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Background 

The Diffusion Equation 

Given a collection of small particles (for example bacterial nutrients, or oxygen in water) and a 

heterogeneous concentration profile, over time the particles will be pushed by random thermal 

fluctuations into a more homogeneous (i.e. uniform profile).  This gives us a flux, j, that scales 

with the diffusion constant, D, and the concentration gradient.  

𝑗 = −𝐷 ∇𝐶 

This tells us that the flux of particles is higher near “pointier” places in the concentration profile 

(causing us to expect fractal-like growth in certain systems).  Plugging this into Fick’s law, we 

obtain the final diffusion equation of a collection of particle concentrations C over time, i.e. 

𝜕𝐶

𝜕𝑡
= 𝐷 ∇2𝐶 

A few more equations will be useful to know.  We may be interested in the characteristic length, 

x, that a particle can diffuse over a given time, dt, as well as the continuous concentration profile 

at a given timepoint, which is defined by Green’s function.  These are as follows:  

< Δ𝑥2 > = 2𝑛𝐷Δ𝑡 

𝐺(𝑥, 𝑡) =
1

√4𝜋𝑛𝐷𝑡
exp [−

𝑥2

4𝜋𝑛𝐷𝑡
] 

Diffusion Numerically 

It is not very complicated to implement a discrete version this in Matlab – we just need a matrix 

that keeps track of where each diffusing species is at a given timepoint, and then update each 

timepoint based on the previous timepoint, the diffusion constant, and a discretized version of 

the Laplacian.  This discretized Laplacian will take all the concentration from a given point, divide 

it into 4 parts (for 2D), and move all the concentrations “next door.”  Edge cases are handled 

differently for different models – for animal morphology and bacterial growth models, nutrients 

are not allowed to leave the frame of interest (which one could think of like an agar plate), whereas 

for the cancer model, nutrients can diffuse “off the screen” and to the rest of the body.  

Adding Reaction and Growth 

There are a variety of phenomena that we might be interested in that are limited by diffusion, but 

also are influenced by factors outside of diffusion.  In this case, we need to modify our equation 

for the change in concentration with respect to time to incorporate these outside factors.  In 

general, 

𝜕𝐶

𝜕𝑡
= 𝐷 ∇2𝐶 + 𝐹(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) 
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where F is some function of xi’s, the local concentrations of factors, cells, and the like.  

Beyond just modeling how diffusing factors behave, we may be interested in other objects in a 

medium (cells come to mind).  These objects can interact with diffusing factors in a variety of ways 

– secreting them, absorbing them, dividing or dying depending on whether the concentration 

passes certain thresholds, etc.  Adding these kinds of interactions is challenging to do in general 

mathematically, but not that complicated numerically – one just defines a set of equations for how 

particles interact with objects in solution, and keeps track of where everything is at each 

discretized timepoint.  

System Validation 

Gaussian Fitting 

As a basis of this project, I wrote a 2D Laplacian operator 

in Matlab and verified that the concentration profile of a 

diffusing point source fits to the appropriate Gaussian (as 

it should – we see Green’s function gives a Gaussian 

concentration profile.)  The concentration profile after 

1000 timesteps is shown in Figure 1.  

Animal Morphology 

Model: Small Fluctuations around Equilibrium 

How do animals get their shapes? Although various complicated signaling pathways are involved 

(Fgf, Bmp, Hedgehog, and Notch, for example [1]), Alan Turing proposed that complex pattern 

formation can be described by a reaction diffusion system with at least two factors, with minor 

random or directed fluctuations from a homogeneous equilibrium resulting in a very 

heterogeneous final distribution, for example leopard spots and zebra stripes [2]. Turing solved 

this system by linearizing around the steady state, which yields interesting patterns in and of itself, 

but has important limitations in that we can’t know the behavior as t goes to infinity. 

To model this numerically, I adopted the following system using two dummy morphogens A and 

B:  

• Suppose the diffusion coefficients of A and B are 0.5 and 4.5, respectively, in arbitrary 

units.  Also suppose that the change in concentrations over time are defined by  

𝜕𝐴

𝜕𝑡
= 𝐷 ∇2𝐴 + 𝑎𝐴 + 𝑏𝐵 + 𝑒 

𝜕𝐵

𝜕𝑡
= 𝐷 ∇2𝐵 + 𝑐𝐴 + 𝑑𝐵 + 𝑓 

• Initialize a uniform system at a steady state (i.e. with no perturbations, there will be no 

changes). Consider the case 

𝐴 = 𝐵 = 1, 𝑎 + 𝑏 + 𝑒 = 𝑐 + 𝑑 + 𝑓 = 0 

• Define the numerical value of a small fluctuation,   

Figure 1: System Validation 
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𝜖 = 0.01 

• Randomly generate pairs of fluctuations, where the first element in the pair has 

concentrations A1, B1, and the second has concentrations A2, B2, where 

𝐴1 = 1 + 3 ⋅ 𝜖, 𝐴2 = 1 − 3 ⋅ 𝜖, 𝐵1 = 1 −  𝜖, 𝐵2 = 1 + 𝜖 

I then investigated the behavior by varying a-d, as well as the locations of pairs relative to each 

other (i.e. are the points in the pairs right next to each other, one apart from each other, or in 

totally random locations entirely).  

Results and Conclusions 

Varying a-d results in changes in the density of heterogenous defects/lines in the steady state – 

higher (absolute) values result in more dense patterns (see Figure 2).  This means the difference 

between an animal with very complicated patterns everywhere and one with larger spots/defects 

may be varying reaction rates based on local concentrations.   

  

 

Pair location has little effect – if each point is randomly located (i.e. each point is not next to its 

corresponding point, A1 defect is not next to the A2 defect), it produces the same patterns as if 

each point in the pair is one apart (i.e. A1-normal-A2 in a row). However, if each pair is right next 

to each other, i.e. the point with the A1 defect is directly adjacent to the point with the A2 defect, 

the changes, the defects end up canceling each other out in the long-run, resulting in homogeneity 

once again. 

This is just one example of the failure of the linearization approximation (i.e. long-term stability 

even with predicted short-term non-equilibrium perturbations).  Turing’s approximation is useful 

Figure 2: Steady state patterns of systems with 1000 randomly located point pairs.  In the left image, a = 

100000, b = -100001, c = 100001, d = -1000002.  In the right image a = 5, b = -6, c = 6, and d = 7. 
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for some patterns, but over time some smaller aspects of these patterns disappear – this is why it 

is useful to numerically model the full timescale of pattern formation so we know the behavior at 

equilibrium, rather than just the behavior after short-term perturbations (see Figure 3). 

  

 

These pattern formations are more than just mathematical curiosities – by varying the number of 

random defects, constants, locations of initial defects (as organisms do during their 

development), and looking at different morphogens, we can get patterns resembling complicated 

patterns such as giraffe spots and even drosophila embryo segmentation (see Figures 4 and 5). 

Embryo segmentation was caused by point defect pairs occurring on the same line. 

 

 

Figure 3: Short-term (linear) approximation (left) vs long-term steady-state (right) 

Figure 4: “Giraffe Spots” and “Drosophila Segments,” modeled 
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Future Directions 

We have shown it is possible to numerically model Turing pattern formation, the effects of 

tweaking parameters such as number of defect and governing constants, and potential 

developmental relevance. To improve on this model and understand arbitrary patterns, it would 

be useful to consider increased numbers of morphogens (rather than just using Turing’s 

simplified system with two morphogens linearized around the steady state), as well as considering 

more complicated reactions.  

Modeling Bacteria in Non-Equilibrium Growth 

Model: Adding Growth 

While reaction diffusion on its own leads to interesting patterns and conclusions, it is instructive 

to incorporate growth into the model, given that cells do not exist in a static environment and are 

constantly considering whether to synthesize a new copy of their DNA and divide of the conditions 

are right.  Ben-Jacob observed interesting growth regimes when growing bacteria on agar with 

different peptone concentrations (see Figure 6) [3,4].  Our goal was to see if we could simulate 

and obtain the same patterns mathematically, using reasonable physical constants.  

 

Figure 6: Bacterial Patterns from [6] (Empirical).  Peptone concentrations of 0.1, 1, 3, and 10 g/l, respectively. 

To model bacterial growth, we assumed each pixel represents one bacteria – a bacterial radius is 

about 5 um, so a pixel is about 10x10 um, and each pixel is one bacteria. Each bacterium has a 

Figure 5: Giraffe and Drosophila Segments, real (from Creative Commons) 
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certain uptake rate of nutrients, and will divide when the nutrient concentration inside exceeds a 

certain threshold, and each resulting bacterium will have half the nutrients of the initial bacteria.  

In this model, there is no diffusion of bacteria themselves, and no death if a nutrient threshold is 

passed.  

In addition, recall that  

< Δ𝑥2 > = 2𝑛𝐷Δ𝑡 

For reasonable physical constants, we have D = 10-7 cm2/s, and delta x is 10 um, so the timestep 

we use is dt = 5 seconds. Additionally, let the amount of nutrient a bacterium needs before division 

be 3*10-12 g/bacterium (which is per pixel). Finally, we run through a range of nutrient (peptone) 

concentrations from 10-6 to 2*10-6 g/cm2. 

Results and Conclusions 

  

Figure 7: Bacterial Patterns (modeled).  Peptone concentrations of 10-6, 1.25*10-6, 1.5*10-6, and 2*10-6 g/cm2, 

respectively. 

Using even this simple model of growth, we can roughly reproduce the four growth regimes 

observed by Ben-Jacob’s groups – at low peptone concentration, there is a circle in the center, 

and some small radial branching.  At intermediate peptone concentration, there is radial 

branching and fractal-like growth on these branches.  At high peptone concentration, there is 

radial “finger” growth, and at very high peptone concentrations, there is just a bacterial blob.  

In other words, we have shown numerically that bacterial growth is diffusion limited and can be 

modeled as such.  One interesting thing to note is these fractal-like patterns emerge because the 

flux through points is locally higher than the flux through a large surface, resulting in increased 

growth and branching from branches that already exist rather than from the center.   

The utility of this result is we can determine what patterns we expect based on certain nutrient 

concentrations and rates of growth, compare it to empirical patterns, and use this to determine 

the accuracy of our constants.  Additionally, this has applications to other fractal-like processes, 

such as crystal growth via physical vapor deposition at high temperatures (flux is highest through 

points).  

Future Directions 

To improve the model and give even more accurate patterns, we should consider the doubling 

time of bacteria (which is 1500 seconds for all 4 stages of the cell cycle, rather than the 5 second 

timesteps we used), account for bacterial motility (for example swarming or the “run and tumble” 
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model), and add a parameter for cell death if nutrient concentration around the bacteria is too 

low for cell maintenance.  

Reaction Diffusion and Cancer 

Model: Incorporating Multiple Factors 

One particularly interesting application of reaction diffusion models is diffusion-limited cancer 

growth [5].  For example, the following tumor morphologies from [5] can be roughly modeled 

using a reaction diffusion model: 

 

Figure 8: Example observed plasmacytoma and trichoblastoma morphologies, respectively 

Cancer cells are often mutated such that growth factor networks are out of control – they require 

less growth factor than normal cells to divide, and can often produce more, resulting in a positive 

feedback loop of growth and risks metastasis [6,7].  Cancer cells also kill surrounding tissue, either 

by outcompeting it for nutrients or secreting a “death factor” that kill surrounding WT cells [8]. 

We will model cancer cells by considering a system in which there are a network of blood vessels 

that constantly replenish nutrients (especially since the speed of blood, 0.1 m/s, is much faster 

than the speed of oxygen diffusion through tissue, which is under 10-4 m/s, so we can say the vessel 

locations constantly replenish all nutrients in each timestep.)  Nutrients diffuse from the blood 

vessel, cells grow if above a certain nutrient threshold and no surrounding cells (if WT) or even 

through surrounding cells (if a cancer cell), cells die below a certain nutrient threshold, cells 

produce and consume growth factors at certain rates, and growth factors and nutrients diffuse 

according to the diffusion equation.  Cancer cells have a lower threshold of growth factor to divide 

in all of our models, as found in [6,7]; however, we also set the model so that cancer cells produce 

far less growth factor than normal cells, effectively depending on normal cells for their own 

division. We then investigate a variety of starting conditions (possibility of detachment from basal 

lamina, effect of different nutrient demands and uptake from cancer cells, effect of cancer cells 

making more growth factors, and growth along different blood vessel locations. 

Results and Conclusions 
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Above are the images of cancer cell steady state locations for different initial parameters.  Note 

that in each of them, there were 50 randomly generated cancer cells at different points, and certain 

ones survived and then grew into the above morphologies.  For figures 9a-9d, there are 7 parallel 

vertical blood vessels; for 9e, there is a grid of such blood vessels instead.  For most simulations, 

cancer cells can diffuse across the nutrient source; for 9a, they cannot (presumes basal lamina 

provides some protection against metastasis). 

Figure Parameter Change Effect 

9a Can’t diffuse 

across basal 

lamina 

Most initial cancer cells divide, but tumors remain extremely 

small – this is unrealistic, however, because in 3D, cancer cells 

would be able to grow around the top even if they can’t penetrate 

the capillary lining. Similar to the morphology observed in 

plasmacytoma. 

9b Diffusion across 

basal lamina is 

possible 

Cancer tumors are bigger, but fewer in number – cancer cells 

aggregate, killing off smaller clumps of cancer cells but also 

normal cells.  Steady state with finite tumor size.  

9c Increased nutrient 

uptake rate, 

threshold for 

division, and 

maintenance 

requirements 

By increasing all of these things in tandem, there is not a huge 

impact on morphology, which is surprising.  One possible 

explanation is that the cancer cells are not truly winning through 

nutrient competition, since the model also assumes they secrete 

death factors, which means nutrient uptake/competition is not 

the relevant factor for growth. One thing to note is that these 

tumors are more aligned with the horizontal blood vessels – they 

grow parallel to vessels because they have such high nutrient 

demands, and cannot expand as far left and right as before. 

9d Cancer cells make 

more growth 

factor 

In this model, cancer cells make more growth factor than regular 

cells, resulting in a positive feedback loop and explosion of 

tumor size.  This is more realistic than some other parameter 

choices – cancer cells often secrete factors that, through 

autocrine and paracrine signaling, allow them to divide even 

more rapidly [7]. 

9e Grid of blood 

vessels 

Growth of tumors follows the vessels, because they are nutrient 

sources. Similar to the morphology observed in trichoblastoma. 

 

From this, we can see that  

Figure 9(a-e): Simulation Results – Steady State Profiles of Cancer Cells 
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• Diffusion can limit tumor growth – these models reached a steady state past which the 

cancer cells could no longer grow.  This has relevance for therapies that attempt to prevent 

formation of blood vessels in tumors in order to starve them of nutrients.  

• Differences in rates of growth factor production have a huge influence on whether a tumor 

stays benign or undergoes a feedback expansion. 

Future Directions 

To improve this model, more realistic rather than arbitrary diffusion and reaction coefficients 

could be used, as well as a 3D generalization, and considering different initial locations of blood 

vessels and cancer cells.  Further questions to be investigated via similar means include 

comparing a nutrient competition vs death factor secretion model, as well as modeling drugs that 

inhibit growth factors as a method to treat tumors and what expected morphology changes are. 

Conclusions and Future Directions 

Conclusions 

Often, complex systems of development or signaling pathways can be explained and modeled to 

a high degree of accuracy with only a few simplifying assumptions – we don’t need to understand 

every gene expressed in every pathway to get a good idea of what will happen.  Complex systems 

such as pattern development, bacterial growth, and tumor formation can be modeled numerically 

and with relatively few factors and still give interesting and roughly accurate results, which 

obviates the need for a lot of complicated math and lets us find the eventual 𝑡 = ∞ solution.   

Although not very optimized as presented here, a reaction-diffusion-growth model of cancer is 

particularly interest.  If you can set up an accurate system (i.e. appropriate diffusion coefficients, 

rates of growth factor production/consumption, blood vessel locations), you can predict how you 

expect cancer to grow normally.  Further, you can predict how certain diffusion-limited 

treatments (chemotherapy) should affect tumor morphology, and compare predicted results to 

MRI to see if we understand drug mechanism. 

Outside of biology, this work has interesting applications in determining non-equilibrium or 

interesting steady-state solutions to physical systems such as fluid flow and the heat equation.  

Future Model Improvements 

To improve on the work presented, the model could be expanded to 3D (which is not very 

challenging conceptually – it’s just setting up a different Laplacian and tracking across a 4D rather 

than 3D array, but is annoying with edge cases and visualization), and compared to the continuous 

case (where we use Green’s function convolved with the distribution at each step, rather than just 

discretizing the Laplacian). 

Further, models of cells should consider cell motility, as well as allow for arbitrary factors and cell 

types.  The challenge is to determine the appropriate constants to use, as well as which factors are 

relevant – for any given pathway, there could be dozens of genes involved, but the morphology of 

the result can be predicted with far fewer components in the model (as we showed in the case of 

bacterial growth).  
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