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Functional phenomics: Integrating high-throughput phenotyping, physiology, and 12 

bioinformatics 13 

Running title: Functional phenomics 14 

Highlight: Functional phenomics is an emerging field in plant biology that relies on high-15 

throughput phenotyping, big data analytics, controlled manipulative experiments, and 16 

simulation modelling to increase understanding of plant physiology. 17 

Abstract 18 

The emergence of functional phenomics signifies the rebirth of physiology as a 21st 19 

century science through the use of advanced sensing technologies and big data analytics. 20 

Functional phenomics highlights the importance of phenotyping beyond only identifying 21 

genetic regions because a significant knowledge gap remains in understanding which plant 22 

properties will influence ecosystem services beneficial to human welfare. Here, a general 23 

approach for the theory and practice of functional phenomics is outlined including exploring 24 

the phene concept as a unit of phenotype. The functional phenomics pipeline is proposed as a 25 

general method for conceptualizing, measuring, and validating utility of plant phenes. The 26 

functional phenomics pipeline begins with ideotype development. Second, a phenotyping 27 

platform is developed to maximize the throughput of phene measurements. A mapping 28 

population is screened measuring target phenes and indicators of plant performance such as 29 

yield and nutrient composition. Traditional forward genetics allows genetic mapping, while 30 

functional phenomics links phenes to plant performance. Based on these data, genotypes with 31 

contrasting phenotypes can be selected for smaller yet more intensive experiments to 32 

understand phene-environment interactions in depth. Simulation modeling can be used to 33 

understand the phenotypes and all stages of the pipeline feed back to ideotype and phenotyping 34 

platform development.   35 

Keywords: breeding, ecophysiology, functional trait, ideotype, phene, phenomics, 36 

phenotyping, physiology  37 
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Introduction 38 

Global food insecurity is among the most significant challenges for the 21st century (Grafton 39 

et al., 2015). Arguably, advances in genetics and genomics have far out-paced understanding 40 

of plant physiology. However, for plant science to become positioned to offer solutions to 41 

agriculture’s great challenges, understanding the fundamental processes contributing to crop 42 

performance must be prioritized. High-throughput phenotyping has allowed unprecedented 43 

data collection on plant form and function (Pieruschka and Poorter, 2012), yet its utility is 44 

commonly framed in the context of gene discovery. Phenomics, research focused on 45 

understanding variation in plant phenotypes (Furbank and Tester, 2011), has quickly become 46 

a biological discipline, yet is often secondary to a focus on genetics. Functional phenomics is 47 

proposed as a field of inquiry that leverages high-throughput phenotyping to create knowledge 48 

about plant function at the physiological level. The value of the knowledge generated by 49 

functional phenomics justifies the endeavour, not necessarily requiring the simultaneous study 50 

of the underlying genetics.  51 

Phenomics itself is a relatively young field of plant science which emerged by the early 2000s 52 

(Edwards and Batley, 2004; Holtorf et al., 2002), but previously established in mouse research 53 

(Gerlai, 2002) and microbiology (Schilling et al., 1999). Broadly, the literature has consistently 54 

used phenomics in the context of a field of research focused on understanding the diversity of 55 

plant phenotypes, and usually with special consideration of high-throughput phenotyping 56 

(Furbank and Tester, 2011; Pieruschka and Poorter, 2012). Phenomics research often measures 57 

diverse species or genotypes in order to describe the variation of target phenes (fundamental 58 

units of phenotype of replacing the world “trait,” see Box 1) and to link these measures to the 59 

underlying genetics (Atkinson et al., 2015). Therefore, substantial knowledge has been created 60 

about phene-gene maps, yet relatively less is known about the phene-function map. In contrast, 61 

functional phenomics is concerned primarily with understanding the relationship of phene 62 

variation to functional variation. The functional phenomics pipeline offers an avenue for 63 

designing and implementing research leveraging high-throughput phenotyping and data 64 

analytics.  65 

The Functional Phenomics Pipeline 66 

Ideotype development  67 

The first stage of the pipeline is ideotype development (Box 2). An ideotype is the ideal 68 

phenotype in an environment to either maximize capital gains (or yield) in agriculture (Donald, 69 

1968), or to maximize fitness in natural systems. Donald’s (1968) wheat ideotype was proposed 70 

as being short, having erect leaves, and an erect, large ear, among other properties which are 71 

still influencing wheat breeding to this day. Shoot architecture and growth determinism have 72 

been ideotype targets in beans (Kelly, 2001). In order to optimize root systems in maize, Lynch 73 

(2013) proposed the steep, deep, and cheap ideotype to enhance efficient soil exploration and 74 

exploitation. In all cases, the determination of ideotype was environment-dependent, reflecting 75 

an inherent ecophysiological approach. Conveniently, not only is the concept of ideotype useful 76 

for plant breeding, but also for framing our understanding of plant function. In that regard, the 77 

ideotype serves as a set of hypotheses about how plants work. In the conception of an ideotype, 78 

what phenes are likely to influence performance is a central question, so ideotype development 79 

is partially synonymous with phene determination. A crucial premise for the utility of 80 

functional phenomics in plant breeding is that ideotype-based breeding will eventually generate 81 

more yield gains than selection for yield alone. The rationale for this prediction is that selection 82 

for yield alone, given finite population sizes with limited genetic and phenetic shuffling, cannot 83 
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jump across local depressions in the yield-phene performance landscape (Messina et al., 2011) 84 

to reach even higher peaks, or that all beneficial phene states are unlikely to all be present in a 85 

single genotype. In contrast, ideotype breeding supposes that breeders can be plant engineers 86 

that design the optimal plants by stacking beneficial phene states. 87 

Phenotyping platform 88 

Once ideotype development has led to the set of phenes hypothesized to most greatly influence 89 

crop performance, a phenotyping platform can be designed to maximize throughput for 90 

determination of the proposed phenes’ states across many samples. Among many 91 

considerations for a phenotyping platform, a primary one is the tradeoff between extensive 92 

(many samples) measurements and intensive (many measurements) phenotyping (Fiorani and 93 

Schurr, 2013). The more manual requirements of a platform, the stronger this tradeoff becomes. 94 

Fortunately, developments in technology alleviate this tradeoff by allowing many precise 95 

measurements to be made quickly for each sample. Broadly, these developments are in 96 

electronic sensors, computational power, and available software. Specifically, image-based 97 

phenotyping has quickly become the dominant mode using readily available digital cameras 98 

and automated image analysis software for determining phenes related to plant architecture and 99 

light reflectance profiles (Minervini et al., 2015).  100 

Perhaps it is useful to consider the full phenotyping platform as a fusion of a growth platform 101 

and a measurement platform. How to grow the plants affects throughput, but more importantly 102 

affects the actual structure and function of the plant. Lab and greenhouse-based screens are 103 

usually higher throughput, yet in some situations may not correlate well to field-based 104 

measures (Poorter et al., 2016). However, even year-to-year correlations can be low in the field 105 

so the relative usefulness of all growth platforms is still an open question. 106 

Another aspect is how to bring the sensor in proximity to the plant, with two possibilities: plant-107 

to-sensor or sensor-to-plant, as utilized by unmanned aerial systems, robots, over-canopy carts 108 

or tractors (Pittman et al., 2015), and in some greenhouse systems (Vadez et al., 2015). Sensor-109 

to-plant technology is especially relevant for field-based phenotyping as removing the plant is 110 

always destructive, but in the greenhouse plants can be grown in pots and moved by conveyor 111 

or other means to the sensors (Campbell et al., 2015). Plant-to-sensor is also commonly used 112 

in destructive root phenotyping in the field, such as root crown phenotyping (York, 2018), or 113 

shovelomics, as well as for spectroradiometry of plant leaves (Biliouris et al., 2007). 114 

Functional phenomics seeks to relate phenes to plant performance, or fitness. Performance 115 

metrics could be classified as phenes, yet at the same time they are clearly the outcomes of 116 

other aspects of plant phenotype. Therefore, functional phenomics extends more common 117 

phenotyping research to not only include the phenes of interest but also measures of plant 118 

performance. The diversity of phenes measured may necessitate the use of several phenotyping 119 

platforms. More traditional and manual plant performance metrics include shoot dry mass, leaf 120 

area, and nutrient content through manual weighing, scanning, and chemical analysis, 121 

respectively. However, image-based shoot phenotyping can supplant these methods using 122 

automated measures of plant volume, height, leaf area, and spectral indices that reflect plant 123 

nutrient and water status (Haghighattalab et al., 2016; Hunt et al., 2013). Advances in high-124 

throughput measures of plant transpiration through use of infrared imagery (Deery et al., 2014) 125 

and photosynthesis through use of chlorophyll fluorescence and rapid gas-exchange 126 

measurements (Stinziano et al., 2017) will be especially important over the next decade. 127 
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Phenotyping a population 128 

A central premise of the functional phenomics pipeline is that variation in measured phenes 129 

can be linked to variation in functional outcomes. Therefore, use of diverse germplasm is 130 

essential in order to ensure phenotypic and functional variation. Biparental populations of 131 

recombinant inbred lines are commonly used for mapping, however the phenotypic and genetic 132 

variation is limited to the original parents. As sequencing has become cheaper, use of large 133 

diversity panels including more phenotypic and genetic variation have become more common. 134 

In both cases, recombination serves to shuffle genetic elements. The relatedness of the 135 

individuals is needed for the genetic analysis, and while known for families, the population 136 

structure of diversity panels is usually unknown so must be inferred. Errors in the inference of 137 

population structure can lead to spurious associations among phenes (Myles et al., 2009) and 138 

are therefore a major problem for the use of diversity panels.  Using mapping populations for 139 

functional phenomics allows mapping phenes to functions as well as genes, generating 140 

synergistic opportunities. 141 

Bioinformatics of functional phenomics 142 

Arguably, the greatest challenge faced by functional phenomics is not the acquisition of mass 143 

amounts of phenotypic data, but the analysis of the data in order to create knowledge (Tardieu 144 

et al., 2017). Most phenotypic data being generated is continuous and numeric, for both phenes 145 

and performance indicators. Therefore, regression techniques are suitable for relating phene to 146 

function, and as genotype numbers and replications increase, so does statistical power. 147 

Regression can be used for testing hypotheses about phene-function relationships, but at risk 148 

of being considered ‘p-hacking’, another powerful approach is for hypothesis generation about 149 

previously unknown relations. Such data mining and testing of multiple statistical models will 150 

undoubtedly be commonplace in functional phenomics, and therefore needs to be reported in 151 

methods sections of manuscripts to avoid inflation bias (Head et al., 2015). At the same time, 152 

the value of data mining for hypothesis generation must be acknowledged and not stigmatized. 153 

Correlational analysis of the phene network (Box 3) is an important aspect of functional 154 

phenomics. Pairwise correlations of all measured phenes can identify collinearity among 155 

phenes, which is important for downstream decisions about statistics. Phene correlations also 156 

raise the question: why? Do phenes correlate because of a shared developmental program? Do 157 

they serve a similar purpose? Such questions are implicit in the concept of phene modules 158 

(Murren, 2002), defined as correlated phenes acting within a functional unit (such as a flower). 159 

Phene A may be correlated to phene B for four reasons: A partially controls B, B partially 160 

controls A, another phene C partially controls both A and B, or the correlation is simply 161 

spurious and not repeatable. These statistical frameworks may also identify patterns in phene 162 

hierarchies, possibly defining which phenes are the major drivers, and which might be 163 

considered phene aggregates  comprised of lower order phenes (York et al., 2013). Phenetic 164 

hierarchies may be determined through the use of structural equation modelling (Tetard-Jones 165 

et al., 2014) and network analysis (Bartsch et al., 2015). 166 

Principal-component analysis yields scores that are the linear combinations of underlying 167 

phenes that maximize the explained multivariate variation. The loadings that multiply the 168 

individual phenes to sum to the component and give an indication of which phenes are most 169 

strongly associated with a principal component. Indeed, the entire component can be viewed 170 

as a latent variable that drives the variation of the constituent phenes. These latent variables 171 

can be described as ‘dark’ phenes that influence measured phenes without being readily 172 

measured themselves, and are related to the concept of cryptotype (Chitwood and Topp, 2015). 173 
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In recent works, such dark phenes of root system architecture were mapped to genetic regions 174 

in soybean (Dhanapal et al., 2018). In wheat dark phenes where inferred based on measures of 175 

internal consistency among shoots and tillers for the same phenes and principal components 176 

were used to construct estimations of the latent constructs (York et al., 2018).  177 

The methods for linking phene variation to performance metrics are similar as for the phene 178 

correlational statistics described above. Given the continuous nature of most phenes and 179 

performance metrics, regression techniques are an obvious choice for modelling the relation of 180 

phene to function or performance. Multiple regression allows several phenes to be fit to a 181 

performance measure simultaneously, and can add predictive power. Regression techniques 182 

allow mechanistic insights. For example, multiple regression of root crown phenes to shoot 183 

mass indicated that phenes related to lateral branching density, number, and angles could 184 

explain up to 68% of the variation of shoot mass, with similar results for nitrogen uptake (York 185 

and Lynch, 2015), while the maximum variation explained by a single phene was 37%. The 186 

more phenes and performance measures that are being analysed, the more observations are 187 

needed to complete the statistics. Given the multivariate nature of both phenes and performance 188 

metrics, canonical correlational analysis is another promising tool as it allows modelling of 189 

both simultaneously with multiple predictors and response variables (Gonzalez et al., 2009). A 190 

fuller application of multivariate statistics is necessary to unlock the power of the functional 191 

phenomics approach. 192 

Confirmation of phene utility with experimentation and simulation 193 

Phenes revealed to have relationships to crop performance must be validated before 194 

physiologists may recommend their use in breeding programs, even if the relations were 195 

previously hypothesized. Selecting genotypes that either contrast or express continuous 196 

variation for specific phenes has been a valuable approach for physiological studies that 197 

confirm phene function (Lynch, 2013; York et al., 2013). While diversity panels assembled 198 

from varieties from around the world are extremely important for identifying allelic variation 199 

that influences particular phenes, diversity panels are also diverse for many phenes 200 

simultaneously. In contrast, crossing plants that contrast for a phene of interest generates a 201 

biparental population consisting of lines that often express greater variation in the phene than 202 

the parents because of transgressive segregation. Advances in gene editing technology, such as 203 

CRISPR-CAS9/Cpf1, may allow plants with contrasting phene states to be created more 204 

quickly (Gao, 2018).  205 

Near-isophenic lines can be grown in controlled conditions for detailed physiology studies or 206 

in the field for validation under agricultural conditions. In any environment, more complete 207 

knowledge of the environment facilitates understanding of the physiological processes so the 208 

environment itself should be measured. In these experiments, the common practice is to apply 209 

abiotic stress as a treatment, such as temperature extremes, drought, or low available nitrogen, 210 

in factorial combinations with contrasting near-isophenic lines. Interpretation is simpler in 211 

cases when all plants behave similarly in the non-stressed conditions but show variation in 212 

stress conditions, otherwise differences among plants may be more related to general plant 213 

vigor rather than the phenes of interest. These controlled experiments may allow more detailed 214 

treatments, such as manipulation of plant structure, and also facilitate acquisition of more 215 

complicated measures, such as photosynthesis. The factorial designs described above that 216 

combine environmental treatments and contrasting lines are suitable for ANOVA, while the 217 

possibility of including more iso-phenic lines with more continuous variation is suitable for 218 

regression analysis. 219 
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Examples of moderate-throughput studies that directly link phenes to function are more 220 

common, and while they fall under the domain of functional phenomics, there is a continuing 221 

push to include more genotypes using high-throughput approaches to allow greater statistical 222 

power and to achieve genetic mapping. For example, decreased nighttime transpiration was 223 

shown to correlate to daytime canopy conductance and specific leaf area in maize using growth 224 

chambers fitted with scales (Tamang and Sadok, 2017). These moderate-throughput 225 

approaches are especially utilized in root biology, such as in linking root cortical senescence 226 

to root respiration and nutrient uptake (Schneider et al., 2017), relating reduced secondary 227 

growth to increase phosphorus acquisition (Strock et al., 2018), linking aerenchyma to living 228 

cortical area and then to yield in low phosphorus conditions  (Galindo-Castaneda et al., 2018), 229 

and in showing how dozens of root system architectural phenes integrate for nitrogen 230 

acquisition (York and Lynch, 2015). Scaling up the throughput of these methods that link 231 

phenes to function will strengthen functional phenomics greatly.  232 

Simulation modelling is another promising approach in which theory of phene function can be 233 

made explicit and tested. Simulations require mechanistic understanding of how processes 234 

relate – what output is achieved by what input (Marshall-Colon et al., 2017). In cases where 235 

understanding is limited, predictions from different simulations can be compared with 236 

observations to see which model is more accurate. Simulations also allow exploration of phene 237 

values beyond what has been observed in nature, possibly due to genetic or physiological 238 

constraints. Greater numbers of phenes and phene combinations can be compared in a 239 

simulation than in the field or greenhouse (York et al., 2013). Finally, simulations can guide 240 

experimentation to validate phenes with the greatest potential, while new empirical data 241 

parameterize and refine the model, creating a positive feedback loop of knowledge generation 242 

(Wullschleger et al., 1994). Physiological experiments and simulations, in turn, may lead to 243 

the creation of new crop ideotypes so the researcher may continue around the functional 244 

phenomics pipeline. 245 

Conclusion 246 

Functional phenomics is concerned with how plants work, a knowledge gap that has been a 247 

limiting factor in understanding ecosystems and breeding for superior cultivars despite 248 

significant progress in understanding the underlying genetics. The end goal of functional 249 

phenomics is to generate new knowledge about the relationship of the plant phenome to plant 250 

functioning in ecosystems (see Box 4 for recent examples). In the context of crop breeding, the 251 

functional phenomics pipeline will guide decisions about generating populations and making 252 

selections. Functional phenomics is poised to combat major global challenges such as climate 253 

change, environmental degradation, and food insecurity.  254 

Box 1. What’s in a phene? A rose by any other name 255 

The word ‘phene’ was used as early as 1925 (Serebrovsky, 1925), and some scholars have 256 

suggested the term was implied in Willhelm Johannsen’s work that coined the corresponding 257 

words phenotype, genotype, and gene (Johannsen, 1909). However, use of the term languished 258 

over the next century, appearing in some European agricultural (Gustafsson et al., 1977) and 259 

ecological (Vidyakin, 2001) work, but not widely adopted. Interesting, phene-based semantics 260 

did made their way into genomics by the use of phenetic methods for genomic comparisons 261 

(Sokal, 1986; Thornton and DeSalle, 2000). However, with the rise of plant phenomics, there 262 

is a resurgence in the use of phene (Lynch and Brown, 2012; Paez-Garcia et al., 2015; 263 

Pieruschka and Poorter, 2012; Rellán-Álvarez et al., 2016; York and Lynch, 2015; York et al., 264 
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2013). The success of phenomics in delivering solutions to global challenges will be partially 265 

determined by having adequate terminology to explain scientific observations (Slisko, 1997). 266 

Phene is meant as a total replacement for the term trait, which is pre-eminently popular, yet is 267 

non-biological and ambiguously used (Violle et al., 2007). Trait is used across biological levels 268 

of organization, while phenes are properties of organisms. Additionally, trait is often used to 269 

refer to both the general and the specific property, such as the root number trait or the many 270 

root number trait. Unfortunately, recent usage of the word phene is not careful enough to rid 271 

the literature of this ambiguous thinking, and so there is a pressing need to standardize 272 

terminology, or else phene-based semantics will fail to achieve more than contemporary 273 

thought. Phene as the general property and phene state as the specific attribute have been 274 

proposed as analogous to the concepts of gene and allele, respectively (York et al., 2013). The 275 

genetics literature is also plagued by the ambiguity of using ‘gene’ in cases where ‘allele’ 276 

would be more appropriate.  277 

Lynch and Brown (2012) recommended that phenes be considered elementary and unique at 278 

their level of organization, whether the organ, tissue, or cellular level. Defining phenes as only 279 

units of phenotype rather than fundamental units of phenotype frees the term considerably. One 280 

of the sharpest criticisms of the phene concept is that it may be impossible to know whether a 281 

given phene is fundamental, or can be deconstructed to more elemental phenes. In fact, this 282 

fuzziness should be embraced (York and Lobet, 2017) and the concept of phene hierarchies 283 

might be useful. For example, nodal root number has been linked to maize performance 284 

(Saengwilai et al., 2014; York et al., 2013), yet can be deconstructed to nodal roots per whorl 285 

and number of whorls (York and Lynch, 2015). Possibly these more elemental phenes could 286 

be further dissected, or, in contrast, could be aggregated in additional measures such as root 287 

length. Despite the fuzziness, a phene-based paradigm encourages the explicit consideration of 288 

these phenetic relations, and the process can yield new phenes that may be useful for 289 

understanding plant physiology. Future work will undoubtedly seek to offer further 290 

classification and understanding of phene hierarchies. 291 

Box 2. The functional phenomics pipeline 292 

The functional phenomics pipeline outlines a series of research objectives that together lead to 293 

increased understanding of plant functioning by leveraging high-throughput phenotyping and 294 

data analytics. The functional phenomics pipeline begins with ideotype development to 295 

hypothesize the idea phenotyping for a given environment. Second, a phenotyping platform is 296 

developed to maximize the throughput of phene measurements related to that ideotype. Then, 297 

a mapping population is screened measuring target phenes and indicators of plant performance 298 

such as yield and nutrient composition. Traditional forward genetics allows genetic mapping, 299 

while functional phenomics links phenes to plant performance. Based on these data, genotypes 300 

with contrasting phenotypes can be selected for smaller yet more intensive experiments to 301 

understand phene-environment interactions in depth. Simulation modeling is employed to 302 

understand the phenotypes and all stages of the pipeline feed back to ideotype and phenotyping 303 

platform development.   304 

Box 3. Phenetic hierarchies and phene integration 305 

The ‘rocketship’ model is a useful visualization for understanding phenetic hierarchy and 306 

phene integration (detailed in York et al., 2013). The phenes including root angle, total root 307 

number, photosynthesis rates, root cortical area, and exudation all influence plant functions 308 

such as nutrient acquisition, nutrient utilization, and the total carbon economy. Root number is 309 
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a phene aggregate that decomposes into the more elemental phenes number of whorls and 310 

number of roots per whorl (York and Lynch, 2015). Similarly, cortical area is influenced by 311 

aerenchyma, cortical cell file number, and cortical cell size (Jaramillo et al., 2013). The 312 

relations of lower order and greater order phenes constitute a phenetic hierarchy that 313 

acknowledges the uncertainty of knowing whether a proposed phene is actually elemental. At 314 

the same time, the contemplation of the elemental degree of a phene in relation to other phenes 315 

is a useful activity for ideotype development and design of phenotyping platforms. New 316 

classifications of phenes, their relations, and how they influence various plant function will 317 

benefit the utility of functional phenomics to deliver solutions. Phene integration determines 318 

how individual phenes interact to influence plant functions (York et al., 2013). For example, 319 

in maize more aerenchyma decreases root segment respiration and therefore allows a more 320 

efficient use of photosynthate to construct longer roots, while reduced crown root number 321 

allows individual root axes to be allocated more photosynthate. Together, these two phene 322 

states allow greater nitrogen uptake, shoot mass, and yield. Understanding phenetic hierarchies 323 

and phene integration will allow greater gains to be made in ideotype breeding programs. 324 

Box 4. Recent progress in functional phenomics 325 

High-throughput phenotyping of water use and plant size combined with linear modelling 326 

offers new insights to water use efficiency  327 

A plant-to-sensor conveying platform was used to automatically measure water use via 328 

differences in pot weight and digital imaging to estimate biomass (Feldman et al., 2017). Since 329 

total water use and total biomass were correlated, water use efficiency was explored using 330 

linear modelling to look at genotype-level deviations from the modelled relation. This research 331 

combined gains in understanding of plant physiology with genetic mapping, a powerful 332 

approach for functional phenomics. 333 

Automated simulations of light interception using image-based plant architecture and 334 

biomass were used to calculate radiation use efficiency 335 

Cabrera-Bosquet et al. (2016) combined a plant-to-sensor system measuring image-based 336 

shoot architecture with measurements of greenhouse light levels to simulate light interception 337 

and calculate radiation use efficiency. This approach show the power of combining simulation 338 

and experimental approaches.  339 

Phenotyping leaf transpiration rate and phosphorus concentration linked chickpea water 340 

use to phosphorus uptake 341 

Using 266 chickpea genotypes, Pang et al. (2018) used measures of phosphorus (P) 342 

concentration and shoot biomass to determine P-use efficiency and P-utilization efficiency. 343 

Using a subset of 100 lines contrasting for growth, they uncovered differences for 344 

photosynthetic rate and a positive correlation between transpiration and P acquisition. These 345 

results give an intriguing example of a non-intuitive relationship being uncovered through a 346 

functional phenomics approach, namely between mass flow and P uptake.  347 

Reduced nighttime transpiration has been demonstrated to be an important breeding 348 

target in grapevine  349 

Decreased transpiration at night was found to reduce water use without affecting growth in 350 

grapevine, representing a new avenue for increasing overall transpiration efficiency (Coupel-351 
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Ledru et al., 2016). This system coupled conveyors, automated pot weighing and water for 352 

water use, and digital imaging for estimating biomass. 353 

Root crown phenotyping linked root system architectural phenes to rooting depth and 354 

yield in wheat 355 

In a wheat mapping population, Slack et al. (2018) found that root crown architectural phenes 356 

correlated to rooting depth, yield, and senescence phenology based on root crown phenotyping 357 

methodology described in York et al. (2018). Specifically, steeper root angles and more roots 358 

per shoot were associated with more root length density at 40 – 60 cm dpeth, which was, in 359 

turn, related to yield and canopy stay-green. 360 
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Figures 368 

 369 

Figure 1. A 1:1 mapping of phenetic to genetic terms is proposed. 370 
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 372 

Figure 2. The functional phenomics pipeline is designed to increase fundamental knowledge 373 

of plant physiology by developing ideotypes, designing phenotyping platforms, phenotyping 374 

populations, studying phenotypic variation, correlating phenes to utility, physiological 375 

studies, and simulation modelling.  376 
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 378 

Figure 3. The ‘rocketship’ diagram demonstrates how the phenetic hierarchy leads to phene 379 

interactions that influence functional aspects and eventually performance metrics. Similar 380 

diagrams have been used by Arnold (1983), Violle et al. (2007), and York et al. (2013).  381 
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