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Abstract 7 

Background: Many large studies have implemented wrist or thigh accelerometry to capture 8 

physical activity, but the accuracy of these measurements to infer Activity Energy 9 

Expenditure (AEE) and consequently Total Energy Expenditure (TEE) has not been 10 

demonstrated. The purpose of this study was to assess the validity of acceleration intensity at 11 

wrist and thigh sites as estimates of AEE and TEE under free-living conditions using a gold-12 

standard criterion. 13 

Methods: Measurements for 193 UK adults (105 men, 88 women, aged 40-66 years, BMI 14 

20.4-36.6 kg·m-2) were collected with triaxial accelerometers worn on the dominant wrist, 15 

non-dominant wrist and thigh in free-living conditions for 9-14 days. In a subsample (50 men, 16 

50 women) TEE was simultaneously assessed with doubly labelled water (DLW). AEE was 17 

estimated from non-dominant wrist using an established estimation model, and novel models 18 

were derived for dominant wrist and thigh in the non-DLW subsample. Agreement with both 19 

AEE and TEE from DLW was evaluated by mean bias, Root Mean Squared Error (RMSE) 20 

and Pearson correlation. 21 

Results: Mean TEE and AEE derived from DLW was 11.6 (2.3) MJ·day-1 and 49.8 (16.3) 22 

kJ·day-1·kg-1. Dominant and non-dominant wrist acceleration were highly correlated in free-23 

living (r=0.93), but less so with thigh (r=0.73 and 0.66, respectively). Estimates of AEE were 24 

48.6 (11.8) kJ·day-1·kg-1 from dominant wrist, 48.6 (12.3) from non-dominant wrist, and 46.0 25 

(10.1) from thigh; these agreed strongly with AEE (RMSE ~12.2 kJ·day-1·kg-1, r ~0.71) with 26 

small mean biases at the population level (~6%). Only the thigh estimate bias was statistically 27 

significantly different from the criterion. When combining these AEE estimates with 28 

estimated REE, agreement was stronger with the criterion (RMSE ~1.0 MJ·day-1, r ~0.90). 29 

Conclusions: In UK adults, acceleration measured at either wrist or thigh can be used to 30 

estimate population levels of AEE and TEE in free-living conditions with high precision. 31 
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Introduction 36 

Characterising the energy balance of individuals in free-living conditions requires an accurate 37 

assessment of total energy expenditure. Total energy expenditure can be measured with high 38 

precision using the doubly labelled water technique1 but this is an expensive undertaking that 39 

requires elaborate sample collection and analysis infrastructure, making it less feasible for 40 

large-scale deployment or application in clinical settings. In most people, the largest 41 

component of total energy expenditure is resting energy expenditure, which can be predicted 42 

from anthropometric information with reasonable accuracy2,3. Diet-induced thermogenesis is 43 

less variable and ordinarily constitutes approximately 10% of total energy expenditure4. The 44 

predominant source of uncertainty in total energy expenditure estimates is the highly-variable 45 

activity energy expenditure component, which has proven difficult to capture by subjective 46 

instruments such as questionnaires5,6. Body-worn sensors such as accelerometers have the 47 

potential to provide a relatively cheap and reliable solution to this problem7, if valid inference 48 

models can be devised to estimate activity energy expenditure from the measurements they 49 

record. 50 

In recent years, wrist-worn accelerometers have become a popular measurement modality for 51 

objectively capturing free-living physical activity in large-scale studies8–10. Devices worn on 52 

the wrist are generally considered to be less burdensome for participants than those worn on 53 

other anatomical sites11. This has led to improved wear protocol adherence and thus to 54 

measurements with potentially greater representation of habitual physical activity levels. 55 

However, despite their recent increase in popularity, their utility in the estimation of activity 56 

energy expenditure has yet to be tested against gold-standard techniques in a sufficiently 57 

large sample of men and women in free-living12. Furthermore, some large studies 8–10 have 58 

committed to measuring only one of either the dominant wrist or non-dominant wrist, and the 59 

relationship between these two measurements also remains understudied. 60 
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In previous work, we derived parametric models to estimate activity energy expenditure 61 

intensity from non-dominant wrist acceleration (reproduced in Table 2) using a dataset 62 

(n=1050) of simultaneous non-dominant wrist and individually-calibrated combined heart 63 

rate and movement sensing signals collected under free-living conditions13. We evaluated the 64 

models in a large holdout sample (n=645) and found that they explained 44-47% of the 65 

variance in activity energy expenditure with no significant mean bias at the population level. 66 

However, as this comparison was against a silver-standard measurement of activity volume, 67 

these estimation models could be more conclusively validated by integrating the estimated 68 

activity energy expenditure signal over time, and assessing agreement of activity volume with 69 

a gold-standard criterion such as doubly labelled water. This approach has been used to 70 

validate combined heart rate and movement sensing 14–16 against which the models were 71 

originally derived. 72 

Thigh-worn devices have typically been employed in smaller studies to measure time spent in 73 

a sitting posture, in order to infer sedentary time. This is possible because the distribution of 74 

gravity over the three axes can be interpreted using a simple equation to calculate thigh 75 

inclination. However, thigh acceleration has received comparatively little attention as a 76 

measure of physical activity intensity, though it features prominently in activity classification 77 

experiments17. In epidemiological settings, thigh-worn sensors have been complemented by 78 

other sensors with the intention to capture physical activity separately18. 79 

The primary aim of this study was to describe the absolute validity of a previously 80 

established activity energy expenditure prediction model 13 when applied to both wrists, and 81 

to evaluate the validity of this estimation in predicting total energy expenditure when 82 

combined with a simple anthropometric prediction of resting energy expenditure2. The 83 

second aim was to use the same approach to derive and validate similar energy expenditure 84 

estimation models using thigh acceleration. The third aim was to explore the relationship 85 
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between the dominant wrist, non-dominant wrist and thigh acceleration measures in free-86 

living, and to derive intensity models to facilitate harmonisation.  87 
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Subjects and Methods 88 

Participants were recruited from the Fenland study, an ongoing cohort described in detail 89 

elsewhere 19. We aimed to recruit participants who had previously indicated that they were 90 

interested in participating in future studies, were aged between 40 and 70 years, with a BMI 91 

between 20 and 50 kg·m-2. Recruitment aimed to balance age, sex and BMI distributions. 92 

Participants were invited to attend an assessment centre on two separate occasions, separated 93 

by a free-living period of 9 to 14 days. Ethical approval for the study was obtained from 94 

Cambridge University Human Biology Research Ethics Committee (Ref: HBREC/2015.16). 95 

All participants provided written informed consent. 96 

Weight was measured to the nearest 0.1 kg using calibrated digital scales (TANITA model 97 

BC-418 MA; Tanita, Tokyo, Japan) at both visits. Height was measured to the nearest 0.1 cm 98 

using a stadiometer (SECA 240; Seca, Birmingham, UK) at the first clinic visit. Body 99 

composition was also measured by DXA (Lunar Prodigy Advanced, GE Healthcare, USA) as 100 

part of the Fenland study. 101 

Total energy expenditure was measured by doubly labelled water in 100 of the participants. 102 

Prior to the first clinic visit, participants self-reported their current weight, which was used to 103 

provide a body-weight specific dose of 2H2
18O (70 mg 2H2O and 174 mg H2

18O per kg body 104 

weight). Participants brought a baseline urine sample to their first clinic visit, and a second 105 

baseline sample was taken at the clinic visit, prior to dosing. Participants were provided 106 

labelled sampling bottles and asked to collect one urine sample per day for the next 9-10 days, 107 

at a similar time each day but not the first void of the day. Participants were asked to record 108 

the date and time of each measurement on the sample bottle label and separately on a 109 

provided timesheet. Participants were asked to store the samples in a container in a cool, dry 110 

place, such as a refrigerator, and to return those samples at their second clinic visit at the end 111 

of their free-living measurement period. Isotope ratio mass spectrometry (2H, Isoprime, GV 112 
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Instruments, Wythenshaw, Manchester, UK and 18O, AP2003, Analytical Precision Ltd, 113 

Northwich, Cheshire, UK) was used to measure the isotopic enrichment of the samples. All 114 

samples were measured alongside laboratory reference standards, previously calibrated 115 

against the international standards Vienna-Standard Mean Ocean Water (vSMOW) and 116 

Vienna-Standard Light Antarctic Precipitate (vSLAP) (International Atomic Energy Agency, 117 

Vienna, Austria). Sample enrichments were corrected for interference according to Craig 20 118 

and expressed relative to vSMOW. Rate constants and pool sizes were calculated from the 119 

slopes and intercepts of the log-transformed data, with total CO2 production (RCO2) 120 

calculated using the multi-point method of Schoeller 21. RCO2 was converted to total energy 121 

expenditure 22 where the respiratory quotient was informed by the macronutrient composition 122 

of the diet (see below). 123 

Resting metabolic rate was measured at the start of both clinic visits during a fifteen-minute 124 

rest test by respired gas analysis (OxyconPro, Jaeger, Germany). A seven-breath running 125 

median was calculated and the lowest observed average rate over a five minute consecutive 126 

window was found, which was scaled down by 6% to compensate for within-day elevation of 127 

resting metabolic rates 23. Basal metabolic rate was also estimated via three different 128 

equations which differ in the specific body composition information utilised 2,24,25. Resting 129 

energy expenditure was primarily characterised as the nearest measured value to the mean 130 

average estimated value, and a further sensitivity analysis was conducted using exclusively 131 

measured values. The final 24-hour resting energy expenditure estimates also included an 132 

adjustment for a 5% lower metabolic rate during sleep26, according to their reported mean 133 

sleep duration. 134 

At the second clinic visit, participants were asked to complete a Food Frequency 135 

Questionnaire27, which was used to estimate dietary intake over the past year. The food 136 

frequency data was processed using FETA28, and the resulting calorie-weighted 137 
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macronutrient profile was used to calculate the Food Quotient and diet-induced 138 

thermogenesis29. Diet-induced thermogenesis was normalised by the total energy expenditure 139 

to total energy intake ratio, as done previously14. 140 

At the first clinic visit, participants were fitted with three waterproof triaxial accelerometers 141 

(AX3, Axivity, Newcastle upon Tyne, UK); one device was attached to each wrist with a 142 

standard wristband, and one was attached to the anterior midline of the right thigh using a 143 

medical-grade adhesive dressing. The devices were setup to record raw, triaxial acceleration 144 

at 100 Hz with a dynamic range of ±8 g (where g refers to the local gravitational force, 145 

roughly equal to 9.81 m·s-2). Participants were asked to wear them continuously for the 146 

following 8 days and nights whilst continuing with their usual activities. They were also 147 

asked to record their main sleep using a sleep diary throughout the free-living period. 148 

The signals were resampled from their original irregularly timestamped intervals to a uniform 149 

100 Hertz signal by linear interpolation, and then calibrated to local gravity using a well-150 

established technique30,31, without adjustment for temperature changes within the record. 151 

Periods of nonwear were identified as windows of an hour or more wherein the device was 152 

inferred to be completely stationary 11, where stationary is defined as standard deviation in 153 

each axis not exceeding the approximate baseline noise of the device itself (10 milli-g). 154 

Vector Magnitude (VM) was then calculated from the three axes (VM (X,Y,Z) = (X2 + Y2 + 155 

Z2)0.5), from which two acceleration intensity metrics were derived 32; Euclidean Norm Minus 156 

One (ENMO) subtracts 1 g from VM and truncates any negative results to 0, and High-Pass 157 

Filtered Vector Magnitude (HPFVM) applies a fourth-order high-pass filter to the signal at a 158 

0.2 Hertz cut-off (3 dB). These analyses were performed using pampro v0.4.033. 159 

In the non-doubly labelled water group (n=93), multi-level linear regression with random 160 

effects at the participant level was used to characterise each of the pairwise relationships 161 

between dominant wrist, non-dominant wrist and thigh acceleration intensity using 162 
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synchronised 5-minute level data from each source. We used these intensity relationships to 163 

derive new activity energy expenditure estimation models for thigh and dominant wrist-worn 164 

devices, by substituting the non-dominant wrist term in our original models with the derived 165 

equation to harmonise either dominant wrist or thigh acceleration to non-dominant wrist 166 

acceleration. 167 

Activity energy expenditure was estimated separately from each of the acceleration signals by 168 

directly applying the appropriate linear and quadratic equations given in Table 2 to 5-second 169 

level data; the resulting 5-second level estimated activity energy expenditure signal was then 170 

summarised to a mean-per-day average activity energy expenditure using diurnal adjustment 171 

to compensate for any between-individual bias introduced by periods of nonwear34. To ensure 172 

a stable estimate of this circadian model, a minimum of 72 hours of valid data was required 173 

per signal to be included in the analyses. Predicted total energy expenditure (in MJ·day-1) was 174 

calculated as the sum of predicted activity energy expenditure and predicted resting energy 175 

expenditure from the simplest model (using only age, sex, height and weight)2, and dividing 176 

the result by 0.9 to account for diet-induced thermogenesis4. Agreement between these two 177 

predictions against measured activity energy expenditure and total energy expenditure from 178 

doubly labelled water was formally tested by calculating the pairwise mean bias and 95% 179 

limits of agreement, Root Mean Squared Error (RMSE) and Pearson's correlation coefficient. 180 

Linear regression was used to characterise the relationship between the acceleration 181 

measurements and activity energy expenditure/total energy expenditure derived from doubly 182 

labelled water. As the main focus of this paper is on absolute validity, these relative validity 183 

results are supplied in the supplementary material. 184 

The statistical tests were performed using Python v3.6 and Stata v14 (StataCorp, TX, USA). 185 

 186 
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Results 187 

A descriptive summary of participant characteristics is given in Table 1. We recruited 193 188 

participants, and the group measured by doubly labelled water was split equally between men 189 

and women. According to the doubly labelled water measurements, mean (standard deviation) 190 

total energy expenditure was 11.6 (2.3) MJ·day-1, of which 6.6 (1.2) MJ·day-1 was resting 191 

energy expenditure. Mean (standard deviation) activity-related acceleration (ENMO) per day 192 

was 32.4 (8.3) milli-g on the dominant wrist, 28.8 (7.7) milli-g on the non-dominant wrist, 193 

and 27.8 (10.9) milli-g on the thigh. Mean dominant wrist acceleration was higher than non-194 

dominant wrist in 84% of participants.  195 

Some accelerometry measurements were not included in the analyses due to a combination of 196 

devices being lost by participants (n=7), device failures (n=3), user error upon download 197 

(n=3), and insufficient wear time (n=3). Of those files that overlapped with doubly labelled 198 

water measurements, 3 were dominant wrist records, 3 were non-dominant wrist and 9 were 199 

thigh records. There was no loss of data in the doubly labelled water, anthropometry or food 200 

frequency questionnaire measurements. 201 

Table 2 lists the derived equations to predict activity energy expenditure from each of the 202 

sensors, as informed by the harmonisation equations which are supplied in Supplementary 203 

Table 1. For brevity, Table 3 summarises the absolute validity of the quadratic HPFVM 204 

models applied to measurements from both wrists and thigh with respect to activity energy 205 

expenditure, and Table 3 summarises agreement with total energy expenditure derived from 206 

doubly labelled water. A Bland-Altman plot illustrating the agreement of these estimates is 207 

supplied in Figure 1. A table summarising the remaining models is given in Supplementary 208 

Table 2. 209 

The difference in performance between each estimation model was very minor; all activity 210 

energy expenditure estimates had small negative mean biases (underestimates) at the 211 
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population level (average -2.8 kJ·day-1·kg-1) but of these only the thigh model biases were 212 

statistically significant. RMSEs for activity energy expenditure ranged from 11.9 to 13.5 213 

kJ·day-1·kg-1 (24 to 27% of the mean), and 1.0 to 1.2 MJ·day-1 for total energy expenditure (8 214 

to 10% of the mean). Pearson correlations ranged from 0.6 to 0.69 with activity energy 215 

expenditure, and from 0.87 to 0.91 with total energy expenditure. Combined estimates using 216 

two or more sensors lead to very negligible performance improvements over single-sensor 217 

estimates. Signed estimation errors were nominally positively correlated with body fat 218 

percentage when using our primary characterisation of resting energy expenditure (r=0.18-219 

0.25), and less so with exclusively measured values (r=0.10-0.17). 220 

In the non-doubly labelled water group, 88 participants had at least 3 days of valid 221 

simultaneous wrist signals during free-living, and 84 had simultaneous wrist and thigh signals; 222 

around 200 000 5-minute observations included in each of the regression analyses. The 223 

between-individual explained variance between dominant and non-dominant wrist intensity 224 

signals was approximately 86% (99% within-individual), and the average between-individual 225 

explained variance between wrist and thigh intensities was approximately 49% (97% within-226 

individual). The derived linear models to harmonise the acceleration signals are listed in 227 

Supplementary Table 1. The final models given to estimate activity energy expenditure from 228 

dominant wrist and thigh in Table 2 were the result of substituting these harmonisation 229 

equations into the original non-dominant wrist models. 230 

 231 
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Discussion 233 

In this work, we have applied our previously derived activity intensity estimation models 13 to 234 

wrist acceleration signals (after harmonising the intensity of dominant wrist to non-dominant 235 

wrist) and investigated their agreement with a gold-standard measure of activity energy 236 

expenditure. We arrived at estimates that were highly correlated with the criterion (r > 0.6) 237 

with small and non-significant mean biases at the population level from both wrists and low 238 

RMSEs of approximately 12 kJ·day-1·kg-1. We have also introduced and validated new 239 

intensity estimation models for thigh acceleration, demonstrating similar performance to the 240 

wrist models. We observed that dominant wrist acceleration was on average 12% higher than 241 

non-dominant wrist in free-living individuals, but that those measures were very highly 242 

correlated (r=0.93), allowing us to derive conversion models which harmonise acceleration 243 

intensity measured at either wrist. To our knowledge, this is the first demonstration of the 244 

absolute validity of a time-integrated predictive model of activity intensity for either wrist or 245 

thigh accelerometry. 246 

Our findings on the high correlation between dominant wrist and non-dominant wrist 247 

acceleration in free-living individuals are consistent with a previous study in a small 248 

convenience sample (n=40)35. They also observed ~5% higher dominant wrist than non-249 

dominant wrist acceleration, but it was not a statistically significant difference, perhaps due 250 

to the shorter duration of measurement and smaller sample size. In our relative validity tests, 251 

we found that each wrist separately explained a similar variance in activity energy 252 

expenditure, and inclusion of both wrist measurements in the linear models did not drastically 253 

improve performance over either wrist measurement alone. Taken together, these results are 254 

indicative of a high degree of upper-body symmetry. One implication of these findings is that 255 

irrespective of hand dominance, wrist acceleration measurements are naturally conducive to 256 

harmonisation across studies, making them well suited to pooled- and meta-analysis. 257 
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Conversely, it implies that implementing dual wrist measurements may be a largely redundant 258 

exercise for studies whose primary intention is to capture activity energy expenditure. 259 

However, there is a possibility that future methodological advances in the field of activity 260 

recognition may be able to better utilise simultaneous wrist signals, which could yield a more 261 

precise instantaneous estimation of activity energy expenditure. 262 

The estimation models validated herein for the wrist were derived using a training dataset in 263 

which non-dominant wrist acceleration data was collected at 60 Hz with a GeneActiv device 264 

13, and were successfully validated using 100 Hz data collected with an Axivity AX3. With an 265 

additional harmonisation step, the model also translated to acceptably strong inferences on 266 

the dominant wrist, albeit with a slightly increased error. This indicates that our models 267 

capture a generalized biomechanical relationship of wrist movement, rather than being 268 

superficial transformations of a specific device's output to activity energy expenditure. It 269 

therefore suggests that these models are applicable to any wrist-worn device which provides 270 

raw, unfiltered triaxial acceleration data expressed in SI units. 271 

The associations between wrist acceleration and observations from DLW have been reported 272 

before, in pregnant and non-pregnant Swedish women 11. In that population it explained 27% 273 

of the variance in activity energy expenditure (kJ·day-1·kg-1) in non-pregnant women (n=48), 274 

but only 5% in pregnant women (n=26); however, those wrist measurements were evenly 275 

divided between left and right wrist, which most likely lead to a mix of dominant and non-276 

dominant wrist measurements and potentially attenuated the correlations. 277 

The previously established estimation models applied to the non-dominant wrist resulted in 278 

robust estimates with small, non-significant mean biases, which is a strong justification for 279 

using this inference scheme to infer activity energy expenditure in free-living individuals. 280 

The higher average of the dominant wrist would have led to a significant overestimation had 281 

we applied the original non-dominant wrist model, but our harmonisation approach 282 
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effectively scaled the dominant wrist measure down to the level of non-dominant wrist, 283 

ultimately leading to virtually identical results. We note that physical activity was measured 284 

by dominant wrist accelerometry in UK Biobank8. We have now demonstrated the validity of 285 

this approach in a demographically comparable sample. Specifically, the absolute validity 286 

result for ENMO in Supplementary Table 2 demonstrates that our linear estimation model 287 

applied to ENMO at 5-second resolution yielded a valid activity energy expenditure estimate, 288 

with a small mean bias and a RMSE of 13 kJ·day-1·kg-1 and high correlation (r=0.61). 289 

Consequently, we can use the equations for dominant wrist in Table 2 to solve for salient 290 

energy expenditure values – for example, 3 metabolic equivalents (activity energy 291 

expenditure ~142 J·min-1·kg-1) is the generally accepted threshold for “moderate” activity 292 

intensity, and our ENMO equations suggest this is approximately 159 milli-g on the dominant 293 

wrist. 294 

Our findings for the thigh acceleration models demonstrate that thigh-worn accelerometers 295 

capture an information-rich biomechanical signal, from which valid estimates of activity 296 

energy expenditure can be made. As a consequence of the larger y-intercepts of the thigh 297 

models, their minimum estimated activity energy expenditure ranges from 10 to 18 J·min-298 

1·kg-1 (0.15-0.25 metabolic equivalents). To our knowledge, only one previous study has 299 

described the association between thigh acceleration and activity energy expenditure from 300 

doubly labelled water, in a small study of free-living cancer patients and controls36; which 301 

reported very low agreement between the manufacturer's proprietary activity energy 302 

expenditure prediction and the criterion. While thigh-worn sensors do not yet have the same 303 

popularity as wrist-worn sensors37,38, large-scale data collections are planned for the future39. 304 

Our models enable new analyses to be conducted in those existing datasets, and may make 305 

thigh-worn accelerometry a more appealing option for future studies if issues of feasibility 306 

can be addressed. 307 
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Some have suggested that simple movement intensity approaches should be replaced by more 308 

sophisticated models that utilise a broader range of signal features40,41. Recent efforts to 309 

estimate energy expenditure have utilised a range of machine learning approaches, such as 310 

neural networks 42–44 and random forests40. While we are not aware of any such methodology 311 

with a performance that exceeds the simpler models validated in this paper, this is an 312 

interesting area of future work. 313 

The results of our absolute validity tests demonstrate that deriving intensity models using a 314 

"silver-standard" criterion (such as individually-calibrated heart rate and uniaxial movement 315 

sensing) in a large sample of free-living adults is a sound approach. The combined sensing 316 

estimate of activity energy expenditure is less precise than respiratory gas analysis which can 317 

be captured in laboratory studies 45 but there are several reasons why we have been able to 318 

derive superior models to previous approaches. Firstly, the dataset was collected in free-living 319 

participants, and is therefore representative of the intended application, as opposed to 320 

artificial scenarios and activities performed in a laboratory. Secondly, the combined sensing 321 

approach embedded in a cohort study allowed the collection of a volume of data many orders 322 

of magnitude greater than any laboratory study has for this purpose. Our training dataset 323 

alone contained over 16.6 person-years of observation (>1.7 million data points). One 324 

disadvantage of this approach is that we are unable to capture categorical labelled data, so 325 

there is no opportunity to explore activity type recognition. 326 

It is appropriate to compare our absolute validity results here with those of combined sensing 327 

itself 14. The best estimate with treadmill test calibration resulted in a RMSE of 20 kJ·day-328 

1·kg-1 (30% of the 66 kJ·day-1·kg-1 criterion mean), non-significant positive mean bias of 329 

approximately 4 kJ·day-1·kg-1 (6%) at the population level, and a correlation of 0.67 in a 330 

sample of 50 UK adults. Compared to the present results, all estimations here had 331 

considerably lower RMSEs of around 12 kJ·day-1·kg-1 (25% of the 50 kJ·day-1·kg-1 mean), 332 
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similar magnitude but negative mean biases (~6%), but generally higher correlations. 333 

However, our study participants were significantly less active overall according to the 334 

criterion, ultimately leading to a similar relative accuracy. Combined sensing model errors 335 

were also uncorrelated to body fat percentage, whereas errors of accelerometry-only models 336 

seem to display this characteristic, albeit less so in the present study (r=0.22 versus r=0.63 for 337 

uniaxial trunk acceleration). Contrasting the feasibility of the methods, however, wrist 338 

accelerometry has the advantages of being cheaper, less burdensome to both participants and 339 

research staff, and does not require individual calibration using an exercise test. Comparing 340 

performance of other devices worn on the upper limbs, validation of the now-discontinued 341 

SenseWear Pro3 and Mini also achieved no significant bias with respect to total energy 342 

expenditure, but with lower correlations (r=0.84) than any of our total energy expenditure 343 

models (r=0.9) and wider limits of agreement 46 and with lower feasibility. 344 

In summary, we have evaluated the absolute validity of intensity models of activity energy 345 

expenditure from wrist and thigh accelerometry, and concluded that they provide precise and 346 

accurate estimates in free-living adults. With the addition of predicted resting energy 347 

expenditure to produce total energy expenditure, we found even stronger validity at the 348 

population level. Considering its feasibility, wrist accelerometry emerges as a viable 349 

candidate for deployment in a large scale studies, including physical activity surveillance and 350 

the prediction of total energy expenditure in dietary surveys. 351 

 352 

  353 
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Figure legends 516 

 517 

Participant characteristics, provided separately for the doubly labelled water and non-doubly 518 

labelled water groups.  519 

Derived linear and quadratic equations to estimate activity energy expenditure (J·min-1·kg-1) 520 

from wrist and thigh acceleration intensity. (4.184 J·min-1·kg-1 = 1 cal, and 71.225 J·min-1·kg-1 521 

= 1 net Metabolic Equivalent Task (MET)). 522 

Agreement between estimated activity energy expenditure from the HPFVM quadratic 523 

models with those derived from doubly labelled water. An asterisk (*) next to a bias value 524 

indicates statistical significance according to a paired t-test (p < 0.05). 525 

Bland-Altman plots illustrating agreement between the activity energy expenditure and total 526 

energy expenditure estimates from HPFVM Quadratic models with those from doubly 527 

labelled water, where the X-axis indicates the observed values. 528 
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