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Abstract

Modern optical imaging experiments not only measure single-cell and single-molecule
dynamics with high precision, but they can also perturb the cellular environment in
myriad controlled and novel settings. Techniques, such as single-molecule fluorescence
in-situ hybridization, microfluidics, and optogenetics, have opened the door to a large
number of potential experiments, which begs the question of how best to choose the
best possible experiment. The Fisher information matrix (FIM) estimates how well
potential experiments will constrain model parameters and can be used to design
optimal experiments. Here, we introduce the finite state projection (FSP) based FIM,
which uses the formalism of the chemical master equation to derive and compute the
FIM. The FSP-FIM makes no assumptions about the distribution shapes of single-cell
data, and it does not require precise measurements of higher order moments of such
distributions. We validate the FSP-FIM against well-known Fisher information results
for the simple case of constitutive gene expression. We then use numerical simulations
to demonstrate the use of the FSP-FIM to optimize the timing of single-cell experiments
with more complex, non-Gaussian fluctuations. We validate optimal simulated
experiments determined using the FSP-FIM with Monte-Carlo approaches and contrast
these to experiment designs chosen by traditional analyses that assume Gaussian
fluctuations or use the central limit theorem. By systematically designing experiments
to use all of the measurable fluctuations, our method enables a key step to improve
co-design of experiments and quantitative models.

Author summary

A main objective of quantitative modeling is to predict the behaviors of complex 1

systems under varying conditions. In a biological context, stochastic fluctuations in 2

expression levels among isogenic cell populations have required modeling efforts to 3

incorporate and even rely upon stochasticity. At the same time, new experimental 4

variables such as chemical induction and optogenetic control have created vast 5

opportunities to probe and understand gene expression, even at single-molecule and 6

single-cell precision. With many possible measurements or perturbations to choose 7

from, researchers require sophisticated approaches to choose which experiment to 8

perform next. In this work, we provide a new tool, the finite state projection based 9
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Fisher information matrix (FSP-FIM), which considers all cell-to-cell fluctuations 10

measured in modern data sets, and can design optimal experiments under these 11

conditions. Unlike previous approaches, the FSP-FIM does not make any assumptions 12

about the shape of the distribution being measured. This new tool will allow 13

experimentalists to optimally perturb systems to learn as much as possible about 14

single-cell processes with a minimum of experimental cost or effort. 15

Introduction 16

Recent labeling and imaging technologies have greatly increased capabilities to measure 17

biological phenomena at the single-cell and single-molecule levels. When conducted 18

under different conditions, single-cell experiments can probe processes for different 19

spatial or temporal resolutions, for different population sizes, under different stimuli, at 20

different times during a response, and for myriad other controllable or observable 21

factors [1–7]. As these experiments have become more capable to precisely perturb or 22

measure different biological species, they have also become more expensive, which 23

imposes a limit on the number and type of experiments that can be conducted in any 24

given study. Clearly, not all experiment designs provide the same information, and 25

different experiments may be “optimal” to answer different questions about the system. 26

However, the inherent diversity of modern experiments makes it difficult to intuit which 27

experiments will be most informative and in which circumstances. Computational tools 28

for model-driven experiment design could help to select more informative experiments, 29

provided that existing tools can be adapted to overcome the unique challenges presented 30

by single-cell data. 31

One model-driven approach to optimal experiment design is to use the Fisher 32

information matrix (FIM), which describes the precision to which a model’s parameters 33

can be estimated for any particular experiment [8–13]. To improve estimates of model 34

parameters, the FIM can be used iteratively in a Bayesian framework by specifying 35

maximally informative experimental conditions, collecting data under these conditions, 36

using new data to constrain parameters, and using the newly constrained parameters to 37

design the next round of experiments [9, 12–15]. The formalism of the FIM for 38

experiment design has been used to great effect in engineering disciplines, such as radar, 39

astrophysics, and optics [16–18]. In principle, similar analyses could introduce a natural 40

feedback in the co-design of single-cell experiments and discrete stochastic models, but 41

for this to work, accurate analyses are needed to extract more meaning from the data 42

and to provide better predictions about how biological systems will behave under new 43

conditions. 44

Experimentally observed cell-to-cell variability has been well demonstrated to 45

provide substantial quantitative insight to constrain and identify the mechanisms and 46

parameters of gene regulation models [1–6,19–21]. Therefore, the FIM analysis for the 47

optimal design of single-cell experiments should explicitly consider such single-cell 48

variability. Standard FIM analyses assume continuous-valued observables with 49

Gaussian-distributed measurement noise. However, in contrast to most classical 50

engineering applications, the distributions of integer-valued RNA or protein levels across 51

an isogenic cell population can be highly complex and subject to intrinsic and extrinsic 52

variations, with nonlinear interactions that lead to multiple peaks and long 53

tails [2, 22–24]. Because the FIM is not computable for general discrete stochastic 54

processes with non-Gaussian distributions, computational biologists have applied 55

various approximations to estimate the FIM. A few recent biological studies use the 56

Linear Noise Approximation [25] to treat single-cell distributions as Gaussian, which 57

allows for the use of standard Fisher information analyses [8]. This approach, which we 58

refer to as the LNA-FIM, should be valid for large numbers of molecules, but it is 59
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unlikely to be accurate for systems with high intrinsic noise corresponding to low gene, 60

RNA, or protein counts. A different approach to estimate the FIM uses the central limit 61

theorem (CLT) to approximate the sample mean and covariance to be jointly Gaussian 62

and uses higher-order moments of the chemical master equation to estimate the 63

likelihood of these moments [9]. This approach, which we refer to as the sample 64

moments approach (SM-FIM), should be valid for large numbers of cells as can be 65

collected in high-throughput experimental approaches, such as flow cytometry. However, 66

when distributions have long asymmetric tails and sample sizes are limited, higher 67

moments become very difficult to estimate and can lead to surprising model estimation 68

errors [26]. Beyond these few Gaussian assumptions, there has been little work devoted 69

to improve the design of time-varying single-cell experiments for systems with arbitrary 70

probability distributions. 71

In this study, we introduce a formulation of the Fisher information for use with 72

discrete stochastic models and data sets containing intrinsic variability that is 73

measurable with single-biomolecule resolution. Our approach utilizes the finite state 74

projection (FSP) approach [27] to solve the chemical master equation (CME) [25,28], 75

and compute the likelihood of single-cell data given a discrete stochastic model [2,21,24]. 76

The FSP solves for the probability distribution over discrete numbers of biomolecules to 77

any arbitrary error tolerance. By utilizing the full probability distributions, as opposed 78

to finite order or approximate moments of these distributions, our approach makes no 79

assumptions and works well for distributions with multiple peaks or long tails. 80

In the next section, we introduce the FSP and derive the sensitivities of the FSP 81

solution to small perturbations in parameters. Next, we derive the likelihood function 82

and its local sensitivity for discrete stochastic models and discrete data. These allow us 83

to formulate and compute the FSP-FIM. Next, we use a combination of analytical 84

results and numerical simulations to verify the FSP-FIM for two common models of 85

gene expression. Finally, we demonstrate how the FSP-FIM can be applied to design 86

nontrivial experiments for a simulated system with nonlinear reaction rates. 87

Chemical Master Equation and Finite State Projection 88

Stochastic gene expression can be modeled as a discrete state, continuous time Markov
process, where different states xi = [η1, η2, ..., ηNs ]Ti ∈ X ⊂ ZNs

≥0 represent the Ns
species of interest. In a biological context, the species η often correspond to gene
configurations, RNA or protein abundances. Transitions to state xi +ψν from xi occur
with probabilities wν(xi, t)dt in an infinitesimal time step of length dt, where wν and
ψν are the propensity function and the stoichiometric vector corresponding to reaction
ν ∈ {1, 2, ..., Nr}. Using the propensity functions and stoichiometry vectors, one can
describe the evolution of probability mass for each xi using the chemical master
equation (CME, [25,28]) given by:

d

dt
p(xi; t) =

Nr∑
ν=1

[wν(xi −ψν , t)p(xi −ψν ; t)− wν(xi, t)p(xi; t)] . (1)

By enumerating all possible xi, one can define the probability mass vector as 89

p = [p(x1; t), p(x2; t), ...]T and reformulate the CME in matrix form as 90

d
dtp(t) = Ap(t) [27]. 91

Many systems described by the CME are not closed, i.e. the vector p has infinite
dimension. In such cases, most states are extremely rare, and the sum of their
corresponding probabilities is negligible. Thus, a natural approximation for the CME is
to separate it into two exhaustive and disjoint sets, XJ and XJ′ , with XJ being a finite
set and XJ′ being a set of low probability states. Defining pJ(t) ≡ p(XJ ; t), the CME
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can be reordered and written as:

d

dt

(
pJ(t)
pJ′(t)

)
=

(
AJJ AJJ ′

AJ′J AJ′J′

)(
pJ(t)
pJ′(t)

)
. (2)

The finite state projection (FSP) approach [27], obtains an approximation of pJ(t) for
finite times by replacing the set of states XJ′(t) with an absorbing sink state whose
probability mass is g(t),

d

dt

(
pFSP (t)
g(t)

)
=

(
AJJ 0
−1TAJJ 0

)(
pFSP (t)
g(t)

)
. (3)

The FSP provides the exact total error of this approximation for all states in XJ and
XJ′ as: ∣∣∣ (pJ(t)

pJ′(t)

)
−
(

pFSP (t)
0

) ∣∣∣
1

= g(t), (4)

where the |.|1 denotes the absolute sum of the vector [24,27]. The FSP solution is also
guaranteed to be a lower bound on the true solution [24,27],(

pFSP (t)
0

)
≤
(

pJ(t)
pJ′(t)

)
for all t > 0. (5)

For simplicity, we will hereafter refer to the approximated states pFSP (t) as p(t) and 92

the corresponding matrix AJJ as A. Next, we derive the likelihood function for FSP 93

models and single-cell data. 94

The FSP enables computation of the likelihood of single-cell 95

data 96

A common task in single-cell analyses is to analyze snapshot measurements of 97

independent cell populations, such as those collected using single-molecule fluorescent 98

in-situ hybridization (smFISH) [22,23]. For such measurements, cells are fixed in the 99

process of quantifying their RNA, and individual cells cannot be tracked over time. 100

However, snapshots can be collected at different points in time to quantify a 101

population’s response to changing conditions [2, 29,30]. For such experiments, we 102

assume that measurements at all time points {tk} are independent. The measured RNA 103

counts for Ns different labeled species for each of Nc individual cells at time t can be 104

collected into the data matrix Dt ≡ [d1,d2, . . . ,dNc ]t ∈ ZNs×Nc

≥0 . We define L(D;θ) as 105

the likelihood that all measured data D = {D1, . . . ,DNt} come from a model 106

parameterized by θ = [θ1, θ2, . . . , θk]. 107

For FSP models, the likelihood and its logarithm for Nc measured cells can be
written directly as:

L(D;θ) =

Nt∏
k=1

Nc(k)∏
i=1

p(xi = di; tk,θ), (6)

logL(D;θ) =

Nt∑
k=1

Nc(k)∑
i=1

log(p(xi = di; tk,θ)). (7)

A common task in systems biology is to estimate parameters θ̂ that maximize the 108

likelihood that data could have come from a given model, and this form of the 109

likelihood function has been used multiple times to estimate parameters from single-cell 110
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data [2, 6, 21,24,31,32]. In addition to estimating parameters from data, the likelihood 111

function can also be used to estimate the sensitivity of parameter estimates to sampling 112

errors in the experimental measurements, which can in turn be used to design better 113

experiments. In the following sections, we will use this fact to derive the FIM for FSP 114

models. 115

Derivation of the Fisher Information for FSP Models 116

The FIM, which describes the amount of information that can be expected by
performing a particular experiment with Nc cells, is defined as

I(θ) = NcE
{

(∇θ log p(X;θ))
T

(∇θ log p(X;θ))
}
, (8)

where the expectation is taken over p(X;θ), corresponding to the density from which
future (or hypothetical) data could be sampled. For FSP models, this density is the
discrete distribution found by solving Eq. 3. Equation 8 is positive semi-definite and is
additive for collections of independent observations [10]. The inverse of the FIM is
known as the Cramèr-Rao bound (CRB), which provides a useful lower bound on the
variance for any unbiased estimator of model parameters [11]. The notion of information
stems from the fact that new experiments should increase the FIM, corresponding to
additional knowledge about θ and a tighter CRB. More specifically, the well-known
asymptotic normality of the maximum likelihood estimator (MLE) states that as the
number of measurements Nc increases, the MLE estimates will converge in distribution
to a multivariate normal probability density with a variance given by the CRB,√

Nc(θ̂ − θ∗)
dist−−→ N (0, I(θ∗)−1), (9)

where θ̂ is the θ that maximizes Eq. 6 and θ∗ are the “true” model parameters that 117

produced the observed data [10,11]. Designing experiments to maximize a given metric 118

of the FIM can be expected to provide a more accurate estimate of θ, where different 119

definitions of ‘accuracy’ (i.e., different vector norms for parameter errors) can be 120

implemented through the choice of different FIM metrics. 121

To derive the FIM requires one must take the partial derivative of the log-likelihood
(Eq. 7) with respect to the parameters θ,

∇θ log p(X;θ) =


1
p0

∂p0
∂θ1

1
p0

∂p0
∂θ2

. . . 1
p0

∂p0
∂θNp

1
p1

∂p1
∂θ1

1
p1

∂p1
∂θ2

. . . 1
p1

∂p1
∂θNp

...
... . . .

...
1
pN

∂pN
∂θ1

1
pN

∂pN
∂θ2

. . . 1
pN

∂pN
∂θNp

 . (10)

The expression ∇θp(X;θ) is the sensitivity matrix, S, which has dimensions N ×Nθ,
where N is the dimension of the CME or its FSP projection. As described in the
Materials and Methods, we derive an equation similar to that presented in [33] to
define the time evolution of the sensitivity for each state’s probability density, p(xl;θ),
to each parameter θj . However, unlike previous analyses that rely on stochastic
simulations and finite difference approaches, the FSP enables direct approximation of
the sensitivities. Using the sensitivity matrix, the entries of the FIM can be computed
as:

I(θ)ij = NcE

{(
1

p(xl;θ)

)2

SliSlj

}
. (11)
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Taking the expectation over all l on (1, N) yields the elements of the FIM:

I(θ)ij = Nc

N∑
l=1

(
1

p(xl;θ)

)2

SliSljp(xl;θ),

= Nc

N∑
l=1

1

p(xl;θ)
SliSlj , (12)

which quantifies Fisher information for the model evaluated at a single time point. For
smFISH data, each time point is independent. If Nc(tk) cells are measured at each kth

time point, the FIM is summed, and the total information is computed as:

I(θ)ij =

Nt∑
k=1

Nc(tk)
N∑
l=1

1

p(xl; tk,θ)
Sli(tk)Slj(tk). (13)

The Fisher information can be found using Eq. 13 for any model for which the FSP
(Eq. 3) can be solved. This formulation explicitly quantifies how the number of cells and
number of time points impact the information, and is easily extended to include other
experiment design aspects such as the interval of successive measurements or changes in
applied inputs, as we will demonstrate in the following sections. Because one is often
interested in the relative sensitivity of parameters rather than the absolute sensitivity, a
logarithmic parameterization of the FIM can easily be obtained from Eq. 13 by
multiplying by the corresponding entries of θ (see supplemental information for full
details),

I(log θ)ij = θiθjI(θ)ij . (14)

In the following sections, we will verify the FIM using several common models of 122

gene expression, and demonstrate experiment designs using these approaches. 123

In
fo

rm
at

io
n
,

In
fo

rm
at

io
n
,

LNA
FSP/Poisson/

Mean RNA expression, Mean RNA expression, 

GeneGene

(a) (b)

Fig 1. Fisher information for a model of birth and death. The Fisher information for
the two model parameters kr (a) and γ (b) for various values of the mean expression
level, λ. The analytical form of the FIM for a Gaussian approximation and that
computed using Eq. 37 (purple line) match to one another. The value computed using
the FSP-FIM (blue) matches to the exact form of the analytical Poisson distribution
(orange dashed). As λ becomes large, all four approaches are consistent.
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Results 124

The FSP-FIM captures the exact information for constitutive 125

gene expression 126

To demonstrate and validate the FSP-FIM method, we begin with a simple birth and
death model for constitutive gene expression as shown in Figure 1. This model, which
has been fit to capture the variability for many housekeeping genes [1, 20], consists of
two reactions, corresponding to the constant transcription and first order decay of RNA,

R1 : gene
kr−→ gene+RNA

R2 : RNA
γ−→ ∅.

The production and degradation parameters are defined as θ = [kr, γ]. 127

Given an initial condition of zero RNA for this process, the population of RNA at
any later time is a random integer sampled from a Poisson distribution,

p(x;λ) =
λxe−λ

x!
, (15)

where λ is the time varying average population size,

λ(t, kr, γ) =
kr
γ

[1− exp(−γt)]. (16)

We have chosen the constitutive gene expression model to verify the FSP-FIM because
the exact solution for the Fisher information for Poisson fluctuations can be derived in
terms of λ as [10]:

IPoisson(λ) =
1

λ
. (17)

For convenience, the derivation of Eq. 17 is included in the supplementary text. Figure 128

1 shows the exact value of Fisher information (orange) versus the mean expression level 129

for the two parameters kr and γ. Figure 1 also shows that the FSP-FIM (blue) matches 130

the exact solution for the information on both parameters at all expression levels, which 131

verifies the FSP-FIM for this known analytical form. 132

Having demonstrated that the FSP-FIM matches to the exact solution, it is
instructive to compare how well the previous LNA-FIM and SM-FIM estimates match
to the exact FIM computation. For the Poisson distribution, the mean and variance are
both equal to λ. Using this fact, the FIM can be approximated using the LNA-FIM for
normal distributions (see Eq. 37 in the Materials and Methods). This expression, which
is derived in the supplementary text, reduces to

IN (λ,λ) =
1

λ
+

1

2λ2
, (18)

when both the mean and variance are λ. As λ becomes large, the Poisson distribution 133

becomes well approximated by a normal distribution [11]. Equations 17-18 show that 134

for this limit of large λ, the first term in Eq. 18 dominates, and IN reduces to IPoisson, 135

yielding nearly equivalent values for the expected information. However at low mean 136

expression λ ≤ 1, the strictly positive Poisson and the symmetric Gaussian distributions 137

are less similar, and the Gaussian approximation predicts more information than is 138

actually possible given the exact Poisson distribution. These trends are shown in Fig. 1, 139

where the LNA-FIM approach only matches to the exact solution at high expression 140

levels (compare orange and purple lines). For this example, the sample-moments based 141

FIM (SM-FIM) is exact and matches to the analytical and FSP-FIM solutions at all 142

expression levels [9]. 143
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Non-Gaussian
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Non-Gaussian

Fast switching
Poisson 
Almost-Gaussian

(b)

(c) (d)
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(a)

Gene On

Gene Off

Fig 2. Bursting gene expression. (a) Schematic of the standard bursting gene
expression model. Parameters are defined as given in the text to yield an “on” fraction
of 0.25 and a mean expression of 25 mRNA per cell. (b) At slow switching rates, unique
“on” and “off” modes are apparent, and distributions of molecule numbers are bimodal.
(c) For intermediate switching rates, the distributions are geometric. (d) At high
switching rates, the distributions are nearly Poisson (d). For each switch rate scale
(labeled I, II, or III), the distribution of RNA computed with the FSP (blue) is
compared to a Gaussian with the same mean and variance (purple).

The FSP-FIM matches the simulated information for bursting 144

gene expression 145

Next, we consider a slightly more complicated model of bursting gene expression, in
which a single gene undergoes stochastic transitions between active and inactive states
with rates kon and koff . This switching model, which is depicted in Fig. 2(a), has been
studied in detail [20, 34–40], and it has been used to capture single-cell smFISH
measurements in mammalian cells [30, 37], yeast cells [2, 36], and bacterial cells [29].
When active, the gene transcribes RNA with constant rate kr and these RNA degrade
in a first order reaction with rate γ. The four reactions of the system are:

R1 : goff
kon−−→ gon (19)

R2 : gon
koff−−→ goff (20)

R3 : gon
kr−→ gon +RNA (21)

R4 : RNA
γ−→ ∅. (22)

For the examples below, we use the baseline parameters given by: kon = 0.05α min−1, 146

koff = 0.15α min−1, kr = 5.0 min−1, and γ = 0.05 min−1. In particular, the mRNA 147

degradation rate, which sets the overall time-scale, was chosen to be representative of 148

the average decay times (approximately 20 minutes) for mRNA in yeast [41]. 149

For the bursting gene expression model, rescaling the transition rates kon and koff by
a common factor does not affect the mean expression level, because the fraction of time
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spent in the active state remains unchanged. This fraction can be written

fon ≡
αkon

αkon + αkoff
=

kon
kon + koff

, (23)

and is the same for any α > 0. For the parameters given above, the average expression 150

at steady state is given by krfon/γ = 25. However, rescaling the transition rates does 151

change the shape of the distribution as shown in Fig. 2(b-d) [20]. When switching is 152

slow, the gene stays in the “on” and “off” states long enough to observe individual high 153

and low peaks corresponding to the “on” and “off” states, as in shown in Fig. 2(b). 154

However, for intermediate switching rates, the gene does not spend enough time in the 155

“off” state for bursts to decay or enough time in the “on” state for large populations to 156

accumulate (see Fig. 2(c)). At fast switching rates the “on” and “off” states come to a 157

fast quasi-equilibrium, and the time-averaged system approaches a Poisson process, 158

where the effective production rate is krfon. For the bursting gene expression model, all 159

moments of the distributions can be computed exactly from Eq. 35 in the Materials and 160

Methods section, even when the RNA distributions are highly non-Gaussian [42]. 161

Since the previous example has already verified the accuracy of the FSP-FIM when 162

the expression has a Poisson distribution, we now verify the FSP-FIM for the slow 163

switching case in which the distribution is bimodal (α = 0.1). To our knowledge an 164

exact FIM solution is not known for the bursting gene expression model, so we evaluate 165

the different FIM approximations by finding the sampling distribution of the MLE, and 166

95% CI FSP-FIM
95% CI Sampling

95% CI LNA-FIM
95% CI Sampling

95% CI SA-FIM
95% CI Sampling LNA-FIM

FSP-FIM

SM-FIM

(a) (b)

(c) (d)

Fig 3. Verification of the FSP-FIM for models with non-Gaussian distributions. The
inverse of the FIM is a lower bound on the variance of the MLE estimator. Here, we
simulate 200 data sets with 1,000 cells in each data set. We then find the MLE θ̂
(scatter plots) for each, and compare the covariance of these samples to the inverse of
the FIM for the (a) FSP-, (b) LNA-, and (c) SM-FIM approaches. Panel (d) shows the
FIM matrices for all approximations on the same axes. Simulated data were generated
using the parameters given in the main text and at 10 time points evenly distributed
between 0 and 200 minutes.
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I

Switching rate, 

II III

Fig 4. FIM analysis of the bursting gene model. The determinant FIM for the
LNA-FIM (purple), FSP-FIM (blue), and SM-FIM (green) as a function of the gene
switching rate scale, α. Labels I, II, III correspond to the switch rates for which
distributions are plotted in Figs. 2(a-c). Parameters are given in the main text and
data are assumed to be collected at 10 equally separated time points between 0 and 200
minutes.

we compare the covariance of this distribution to the inverse of the FIM [11]. To do this, 167

we sample from p(X; t,θ∗) under reference parameter set θ∗ to generate 200 simulated 168

data sets, each with independent RNA measurements for 1,000 cells. We then allow koff 169

and kr to be free parameters, and we find θ̂ for each of the 200 data sets. Figure 3 170

compares the 95% confidence intervals found by taking the inverse of the FIM and 171

through MLE estimation using simulated data for the FSP likelihood (Eq. 6) shown in 172

Fig. 3(a), the LNA-based likelihood (Eq. 36 in the Methods section) shown in Fig. 3(b), 173

and the SM-based likelihood (Eq. 36 in the Methods section, Supplementary Eq. 10) 174

shown in Fig. 3(c). Figure 3(a) shows that the CRB predicted by the FSP-FIM matches 175

almost perfectly to the confidence intervals determined by MLE analysis of independent 176

data sets. Figure S3 (left column) shows that this estimate is consistently accurate over 177

multiple different experiment designs. In contrast, the LNA-FIM dramatically 178

overestimates the information and predicts confidence intervals that are much smaller 179

than are actually possible (Figs. 3(b) and S3, center column). The SM-FIM does a 180

better job than the LNA in that it matches the MLE analysis for some experimental 181

conditions (Fig. 3(c)) but much less well for other conditions (Fig. S3, right column). 182

We note that the three different FIM estimates yield different principle directions and 183

different magnitudes for parameter uncertainty (Fig. 3(d)), but in all cases the 184

FSP-MLE matches to the FSP-FIM and results in the tightest MLE estimation. 185

Having verified the FSP-FIM for the bursting gene expression model with multiple 186

parameter sets, we next explore how the information changes as a function of the 187

system parameters. Figure 4 shows the determinant of the FIM (also known as the 188

D-optimality or information density) for the bursting gene expression model as a 189

function of the switch rate scaling factor, α, using the LNA-FIM (purple), SM-FIM 190

(green) and FSP-FIM (blue) approximations. In the limit of fast switching (i.e. α→∞), 191

the expected information converges to nearly the same value for all approaches, as 192

expected for a Poisson distribution with high effective population size of λ = 25 RNA. 193

However, in the non-Gaussian regimes with slow switch rates, the LNA-FIM 194

over-estimates and SM-FIM under-estimates the information compared to the verified 195

FSP-FIM approach. We note that these differences arise despite the fact that the 196

bursting gene expression model has linear propensity functions, which allows for closed 197

and exact computation of the statistical moments. 198

December 2, 2018 10/24

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 2, 2018. ; https://doi.org/10.1101/370205doi: bioRxiv preprint 

https://doi.org/10.1101/370205
http://creativecommons.org/licenses/by/4.0/


The FSP-FIM Can Design More Informative Single-Cell 199

Experiments 200

Next, having verified the FSP-FIM for its ability to accurately estimate the FIM for 201

different parameter sets, we explore the use of the FSP-FIM to design experiments that 202

maximize information. Specifically, we will use classical FIM-based experiment design 203

approaches to choose single-cell experiments first for the bursting gene expression model 204

above, and then for a nonlinear toggle model for which moments can no longer be 205

computed exactly. We consider two different metrics of the FIM, which are frequently 206

used in model-driven experiment design [9, 12]. The first of these is E-optimality 207

presented in the main figures), which corresponds to the smallest eigenvalue of the FIM. 208

By finding the experiment which maximizes this eigenvalue, the information is increased 209

in the principle direction of parameter space in which the least information is known 210

(i.e. the parameter uncertainty is highest). The second FIM criteria is D-optimality 211

(presented in supplemental figures), which corresponds to the determinant of the FIM. 212

By maximizing the determinant of the FIM over the experiment design space, one finds 213

an experiment which minimizes the volume of the uncertainty in parameter space. We 214

note that many other experimental design criteria are possible, and the choice of criteria 215

depends on what one desires to learn about the system. 216

Optimizing the sampling rate for bursting gene expression. Our first 217

demonstration of FSP-FIM based experiment design is to select the optimal single-cell 218

sampling period with which to identify the parameters of the bursting gene expression 219

model. For this, we have chosen to analyze E-optimality criteria, which seeks to 220

maximize the smallest eigenvalue of the FIM. We consider a potential experiment design 221

space consisting of 60 logarithmically distributed sampling periods ∆t from 2× 10−2 222

minutes and 7× 102 minutes. For each sampling period, a total of five evenly spaced 223

Sampling period,
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Fig 5. Designing experiments with the FSP-FIM. (a) E-optimality (i.e., smallest
eigenvalue of the FIM) for the standard bursting gene expression model versus sampling
period, ∆t, using FSP-FIM (blue), LNA-FIM (purple), and SM-FIM. Maximizing
E-optimality corresponds to minimizing variance in the in the most variable direction of
parameter space. The orange triangles show MLE-based confirmation of the
E-optimality, using 200 simulated data sets for each sampling period. The green
shaded region represents experiments that are feasible using smFISH, from minute
resolution [2] to hour resolution [29] (b) Comparison of the FSP-FIM (x-axis) versus the
observed information (y-axis) for various sampling periods using the FSP-FIM (blue
circles), LNA-FIM (purple squares), and SM-FIM (green crosses). Kinetic parameters
are given in the main text.
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temporal measurements would be taken. Figure 5(a) compares the information expected 224

versus the sampling period using the different FIM approximations: LNA-FIM (purple), 225

SM-FIM (green) and FSP-FIM (blue). For each potential experiment, we then simulate 226

200 data sets for 1,000 cells each by sampling p(X; t,θ∗), use Eq. 7 to find the MLE 227

parameter estimate for each data set, and then compute the covariance matrix from the 228

MLE parameter sets. This covariance matrix is inverted, and its minimum eigenvalues 229

are depicted as orange triangles in Fig. 5(a). Figure 5(b) also shows a scatterplot to 230

compare the relationship between the MLE-observed information and the predicted 231

information for all FIM approaches. Once again, the FSP-FIM consistently matches the 232

observed E-optimality at all experimental conditions. However, the LNA approach is 233

much less consistent, sometimes over-estimating and sometimes under-estimating the 234

real information for the different experimental conditions. The SM-FIM consistently 235

underestimates the true information for this example, although it is not clear if this 236

trend would hold for all sets of parameters and experimental conditions. 237

From Fig. 5(a), it is clear that the amount of expected information depends strongly 238

on the sampling period. When the sampling period is much longer than the 239

characteristic time to reach the steady state distribution (∆t� 1/γ), the information 240

does not change because all snapshots are already close to steady state. When the 241

sampling period is too short (∆t� 1/γ), there is insufficient time for the distributions 242

to change and the information tends to zero. Despite conserving these trends, the three 243

different FIM analyses result in substantially different optimal experiments for the 244

E-optimality design criteria. Using the FSP-FIM, the optimal experiment is ∆t = 6.1 245

minutes, which we verified using the MLE sampling approach (compare orange triangles 246

and blue line in Fig. 5(a)). This optimal design is well-aligned with smFISH 247

experimental technique, which can capture cell populations with one minute 248

resolution [2] to one hour resolution [29]. However, the LNA-FIM selects a much faster 249

sampling period of ∆t = 1.1 minutes, and the SM-FIM selects a much slower sampling 250

period of ∆t = 420 minutes. Thus, the FSP-FIM not only provides more information 251

compared to moments-based approaches, but it also provides a better estimate of the 252

expected information. In turn, these improved estimates can help to avoid potentially 253

misleading experiments and select optimal designs. 254

The FSP-FIM accurately estimates information for systems with
nonlinearities and bimodal responses. To demonstrate the utility of the FSP-FIM
approach for models with nonlinear reaction propensities and multiple species, we turn
to the toggle model first introduced by Gardner et al [43], with a stochastic formulation
by Tian and Burrage [44]. Figure 6(a) shows a schematic of the toggle model, which
consists of two mutually repressing proteins, x ≡ LacI and y ≡ λcI, where the
production of each species depends non-linearly on the concentration of its competitor.
The reactions in the toggle model can be written

R1 : ∅ w1−−→ x; R2 : x
w2−−→ ∅; (24)

R3 : ∅ w3−−→ y; R4 : y
w4−−→; ∅ (25)

where

w1 = bx +
kx

1 + αyxyηyx
; w2 = γxx; (26)

w3 = by +
ky

1 + αxyxηxy
; w4 = γy(UV)y. (27)

In this formulation, we have assumed that the degradation of λcI is controlled by an
ultraviolet (UV) radiation through the light-induced circuit described by Kobayashi et
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lacI cI

UV

(a) (b) 95% CI FSP-FIM

Fig 6. Validation of a toggle model. (a) Model schematic of the two genes, lacI and
λcI, which are mutually repressing [43]. Degradation of λcI is controlled by UV
radiation. (b) Verification of the FSP-FIM (black ellipse) for 200 MLE estimates of
1,000 cells each (black dots) for two free model parameters, αxy and by.

al [45]. Similar to [46], we assume that the UV level affects the degradation of λcI
according to the function:

γy(UV) = 3.8× 10−4 +
0.002UV2

1250 + UV3 , (28)

where the minimum degradation rate has been chosen to match dilution due to the E. 255

coli half life of 30 min [46]. The remaining parameters used for this example are given 256

by θ∗ in Table 1. The system’s initial condition at t = 0 is assumed to be the 257

equilibrium distribution when no UV is applied. For this biological system and these 258

parameters, different levels of UV radiation will give rise to different dynamics. At low 259

levels of radiation, switching to the high LacI state is rare, and the distribution tends to 260

have a single peak. At intermediate levels of radiation, switching between low and high 261

levels of LacI expression is possible, and LacI distributions may be bimodal. Finally, at 262

high levels of radiation, the system very quickly switches into the high LacI state. 263

Because this model has complex nonlinear propensity functions, the statistical 264

moments cannot be calculated in closed form, and the LNA-FIM and SM-FIM estimates 265

are no longer expected to provide accurate estimates for information or optimal 266

experiment designs. In contrast, the FSP analysis remains unchanged, and the 267

FSP-FIM can be computed exactly as above. As before, we verify the FSP-FIM for this 268

nonlinear case using a set of 200 simulated data sets measured at 1 hr, 4 hr, and 8 hr, 269

each with 1,000 cells, and we found MLE parameter estimates θ̂ for each simulated data 270

set. Figure 7(a) shows this verification in a simple case with two free parameters, by and 271

αxy, and Fig. S4 shows the verification where all parameters free except for Hill 272

coefficients ηxy and ηyx. In this and all subsequent analysis of the toggle model, we 273

have used the logarithmic parameterization of the FIM (Eq. 14). 274

Next, we aim to design more complex experiments for the toggle model described 275

above. We consider an experiment design space where the measurement sampling 276

period (∆t), pulse duration (β), and pulse magnitude (UV) can all be changed, as 277

illustrated in Fig. 7(a). Each pulse of UV starts at t = 1 hr. We then compute the 278

FSP-FIM for each experiment {UV, β,∆t}. 279

To capture the more realistic situation where parameters are unknown prior to 280

experimentation, we next explore how parameter uncertainty affects the estimation of 281

the FIM and the design of optimal experiments. To begin, we assume that parameters 282

have been partially estimated from a simple initial experiment corresponding to 283

measurements of the unperturbed steady state at zero UV input to the system. In 284

December 2, 2018 13/24

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 2, 2018. ; https://doi.org/10.1101/370205doi: bioRxiv preprint 

https://doi.org/10.1101/370205
http://creativecommons.org/licenses/by/4.0/


t

U
V

 

UV 

(a)

(b)

Pulse duration,

Sampling period,

(e)

E-opt B 

E
-o

p
t 

A
 

E
-op

tim
ality

Sampled 
parameters

Reference
parameters

(c)

(d)

Experiment A

Experiment B

True parametersTrue
parameters

Fig 7. Experiment design for the nonlinear genetic toggle model. (a) Degradation rate
of λcI is controlled by UV as shown in Fig. 6(a). The magnitude and duration (β) of
UV exposure are free experiment design parameters, along with the time between
measurements ∆t. (b) E-optimality (the smallest eigenvalue of the FIM) versus the
3-dimensional experiment design space, where the FIM is computed using (b) the
reference parameter set, (c) by averaging the E-optimality over 100 unique parameter
sets and (d) using the “true” parameter values. The black circle is the optimal design
chosen according to (c). The black triangle denotes a nearby, but less informative,
experiment. (e) For the experiments corresponding to the black circle and triangle in
(b-d), E-optimality values are shown for each sampled parameter set.

December 2, 2018 14/24

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 2, 2018. ; https://doi.org/10.1101/370205doi: bioRxiv preprint 

https://doi.org/10.1101/370205
http://creativecommons.org/licenses/by/4.0/


θ∗ θ̂0 units

by 6.80× 10−5 9.86× 10−4 s−1

bx 2.20× 10−3 3.19× 10−3 s−1

ky 1.60× 10−2 1.60× 10−2 s−1

kx 1.70× 10−2 2.50× 10−2 s−1

αxy 6.10× 10−3 8.28× 10−3 N−ηxy

αyx 2.60× 10−3 2.46× 10−3 N−ηxy

ηxy 2.10 2.10 -
ηyx 3.00 3.00 -
γx 3.80× 10−4 5.57× 10−4 N−1s−1

Table 1. Parameters for the toggle model. θ∗ is the “true” parameter set from which
data is generated, and θ̂0 is the MLE parameter set fit to a baseline data set generated
assuming 0 UV (see Fig. S5 for further discussion). Here, N is used to denote the units
of single-molecules.

practice, similar preliminary parameter estimates could be acquired from literature, 285

from previous less-optimized experiments, or by comparison to related pathways or 286

organisms. For our analysis, the prior estimate for parameters is described by a 287

multivariate lognormal distribution with a geometric mean of θ̂0 given in Table 1 and 288

covariances given in Table S1. Parameters sampled from this distribution are 289

substantially different from the “true” parameter, θ∗, which is also shown in Table 1. 290

Figure 7(b) shows the E-optimality criteria for parameter set θ̂0 as a function of the 291

experiment design parameters {UV, β,∆t}. Next, we sampled 100 random sets of 292

parameters from the prior distribution (Fig. S5), and we computed the E-optimality for 293

each set. Figure 7(c) presents expected information versus experiment design averaged 294

over these 100 parameter sets. For comparison, Fig. 7(d) shows the information versus 295

experiment designs if one had exact knowledge of the true parameters. 296

From Figs. 7(b-d), we observe that relative estimates of the FIM remain consistent 297

despite substantial changes to the parameters from which the FIM is computed. To 298

explore this observation more closely, we selected the experiment that maximizes the 299

averaged E-optimality in Fig. 7(c). This experiment is denoted by a black circle in Figs. 300

7(b-d), and we compare it to another similar experiment design, shown by the black 301

triangle in Fig. 7(b-d). Figure S6 shows the expected parameter uncertainty for these 302

two designs and shows that the optimal experiment reduces variance in some parameter 303

directions by more than an order of magnitude compared to the sub-optimal experiment. 304

To explore how different parameters change the ranking of these two experiments, we 305

analyze the ranking of Experiment A and Experiment B not only based on their average 306

E-optimality value as in Fig. 7(c), but at each of 100 random parameter combinations. 307

Figure 7(e) shows that for 97 of the 100 parameter samples, the relative ranking of the 308

experiments is consistent, even though the absolute value of the E-optimality criteria 309

varies over several orders of magnitude. 310

We next seek to understand how optimal experiments depend on one’s plans to 311

perform multiple experiments. The “single experiment” in Table 2 refers to designing a 312

single experiment, E1, to maximize the expected FIM design criteria, such as finding the 313

maximal combination in Fig. 7(c). The “dual greedy” approach also chooses the same 314

E1 and then seeks to find the most complementary additional experiment, E2, to 315

maximize the overall FIM design criteria. Finally, the “dual simultaneous” search finds 316

the optimal combination of any two possible experiments, Ê1 and Ê2 to maximize the 317

design criteria. Since the optimal choice for Ê1 and Ê2 can admit the other choices, it 318

must yield at least as high a design criteria as E1 and E2. By comparing the three 319

design strategies for the current toggle model, we find indeed that the simultaneous 320
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approach discovers a substantially more informative experiment than does the greedy 321

approach. In other words, the overall expected value of an experiment, can depend not 322

only on the current parameter values, but also upon which other experiments one 323

intends to conduct. If one has plans to do multiple experiments, it may be better to 324

consider the potential information from all experiments as a whole rather than to design 325

each experiment one at a time. 326

Single experiment Dual greedy Dual simultaneous β
∆

UV


 2 hr

3 hr
9 J/m2


 4 hr

5.5 hr
14 J/m2


 1 hr

2.5 hr
9 J/m2

,

 4 hr
2.5 hr

13 J/m2


E-opt 14.9 32.0 36.8

Table 2. Comparing sequential experiment design approaches.

Discussion 327

Fluctuations in biological systems complicate modeling by introducing substantial 328

variability in gene expression among individual cells within a homogeneous population. 329

This variability contains valuable and quantifiable insights [20], but data with multiple 330

peaks and long tails, such as those collected using smFISH, are often poorly described 331

by modeling approaches that only make use of low-order moments of such 332

distributions [26]. The FSP approach [27] has previously been used to identify and 333

predict gene expression dynamics for complex and rich single-molecule, single-cell 334

data [2, 29,30]. In this work, we have developed the FSP-based Fisher information 335

matrix, which extends the FSP analysis to allow rigorous design of experiments that are 336

optimally informative about the model’s parameters. 337

The FSP-FIM uses a novel sensitivity analysis, which requires solving a system of 338

ODEs that is twice the size of the FSP dimension for each parameter, and therefore 339

should be computationally tractable for any problem to which the FSP can be applied. 340

The local sensitivity of each parameter is independent of the other parameters, so the 341

computation is easily parallelized among multiple processors. We verified that the 342

FSP-FIM approach matches the information for the constitutive gene expression model, 343

whose response follows a Poisson distribution (Fig. 1), and for which the FIM can be 344

computed exactly. The FSP-FIM also matches to classical FIM approaches that assume 345

normally distributed data (LNA-FIM) or very large data sets (SM-FIM) in the limiting 346

case when the data distributions are close to being Gaussian (Figs. 1-4). For systems 347

where data is not Gaussian and for which there is no exact FIM formula, we showed 348

that the FSP-FIM is more accurate than traditional approaches (Figs. 4, 5), which we 349

validated by generating many independent data sets and comparing the inverse of the 350

FSP-FIM to the variance in the MLE estimates (Figs. 3 and 6). 351

We showed that the choice of FIM analysis can lead to different optimal experiment 352

designs (Fig. 5). For example, Figs. 5 and S3 show that the LNA-FIM can substantially 353

overestimate the information of certain experiments compared to the full, correct 354

information obtain using the FSP-FIM, which could mislead researchers to choose 355

experiment designs that are much worse than they expect. In practice, overestimation 356

of the Fisher information can have the further deleterious effect of overconfidence in 357

poor parameter estimates, which can result in model bias and poor predictions as we 358

observed recently in [26]. Furthermore, the LNA-FIM is not self-consistent, and often 359

overestimates the information even compared to the ellipse found from sampling the 360

MLE with the Gaussian likelihood function. On the other hand, we found that the 361

SM-FIM under-estimated the information for the bursting gene model, but the amount 362
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of underestimation varied substantially with experimental conditions, which could cause 363

researchers to reject otherwise informative experiments. In contrast to these 364

moment-based approaches, the MLE sampling using the FSP approach always provided 365

the best parameter estimates (Figs. 3 and S3), and the FSP-FIM was always consistent 366

with the confidence intervals verified by sampling (Figs. 1, 3, 5, S1-S3), even for the 367

case of nonlinear reaction propensities for which exact moments cannot be found (Figs. 368

6(a), and S4). 369

In our analysis of the non-linear toggle model, we allowed for the independent 370

control of three experimental variables (Fig. 7a), and found experiments that optimize 371

particular criteria of the FIM. Furthermore, we showed that other experiments very 372

near to the optimal experiment in the design space can be significantly less informative 373

than the optimal experiment (Figs. 7(b-e) and S6). Choosing between such similar 374

experiment designs is non-trivial and would be difficult or impossible using intuition 375

alone. On the other hand, we explored the effects of parameter uncertainty on 376

FSP-FIM-based experiment design, and we found that parameter rankings are relatively 377

robust to parameter uncertainty, even when the absolute value of the FSP-FIM is 378

sensitive (Fig. 7). 379

We found that that the choice of optimal experiments depends on the number of 380

experiments to be completed (Table 2). For example, the optimal set of two 381

experiments may not contain the optimal single experiment. Sometimes, the FIM for a 382

given experiment may be singular or nearly singular, indicating that the model under 383

investigation is unidentifiable for the current parameterization and experiment design. 384

In such a case, the FIM-eigenvectors corresponding to the near-zero eigenvalues indicate 385

specific linear combinations of parameters that are poorly constrained (e.g., ‘sloppy’ 386

directions [47]). If a second complementary experiment can shift the orientation of these 387

sloppy vectors, then those parameters may yet be uncovered through combinations of 388

multiple experiments. Alternatively, if a given combination of parameters remains 389

unidentifiable for all admissible experiments, then these irrevocably sloppy directions 390

may be used to reformulate the model into one that has a reduced set of fully 391

identifiable parameters. We note that as one conducts new experiments and collects 392

new data, parameter posteriors will need to be updated. As this occurs, optimal 393

experiments may also need to be adjusted (e.g., through application of a Bayesian 394

experiment design framework [48]), and future developments are needed to incorporate 395

FSP-FIM computations within such iterative frameworks. 396

Our results show that the FSP-FIM performs better than previous approaches for 397

gene regulation models with low molecule counts or nonlinear reaction rates. Previous 398

studies have demonstrated many realistic systems for which such FSP can be used to 399

identify and predict stochastic dynamics in numerous biological 400

systems [2,6, 19,26,29–32,49]. Each of these studies has used different experimental 401

input signals, such as temporal salinity profiles [2, 26], temperature [29], or chemical 402

induction [19,30]. Modern optogenetic experiments promise to allow for even more 403

robust and flexible control of input signals to control cellular behavior [7, 50,51]. For 404

such studies, the FSP-FIM could now be used to optimize these signals to achieve 405

maximally informative experiments. 406

Like any other tool, the FSP-FIM also has its associated challenges. Our initial 407

investigations focused on intrinsic stochastic fluctuations of small biochemical processes, 408

and we used simulated data to verify our new computational tools. For models with 409

large molecular counts of four or more species or with the addition of mechanisms to 410

account for extrinsic variability, existing methods to solve the FSP-FIM will remain 411

intractable until more efficient probability density based CME analyses can be 412

developed to address such problems [52–56]. Until higher dimension CME approaches 413

are developed, approximate moment-based experiment design methods, such as the 414
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SM-FIM and LNA-FIM, may remain the only available options to design experiments 415

for large biochemical pathways. We also note that real experiments come with 416

additional sources of noise, such as the errors or uncertainties associated with 417

experimental measurements. For example, in smFISH data analysis, image processing 418

settings give rise to variability in final RNA counts due to density dependent 419

co-localization of RNA molecules. This measurement uncertainty may have a 420

non-negligible effect on parameter inference, and future controlled experiments are 421

needed to elucidate the degree to which such effects depend on optical imaging settings. 422

Fortunately, such variabilities are easily incorporated within the framework of the FSP 423

analysis. For example, previous work has used a simple linear transformation to adapt 424

FSP analyses to include the effects of noisy GFP fluorescence emission and background 425

autofluorescence when comparing integer-valued biochemical models to flow cytometry 426

data in arbitrary continuous units of fluorescence [19]. Once adapted to take these 427

transformations into account, the FSP-FIM could be used to design experiments to 428

minimize the effects of measurement noise. 429

New experimental capabilities are creating an enormous potential to probe single-cell 430

biological responses. These capabilities are making it ever more difficult to choose what 431

species in the system to measure, whether to measure joint distributions (i.e. measure 432

the RNA counts from multiple genes in the same cells) or marginal distributions (only 433

measure RNA counts from a single gene at a time), or in what condition. Furthermore, 434

different experiments have different costs, and the experimentalists must not only 435

optimize their information about model parameters, but also consider the trade-off 436

between collecting more data and the cost of a given experiment. By providing a new 437

computational tool to iteratively improve models and design experiments for an 438

important class of biological problems, the FSP-FIM will help to improve quantitative 439

predictive modeling of gene expression. 440

Materials and Methods 441

Derivation of sensitivities for FSP models 442

The change of probability p(xl) with respect to small changes in parameter θj describes
the sensitivity of the lth state in the Markov process to the jth parameter [33,57].
These local sensitivities can be calculated by transforming the linear ODEs describing
the time evolution of the probabilities of the state space d

dtp(t) = f
(
p(t),θ, t

)
into a set

of ODEs describing the time evolution of the sensitivities. Given an initial condition,
the solution to the CME is:

p(t;θ) = p(t0) +

∫ t

t0

f(p(s;θ),θ, s)ds (29)

Taking partial derivatives with respect to θ,

∇θp(t;θ) =

∫ t

t0

[
∇θf(p(s;θ),θ, s) +∇pf(p(s;θ),θ, s)∇θp(s;θ)

]
ds. (30)

We can now describe the sensitivities S ≡ ∇θp as they evolve with time, by taking the
time derivative of the equation above. For the FSP, the right-hand side
f(p(t;θ),θ, t) = A(θ, t)p(t), and

∇θf(t,p(t;θ),θ) = (∇θA(θ)) p(t) (31)

∇pf(t,p(t;θ),θ) = A(θ) (32)
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In many cases, including all models formulated using mass-action kinetics, the generator
A can be written as a linear combination of the model parameters, i.e. A =

∑
θiBi,

and the derivative with respect to the ith parameter can be found,

∂

∂θi
A =

∂

∂θi
(θiBi) = Bi. (33)

Using this notation, Eq. 30 is reduced to the set of linear ODEs for each parameter θi,

d

dt

(
p(t)
Si(t)

)
=

(
A 0
Bi A

)(
p(t)
Si(t)

)
. (34)

In practice, Eq. 34 can be computed in parallel for each parameter, and the 443

computation of sensitivities for K parameters is equivalent to solving K sparse systems 444

of ODEs, each twice the size of the FSP computation. 445

Moment-based FIM Approximations 446

Current state-of-the-art approaches for single-cell, single-molecule experiment design
rely on computing moments of the CME. Such statistical moments may be computed
exactly for systems with affine-linear propensities [42]. The uncentered moments of the
CME, E{xm}, where m = [m1,m2, ...,mNs

] is a vector of integers corresponding to the
mth
i power of the ith species in x, and the entire moment xm is found according to the

following formula:

E{xm}
dt

= E


M∑
j=1

wj(x)

[
N∏
i=1

(ηi + Ψij)−
N∏
i=1

ηmi
i

] . (35)

In the limit of large numbers of molecules reacting in a well-mixed solution, the
linear noise approximation (LNA) may be applied to CME [25]. In such cases, molecule
numbers are considered to be Gaussian, and the well-known Gaussian form of the FIM
may be applied [8]. If the observed data is assumed to come from a multivariate
Gaussian distribution with means µ(t;θ) = [µ1(t;θ), µ2(t;θ), . . . µNs

(t;θ)]T and
covariance matrix Σ(t;θ), such as those in Eqs. 35, the likelihood is given by:

L(D;µ,Σ) =

tNt∏
t=t1

Nc∏
i=1

(2πNo |Σ(t)|)− 1
2 × exp

(
−1

2
(di(t)− µ(t))TΣ−1(t)(di(t)− µ(t))

)
(36)

and the FIM is well-known [10,11]

FIMi,j =
∂µ

∂θi

T

Σ−1
∂µ

∂θj
+

1

2
trace

(
Σ−1

∂Σ

∂θi
Σ−1

∂Σ

∂θj

)
. (37)

Another approach, developed in [9] is to use a likelihood function that takes the 447

sample mean and sample variance to be jointly Gaussian, and thus requires the 448

computation of up to the 4th moments in Eq. 35. In the supplement, we reproduce the 449

formulae from [9] relevant to this study. 450
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