sets (Fig. 4E). 

 

 

 

TF binding site analyses identifies important neural induction genes 

As the RNA product of MPRA is non-endogenous, it provides an effective way for estimating the 

effects of TFs on transcription, eliminating the need to account for indirect effects. We utilized 
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this property to pinpoint which TFs could be driving neural induction at the different time points. 

To this end, we used experimental data from the public domain along with DNA binding motifs to 

determine the potential binding landscape of a large cohort of TFs across our tested regions. More 

specifically, we recorded, for each temporal enhancer: 1) its predicted binding sites using Fimo 

(31) with two sets of TF motifs (32, 37) and 2) its overlap with TF ChIP-seq peaks in hESCs (20) 

or in hESC-derived ectoderm (120 hours post neural induction using inhibitors of TGFβ, WNT 

and BMP;  (19)). The result of this analysis is a binary binding matrix of TFs by regions with 

entries indicating either potential binding using FDR<10-4 for TF motifs or overlap with TF ChIP-

seq peaks. 

We next employed a strict motif enrichment analysis based on comparing the number of motif hits 

in regions within each temporal MPRA cluster versus the restricted set of all regions in the MPRA 

design (FDR<0.05, Hypergeometric test; table S6; Methods). This analysis was designed to 

nominate candidate TFs whose activity is specific to certain phases of the differentiation process. 

Accordingly, we found that motifs of pluripotent factors (e.g. NANOG, POU5F1, SOX2 (38)), 

were enriched in the early cluster. Furthermore, immediate early response factors (ATF, JUN, 

FOS), which are known to be induced by stimuli and stress (39), were enriched in mid-early 

enhancers. These observations suggested that early- and mid-early clusters may respond to TFs 

that function in pluripotency maintenance and the cell’s acute response, such as apoptosis, 

respectively. We also found that both mid-late and late clusters were enriched for cell fate 

commitment and specification factor binding. Specifically, SOX, OTX, and Class III POU factor 

motifs were enriched in both mid-late and late enhancers, suggesting that enhancers in these group 

were the direct targets of these key neural factors. 

 

Activity score identifies novel TFs that are important for neural induction 

To narrow down the list of candidate TFs for a follow up investigation of their effect on neural 

induction, we defined a TF activity score, which represents the potential to affect transcription at 

each time point. We considered two factors that can influence TF activity at each time point: 1) 

More than expected amount of active enhancers at that time point that are predicted to be bound 

by that TF (40), suggesting that this TFs may provide a parsimonious explanation for the MPRA 

signal (41); and 2) Induction of the mRNA that codes for the TF, which may also suggest functional 

importance (42-44). For the former, we focused our attention to enhancers in which the temporal 

MPRA pattern significantly overlap with the endogenous pattern, namely - the sub-clusters of 

regions pertaining to significant entries in Fig. 4E. Each of these ̀ consistent’ sub-cluster represents 

a different mode of temporal relationship between MPRA and the endogenous genome - e.g., early 

induction with matched timing of mRNA expression or H3K27 acetylation, or late induction that 

appears after the establishment of chromatin accessibility. While other active MPRA regions in 

our data can be of additional interest, we postulate that focusing on temporal regions that are 

consistent with the major patterns of overlap with the endogenous processes is desirable when 

integrating additional genomic readouts (TF binding), and may also increase the odds that the 

respective endogenous region is indeed functional. 

To compute the activity score of each TF (represented by a motif or a ChIP-seq experiment) at 

each time point, we look for consistent sub-clusters that peak during that time point (in terms of 

MPRA signal) and that significantly overlap with the putative target regions of the TF (p-

value<0.005, Hypergeometric test). We then count the number of putative target regions that 
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appear in at least one significantly overlapping sub-cluster. The final score is defined by the 

number of regions found at each time point divided by the total number of regions found across 

all time points. As an additional constraint, we only consider time points in which the mRNA that 

encodes for the TF is highly expressed (6th or higher quantile of expressed genes) and significantly 

induced compared to the preceding time point [p-value <10-5; (24); for the first time point (0 hour), 

we compare to the subsequent time point (3 hours)]. 

The resulting TF activity matrix (Fig. 5A; table S7) provided a catalog of 107 TFs that could 

potentially function as regulators of neural induction. Repeating this analysis with the stricter set 

of temporal regions that were also detected by the per- time point analysis yielded reproducible 

results (94 out of 107 cataloged TFs were detected). Similar to previous analyses, we clustered the 

TF activity score to four representative patterns of activity: early, mid-early, mid-late and late 

response. Overall, we observed an agreement between known hESC and neural induction 

associated TFs and their temporal time points. For example, in the early cluster, the pluripotent 

marker NANOG showed high TF activity score at 0 hour, and immediate-early gene products, 

ATF3, MYC and EGR1, which likely mediate acute response, showed high score at 3 hours, as 

expected (39). TFs that had a high score at later time points (24-72 hours) included several neural 

TFs, such as SOX1, OTX2 and PAX6. 

 

Overexpression identifies novel neural induction associated TFs 

To test whether our identified TFs are indeed involved in neural induction, we selected for follow 

up studies eleven representative TFs that were predicted as active during different time points of 

the induction process: FOXB1, HOMEZ, IRX3, HLX5, MEIS2, OTX2, PAX6, POU3F1, SOX1, 

SP8, and ZIC2. All of these TFs were selected because their mouse orthologs were shown to be 

expressed in the neuroectoderm via whole-mount in situ hybridizations at E5.5-E8.5, when neural 

differentiation takes place (45-55). Overexpression of PAX6a (short isoform of PAX6) is known 

to function as a neuroectoderm fate determinant and was previously shown to induce hESCs into 

a neural lineage (56) and was thus selected as a positive control. 

We tested if overexpression of each selected TF is sufficient to induce neural induction. The TFs 

were individually cloned into lentivirus mammalian expression vectors and infected into hESCs. 

Four days post infection, cells were harvested and RT-qPCR was carried out for lineage marker 

genes to assess neural induction. The effects on the marker gene expression by each overexpressed 

TF were normalized to those by EGFP, which was used as a negative control as it is not expected 

to affect gene expression. Results were represented as a heatmap matrix (Fig. 5B) and significant 

expression changes (comparing to EGFP overexpression using ks-test across the 3 replicates; p-

value<0.05) were shown as a network (Fig. 5C). We found that overexpression of OTX2, LHX5, 

and IRX3 were sufficient to induce PAX6 expression four days after vector transduction, 

suggesting that these TFs play a role in neural fate specification. IRX3 overexpression also induced 

other neural markers, such as SOX1, POU3F2 and MEIS2 directly or indirectly via PAX6 (Fig. 

5C). However, overexpression of SOX1 or MEIS2 by themselves did not induce PAX6 expression. 

SOX1 did however lead to the upregulation of many other neural genes. 

Previous studies have shown that OTX2 overexpression promotes PAX6 expression in hESCs upon 

treatment with the TGFβ inhibitor SB431542 and FGF2 (57). It was also reported that LHX2, a 

paralog of LHX5, promotes PAX6 expression and neural differentiation in hESCs (58). However, 

despite LHX5 being expressed in NPCs, its overexpression has yet to be associated with neural 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 16, 2018. ; https://doi.org/10.1101/370452doi: bioRxiv preprint 

https://doi.org/10.1101/370452


12 

 

induction. The same holds true for IRX3, which is known to be expressed in the anterior 

neuroectoderm in the mouse embryo (51), but whose function in neural induction has not been 

evaluated. Consistent with these findings, analysis of the PAX6 promoter region found binding 

sites of OTX, IRX3, SOX and POU that are conserved among species, and were shown by our 

lentiMPRA to be active around 12-24 hours (Fig. 5D), when these TFs are significantly expressed 

(Fig. 2A) and start to gain a high TF activity score (Fig. 5A). In addition, we also found several 

additional examples of functional neural enhancers that contain conserved OTX, SOX, IRX, and/or 

homeo-domain binding motifs upstream from the LHX5, POU3F2 and OTX2 genes (fig. S13). 

As OTX2, LHX5, and IRX3 were able to induce PAX6 expression and their postulated binding 

sites are present in many neural induction relevant promoters and enhancers, we tested whether 

they alone or in combination could lead to a more established neural lineage. This was done by 

testing the expression of late neural marker genes (i.e. DLK1, FABP7, CDH2, and MAP2) nine 

days after infection of these TFs. We observed upregulation of the late neural markers at day nine 

(Fig. 5B), consistent with the observation that these three factors activated the neural lineage 

determinant PAX6 at an early stage. In terms of individual TFs, LHX5 and OTX2 upregulated the 

majority of neural markers we assayed. However, we also observed that overexpression of all three 

TFs individually or most combinations promoted mesoderm (T and GSC) and endoderm (SOX17 

and FOXA2) markers at day nine. Interestingly, the combination of LXH5 and OTX2 together leads 

to a reduction in expression of these non-neural markers along with a strong neural fate (Fig. 5B). 

In summary, these results suggest that OTX2, LHX5, and IRX3 could function as key regulators of 

neural differentiation at least partially by activating PAX6 expression and that neural fate 

commitment is fine-tuned by combinations of regulators and suppressors that combined lead to 

this trajectory. 
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Discussion 

Induced in vitro differentiation of embryonic stem cells into neuronal cells is a widely used tool 

for studying neuronal disease subtypes and for the general understanding of neural development. 

However, we still do not have a systematic understanding of the genes and regulatory elements 

that control the initial stages (induction) of this process. Here, we undertook a comprehensive 

genomic approach to address this and identify molecular components that control gene expression 

changes during neural induction. We identified previously characterized players in this process 

along with numerous novel ones. We functionally characterized over two thousand sequences for 

enhancer activity, finding many to be temporal enhancers. Using all of our genomic data, we put 

together a combined TF activity score, allowing the identification and experimental validation of 

novel TFs that are involved in neural induction. 

Genomic analyses of multiple time points during early neural induction provided several important 

findings. We observed that neural induction first involves the silencing of pluripotent markers and 

upregulation of immediate early genes, corresponding to the cell's stress response against 

differentiation stimuli. This is then followed by the upregulation of genes involved in neural 

lineage fate specification. We also observed that this process is first controlled by chromatin 

accessibility or simultaneously with H3K27ac modification followed by an increase in mRNA 

expression. These results also support previous reports about the importance of H3K27ac as an 

active enhancer mark that correlates with (and possibly affects) temporal changes in transcription 

levels, which are not captured by accessibility alone (59). Finally, our work provides an important 

catalog of dynamically changing genes and regulatory elements during neural induction. 

The use of lentiMPRA allowed us to functionally test thousands of sequences for enhancer activity. 

A large proportion (68%) of the sequences we tested functioned as active enhancers and 63% 

showed temporal enhancer activity. We observed a strong temporal correlation between functional 

enhancers and H3K27ac, but less so with ATAC-seq, likely due to chromatin accessibility 

preceding enhancer activation. While we observed an overall strong correlation between temporal 

enhancers and gene expression, it is important to note that this overlap was not obtained for all 

sequences. We did observe functional enhancers that were also active several time points before 

their postulated target genes and the opposite, where genes were active before the enhancer. For 

the latter, our analyses suggest that these discrepancies can stem from various technical factors of 

the assay. These could include the length of the assayed sequence (171 bp), testing sequences 

outside their genomic context and other factors. 

Analysis of temporal genes and enhancers is important not only to understand the regulatory 

network underling neural induction, but also to dissect neurological disease. A large body of 

evidence suggests that the temporal alteration of genes and regulatory elements involved in 

neuronal development can lead to neurological disease. For example, previous findings have 

shown that genetic variation influencing cognition and brain size act during neurogenesis (60). 

Fitting with these studies, we observed significant overlap between regions with induced H3K27ac 

histone modification and neurological disorder GWAS variants. We also observed a significant 

correlation between these peaks and eQTL variants in general and specifically from brain tissues. 

Since the statistical background we used for the analysis was the entire set of H3K27ac peaks 

(regardless of how they change over time), these results suggest that the temporal aspect adds 

important information, which allowed us to highlight phenotypically important regions. 
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Our large genomic assays enabled the creation of a TF activity matrix that ranks TF’s temporal 

functionalities. We identified OTX2, LHX5 and IRX3 as key regulators of neural induction, as 

overexpression of these factors were sufficient to induce PAX6 and other neural markers. While 

PAX6 expression in hESCs was shown to be upregulated via OTX2 (57), this finding was novel 

for LHX5 and IRX3. While LHX5 is a commonly used neural marker, its ability to induce neural 

induction was not tested. IRX3, was of particular interest. In our study, we found its expression to 

increase at 12-72 hours, and it obtained a high activity score at these time points, suggesting an 

important role in neural induction. In our overexpression experiments, we observed that it could 

by itself induce several neural markers in the hESC culture condition, including PAX6. To our 

knowledge, this is the first report demonstrating a potential role for IRX3 in neural induction. 

Although we identified key regulators of neural induction, we also observed that overexpression 

of different TFs induced different sets of neural markers or even non-neural markers. This 

observation suggests that the orchestration of multiple TFs is necessary to fine tune neural 

differentiation. Assays that target the molecular function or regulatory grammar of these key 

regulators will be necessary in order to further understand this regulatory network. 
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Fig. 1. The dynamic changes of ATAC-seq, ChIP-seq and RNA-seq peaks are sequentially 

correlated. (A) Scaled read count (log2, averaging over three biological replicates) per time point 

of genes from seven representative groups (Neural, Mesoderm, Endoderm, Neural crest, 

Pluripotent, Nodal/BMP targets and immediate early genes). (B-D) Heat map of scaled read counts 

(log2, averaged over three biological replicates and standardized per row) of temporal genes and 

genomic regions, showing data from RNA-seq (B), H3K27ac ChIP-seq (C) and ATAC-seq (D). 

The loci in each assay were clustered into six groups based on their temporal patterns. (E) Overlap 

between the temporal clusters in the three data modalities. Shown are Bonferroni corrected p-

values of a hypergeometric test. The overlap is computed either at the region level (ATAC-seq vs. 

ChIP-seq) or at the gene level (ATAC/ChIP-seq vs. RNA-seq; regions in the former assays are 

represented by their nearest gene). 
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Fig. 2. Experimental design of lentiMPRA. (A) Sequence selection for lentiMPRA. 2,271 test 

regions were selected from the following four groups: 1) regions next to known genes involved in 

neural differentiation; 2) regions that overlap some ATAC-seq peak and a temporal H3K27ac peak 

and reside near genes that show increased expression due to neural induction; 3) regions that 

overlap a temporal ATAC-seq  peak and a non-temporal H3K27ac peak and reside near genes that 

show increased expression due to neural induction; 4) regions with strong differential enrichment 

for either H3K27ac ChIP-seq, ATAC-seq or near genes that showed strong differential expression 

in our studies that do not overlap with the first three groups. 193 positive control regions and 200 

scramble sequences (negative controls) were also included. (B) Schematic showing lentiMPRA 

design. Putative enhancer sequences along with a 15 bp barcodes were synthesized on a custom 

array, and cloned into a lentiMPRA vector. To ensure robustness we designed for each enhancer 

ninety different vectors, each with a different barcode. The library was packaged into lentivirus 

and infected into hESCs. The infected cells were cultured for 3 days, to allow genomic integration. 

DNA and nuclear RNA were extracted at seven time points (0, 3, 6, 12, 24, 48, 72 h) and subjected 

to sequencing followed by estimation of transcriptional activity. 
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Fig. 3. lentiMPRA signal for different enhancer types. (A) Cumulative distribution function 

indicating the frequency (y-axis) of sequences with a specific MPRA signal (x-axis; taking the 

maximum signal over time) revealed strong association between enhancer activity and temporal 

H3K27ac enrichment (design criterion 1) as well as regions that show differential activity when 

comparing extreme time points (0 vs. 3 hours, 0 vs. 72 hours) of H3K27ac, ATAC-seq and RNA-

seq signals (design criterion 4). (B-C) Similarity between the MPRA signal measured at different 

time points, using either the intersection of the sets of significantly active regions (Jaccard 

coefficient; B), or the correlation of the signals (Pearson correlation; C). (D-E) RNA-seq (red), 

ATAC-seq (green), H3K27ac ChIP-seq (blue) and MPRA (RNA/DNA ratio heatmap) tracks 

around NANOG (D) and SOX1 (E). 
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Fig. 4. Activity of temporal enhancers: comparing lentiMPRA to the endogenous signals. (A-

D) Temporal signal of MPRA activity (A), the corresponding signal from an overlapping peak of 

ATAC-seq (B), H3K27ac ChIP-seq (C) and the closest gene signal detected by RNA-seq (D) 

clustered into four temporal groups separately. Values shown are RNA/DNA ration (for for 

lentiMPRA) and normalized read counts (for all others). Rows are standardized. (E) Overlap 

between the lentiMPRA clusters and the three genomic data modalities. Shown are Bonferroni 

corrected p-values of a hypergeometric test. The overlap is computed either at the region level 

(lentiMPRA vs. ATAC-seq or ChIP-seq) or at the gene level (lentiMPRA vs. RNA-seq; using the 

nearest gene to represent each lentiMPRA region). 
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Fig. 5. Activity score identifies novel TFs involved in neural induction. (A) Heatmap of activity 

scores per TF per time point. Values are normalized (minimum to maximum) per each row. The 

eleven TFs used for overexpression (FOXB1, HOMEZ, IRX3, LHX5, MEIS2, OTX2, PAX6, 

POU3F1, SOX1, SP8 and ZIC2) are marked in red font. (B) TF overexpression. The heatmap 

shows the relative expression of marker genes (pluripotent, mesoderm, endoderm and neural) 

compared to the HPRT gene as determined by qRT-PCR. Results are shown as fold change 

compared to EGFP overexpression. (C) TF overexpression results at day 4 shown as a network. 

The thickness of arrows represents the log2 fold change. (D) TF analyses of the PAX6 promoter 

region shows binding sites for OTX2, IRX3, POU and SOX that are evolutionally conserved 

between human, mouse and frog (Xenopus tropicalis). 
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