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Abstract 14 

Single-cell epigenomics provides new opportunities to decipher genomic regulatory programs from 15 

heterogeneous samples and dynamic processes. We present a probabilistic framework called cisTopic, 16 

to simultaneously discover “cis-regulatory topics” and stable cell states from sparse single-cell 17 

epigenomics data. After benchmarking cisTopic on single-cell ATAC-seq data, single-cell DNA 18 

methylation data, and semi-simulated single-cell ChIP-seq data, we use cisTopic to predict regulatory 19 

programs in the human brain and validate these by aligning them with co-expression networks derived 20 

from single-cell RNA-seq data. Next, we performed a time-series single-cell ATAC-seq experiment 21 

after SOX10 perturbations in melanoma cultures, where cisTopic revealed dynamic regulatory topics 22 

driven by SOX10 and AP-1. Finally, machine learning and enhancer modelling approaches allowed to 23 

predict cell type specific SOX10 and SOX9 binding sites based on topic specific co-regulatory motifs. 24 

cisTopic is available as an R/Bioconductor package at http://github.com/aertslab/cistopic. 25 
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Introduction 27 

Genomic regulatory programs are driven by combinations of transcription factors that bind to cis-28 

regulatory control regions, such as enhancers and promoters, thereby regulating the transcription of 29 

target genes. Unravelling the regulatory programs of different cell states can provide mechanistic 30 

insights into how these programs are encoded in the DNA sequence, how they are affected during 31 

disease, and how they can ultimately be exploited to manipulate cell fate, for example for cellular 32 

reprogramming. Although single-cell transcriptomics allows an unbiased detection of cellular diversity, 33 

reverse engineering the genomic regulatory code from the transcriptome remains a challenge. On the 34 

other hand, single-cell epigenomic techniques, such as single-cell ATAC-seq (scATAC-seq) 35 

(Buenrostro et al., 2015; Cusanovich et al., 2015), single-cell CUT&RUN (Hainer et al., 2018), or 36 

single-cell DNA methylome sequencing (Farlik et al., 2015), provide a more direct prediction of the 37 

genome-wide activity of enhancers and promoters, at single-cell resolution. These approaches, in 38 

particular single-cell chromatin accessibility profiling using scATAC-seq, allow the discovery of 39 

multiple cell types and regulatory states from a heterogeneous mixture of cells, such as a whole 40 

organism (Cusanovich et al., 2018), a whole organ (Lake et al., 2017), or an asynchronous dynamic 41 

process like differentiation (Corces et al., 2016; Pliner et al., 2017). These studies have provided 42 

extensive new insight into the diversity of chromatin landscapes within a tissue.  43 

In comparison to single-cell transcriptomics, the computational analysis of scATAC-seq data is more 44 

challenging. This is mostly due to scalability and the higher sparsity of the data: a scATAC-seq dataset 45 

may harbour combinations from more than 100,000 potential regulatory sites –which results in 46 

extremely large matrices when profiling tens of thousands of cells–, but only a small subset of regions 47 

are detected as accessible in each individual cell (i.e. on average, only 10,000-20,000 deduplicated reads 48 

are obtained per cell (Table S1)). The current methods to analyse scATAC-seq data can be divided in 49 

two classes (Table S2). The first class consists of unsupervised methods such as scABC or Latent 50 

Semantic Indexing (LSI); in which, after representing the data in a lower dimensional space, cells with 51 

similar epigenomes are clustered (Cusanovich et al., 2015, 2018; Zamanighomi et al., 2018). Reads are 52 

then aggregated across all cells in a cluster to generate a pseudo-bulk profile, which is then used to 53 

identify differentially accessible regions between the clusters. A second class of methods consists of 54 

supervised methods that a priori aggregate all reads in a cell over pre-defined sets of genomic regions, 55 

called “cistromes” (e.g., ChIP-seq peaks of a transcription factor, or regions sharing a particular 56 

transcription factor motif or k-mer), such as chromVAR (Schep et al., 2017) and other, not yet peer-57 

reviewed methods, such as BROCKMAN (de Boer and Regev, 2017) and SCRAT (Ji et al., 2017). 58 

Although this approach is effective to reduce the sparseness, it relies on pre-defined cistromes, which 59 

hinders the discovery of new regulatory programs. In addition, methods of both classes are optimised 60 

towards cell clustering, but do not provide a co-optimised grouping of regulatory regions.  61 
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Here, we develop cisTopic, an unsupervised Bayesian framework based on topic modelling, that allows 62 

simultaneous grouping of co-accessible regions into regulatory topics and clustering of cells based on 63 

their regulatory topic contributions. These “cis-regulatory topics” can be directly exploited for motif 64 

discovery to predict combinations of transcription factors, but also to explore dynamic changes in 65 

chromatin state. We benchmarked cisTopic using simulated data and concluded that this approach 66 

outperforms previously published methods in terms of accuracy, robustness and interpretability. We 67 

validated cisTopic by applying it to a previously published data set of 30,000 cells from the human 68 

brain (Lake et al., 2017), finding subpopulations in an unsupervised manner and in agreement with gene 69 

regulatory programs derived from single-cell transcriptomics data. In addition, we generate new 70 

scATAC-seq data and reveal dynamic changes in chromatin accessibility during melanoma phenotype 71 

switching in vitro, driven by the loss of SOX10. Finally, by comparing the SOX10 topics in melanoma 72 

with SOX9 and SOX10 topics in the brain, we propose a cooperative pioneering model for the SOXE 73 

(i.e. SOX8, SOX9 and SOX10) family members.   74 
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Results 75 

Probabilistic topic modelling identifies cell states and reveals regulatory programs at 76 
single-cell resolution 77 

We have developed cisTopic, a new method for the analysis of single-cell epigenomics data that allows 78 

the simultaneous identification of cell states and co-regulatory regions in an unsupervised manner (Fig. 79 

1). The input for cisTopic is a binary accessibility matrix, with cells (i.e. objects) as columns and 80 

regulatory regions (i.e. features) as rows (in the case of single-cell methylation data, binary methylation 81 

scores) (Fig. 1a). Since this matrix is very sparse, we reasoned that Latent Dirichlet Allocation (LDA) 82 

(Blei et al., 2003), a robust Bayesian topic modelling method used to group objects addressing similar 83 

topics or themes, as well as grouping co-occurrent features into topics, could be applied to single-cell 84 

epigenomics data. Importantly, while existing methods rely on hard clustering (i.e., a feature or object 85 

will be uniquely assigned to one group), topic modelling assigns features to a group or topic with a 86 

certain probability, which means that the same feature can contribute to different groups, although with 87 

different strengths. In other words, compared to the discrete approach taken by clustering methods, the 88 

fuzzy clustering performed by topic models allows a feature (e.g. a regulatory region) to contribute to 89 

several groups or topics, and an object (e.g. a single cell) to be composed by different topics with 90 

different weights; resulting in less information loss.  91 

Importantly, LDA has a series of assumptions that are fulfilled in single-cell epigenomics data, such as 92 

non-ordered features (i.e. the order of regulatory regions is not relevant) and the allowance of 93 

overlapping topics (i.e. a regulatory region can be co-accessible with different other regions depending 94 

on the context; meaning that a region can participate in different regulatory programs depending on the 95 

cell type or state). In addition, compared to other topic modelling methods such as probabilistic LSI, 96 

LDA offers a probabilistic structure at the level of the objects by introducing Dirichlet priors over the 97 

topic contributions within the objects and does not lead to overfitting when increasing the size of the 98 

data set (Blei et al., 2003).  99 

Several approaches have been proposed to estimate the probability distributions, such as maximising 100 

the probability of the features by estimating the feature-topic distributions using Expectation 101 

Maximization (which is slow and may converge to a local maxima) or Gibbs Sampling (Bishop, 2006; 102 

Blei et al., 2003). To maximise the performance of LDA, cisTopic uses a collapsed Gibbs Sampler 103 

(Griffiths and Steyvers, 2004), which allows to reduce the complexity of the model by only sampling 104 

the topic assignment of each feature per object without the need of sampling from the feature-topic and 105 

the topic-object distributions, reducing the exploration space. The probability of sampling from a 106 

specific topic is proportional to the contribution of that topic to the object and the contribution of that 107 
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feature to the topic throughout the data set. These assignments are recorded through several iterations 108 

(after burn-in), and they can be used to estimate the feature-topic and the topic-object distributions. 109 

Thus, we consider the accessible regulatory regions as features and cells as objects, and our aim is to 110 

simultaneously group regions that are co-accessible in topics and cluster cells based on the topic 111 

distribution of their accessible regions. By using LDA, two distributions are obtained, which correspond 112 

to (1) the probability of a region belonging to a cis-regulatory topic (region-topic distribution) and (2) 113 

the contributions of a topic within each cell (topic-cell distribution) (Fig. 1b). cisTopic includes 114 

functionalities for the biological interpretation of these distributions e.g. topic-cell distributions can be 115 

used to cluster cells and identify cell types (Fig. 1c); while region-topic distributions can be exploited 116 

to analyse the regulatory meaning of each topic (Fig. 1d). cisTopic is made available as a new 117 

R/Bioconductor package at http://github.com/aertslab/cistopic. 118 
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 119 

Figure 1. cisTopic workflow. a. The input for cisTopic is a binary accessibility matrix. This matrix can be formed 120 
from single-cell BAM files and a set of genome-wide regulatory regions (e.g., from peak calling on the bulk or 121 
aggregate data). b. Latent Dirichlet Allocation (LDA), using a collapsed Gibbs Sampler, is applied on the binary 122 
accessibility matrix to obtain the topic-cell distributions (contributions of each topic per cell) and the region-topic 123 
distributions (contributions of each region to a topic). Note that a region can contribute to more than one topic 124 
(represented by the purple peaks). c. The topic-cell distributions are used for dimensionality reduction (e.g. PCA, 125 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 16, 2018. ; https://doi.org/10.1101/370346doi: bioRxiv preprint 

https://doi.org/10.1101/370346


   
 

   
 

7 

tSNE, diffusion maps) and clustering to identify cell states. d. The region-topic distributions can be used to predict 126 
the regulatory code underlying the topic. For example, topics can be compared with known epigenomic signatures 127 
using a recovery curve approach; regions can be annotated and linked to genes; and, after topic binarisation, 128 
enriched motifs can be identified via RcisTarget. 129 

To benchmark cisTopic against the three published methods that are commonly used for scATAC-seq 130 

data analysis, namely Latent Semantic Indexing (LSI) (Cusanovich et al., 2015, 2018), chromVAR 131 

(Buenrostro et al., 2018; Johnson et al., 2018; Lareau et al., 2018; Liu et al., 2018; Mezger et al., 2018; 132 

Schep et al., 2017), and scABC (Zamanighomi et al., 2018); we simulated single-cell epigenomes from 133 

bulk H3K27Ac ChIP-seq profiles of 14 melanoma cell lines (Verfaillie et al., 2015). Eleven of these 134 

cell lines were published previously (GSE60666); while three additional profiles were generated in this 135 

study. To test the robustness of cisTopic towards sparsity, we ran several simulations varying the 136 

coverage per cell: from a range of 30,000-60,000 deduplicated reads per cell, down to 3,000-6,000 137 

deduplicated reads per cell, similar to scATAC-seq coverage ranges found in literature (Table S1) (Fig. 138 

2a; see Methods). We found that cisTopic is the most robust and accurate method to cluster cells (with 139 

an adjusted rand index (ARI) above 0.96, even at low read coverage), followed by scABC, LSI and 140 

chromVAR, respectively (Fig. 2b). Importantly, while previously existing methods only predict cell 141 

clusters, cisTopic simultaneously predicts regulatory regions that are important for each topic (i.e. other 142 

methods rely on a posteriori differential analysis of regions using the aggregated data per cluster (e.g. 143 

LSI and scABC, respectively) or start from a priori defined cistromes (e.g. chromVAR). On the 144 

melanoma H3K27Ac data, cisTopic reveals 2 general and 14 cell line specific topics (one for each cell 145 

line), as well as 2 topics that are shared across a subset of samples (Fig. 2c). One of these shared topics 146 

corresponds to the major melanoma cell line subtypes, namely the melanocyte-like, while the remaining 147 

corresponds to the mesenchymal-like subtypes (Hoek et al., 2006; Verfaillie et al., 2015). The genomic 148 

regions in these topics are enriched for AP-1 and TEAD motifs in the mesenchymal-like topic and SOX 149 

and E-box motifs in the melanocyte-like regions (Fig 2d), in agreement with earlier findings (Verfaillie 150 

et al., 2015). Furthermore, all the predicted topics from the simulated single-cell H3K27Ac ChIP-seq 151 

data can be confirmed by the corresponding bulk data (Fig. S1a,b). As expected, the general topics 152 

(accessible across all cell lines) are enriched for promoters; and the “low contribution topics” are formed 153 

mostly by "lowly accessible" regions and can be filtered out a posteriori (Fig S1c; Fig 2d). Next, we 154 

examined the capacity of all the tested methods to find rare subpopulations by reducing the number of 155 

cells for three of the cell lines by a 10-fold; and found that cisTopic also outperforms other methods in 156 

this aspect (Fig. S2). Finally, using previously published data sets of the hematopoietic system (Corces 157 

et al., 2016; Farlik et al., 2016), we confirmed that cisTopic also works on single-cell DNA methylation 158 

data and for trajectory analysis during differentiation (Fig S3, Fig S4). 159 

In conclusion, cisTopic not only defines cell states more accurately than existing methods, but also 160 

discovers meaningful regulatory topics that yield insight into cell-type specific regulatory programs. 161 
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 162 

Figure 2. cisTopic outperforms other cell clustering methods, namely chromVAR, LSI and scABC; while 163 
simultaneously clustering regions into regulatory topics. a. Method comparison using semi-simulated single-164 
cell H3K27Ac ChIP-seq data sampled from 14 bulk melanoma epigenomes with varying coverages. The tSNEs, 165 
coloured by cell line, were made using the cistrome enrichment matrix from chromVAR, the LSI matrix, the cell-166 
to-landmark correlation matrix from scABC and the topic contributions per cell obtained with cisTopic. b. ARI 167 
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for each method (chromVar, LSI, scABC and cisTopic) at each coverage, using the bulk epigenome of origin as 168 
ground truth and cluster assignments based on hierarchical clustering from the cistrome enrichment matrix 169 
(chromVAR), the LSI matrix, the cell-to-landmark correlation matrix (scABC) and the topic contributions per cell 170 
(cisTopic). cisTopic is the most robust method, even at low coverage. c.  cisTopic clusters cells based on their 171 
topic contributions. Based on their distributions over the different cell populations, we found general, phenotype 172 
specific, cell line specific and low contributing topics. d. Coverage heatmaps of bulk H3K27Ac data to validate 173 
the predicted regions per topic (see Methods). Each binarised topic is represented between the dashed horizontal 174 
lines, and within each topic, the regions are ordered by descending topic score. Topic regions show the expected 175 
patterns in the bulk data (expected patterns are surrounded by squares). Key motifs found enriched in the 176 
phenotype specific regions by RcisTarget are shown (right). 177 

cisTopic identifies robust cell types and gene regulatory networks in the human brain 178 

Next, we applied cisTopic to a large and biologically complex scTHS-seq data set (obtained by single-179 

cell Tn5 Hypersensitivity Sequencing, similar to scATAC-seq) with 34,520 single cells from the human 180 

brain (Lake et al., 2017). This data set contains cells from the cerebellum, frontal cortex and visual 181 

cortex from three patients; with a total of 287,381 accessible regulatory regions. Based on the log-182 

likelihood in the last iteration of the models, we selected the optimal number of regulatory topics to be 183 

23 (see Methods; Fig. S5). Using the topic-cell distributions, we were able to cluster the cells according 184 

to the major brain cell types: excitatory neurons (Ex), inhibitory neurons (In), cerebellar granule (Gran) 185 

cells, endothelial cells (End), astrocytes (Ast), oligodendrocytes (Oli), oligodendrocyte precursor cells 186 

(OPCs) and microglia (Mic) (Fig. 3a; Fig. S6a-e). After selecting the representative regions per topic 187 

by fitting a gamma distribution on the region-topic distributions (see Methods), we used RcisTarget 188 

(Aibar et al., 2017) to predict enriched motifs in each topic. For example, SOX and NFIA/B motifs are 189 

enriched in enhancers that are specifically accessible in astrocytes; SOX and OLIG motifs in the 190 

oligodendrocyte regulatory topic and NEUROD in the granule cell specific topic (Fig. S7). SOX9 and 191 

NFIA are known as key transcription factors during astrocyte development and maintenance, and their 192 

combined over-expression is sufficient to trans-differentiate fibroblasts into astrocytes (Caiazzo et al., 193 

2015; Kang et al., 2012; Sun et al., 2017; Wilczynska et al., 2009). SOX10, OLIG1 and OLIG2 are 194 

master regulators of oligodendrocyte development (Wegner and Stolt, 2005; Yu et al., 2013; Zhou and 195 

Anderson, 2002), and NEUROD1/2 is a marker of granule cell differentiation (Miyata et al., 1999). In 196 

fact, several regions in the vicinity of the NEUROD1 gene are highly accessible in the cerebellum, 197 

where granule cells reside, as compared to the visual and the frontal cortex (Fig. S8). Finally, the 198 

predicted regulatory topics could be further validated by GO enrichment using GREAT (McLean et al., 199 

2010)), finding "myelination" (GO:0042552, p-value: 10-23) for the oligodendrocytes topic, "glial cell 200 

fate commitment" (GO:0010001, p-value: 10-7) for the astrocytes, and "regulation of sensory perception 201 

of pain" (GO:0051930, p-value: 10-8) for the granule cells. Indeed, cerebellar granule cells are involved 202 

in sensory cognition (Bing et al., 2015). 203 
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 204 

Figure 3. cisTopic reveals major cell types and subpopulations in the human brain and summarises 205 
regulatory programs underlying the transcriptome. a. cisTopic tSNE based on topic-cell contributions from 206 
the analysis of the scTHS-seq data. cisTopic identifies the main cell types but also subpopulations in interneurons 207 
(InA and InB) and excitatory neurons (ExL23, ExL4 and ExL56).  Contributions of the subpopulation specific 208 
topics are represented by RGB encoding. b. tSNE based on regulon enrichment obtained using SCENIC (Aibar et 209 
al., 2017) on the scRNA-seq data from the same tissue. c. Correspondence between cisTopic topics and SCENIC 210 
regulons. The motifs shown are found in both the matching regulon and the topic. 211 

Interestingly, cisTopic also revealed heterogeneity within the interneurons, with two distinct subtypes 212 

(InA and InB), from which one (InB) is enriched for MAF motifs (Fig. S7). In the MAF-enriched topic, 213 

targets such as ARX, LHX6, SOX6 and DLX1 are found; which, together with MAF and MAFB are 214 

markers for the Medial Ganglionic Eminence derived interneurons (Chen et al., 2017; Lake et al., 2016). 215 

In the second interneuron topic (InA population) PCP4, ISL1, SP8 and VIP are found, which are 216 
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markers for the Caudal/Lateral Ganglionic Eminence derived interneurons (Chen et al., 2017; Lake et 217 

al., 2016). Also, based on the cisTopic analysis, three subtypes of excitatory neurons can be 218 

distinguished (Fig. 3a, Fig. S7). These represent different neuronal layer positions within the cortex, 219 

namely layers II and III (ExL23), IV (ExL4) and V and VI (ExL56). These subpopulations had been 220 

already reported by Lake et al. based on scRNA-seq data (2017); however, cisTopic is able to 221 

distinguish them directly from scATAC-seq data, without the need of other data (Fig. S6f,g).  222 

To further validate the predicted regulatory topics, we explored the relationship between cell type 223 

specific regulatory regions and cell type specific gene expression. To do so, we used the matching 224 

scRNA-seq data generated by Lake et al. (2017) on the same human brain tissues (15,884 cells). We 225 

run SCENIC to infer gene regulatory networks and cluster cell types from this data, predicting 250 226 

“regulons”, whereby each regulon consists of a transcription factor and its predicted target genes based 227 

on co-expression and motif enrichment (Aibar et al., 2017). Cell clustering using these 250 regulons 228 

identified the major cell types of interneurons and excitatory subpopulations at the same resolution as 229 

cisTopic (Fig. 3b). By comparing the cell type specific scRNA-seq regulons with the scATAC-seq 230 

topics (see Methods), we found a strong agreement for a range of transcription factors. For example, 231 

SOX8 and SOX10 regulons match the oligodendrocyte topic; and the SOX9 and GLI3 regulons that 232 

correspond with the astrocyte topic. Likewise, the DLX regulons match with the interneurons topics; 233 

and specifically, LHX6, MAF and MAFB regulons correspond with InB interneuron topic; NEUROD2 234 

regulons match with cerebellar topics; and AP-1, EGR and MEF2 regulons with excitatory neuron 235 

topics (Fig. 3c; Fig. S9). Importantly, the predicted transcription factors controlling the cis-regulatory 236 

topics (based on motif enrichment) and the corresponding expression-based regulons show strong 237 

agreement with literature (Chen et al., 2017; Flavell et al., 2008; Gashler and Sukhatme, 1995; 238 

Kaczmarek, 2002; Lake et al., 2016; Miyata et al., 1999; O’Donovan and Baraban, 1999; Petrova et al., 239 

2013; Sun et al., 2017; Turnescu et al., 2018). 240 

In conclusion, cisTopic reveals with high sensitivity cell states in large and heterogeneous data sets 241 

such as the human brain. Furthermore, the defined regulatory topics represent biologically relevant gene 242 

regulatory networks as demonstrated by the enrichment of motifs related TFs important in the defined 243 

cell types and correspondence between single-cell epigenomes and single-cell transcriptomes.  244 

cisTopic maps a dynamic regulatory landscape downstream of SOX10 in melanoma 245 

Next, we applied cisTopic to investigate dynamic changes in chromatin accessibility during a cell state 246 

transition in melanoma cells. In vitro studies of melanoma lines (Bittner et al., 2000; Hoek et al., 2006; 247 

Restivo et al., 2017), and later in vivo studies (Eichhoff et al., 2010; Hoek et al., 2008; Wouters et al., 248 

2014), have identified two stable subpopulations in melanoma, characterised by very distinct 249 

transcriptomes: a 'melanocyte-like' state, with high expression of the melanocyte lineage specific 250 
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transcription factor MITF (Hoek et al., 2006) as well as high SOX10 and PAX3 (Scholl et al., 2001; 251 

Shakhova et al., 2012); and an 'invasive', drug-resistant, mesenchymal-like state with low levels of 252 

MITF, high levels of genes involved in TGFb signalling and governed by AP-1 and TEAD transcription 253 

factors (Hoek et al., 2008; Verfaillie et al., 2015). The transcription factor SOX10, a major regulator of 254 

neural crest development and melanocytic differentiation (Harris et al., 2011; Kellerer, 2006), plays an 255 

important role in maintaining the melanocyte-like state, as loss of SOX10 has previously been shown 256 

to upregulate invasive genes such as JUN, AXL, and SOX9 (Shaffer et al., 2017; Shakhova et al., 2012; 257 

Verfaillie et al., 2015), increase vemurafenib resistance (Sun et al., 2014), and induce a stable resistant 258 

state regulated by AP-1 (Shaffer et al., 2017). To study the regulatory dynamics of the switch from the 259 

melanocyte-like state towards the mesenchymal-like state, we performed a time series experiment after 260 

knockdown (KD) of SOX10 in two melanocyte-like melanoma cultures (MM057 and MM087) 261 

(Gembarska et al., 2012; Verfaillie et al., 2015) (Fig. 4a). As it is currently unknown whether 262 

melanocyte-like cells within one population follow the same regulatory path during the phenotype 263 

switch, we performed scATAC-seq, using the Fluidigm C1, at 0, 24, 48 and 72 hours after SOX10 KD 264 

(Fig. 4a). After filtering out cells with low signal TSS-aggregation plots, we obtained 598 cells in total 265 

with an average of 54,343 reads per single cell, and a total of 78,262 peaks over all conditions (see 266 

Methods). We also performed bulk OmniATAC-seq (Corces et al., 2017) on the same time points and 267 

cell lines to validate the quality of the scATAC-seq data. Aggregated profiles of scATAC-seq data 268 

closely resemble bulk OmniATAC-seq data in the same conditions (Fig. S10a,b) and there was a clear 269 

correlation between the corresponding conditions in bulk and single-cell ATAC-seq samples (average 270 

correlation coefficient of 0.83, Fig. S10c). The effectiveness of the transcriptional switch was confirmed 271 

by the loss of accessibility over time at promotors and enhancers near marker genes of the melanocyte-272 

like state, such as DCT and TYR, genes involved in melanin production (Bernd et al., 1994; Iozumi et 273 

al., 1993), and ERBB3 (Buac et al., 2011) (Fig. 4b and Fig. S11a); and by gain of accessibility of 274 

mesenchymal-like regions such as a CLDN4 enhancer (Fig. S11b).  275 
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 276 

Figure 4. scATAC-seq during an EMT-like transition triggered by SOX10 knockdown in melanoma. a. 277 
scATAC-seq was performed with the Fluidigm C1 on two melanoma lines (MM057 and MM087) during a 278 
SOX10-KD-induced transcriptional switch from a melanocyte-like to a mesenchymal-like state at four time points 279 
(0, 24, 48 and 72 hours post-SOX10-KD). b. Profiles of scATAC-seq aggregates per condition in the region 280 
surrounding DCT, a SOX10 target gene that loses accessibility at the SOX10 binding site during the transition. c. 281 
tSNE-representation (598 single cells) generated by cisTopic using the cell-topic distributions showing the 282 
dynamics of the switch in MM057 (blue) and MM087 (red) at the four different time points after SOX10-KD. d. 283 
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cisTopic heatmap of topic distributions within the single cells. Several classes of topics are identified, namely 284 
general topics, time point and cell line specific topics. e. cisTopic identifies several melanocyte-like and 285 
mesenchymal-like regulatory topics, represented here as t-SNEs coloured by the topic score together with 286 
representative enriched TF motifs per topic (ordered by Normalised Enrichment Score (NES)). 287 

When we applied cisTopic to this dataset we found that a model with 15 regulatory topics best 288 

represented the data (Fig. S12a; Fig. 4c,d). A few topics represent genomic regions that are ubiquitously 289 

accessible, across both cell lines, and across all time points (topic 2 and 7) (Fig. 4d). Regions with high 290 

probability of belonging to these topics are strongly enriched for promoters (Fig. S10b) and for SP1 and 291 

NFY motifs, two common promoter motifs (Fig. S13) (Dynan and Tjian, 1983; Li et al., 1992). The 292 

remaining topics are mostly specific for a cell line, specific for a time point, or specific for a particular 293 

combination of cell line and time point (Fig. 4d; Fig. S13). Several topics represent regions that become 294 

accessible at later time-points after SOX10 knockdown (e.g. topic 10, 1 and 6) (Fig. 4d,e; Fig. S13; Fig. 295 

S14). Particularly, topic 10 is reminiscent of the previously described invasive/mesenchymal-like 296 

epigenome (Verfaillie et al., 2015) (Fig. S15) and genes near topic 10 regions are involved in cell 297 

migration, e.g., EGFR, TGFB2, TGFBR2 and AXL. Motif discovery on the regions composing topic 10 298 

identified motifs linked to the AP-1 transcription factor family, such as JUNB, JUND and FOS (Fig. 299 

4e), as well as an enrichment of ChIP-seq peaks for TEADs (Fig. S15). As AP-1 and TEAD are known 300 

regulators of melanoma cells in the mesenchymal-like state (Shaffer et al., 2017; Verfaillie et al., 2015), 301 

these results agree with previous findings. We note that all cells undergo similar epigenomic changes 302 

during the transition (Fig. 4c), indicating that, with the resolution obtained by this experiment, there is 303 

no heterogeneity in the way the chromatin changes during the transition.  304 

cisTopic also predicts three topics that show a decline in accessibility during the state transition. The 305 

strongest of these topics, topic 14, is shared between the two tested cell lines (Fig. 4d,e; Fig. S14). Two 306 

additional declining topics are specific to either MM057 (topic 11) or MM087 (topic 12) (Fig. 4d,e; 307 

Fig. S14-S16). Motif discovery revealed that the enhancers composing these three ‘melanocyte-like’ 308 

topics were highly enriched in motifs linked to the SOX transcription factor family (Fig. 4e). Given that 309 

we knockdowned SOX10 and its role in the melanocyte-like state, SOX10 is the most likely candidate 310 

transcription factor to bind these regions in the melanocyte-like state. Indeed, by comparing these topics 311 

with previously published SOX10 ChIP-seq data obtained from a melanocyte-like melanoma line 312 

(Laurette et al., 2015), we observed strong SOX10 ChIP-seq signal on the regions belonging to these 313 

topics (Fig. S16a). For example, several known, experimentally validated SOX10 target enhancers, such 314 

as binding sites near ERBB3 (Prasad et al., 2011), MIA (Graf et al., 2014), TYR (Murisier et al., 2007) 315 

and DCT (Potterf et al., 2001) all contain a topic 14 region overlapping with a SOX10 ChIP-seq peak 316 

(Fig. S11a; Fig. S16c). Importantly, the finding that SOX10 KD results in chromatin closing of SOX10 317 

enhancers (topic 11, 12 and 14) suggests that SOX10 is a chromatin modifier. In agreement with this, 318 

loss of SOX10 directly impacts chromatin accessibility (i.e. regions decreasing in accessibility are 319 
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directly linked to SOX based on motif enrichment); and higher SOX10 protein levels in MM087 320 

compared to MM057 result in longer residence times at shared SOX10 targets, with increased 321 

accessibility of peaks in MM087 as well as a slower SOX10-KD-induced state transition (Fig. S14; Fig. 322 

S16d; Fig. 4c). 323 

This study shows that scATAC-seq data during state transitions can be used together with cisTopic to 324 

uncover the regulatory dynamics of biological processes, such as the EMT-like transition in melanoma 325 

induced by knockdown of the transcription factor SOX10. Our results show that all cells follow a 326 

common path during this switch, which involves ~1000 functional SOX10 enhancers that decline in 327 

accessibility during the transition, showing that SOX10 has an effect on the chromatin landscape. 328 

A cooperative-pioneer enhancer model for SOXE transcription factors 329 

Regulatory topics identified by cisTopic represent high-quality sets of functional enhancers that allow 330 

in-depth analysis of the composition of transcription factor binding sites. Indeed, the accuracy of 331 

SOX10 enhancer prediction from cisTopic is comparable to the accuracy of ChIP-seq, since the 332 

enrichment of SOX motifs within the SOX10 topic regions is comparable to the enrichment of SOX 333 

motifs in SOX10 ChIP-seq data (NES score of 33.74 for the shared SOX10 topic in melanoma, 334 

compared to 33.79 for SOX10 ChIP-seq in melanoma). We reasoned that cis-regulatory topics can be 335 

used to decipher transcription factor specific enhancer architectures. Particularly, we compared three 336 

different SOXE topics (which comprise SOX8, SOX9, and SOX10 (Wright et al., 1993)); namely the 337 

oligodendrocyte (SOX10) and the astrocyte topic (SOX9) from the human brain data set (Fig. S6, S7) 338 

and the shared SOX10 topic during the melanoma EMT-like transition (topic 14, Fig. 4e). In these three 339 

topics, the top enriched motif is the same SOX dimer (with NES scores of 20.00, 8.78 and 33.74 for 340 

oligodendrocytes, astrocytes and melanoma, respectively). For each of the three topics, we selected the 341 

subset of regulatory regions enriched for SOX motifs (see Methods). These three sets of regions are 342 

largely unique (~17% overlap on average) (Fig. 5a). The distinct use of SOX10 enhancers between cell 343 

types is confirmed by plotting the melanoma scATAC-seq signal on the oligodendrocyte and astrocyte 344 

SOX cistromes, as only a limited subset of the brain targets is accessible in melanoma (Fig. 5b). The 345 

finding that SOXE factors regulate distinct targets in different cell types is expected, since they play 346 

different roles depending on the cell type (Harris et al., 2011; Kellerer, 2006; Stolt et al., 2002). Genes 347 

linked to SOX regions exclusively found in the melanoma SOX topic are significantly enriched for the 348 

GO term “pigmentation” (GO:0043473, p-value: 10-3); genes linked to SOX regions exclusively found 349 

in the oligodendrocyte SOX topic are significantly enriched for the GO term “myelination” 350 

(GO:0042552, p-value: 10-14); while genes linked to SOX regions exclusively found in the astrocyte 351 

SOX topic are enriched for the GO term “gliogenesis” (GO:0042063, p-value: 10-8). Note that the entire 352 

set of melanoma regions is also accessible in melanocytes, as shown by DNAseI-seq data in 353 

melanocytes (Fig. S17), suggesting that there are no “ectopic” functional SOX10 binding sites in 354 
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melanoma beyond those that exist in melanocytes. Therefore, we can exploit the SOX10 topic in 355 

melanoma to investigate the SOX enhancer architecture in melanocytes.  356 

How the specificity of these regulatory programs is achieved is largely unknown, although previous 357 

studies investigating SOXE enhancer codes have suggested that cooperativity with other TFs is 358 

common (Hou et al., 2017; Kondoh and Kamachi, 2010; Wilson and Koopman, 2002). To identify the 359 

sequence features that result in SOXE cell type specific programs, we compared the non-overlapping 360 

regions between the selected SOXE cistromes in a pairwise manner, using a Random Forest model (see 361 

Methods). Here, we focus on the comparison between the two SOX10 cistromes (in melanoma and 362 

oligodendrocytes), while comparisons between SOX10 and SOX9 cistromes are shown in Fig S21. As 363 

candidate features we used known and de novo motifs (from the cisTarget motif collection (Herrmann 364 

et al., 2012; Imrichová et al., 2015) and Homer (Heinz et al., 2010) and RSAT peak-motifs (Thomas-365 

Chollier et al., 2011, 2012), respectively) and DNA shape measurements from GBshape and Kaplan et 366 

al. (Chiu et al., 2015; Kaplan et al., 2009) (Fig. S18). The motifs were scored in the regions using 367 

Cluster-Buster (Frith et al., 2003), selecting as features the best Cis-Regulatory Module (CRM) score 368 

per region; while for DNA shape measurements we used the average value in ±250bp from the centre 369 

of the regions (Fig. S18). A likelihood ratio test between the groups, resulted in 3,816 features selected 370 

(FDR adjusted p-value < 0.05). These features were used as input for Boruta (Kursa and Rudnicki, 371 

2010), which found 25 informative features (see Methods). Among these 25 features there were several 372 

similar and correlated motifs (e.g. multiple E-box PWMs), which we merged into one Hidden Markov 373 

Model score using Cluster-Buster (Frith et al., 2003), resulting in a final model containing 6 features. 374 

The performance of the RF model with only these 6 features achieved a similar performance compared 375 

to the model using all 25 Boruta features, with an Area Under the Precision Recall (AUPR) of 0.70 and 376 

an Area Under the Curve (AUC) of 0.77 (Fig. 5c1,c2). This simplified model suggests that melanoma-377 

specific SOX10 binding is determined mainly by co-binding of factors from the TFAP2 (AP-2) and 378 

AP-1 family; while oligodendrocyte-specific binding is determined by co-binding of bHLH family 379 

members of the CAGCTG type, likely reflecting OLIG (Fig. 5c3,c4) (Mazzoni et al., 2011; Yu et al., 380 

2013). In addition, a de novo motif, AnGAA, is found enriched within the SOX melanoma cistrome. 381 

TFAP2 is a plausible candidate for a co-regulatory factor of SOX10 in melanoma and melanocytes 382 

given its important role, along with SOX10, in controlling melanocyte fate (Seberg et al., 2017). Indeed, 383 

the enhancers with predicted SOX10 and TFAP2 binding sites show strong overlap with previously 384 

published TFAP2A ChIP-seq peaks in melanocytes (Fig. S19) (Seberg et al., 2017). Although the MITF 385 

motif was not selected as top feature, the melanoma SOX enhancers also show strong overlap with 386 

MITF-bound regions found by ChIP-seq in melanoma (Fig. S19) (Laurette et al., 2015). Interestingly, 387 

co-occurrence of TFAP2 and MITF binding sites has been previously reported (Seberg et al., 2017). 388 

The AP-1 motif is also very strongly enriched in the melanoma-specific enhancers, and members of the 389 

AP-1 family, like JUN and FOS, are expressed in melanoma and melanocytes, while markedly absent 390 
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from oligodendrocytes (Fig. S20). Finally, we find a predicted DNA shape feature enriched in the 391 

melanoma SOX enhancers, namely rise, which is positively correlated with other sequence features 392 

such as GC content, nucleosome occupancy, hydroxyl radical cleavage and propeller twist; and 393 

negatively correlated with helix twist (Fig. S21). This may suggest that cell type specific SOX10 394 

binding may, next to distinct co-factors, also require a specific sequence environment. A similar 395 

analysis of SOX10 enhancers versus SOX9 enhancers (oligodendrocyte versus astrocyte and melanoma 396 

versus astrocyte cistromes, respectively) revealed features such as NFIA/B motifs strongly enriched in 397 

astrocyte enhancers, which is in agreement with literature (Kang et al., 2012) (Fig. S22). 398 

 399 

Figure 5.  Comparison of SOXE cis-topics between cell types. a. Number of unique and overlapping regions 400 
between the oligodendrocyte, melanoma and astrocyte SOX cistromes. b. Heatmaps and aggregation plot showing 401 
melanoma scATAC-seq signal on the melanoma, oligodendrocyte and astrocyte SOX cistrome regions. Cistrome 402 
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peaks are ranked according to their scATAC-seq accessibility in melanoma (MM057, 0 hours after SOX10-KD). 403 
c. Random forest model to discriminate between melanoma and oligodendrocyte specific SOX regions. c.1. 404 
Precision Recall (PR) and c.2. Receiver Operating Characteristic (ROC) curves for different Random Forest 405 
models using either 25 variables after Boruta selection, 6 variables after merging correlating variables from 406 
Boruta, or a random classifier. c.3. Variable importances for the RF model with merged motif features c.4. 407 
Representative rule extracted from the Random Forest model with InTrees (Deng, 2014). Each root represents a 408 
decision point with a rule based on one of the variables (CRM scores) used in the RF model (if the rule is fulfilled, 409 
the left path is taken). The leaves represent the class assigned (O: Oligodendrocytes; M: Melanoma). The motifs 410 
used in the RF model with 6 variables are shown under the rule tree, showing whether they are either melanoma 411 
or oligodendrocyte specific. d. d.1. Heatmap showing scATAC-seq signal and d.2. SOX10 ChIP-seq on the 412 
oligodendrocyte SOX cistrome region ranked according to their scATAC-seq accessibility in melanoma. The 413 
colour bar next to the heatmaps represents whether the regions were either overlapping with regions with the other 414 
SOX cistromes (blue), whether they were correctly classified as an oligodendrocyte region using the rule extracted 415 
with Intrees (green) or whether they were misclassified as melanoma regions (red). Regions that are not unique to 416 
the oligodendrocyte SOX10 cistrome (blue) are enriched on top of the heatmap, meaning that they are also 417 
accessible in melanoma, and have higher SOX10 ChIP-seq signal. These regions are highlighted by the pink box 418 
as shared SOX enhancers. Regions that are specific to oligodendrocytes are enriched at the bottom of the heatmaps 419 
and are highlighted by the blue box. d.3.  RF scores for the heatmap regions. d.4. SOX dimer CRM scores for the 420 
heatmap regions. d.5. Heatmap representing SOX10 CRMs in the sequences. d.6. Logos of motifs enriched in the 421 
shared SOX enhancer and the oligodendrocyte-specific enhancers as found by RF. d.7. Representation of the 422 
potential model. Shared regions are enriched for SOX dimers, while cell type-specific regions are enriched for co-423 
factors. 424 

Next, we investigated the SOX regulatory regions that show shared accessibility across multiple cell 425 

types. As expected, these shared regions cannot be classified into one of the cell types with our trained 426 

RF model, having a RF score of around 0.5 (Fig. 5d3). When comparing these shared regions to cell 427 

type specific regions, we found that shared enhancers show higher SOX10 ChIP-seq signal (Fig 5d1,2), 428 

and stronger SOX10 dimer motifs (LRT FDR p-value: 10-9) compared to the cell type specific enhancers 429 

(Fig 5d4,5,6). Interestingly, monomer motifs are not enriched in the shared regions (LRT FDR p-value: 430 

0.78). Altogether, these findings indicate that shared enhancers could be bound by SOX10 homodimers 431 

alone (or for example SOX10-SOX8 heterodimers), with longer residence time; whereas cell type 432 

specific enhancers have weaker SOX10 dimer motifs, avoiding activation in the wrong cell type, but 433 

more prevalent co-regulatory motifs to regulate their distinct function (Fig. 5d7).  434 

We further tested this hypothesis using enhancer-reporter assays (Fig. S23). The DCT enhancer, which 435 

is specific for melanoma, has strong predicted TFAP2, AP-1, and MITF CRM scores (SOX dimer: 4.50; 436 

TFAP2: 2.43; AP-1: 0.269; MITF: 5.77). Mutating the MITF binding sites abolishes the DCT enhancer 437 

activity. On the other hand, the EDNRB enhancer, which is also accessible in the brain, has stronger 438 

SOX10 binding sites (SOX dimer: 8.56), but weaker co-factor CRMs (AP-1: 0; TFAP2: 1.44; MITF: 439 

0.905). Indeed, mutating E-boxes in the EDNRB enhancer did not have a significant effect on enhancer 440 
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activity (Fig. S23). This indicates that cell type specific enhancers, with strong co-factor motifs, are 441 

more prone to losing their activity when the specific co-factor is not present; whereas enhancers that 442 

are accessible in several cell types and contain strong SOX10 dimer motifs are nearly unaffected by 443 

loss of the co-factor. Note that for both enhancers, mutating the SOX10 motif completely abolishes 444 

enhancer activity (Fig. S23). 445 

In conclusion, regulatory topics identified by cisTopic, based only on single-cell ATAC-seq data, 446 

represent functional enhancers of high quality that can be used to decipher the regulatory logic of 447 

enhancer specificity. When applied to study SOXE enhancers, we found that certain SOX regulatory 448 

regions are specifically accessible in a given cell type; while others are accessible across systems. Using 449 

Random Forest models we could distinguish between melanoma- and oligodendrocyte-specific SOX 450 

enhancers based on motifs of cooperatively bound transcription factors; while we found that shared 451 

SOX10 enhancers show a preference for SOX10 dimer motifs and may be driven by pioneering activity 452 

of SOX10. 453 

  454 
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Discussion 455 

Single-cell epigenomics, particularly single-cell ATAC-seq, yield unprecedented insight into chromatin 456 

landscapes of individual cells. However, for each individual cell only a very limited number of 457 

accessible regions can be sampled, i.e. ~10% of all open regions. In other words, the data obtained from 458 

a single cell cannot be used directly to predict which genomic regions are accessible. To overcome this 459 

problem, currently available methods either aggregate ATAC-seq reads across a set of “similar” cells, 460 

following a cell clustering based on dimensionality reduction (e.g., scABC and LSI (Cusanovich et al., 461 

2015, 2018; Zamanighomi et al., 2018)); or alternatively, aggregate ATAC-seq reads per cell across a 462 

predefined set of genomic regions (de Boer and Regev, 2017; Ji et al., 2017; Schep et al., 2017). 463 

Although these solutions have been shown to be satisfactory to cluster cells and to identify cell types, 464 

they do not allow the ab initio identification of co-regulatory regions (or cis-regulatory topics). Here, 465 

we have shown that Bayesian topic modelling, particularly LDA, allows the simultaneous discovery of 466 

cis-topics and cell types. LDA groups features into topics with a certain score (i.e. a feature can belong 467 

to several topics with different preferences); and objects can be represented as a mixture of topics. 468 

Compared with the discrete approach taken by conventional clustering methods (i.e. a feature or object 469 

can only belong to one group), this algorithm results in less information loss.  470 

Topic modelling has been previously used in other fields for dealing with noisy data, such as text 471 

mining, image processing and forensics (Blei et al., 2003; Kuang et al., 2017; Rasiwasia and 472 

Vasconcelos, 2013). We have extrapolated this framework to single-cell epigenomics, by considering 473 

cells as objects; genomic regions as features; and cis-regulatory topics (or cis-topics) as topics. In 474 

agreement with the high accuracy of LDA in other fields, cisTopic groups cells into cell types and cell 475 

states, even when data is extremely sparse, with higher accuracy than currently published methods; and 476 

simultaneously group genomic regions into cis-topics; something that, to our knowledge, has not been 477 

shown before. Furthermore, cisTopic also includes functionalities to explore the output of LDA for 478 

biological interpretation. For example, topic contributions within cells can be used for cell type 479 

identification (i.e. clustering, tSNE), while regulatory topics can be used to decipher cell-state specific 480 

regulation (i.e. motif enrichment and machine learning). 481 

The performance of cisTopic was confirmed on simulated H3K27Ac ChIP-seq data, which we believe 482 

represents a relevant test case, given that the recently developed single-cell CUT&RUN (an alternative 483 

to ChIP-seq to profile TF binding or histone modifications in single cells) will likely be widely adopted 484 

(Hainer et al., 2018). Our results on 14 melanoma cell lines showed that cell clustering is 96% accurate 485 

even with as few as 3,000 reads per cell. More importantly, the predicted topics reveal meaningful 486 

regulatory programs, some cell-type specific, and some shared by cell lines from the same melanoma 487 

subtype.   488 
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Single-cell epigenomics data sets are becoming increasingly large: recent data sets obtained from the 489 

Drosophila embryo (Cusanovich et al., 2018) and the human brain (Lake et al., 2017) contain more than 490 

30,000 cells. Thanks to a binarisation step, and the use of a collapsed Gibbs sampler, cisTopic is 491 

computationally efficient to analyse such large data sets. By increasing the number of cells, but also by 492 

combining multiple single-cell omics layers, like scATAC-seq and scRNA-seq, the power to detect new 493 

and rare cell types and subpopulations from heterogeneous tissues becomes more and more feasible. 494 

Previously, Lake et al. (2017) combined the analysis of scATAC-seq and scRNA-seq data using 495 

Gradient Boosting Machines, which allowed them to identify subpopulations of inhibitory and 496 

excitatory neurons at the chromatin level. Interestingly, in our study, using cisTopic, we could identify 497 

the same subpopulations ab initio from uniquely the scATAC-seq data. The predicted topics and 498 

candidate transcription factors were then confirmed a posteriori, through an independent network 499 

analysis of the corresponding scRNA-seq data. The finding that epigenome-based cis-topics correspond 500 

to gene regulatory networks is encouraging for future studies, particularly when single-cell multi-omics 501 

strategies can be up-scaled (Angermueller et al., 2016; Hu et al., 2016; Pott, 2016). 502 

scATAC-seq has been mainly applied to complex tissue samples, such as the hematopoietic system, the 503 

human and mouse brain, and the Drosophila embryo (Corces et al., 2016; Cusanovich et al., 2018; Lake 504 

et al., 2017; Preissl et al., 2018), to identify cell types and find cell type specific epigenomic signatures. 505 

Here we have shown that scATAC-seq is informative to report dynamic changes in chromatin 506 

accessibility during a time series experiment, in this case after a transcription factor perturbation. Using 507 

cisTopic we found that knockdown of SOX10 causes a fast decline of accessibility of functional SOX10 508 

binding sites in melanoma cells, which yielded a conserved topic of around 1000 enhancers with SOX10 509 

binding sites. Furthermore, our analysis also revealed differences in the dynamics and quantitative 510 

aspects between the cell lines. Altogether, we showed that SOX10 is a chromatin modifier and that, 511 

with the resolution of this experiment, chromatin dynamics during the EMT-like state transition occurs 512 

homogeneously across all cells of the same cell line. 513 

We found a core SOX10 topic that is shared across a panel of melanoma cultures, as well as in 514 

melanocytes. In the melanocyte lineage, SOX10 is known as a lineage factor, together with MITF, 515 

TFAP2A, and PAX3 (Hoek et al., 2006; Scholl et al., 2001; Seberg et al., 2017; Shakhova et al., 2012). 516 

Of these transcription factors, Random Forest modelling identified the TFAP2A motif as the most 517 

informative feature, allowing to discriminate SOX10 binding in melanocytes versus other cell types, 518 

such as oligodendrocytes. In oligodendrocytes, known co-regulatory factors include OLIG1/2 (Yu et 519 

al., 2013; Zhou and Anderson, 2002). Indeed, the OLIG1/2 E-box motifs are highly informative for the 520 

classification of SOX10 binding sites in oligodendrocytes. This principle of TF cooperativity to activate 521 

enhancers in a cell-type specific manner, was confirmed by comparing these SOX10 cis-topics with a 522 

SOX9 cis-topic found in astrocytes, which share an identical SOX dimer motif with the SOX10 cis-523 

topics. In this case, Random Forest feature selection and classification resulted in NFIA/B as the most 524 
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informative cooperative motif. We were intrigued by the observation that a subset of SOX10 enhancers 525 

(17%) are shared between these cell types. SOX10 may bind strongly to these regions as SOX dimer 526 

motif scores are higher in these regions, and cofactor motifs lower. These observations lead to an 527 

enhancer model where one transcription factor has a probabilistic spectrum of binding modalities, from 528 

pioneering to cooperativity.  529 

 530 

Figure 6.  Quantitative pioneering function of SOXE proteins depends on binding stabilisation by cell-type 531 
specific co-factors. SOXE proteins are able to recognise their binding sites; however, when the binding site is not 532 
strong enough, they require the help of additional cell type-specific co-factors, such as TFAP2 in melanoma, 533 
OLIG in oligodendrocytes and NFI in astrocytes, to be stable. 534 

In conclusion, we introduce a new concept in the field of single-cell regulatory genomics, namely the 535 

cis-regulatory topic, analogous to topics in literature. We provide an easy-to-use R/Bioconductor 536 

package, called cisTopic, to discover and interpret regulatory topics and cell states from any type of 537 

single-cell epigenomics data. We believe cisTopic provides a valuable component in the analysis of 538 

large-scale single-cell epigenomics data sets, as it jointly optimises cell clustering and enhancer 539 

categorization, to identify subpopulations of cells based on shared epigenomic landscapes.  540 

 541 

 542 

 543 

 544 

 545 

 546 
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 547 

Methods 548 

cisTopic workflow 549 
 550 

cisTopic consists of 4 main steps: (1) generation of a binary accessibility matrix as input for Latent 551 

Dirichlet Allocation (LDA); (2) LDA and model selection; (3) cell state identification using the topic-552 

cell distributions from LDA and (4) exploration of the region-topic distributions. cisTopic is available 553 

as an R/Bioconductor package at: http://github.com/aertslab/cistopic. 554 

Input and binarisation: The input for cisTopic is a binary accessibility matrix, which can be built from 555 

a set of single-cell bam files and a bed file with candidate regulatory regions (e.g. from peak calling on 556 

the aggregate or the bulk profile). In the case of single-end reads, we count a fragment if its 5' end falls 557 

within the region; in the case of paired end data, if any of its ends falls within the region. By default, 558 

we consider a region accessible if at least one read is found, leading to a binarised count matrix. In the 559 

case of single-cell methylation data, the matrix can be built from the beta values scores per region per 560 

cell, which can be also calculated if the user provides the methylation call files (i.e. tab-delimited files 561 

containing chromosome, position, number of methylated reads and total number of reads). By default, 562 

we consider a region methylated if the beta value is above 0.5. Note that regions have been blacklisted 563 

for potential artefacts prior to the analysis 564 

(http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/). 565 

Modelling via Latent Dirichlet Allocation: The next step in the cisTopic workflow is to use Latent 566 

Dirichlet Allocation (LDA) for the modelling of cis-regulatory topics. LDA allows to derive, from the 567 

original high-dimensional and sparse data, (1) the probability distributions over the topics for each cell 568 

in the data set (θ) and (2) the probability distributions over the regions for each topic (ϕ) (Blei et al., 569 

2003). These distributions indicate, respectively, how important a regulatory topic is for a cell (θ), and 570 

how important regions are for the regulatory topic (ϕ). Here, we use a collapsed Gibbs sampler (Griffiths 571 

and Steyvers, 2004), in which we assign regions to a certain topic by randomly sampling from a 572 

distribution where the probability of a region being assigned to a topic is proportional to the 573 

contributions of that region to the topic and the contributions of that topic in a cell: 574 

𝑃(𝑧$ = 𝑡	|	𝑧)$	, 𝑟) 	∝ 	
𝑛)$,/
(0) + 	𝛽

𝑛)$,/ + 𝑅𝛽
	
𝑛)$,/
(4) + 	𝛼

𝑛)$
(4) + 	𝑇𝛼

 575 

Where: 576 

• zi is the current assignment to be made, 577 

• z-i are the rest of assignments in the data set,  578 
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• t is the given topic, 579 

• r is the given region,  580 

• and  P(zi = t | z-i , r) is the probability of assigning the given region r to a regulatory topic t given 581 

the rest of the assignments in the data set. 582 

 583 

• 𝑛)$,/
(0)  is the number of times the given region r is assigned to topic t without considering the 584 

region we want to assign, 585 

• β is the Dirichlet hyperparameter of the prior distribution for the categorical distribution over 586 

regions in a topic 𝜙0
(/). Here, we use symmetric Dirichlet priors for all topics, using 0.1 as value 587 

for β. 588 

• 𝑛)$,/  is the total number of assignments to topic t through the data set, 589 

• R is the total number of regions in the data set, 590 

• and  
89:,;
(<) =	>

89:,;=?>
 expresses the probability of region r under topic t. 591 

 592 

• 𝑛)$,/
(4)  is the total number of assignments to topic t within the given cell c (without considering 593 

the region to be assigned), 594 

• α is the Dirichlet hyperparameter of the prior distribution for the categorical distribution over 595 

topics in a cell 𝜃(4). Here, we use symmetric Dirichlet priors for all cells, using 50/T as value 596 

for α. 597 

• 𝑛)$
(4) is the total number of assignments within the given cell c, 598 

• 𝑇 is the total number of topics in the model. The total number of topics has to be provided (see 599 

Model selection), 600 

• and 
89:,;
(A) =	B

89:
(A)=	CB

 is the probability of topic t under cell c. 601 

After enough iterations through every region in each cell in the data set, this distribution is stabilised, 602 

and assignments can be recorded. In most cases, we used 500 as burn-in and 1000 recording iterations 603 

(see Model selection and Data analysis). LDA provides two matrices, one containing the total number 604 

of assignments per topic in each cell, and another containing the total number of assignments per region 605 

to each topic. Models are built using the lda R package (Chang, 2015). 606 

Model selection: For performing LDA, values for the Dirichlet priors α and β, the number of topics T 607 

and the number of iterations (burn-in and recording iterations) must be provided. We used 50/T and 0.1 608 

for α and β, respectively, as recommended by Griffiths & Steyvers (2004). The log-likelihood per 609 

iteration in each model was plotted for confirming that the number of burn-in and recording iterations 610 
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was correctly chosen (i.e. log-likelihood of the model must be stabilized when the recording of iterations 611 

starts). Several models with different number of topics were run (generally, from 5 to 50 topics; see 612 

Data analysis), and the optimal number of topics is selected based on the highest log-likelihood in the 613 

last iteration. 614 

Cell state identification: Using the normalised topic-cell distributions (i.e. a matrix containing cells as 615 

columns, topics as rows, and normalised assignments per cell as values), cell states are visualized using 616 

dimensionality reduction methods such as tSNE (R package Rtsne (Krijthe and van der Maaten, 2017)), 617 

PCA and/or diffussion maps (R package Destiny (Angerer et al., 2016)). Hierarchical clustering with 618 

euclidean distances and ward clustering is used for the topic-cell heatmaps. 619 

Topic exploration: The region-topic distributions can be explored in different ways to understand the 620 

biological nature of the regulatory topics:  621 

• Enrichment of epigenomic signatures: Epigenomic signatures are intersected with the 622 

regulatory regions in the data set (by default, with at least 40% overlap) and summarized into 623 

region sets. These region sets are used, together with the normalised region-topic distributions 624 

as input for AUCell (Aibar et al., 2017). Here, we used as threshold to calculate the AUC 3% 625 

of the total number of regions in the dataset.  626 

• Region annotation: Regions in the data set are annotated using the R package ChIPseeker (Yu 627 

et al., 2015). Enrichment of region types within the topics is calculated as previously explained.  628 

• Topic binarisation: Representative regions of each topic are selected by rescaling the 629 

normalised region-topic assignments to the unit, and fitting a gamma distribution to these 630 

values. A threshold is given to select region above a certain probability (see Data analysis).  631 

• Gene Ontology analysis: GO analyses was performed by using rGREAT on the binarised 632 

topics (Gu, 2018).  633 

• Motif enrichment: Motif enrichment was performed using a RcisTarget (Aibar et al., 2017). 634 

cisTopic includes functions for performing motif enrichment analysis in sets of regions, rather 635 

than sets of genes. Here, we used the region-based hg19 cisTarget feather databases (v8). The 636 

cisTarget motif collection comprehends more than 20,000 PWMs obtained from JASPAR 637 

(Portales-Casamar et al., 2010), cis-bp (Weirauch et al., 2014), Hocomoco (Kulakovskiy et al., 638 

2018), among others (Janky et al., 2014). We used a minimum fraction overlap of 0.4; a 639 

minimum Normalised Enrichment Score (NES) threshold of 3; a ROC threshold for AUC 640 

calculation of 0.005 and a threshold for visualization of 20,000. Region-based feather databases 641 

are available at: https://resources.aertslab.org/cistarget/. Motif annotation is available within 642 

the RcisTarget package.  643 

• Cistrome formation: Cistromes can be formed based on RcisTarget results; by selecting the 644 

regions that pass the given thresholds. These sets of regions are linked to transcription factors 645 
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based on motif annotations (direct and inferred). These cistromes are initially formed by Ctx 646 

regions (Imrichová et al., 2015), that are mapped back to the original coordinates in the data set 647 

(here, regions are mapped back if there is at least 40% of overlap).  648 

Validation of cisTopic 649 

Simulated epigenomes from melanoma cell lines: We simulated 700 single-cell epigenomes from 14 650 

bulk H3K27Ac ChIP-seq melanoma profiles (50 cells per bulk) by randomly sampling a given number 651 

of reads. Eleven of these bulk epigenomes were taken from Verfaille, Imrichová & Kalender-Atak et 652 

al. (2015, GSE60666); and three have been generated in this work with the same protocol and analysis 653 

pipeline. Candidate regulatory regions were defined by peak calling with MACS2 in each bulk profile 654 

(v.2.0.10, with q < 0.001 and nomodel parameters and using as control the merged control profiles of 655 

five cell lines; namely A375, MM011, MM032, MM047 and MM057) and merging of overlapping 656 

peaks. The number of reads per cell was selected randomly from the intervals corresponding to each 657 

simulation, namely 26,940-59,580 reads per cell; 8,980-19,860 reads per cell; 5,388-11,916 reads per 658 

cell and 2,694-5,958 reads per cell. For each simulation we ran cisTopic (parameters: α=50/T; β=0.1; 659 

burn-in iterations=500; recording iterations=1000) for models with a number of topics between 2 to 50 660 

(from 2 to 30, 1 by 1; from 30 to 5, by 5). The best model in each simulation was selected based on the 661 

highest log-likelihood, resulting in selected models with 22, 22, 19 and 12 topics, from highest to lowest 662 

coverage. We binarised the topics using a probability threshold of 0.975, and performed GO enrichment 663 

analysis with rGREAT and motif enrichment analysis with RcisTarget. Latent Semantic Indexing (LSI) 664 

was performed as described by Cusanovich et al., 2015. The number of PCs selected was 7, 5, 5 and 5, 665 

for the different coverages respectively; and the first principal component was removed in all cases as 666 

it was correlated with the read depth. Values of the LSI matrix were rescaled between ±1.5. We ran 667 

chromVAR (Schep et al., 2017) with default parameters and adding the GC bias. We run scABC with 668 

default parameters, resulting in models with 14, 14, 13 and 7 landmarks (Zamanighomi et al., 2018). 669 

Rtsne was used for visualization in all cases with 50 PCs and 30 as perplexity (after testing several 670 

combinations of parameters) (Krijthe and van der Maaten, 2017). For calculating the Adjusted Rand 671 

Index, we used as ground truth the bulk epigenome of each cell and determined the cell clusters from 672 

each method using euclidean distance and ward clustering (using the cell-topic distributions matrix from 673 

cisTopic, the LSI matrix, the cistrome enrichment matrix from chromVAR and the cell-to-landmark 674 

matrix from scABC, respectively). We also tested the robustness of these methods to find rare 675 

subpopulations by reducing the number of single-cell epigenomes from 50 to 5 for 3 of these cell lines 676 

(A375, MM001 and MM099). Methods were run as previously described, and precision and recall 677 

values were calculated by using as ground truth the bulk epigenome of each cell. The cell clusters were 678 

clustered for each method using euclidean distances and ward clustering. The clusters with the highest 679 

ratio of true positives versus false positives were selected for the calculations. 680 
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scATAC-seq in the hematopoeitic system: We used cisTopic on a publicly available scATAC-seq data 681 

set from the hematopoeitic system (Corces et al., 2016; GSE74310), containing Leukemia Stem Cells 682 

(LSC), blasts and monocytes. We used cells with more than 784 reads per cell, resulting in a data set 683 

with 71 LSCs, 115 blasts and 77 monocytes and 296,285 regulatory regions. We ran cisTopic using 684 

α=50/T; β=0.1; burn-in iterations=200; recording iterations=1000 and models with a number of topics 685 

between 2 and 50 (by 2). The selected model had 10 topics. We binarised the topics with a probability 686 

threshold of 0.995.  687 

scWGBS in the hematopoeitic system: We applied cisTopic on a publicly available scWGBS data set 688 

from the hematopoeitic system (Farlik et al., 2016; GSE87197), containing methylation calls for 18 689 

Hematopoietic Stem Cells (HSC), 18 Multipotent Progenitors (MPP), 24 Multi-Lymphoid Progenitors 690 

(MLP), 19 Common Myeloid Progenitors (CMP) and 22 Granulocyte Macrophage Progenitors (GMP). 691 

We aggregated the methylation calls using the Ensemble regulatory regions (v78) and calculated the β 692 

values by dividing the aggregated number of methylated calls by the total number of calls, resulting in 693 

410,037 regulatory regions. This matrix was binarised, considering as methylated regions with a β value 694 

above 0.5. We performed models using with α=50/T; β=0.1; burn-in iterations=500; recording 695 

iterations=1000; and a number of topics between 5 and 50 (by 5), resulting in a model with 10 topics to 696 

be selected. We binarised the topics with a probability threshold of 0.995 and lift-overed the regions 697 

from hg38 to hg19 before using RcisTarget. 698 

scTHS-seq and scRNA-seq in the human brain: We analysed a data set from the human brain with 699 

34,520 cells and 287,381 regulatory regions (Lake et al., 2018; GSE97942). This data set contains cells 700 

from the visual cortex, the frontal cortex and the cerebellum. We ran cisTopic with α=50/T; β=0.1; 701 

burn-in iterations=500; recording iterations=1000; and a number of topics between 5 and 50 (from 2 to 702 

30 by 1; from 30 to 50 by 5), resulting in a model with 23 topics to be selected. We binarised the topics 703 

with a probability threshold of 0.99 and lift-overed the regions from hg38 to hg19 before using 704 

RcisTarget and rGREAT.  705 

We filtered the scRNA-seq data from Lake et al. (2018) (GSE97930) keeping only cells with at least 706 

800 genes expressed, resulting in a data set with 15,884 cells. SCENIC was run using default parameters 707 

(Aibar et al., 2017), resulting in a matrix with 250 regulons. Next, we mapped the regions to their closest 708 

gene, and this dictionary was used to convert the gene-based regulons to region-based regulons. These 709 

region sets were used as epigenomic signatures to determine their enrichment within the topics using 710 

AUCell as previously explained. 711 

scATAC-seq during an EMT-like transition in melanoma: We generated scATAC-seq data on 712 

different time points (0, 24, 48 and 72h) for two melanoma cell lines (MM057 and MM087) upon 713 

SOX10 KD, which triggers an EMT-like cell state transition, resulting in a data set with 598 and 78,262 714 

accessible regions (see below). We ran cisTopic with α=50/T; β=0.1; burn-in iterations=500; recording 715 
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iterations=1000; and a number of topics between 5 and 50 (from 2 to 30 by 1; from 30 to 50 by 5), 716 

finding a model with 15 topics to be optimal. Topics were binarised using a probability threshold of 717 

0.975 before RcisTarget and rGREAT analyses. 718 

Random forest modelling  719 

SOX region sets were derived by merging the SOX cistromes found in the astrocytes, oligodendrocytes 720 

and shared melanoma topics, respectively. Regions were scored with Cluster Buster  (Frith et al., 2003) 721 

using known and de novo motifs, and the value for the best CRM score in the sequence was used as 722 

feature. Known motifs were taken from the cisTarget (Herrmann et al., 2012; Imrichová et al., 2015) 723 

motif collection (see above); while de novo motifs were found by comparing non-overlapping regions 724 

between the SOX cistromes in a pairwise manner with Homer (Heinz et al., 2010) and RSAT peak-725 

motifs (Thomas-Chollier et al., 2011, 2012). DNA shape measurements were also included as features. 726 

They were derived from models found in GBshape and Kaplan et al. (Chiu et al., 2015; Kaplan et al., 727 

2009), using the average value between ±250 bp from the centre of the region. Comparisons were done 728 

in a pairwise manner. Per comparison, an initial selection of features was performed using a likelihood 729 

ratio test (FDR adjusted p-value < 0.05), as implemented in MAST (Finak et al., 2015). These initial 730 

features were further pruned using Boruta (Kursa and Rudnicki, 2010), using default parameters. Boruta 731 

features that represented similar motifs and showed strong correlation were merged into one Hidden 732 

Markov Model score using Cluster-Buster (Frith et al., 2003).  Random forest models were performed 733 

with each set of features (namely Boruta features, merged features and a random classifier) using the 734 

randomForest R package (Liaw and Wiener, 2001). Representative rules were extracted using the 735 

package inTrees (Deng, 2014), with default parameters. 736 

Cell culture and treatment 737 

The two melanoma cultures (MM057 and MM087) are short-term cultures derived from patient biopsies 738 

(Gembarska et al., 2012; Verfaillie et al., 2015). Cells were kept at 37°C, with 5% CO2 and were 739 

maintained in Ham's F10 nutrient mix (Thermo Fished Scientific) supplemented with 10% fetal bovine 740 

serum (FBS; Invitrogen) and 100 µg ml-1 penicillin/streptomycin (Thermo Fished Scientific). SOX10 741 

KD was performed using a SMARTpool of four siRNAs against SOX10 (SMARTpool: ON-742 

TARGETplus SOX10 siRNA, number L017192-00-0005, Dharmacon) at a concentration of 20nM 743 

using as medium Opti-MEM (Thermo Fished Scientific) and omitting antibiotics. The cells were 744 

incubated for 24, 48 or 72 hours before processing.  745 

OmniATAC-seq 746 

Data generation: OmniATAC-seq was performed as described previously (Corces et al., 2017). Cells 747 

were washed, trypsinised, spun down at 1000 RPM for 5 min to remove the medium and resuspended 748 

in 1 mL. Cells were counted and experiments were only continued when a viability of above 90% was 749 

observed. 50,000 cells were pelleted at 500 RCF at 4°C for 5 min, medium was carefully aspirated and 750 
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the cells were washed and lysed using 50 uL of cold ATAC-Resupension Buffer (RSB) (see Corces et 751 

al., 2017 for composition) containing 0.1% NP40, 0.1% Tween-20 and 0.01% digitonin by pipetting up 752 

and down three times and incubating the cells for 3 min on ice. The lysis was washed out by adding 1 753 

mL of cold ATAC-RSB containing 0.1% Tween-20 and inverting the tube three times. Nuclei were 754 

pelleted at 500 RCF for 10 min at 4°C, the supernatant was carefully removed and nuclei were 755 

resuspended in 50 uL of transposition mixture (25 uL 2x TD buffer (see Corces et al., 2017 for 756 

composition), 2.5 uL transposase (100 nM), 16.5 uL DPBS, 0.5 uL 1% digitonin, 0.5 uL 10% Tween-757 

20, 5 uL H2O) by pipetting six times up and down, followed by 30 minutes incubation at 37°C at 1000 758 

RPM mixing rate. After MinElute clean-up and elution in 21 uL elution buffer, the transposed fragments 759 

were pre-amplified with Nextera primers by mixing 20 uL of transposed sample, 2.5 uL of both forward 760 

and reverse primers (25 uM) and 25 uL of 2x NEBNext Master Mix (program: 72°C for 5 min, 98°C 761 

for 30 sec and 5 cycles of [98°C for 10 sec, 63 °C for 30 sec, 72°C for 1 min] and hold at 4°C). To 762 

determine the required number of additional PCR cycles, a qPCR was performed (see Buenrostro et al., 763 

2015 for the determination of the number of cycles to be added). The final amplification was done with 764 

the additional number of cycles, samples were cleaned-up by MinElute and libraries were prepped using 765 

the KAPA Library Qunatificaton Kit as previously described (Corces et al., 2017). Samples were 766 

sequenced on a NextSeq500 High Output chip, generating between 41 and 70 million reads per sample. 767 

Data processing: Adapter sequences were trimmed from the fastq files using fastq-mcf (as part of ea 768 

utils; v1.04.807). Read quality was then checked using FastQC (v0.11.5). Reads were mapped to the 769 

human genome (hg19-Gencode v18) using STAR (v2.5.1) applying the parameters --alignIntronMax 1 770 

and --aslignIntronMin 2. Mapped reads were filtered for quality using SAMtools (v1.2) view with 771 

parameter –q4, sorted with SAMtools sort and indexed using SAMtools index. Peaks were called using 772 

MACS2 (v2.1.1) callpeak using the parameters --nomodel and --call-summits on the 8 conditions 773 

separately. A count matrix was generated by using featureCounts (as part of Subread; v1.4.6) of all 774 

separate bam files on the merged peak file (after conversion of the merged peak bed file to a gff format 775 

using a custom script). Normalised bedGraphs were produced by genomeCoverageBed (as part of 776 

bedtools; v2.23.0) using as scaling parameter (-scale) size factors obtained from DEseq2 (v1.18.1). 777 

BedGraphs were converted to bigWigs by the bedtools suit functions bedSort to sort the bedGraphs, 778 

followed by bedGraphToBigWig to create the bigWigs, which were used in IGV for visualisation.  779 

scATAC-seq 780 

Data generation: scATAC-seq was performed using the Fluidigm C1 system as described before 781 

(Buenrostro et al., 2015). Briefly, cells were trysinised, spun down (1000 RPM, 5 min), medium was 782 

removed and cells were resuspended in fresh medium and passed through a 40 um filter, counted and 783 

diluted till 200,000 cells per mL. Cells were loaded (using a 40:60 ratio of RGT:cells) on a primed Open 784 

App IFC (10-17 um, the protocol for ATAC-seq from the C1 Script Hub was used). After cell loading, 785 

the plate was visually checked under a microscope and the number of cells in each of the capture 786 
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chambers was noted. Next, the “Sample prep” was performed on the Fluidigm C1 during which the 787 

cells underwent lysis and ATAC-seq fragments were prepared. In a 96-well plate, the harvested libraries 788 

were amplified in a 25 uL PCR reaction. The PCR products were pooled and purified on a single 789 

MinElute PCR purification column for a final library volume of 15 uL. Quality checks were performed 790 

using the Bioanalyzer high sensitivity chips. Fragments under 150 bp were removed by bead-cleanup 791 

using AMPure XP beads (1.2x bead ratio) (Beckman Coulter). All scATAC-seq libraries were 792 

sequenced on a HiSeq4000 paired-end run, generating a median of 170,769 raw reads per single cell. 793 

Data processing: The reads from scATAC-seq samples were first cleaned for adapters using fastq-mcf 794 

using fastq-mcf (as part of ea utils; v1.1.2-686). Read quality was then checked using FastQC (v0.11.5). 795 

Paired-end reads were mapped to the human genome (hg19-Gencode v18) using STAR (v2.5.1) 796 

applying the parameters --alignIntronMax 1, --aslignIntronMin 2 and --alignMatesGapMax 2000. 797 

Mapped reads were filtered for quality using SAMtools (v1.2) view with parameter –q4, sorted with 798 

SAMtools sort and indexed using SAMtools index. Duplicates were removed using Picard (v1.134) 799 

MarkDuplicates using OPTICAL_DUPLICATE_PIXEL_DISTANCE=2500. To filter out cell of bad 800 

quality, transcription start site aggregation plots were made using a custom script and cell having a low 801 

signal-to-noise profile were removed from further analyses. This lead to a final of 598 good quality 802 

cells over 8 Fluidigm C1 runs. Bam files of good quality single cells were aggregated per condition and 803 

peaks were called on these aggregated samples using MACS2 (v2.1.1) callpeak using the parameters -804 

-nomodel and --call-summits. The peak files per condition were merged (78,661 peaks in total before 805 

blacklisting) and blacklisted using the blacklisted regions of hg19 listed on 806 

http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg19-human/ (Anshul Kundaje), leading 807 

to a total of 78,262 peaks after blacklisting. This peak file was used, together with the bam files of the 808 

good single cells as, input for cisTopic. To visualise the aggregated cells per sample, normalised 809 

bedGraphs were produced by genomeCoverageBed (as part of bedtools; v2.23.0) using as scaling 810 

parameter (-scale) size factors obtained from DEseq2 (v1.18.1). BedGraphs were converted to bigWigs 811 

by the bedtools suit functions bedSort to sort the bedGraphs, followed by bedGraphToBigWig to create 812 

the bigWigs.  813 

Luciferase assays 814 

The DCT (chr13:95131958-95132420) and EDNRB (chr13:78427800-78428233) regulatory regions 815 

were defined based on the peaks obtained in our scATAC-seq experiment. The regions were scored 816 

with Cluster-Buster (Frith et al., 2003) for the SOX dimer motif (transfac_pro__MM08838) and the 817 

identified motifs were disrupted by two point mutations (ACAaagnnnccttT to ACCaagnnnccttG), 818 

manually changing these nulceotides in the fasta sequences. Similarly, the wild-type regions were 819 

scored for Eboxes (most probably linked to MITF) and these were disrupted by two point mutations 820 

(CANNTG to TANNTA), taking care that no SOX motifs were consequently disrupted. Lastly, we 821 

modified the inner two nucleotides of the Eboxes from the putative MITF Ebox (CACGTG) to the 822 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 16, 2018. ; https://doi.org/10.1101/370346doi: bioRxiv preprint 

https://doi.org/10.1101/370346


   
 

   
 

31 

putative Olig Ebox (CAGCTG). The wild-type sequence and the mutated sequences were synthetically 823 

generated, together with specific cloning sites, via gBlocks (IDT). The fragments were cloned into a 824 

pGL4.23[luc2/minP] vector (Promega) using cohesive-end restriction cloning. Clones were checked by 825 

Sanger sequencing for the correct mutation. Luciferase assays were performed three times in triplicate 826 

for each plasmid. Cells seeded at ~80% confluency were transfected with 400 ng of the luciferase 827 

reporter plasmid and 40 ng of Renilla plasmid (Promega) using lipofectamine 2000 (Invitrogen). 828 

Luciferase activity of each variant was measured using the Dual-Luciferase Reporter Assay (Promega) 829 

and was normalised against the Renilla luciferase activity. We performed a two-sided t-test with 830 

unequal variance and calculated the standard deviation. 831 

Publicly available data used in this work 832 

Raw fastq files of DNAseI-seq on penis foreskin melanocytes primary cells were downloaded from 833 

NCBI's Gene Expression Omnibus (Edgar et al., 2002) through GEO accession number GSE18927 834 

(GSM774243) and was mapped on the human genome (hg19-Gencode v18) using STAR (v2.5.1). 835 

SOX10 ChIP-seq and MITF ChIP-seq were downloaded as raw fastq files from GEO GSE61965 and 836 

were mapped to the human genome using Bowtie2 (v2.1.0) and peaks were called by MACS2 (v2.1.1). 837 

TFAP2 ChIP-seq data in human primary melanocytes was retrieved from Seberg et al., 2017 838 

(GSE67555). FAIRE-seq, H3K27Ac-seq and RNA-seq data on the melanoma lines (GSE60666) were 839 

processed as mentioned in Verfaillie et al., 2015. 840 

For the simulations of single cells from bulk melanoma cell line epigenomes, we used the H3K27Ac 841 

data from Verfaillie et al., 2015 (GEO GSE60666). scATAC-seq data from the hematopoeitic system 842 

(Corces et al., 2016), was retrieved from GEO GSE74310; scWGBS data in the hematopoeitic system 843 

(Farlik et al., 2016) was obtained from GEO GSE87197; and scTHS-seq and scRNA-seq data from the 844 

human brain (Lake et al., 2017) was downloaded from GEO GSE97942 and GEO GSE97930, 845 
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