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Abstract 

Antibiotic treatment may be compromised by the sporadic appearance and selection of drug 

resistant mutants during therapy. Identifying optimal dosing strategies for treating bacterial 

infections that minimize the risk of resistance is difficult, and improving dosing guidelines usually 

requires long and costly in vitro and in vivo experimentation. Previously, we proposed a mathematical 

model that links bacterial population biology with chemical reaction kinetics and demonstrated that 

this model had high predictive and explanatory power for antibiotic pharmacodynamics. Here, we 

extend our model to incorporate several distinct molecular mechanisms of resistance, e.g. altered 

drug-target affinity or target molecule content, to explore the how these mechanisms affect the risk 

of acquired resistance during treatment.  

Our model is based on a system of partial and ordinary differential equations. The central 

assumption encoded in the model is that bacterial growth declines (and/or bacterial kill rate 

increases) as the fraction of bound antibiotic target molecules within the bacterium increases. We 

use experimental data from E. coli exposed to ciprofloxacin and ampicillin to estimate the 

dependence of bacterial growth and death on the fraction of bound target molecules and to 

calibrate our model. We then predict how several alternative molecular mechanisms of resistance 

should affect bacterial growth and compare these predictions with data from experimentally-

manipulated bacteria with varying target molecule content. Finally, we use our model to estimate 

antibiotic susceptibility for different antibiotics that share similar mechanisms of action but differ 

in their drug-target affinity. 

Our extended model offers a novel approach for predicting how resistance will evolve during 

therapy and provides a framework for generating new testable hypotheses about how the risk of 

resistance depends on the molecular mechanism of resistance. 
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Introduction 

 

The emergence and spread of antibiotic resistance is a major threat for global public health. Despite 

the magnitude of the problem, we have limited knowledge how to employ antibiotics in a way that 

maximizes treatment efficacy while minimizing resistance [1]. Whether optimal treatment 

outcomes are best achieved under higher or lower antibiotic exposure is a matter of intense debate 

[2-4]. As early as 1913, Paul Ehrlich recommended strategies that “hit hard” in order to maximize 

efficacy of antibiotic treatment [5]. The underlying intuition supporting such approaches is that 

high doses of antibiotics provide a obstacle to the emergence of resistance by suppressing the 

appearance of mutants that possess intermediate resistance; this “hit hard” recommendation has 

been supported by many experimental and theoretical studies. Conversely, high doses of antibiotics 

create a greater selective pressure in favor of extant resistant mutants, and in some situations 

“hitting hard” may result in a greater risk of antibiotic resistance [6]. The competing consequences 

of high dose antibiotic treatment (i.e. suppression of the rise of intermediately resistant mutants 

and selection of existing resistant mutants) have been consolidated in the concept of a resistance-

selection window [7, 8]. This window is the worrisome range of antibiotic concentrations in which 

growth of the susceptible (wild-type) strain is sufficiently impaired that resistant strains with a single 

resistance mutation can be expected to have a higher replication rate, i.e. higher fitness. At the same 

time, the antibiotic concentration is not high enough to eradicate all possible strains with a single 

resistance mutation. Antibiotic concentrations above the mutation-selection window are expected 

to safeguard against de novo resistance emergence during treatment. Antibiotic concentrations below 

the mutation selection window do not kill the susceptible strain, but also do not sufficiently favor 

the resistant strain to allow for out competition and emergence of resistance. While these concepts 

are useful, we note that it is rarely known the precise concentrations that select for resistance. 
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One challenge for predicting optimal antibiotic dosing to suppress resistance is that there are often 

several different mutations that can lead to resistance to a single drug [9], and each of these 

mutations may affect bacterial susceptibility and bacterial fitness in different ways. Tools that 

facilitate predictions of the susceptibility of the bacterial population from the possible molecular 

mechanisms of resistance would thus be useful. In this manuscript, we use a mechanistic 

mathematical model that describes the effect of intracellular reaction kinetics on bacterial 

populations [9] to investigate how different mechanisms of antibiotic resistance affect antibiotic 

susceptibility. We also consider how modifications to existing antibiotics, for example, small 

chemical modifications that increase their target affinity (as it has been done with each generation 

of quinolones [10]), may be leveraged to improve treatment outcomes.  

 

 

Methods 

 

We introduce a mathematical model based on a system of partial and ordinary differential 

equations. Similar to [1], the model describes the binding and unbinding of antibiotics to their 

target and how this affects bacterial growth and death.  The model includes two mass balance 

equations, one for antibiotics and one for bacteria.  

 

Binding kinetics 

The total number of available target molecules θ is assumed to be a constant, the association rate 

is kf, the dissociation rate is kr and the number of bound targets x ranges between 0 and θ.  

In a first model, we ignore differences between extracellular and intracellular antibiotic 

concentrations, and only follow the total antibiotic concentration A and assume that the time 

needed for drug molecules to enter bacterial cells is negligible. This first model is therefore most 
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appropriate for describing antibiotic action where the diffusion barrier to the target is weak (e.g. 

because the target is in the cell envelope as is the case for beta-lactams). 

In [1], the association and dissociation terms are described by the following terms 

 

where 𝑘"# =
%&

'()(*+
, and kf is the association rate, Vtot is the volume containing all bacteria and drug 

molecules, nA is the Avogadro number, 𝑘, is the dissociation rate, 𝐵. is the number of bacteria 

with i bound targets and 𝜃	is the total number of targets.  

This approach requires the use of a large number of differential equations (𝜃 + 2). To simplify 

and generalize this approach, we now assume that the variable of bound targets is a real number 

𝑥 ∈ ℛ. Under this continuity assumption, we consider the bacterial cells as a function of x and the 

time t, thereby reducing the total number of equations to two.  

Under the continuity approximation (𝑥 ∈ ℛ), we can rewrite the equation in the form 

 

or simply 

 

where 𝑣# = 𝑘"#𝐴(𝑡)(𝜃 − 𝑥) and 𝑣, = 𝑘,𝑥 can be considered as two velocities, i.e. the derivative 

of the bound targets with respect to the time <=
<>

. 
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Replication rate 

We assume that living bacteria replicate with a rate r(x) depending on the number of bound target 

molecules. The function r(x) is assumed to be a monotonically decreasing function of x, i.e. the 

more target is bound, the less bacteria replicate. r(0) is the maximum growth rate, corresponding 

to the replication rate of bacteria in absence of antibiotics. Thus, r(x) describes the bacteriostatic 

action of the antibiotics, i.e. the effect of the antibiotic on bacterial replication.  

 

Carrying capacity 

Replication ceases when the total bacterial population approaches the carrying capacity K. Thus, 

we can write the replication term as 

 

where Flim is the growth limiting term due to the carrying capacity K, and 0 ≤ 𝐹B.C ≤ 1. 

 

Distribution of target molecules upon division 

We assume that the total number of target molecules doubles at replication, such that each daughter 

cell has the same number as the mother cell. We also assume that the total number of drug-target 

complexes is preserved in the replication, and the distribution of x bound target molecules of the 

mother cell to its progeny is described by a hypergeometric sampling of n molecules from x bound 

and 2𝜃 − 𝑥 unbound molecules. Under the continuity assumption, we must generalize the concept 

of hypergeometric distribution. Since the hypergeometric distribution is a function of 

combinations, and a combination is defined as function of factorials, we can use Γ functions in 

place of factorials, and redefine a continuous hypergeometric distribution as a function of Γ 

functions. A Γ function is 
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where z is a complex number. In this way, the distribution can now be expressed as a probability 

density function of continuous variables.  

In other words, the quantity of new bacteria is given by the term 𝑟(𝑥)𝐵(𝑥, 𝑡)𝐹B.C(𝑡), but twice 

this quantity must be redistributed along x. For illustration, if a mother cell with 4 bound targets 

dives, we have two daughter cells, each with a number of bound targets between 0 and 4 (their sum 

has to be 4), following the generalized hypergeometric distribution. For simplicity, we define S(x,t) 

to be a function related to the replication rate which depends on the number of bacteria with a 

number of bound target molecules ranging between x and 𝜃, their specific replication rate r(x) and 

the fraction of their daughter cells expected to inherit x antibiotic-target complexes h(x,z): 

 

 

Death rate 

Here, we define the death rate function 𝛿(𝑥), which depends on the number of bound target 

molecules. The function 𝛿(𝑥) is assumed to be a monotonically increasing function of x, where 

𝛿(𝜃) is the maximum death rate, when the bacteria have all targets bound. The shape of the death 

rate describes the bactericidal action of the antibiotic, i.e. what is the minimal number of bound 

targets to initiate bactericidal action and at what threshold of bound targets is bactericidal action 

maximized. 

 

Bacteriostatic and bactericidal effects 

We consider several functional forms of the relationship between the percentage of bound targets 

and growth and death rates (Figure 1: step function, sigmoidal, linear). With sufficient experimental 

data, the growth rate r(x) and/or the death rate 𝛿(𝑥) can be obtained by fitting our model to time-

kill curves of bacterial populations after antibiotic exposure. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 16, 2018. ; https://doi.org/10.1101/369975doi: bioRxiv preprint 

https://doi.org/10.1101/369975


 8 

 

Figure 1. Bacteriostatic and bactericidal effects. In the figure, we can see a bacteriostatic effect in the left column: 

in (A) there are different growth rates, varying between a step function to a linearly decreasing function, passing 

through sigmoidal functions. In (B) there is a constant death rate. In the central column, we can see a bactericidal 

effect: in (C) a constant growth rate, in (D) a death rate function varying from a step function to a linear increasing 

function, passing, like in the previous case, through sigmoidal functions. On the right column, we have a bacteriostatic 

and bactericidal action of the drug, i.e. a composition of the variable growth rate (E) with a variable death rate (F). 

 

The sigmoidal shape of r(x) and d(x) can be written as: 

   

where xrth is the growth rate threshold, xdth is the death rate threshold, and both of them represent 

the point where the sigmoidal function reaches ½ of its maximum. gr and gd are the shape 

parameters respectively of the sigmoidal growth and death rate functions. 

 

Full equation describing bacterial population 

Finally, the full equation of bacteria is 

 

where B(x,t) is the number of bacteria. 

Equation describing antibiotic concentration 
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The equation describing antibiotic concentration is given simply by the mass conservation, i.e. 

subtracting all the molecules associated in the complexes drug-target and adding all the molecules 

dissociated. The antibiotic equation is 

 

Where A(t) represents the number of drug molecules.  

 

Initial and boundary conditions 

To close the system of our equations, we must specify the initial and boundary conditions. At t=0, 

we assume that all bacteria have zero bound targets, i.e. 𝑥 = 0, and the initial drug concentration 

is C(0) = C0. 

On the boundaries (𝑥 = 0, 𝑥 = 𝜃) of the partial differential equation, we specify that the outgoing 

velocities are zero. Thus, for 𝑥 = 0, we have 𝑣,(0, 𝑡) = 0, and in 𝑥 = 𝜃 we have that 𝑣#(𝜃, 𝑡) =

0. Specifying this structure of our velocities permits us to solve the partial differential equation 

(using a finite differences scheme at the first order in space and time approximations) simplifying 

our needs on the boundary conditions; in other words we have the same conditions in 𝑥 = 0 and 

𝑥 = 𝜃 present in [1].  

To solve this system, we use a finite differences numerical scheme at the first order in space and 

time. Additional information and how this numerical scheme is developed can be found in [11, 12]. 

 

Description of beta-lactam action 

Beta-lactams acetylate penicillin-binding proteins (PBPs, the target molecules), and thereby inhibit 

cell wall synthesis. The acetylation of PBPs consumes beta-lactams, and therefore the drug-target 

reaction is not reversible. To include this effect in our model, we modify the term of drug-target 

dissociation. In the equation describing antibiotic concentration, the unbinding rate kr=0, while, in 

the bacteria equation, we substitute the dissociation rate kr with the deacetylation rate ka, see [13].   
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Results 

Model validation 

First, we use time-kill curves with the beta-lactam ampicillin, for which most parameters have been 

experimentally determined (see table 1) to explore how well our modeling approach describes 

experimental data. It is difficult to determine r(x) and  d(x) (the dependence of bacterial replication 

and death rates on the number of bound target molecules, respectively) experimentally. In single 

cell analyses, ampicillin was found to have no effect on bacterial replication rates at levels up to 

80% of its MIC [14] and ampicillin is usually thought to be a bactericidal antibiotic [15]. We 

therefore assume that bacterial replication rates are not affected by ampicillin binding and that 

ampicillin action is entirely due to an increase in bacterial death rates with successively bound target 

molecules (Figure 1C & D). We fitted our model parametrized with previously determined 

experimental data (Table 1) to time-kill curves of E. coli exposed to ampicillin (data from [16]) to 

obtain d(x). We used the following drug concentrations: 6 mg/l, 48 mg/l, 256 mg/l to fit the model 

and 0mg/l to estimate r0, the maximal growth rate in absence of antibiotics. We used simulated 

annealing to identify parameters of our model, finding the following optimal set of parameters 

(Table 1): 

 

 

Parameter Value Units Description References 

kf 130 M-1 sec-1 Association rate [13] 

ka 10-4 sec-1 Deacetylation rate [13] 

KD 7.69·10-7  M Affinity Ka/kf 

r0 6.22·10-4 sec-1 Maximum growth rate Optimization exp. data 

𝛿I  1.9·10-3 sec-1 Maximum death rate Optimization exp. data 

Table 1. Ampicillin parameters. 
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Figure 2. A shows the fit of our model to experimental data. We were able to obtain an R2 = 0.93 ( 6 mg/l),  R2 = 

0.98 ( 48mg/l) and R2 = 0.96 ( 256mg/l). We note that our model can replicate the initial growth of the bacterial 

populations at a concentration slightly above the MIC. B. shows how the replication and death rates depend on the 

amount of bound target in the fitted model, as well as the distribution of target occupancy in the living and dead 

bacterial population after 5 hours at MIC. C. Effective growth rate (1/h scaled log10) for different drug concentrations 

(blue line) is plotted together with the maximum growth rate of the Ampicillin (green line) and the null growth rate 

(red line). The intersection between the null growth rate and the blue line is an estimate of the MIC. 
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The estimated mean occupancy considering both living and dead bacteria is 89%. This value is very 

close to experimental estimates in Staphylococcus aureus (86-99%)[17].  Thus, our model is able 

to describe bacterial time-kill curves from first principles with measurable parameters of drug-

target binding.  

 

We next use our model to predict antibiotic efficacy (as measured by the effective growth rate [1/h] 

divided log10(e) to match the experimental measure of log10 change per hour) for other 

concentrations. We find the same characteristic sigmoidal curve for the dependence of effective 

growth rate on drug concentration that has been described earlier [16]. Once we calibrated the 

model, we simulated the bacterial growth with different drug concentration as in figure 2C, and the 

intersection of the blue line (obtained with different drug concentrations) and the null growth line 

(red line) gives us the MIC equal to 3.32 (mg/l), which is very close to the estimated MIC in [16] 

of 3.4 [mg/l]. The estimate of the MIC is a linear estimate of the intersection between 3.30 and 

3.33 [mg/l]. Our mechanistic model yields accurate estimates for the MIC even when using only 

three different concentrations above the MIC.  

 

 

Changing drug-target binding kinetics and effects on antibiotic susceptibility 

We next investigate how changes in physicochemical parameters will affect bacterial susceptibility 

to antibiotics. To this end, we consider the quinolone ciprofloxacin, which is one of the most 

commonly used antibiotics. The effect of varying target molecule content has been evaluated 

experimentally [18], which allows us to investigate resistance mechanisms that affect the target copy 

number, such as gene duplications. We can also study the effects of changes in drug-target affinity 

since the antibiotic class of quinolones contains drugs with a very wide range of drug target 

affinities (KD ~ 10-4 - 10-7) with similar molecular size and similar modes of action. However, as (to 
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our knowledge) for the majority of antibiotics, the exact rates of drug-target binding and unbinding 

as well as target occupancy at MIC are not known. We therefore first perform a uni-dimensional 

sensitivity analysis to explore how these unknown parameters will affect the predicted time-kill 

curves (supplementary material). Surprisingly, we find that the actual rates of drug-target binding, 

kf and kr (and not only the relative values, i.e. the affinity KD = kr/ kf) change antibiotic susceptibility 

profoundly. The faster the drug binds its target, the fewer bacteria can replicate before the antibiotic 

is fully active, and therefore the less antibiotic is needed to suppress bacteria (Figure S2).  While 

this finding is exciting and may guide future optimization of antibiotics, antibiotic binding rates are 

often not known and in these cases it may be difficult to fit our model quantitatively to time-kill 

curves.  

 

However, our qualitative predictions regarding net growth at varying drug concentrations 

depending on target molecule content correspond well with experimental data where the target 

(gyrase) content of bacterial cells was altered by overexpression. We obtain a decreasing MIC for 

a higher number of targets when assuming that each bacterium can tolerate only a specified number 

of bound targets.  
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Figure 3. Effect of overexpression of target molecule on antibiotic susceptibility.  A. Three E. coli strains with varying 

target molecule (gyrase) content as described in [18] were exposed to increasing concentrations of the antibiotic 

ciprofloxacin. The net growth rate at varying drug concentrations was determined by sequentially counting colony 

forming units on plates after addition of the antibiotic to liquid culture. B. Simulations of three strains with 60, 80, 100 

targets. To match the experimental findings, we assume there is a fitness cost associated with more targets, i.e. a 

different maximum growth, as suggested in the experiments illustrated in figure A. Parameters are given in table S1. 
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Estimating the MIC without data on binding rates 

To explore qualitatively how changing drug-target binding kinetics affects the MIC, i.e. the minimal 

antibiotic concentration at which bacterial growth ceases, we simplify our model. As described 

above, the distribution of bacteria along the x-axis is due to the velocity v = vf + vr and to the 

replication rate. Here, we neglect the reproduction of free target molecules due to bacterial 

replication. Under this approximation, we use a lower drug concentration to inhibit the growth 

than we really need, because we neglect the reproduction of target molecules due to replication. 

For this reason, we have an estimate of the lower boundary of the MIC.  

 

The velocity v is an indicator of the action of the antibiotics. When this action is going to stop 

(equilibrium between association and dissociation), it means that the velocity is approached to zero. 

𝑣 = <=
<>
= 𝑘"#(𝜃 − 𝑥)𝐴(𝑡) − 𝑘,𝑥. 

We also know that the number of drug molecules A(t) has really small variations in time (almost 

always less than 0.1 %), so we can consider here A(t) = A(0), a constant value.  

Under these assumptions, we can estimate the value x0 where the velocity becomes zero, by 

substituting v=0 in the equation above, obtaining  

𝑥I =
𝑘"#𝜃𝐴

J𝑘"#𝐴 + 𝑘,K
 

At the MIC the death rate exceeds the growth rate. If we want to inhibit the bacterial growth, we 

need sufficient drug to exceed xMIC, the amount of bound target required to reduce bacterial growth 

to zero under idealized conditions (neglecting replication). This means 𝑥I ≥ 𝑥MNO . For this 

inequality to hold true, CD has to be: 

𝐶Q ≥ 𝐾Q
𝑥MNO𝜇#
𝜃 − 𝑥MNO

 

where 𝜇#  is the molar mass of the drug and 𝐾Q = 𝑘,/𝑘# is the affinity.  

With the sign equal, we have 𝐶UVBWX = 𝐾Q
=YZ[\&
]^=YZ[

. This is a lower boundary for the MIC.  
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Qualitatively, this means that the MIC is linear with KD when keeping all other parameters 

constant. This is consistent with our previous finding when deriving the MIC from drug-target 

binding alone in a very simplified model [13]. 

 

We tested this hypothesis with pooled MICs from clinical enterobacteriaceae isolates collected 

before the wide-spread use of quinolones in the clinic. Here, we assume that the target molecule, 

gyrase, is sufficiently conserved in enterobacteriaceae that the relative drug-target affinities of 

quinolones are similar across these species. We correlate the KD of these quinolones (measured in 

E. coli) to the MIC and find that the MIC is indeed proportional to KD in 11 enterobacteriaceae 

species with R2 between 0.88 and 0.98 (Figure 4).  

 

Figure 4: Correlation between KD and MIC. MIC data (pooled values from clinical isolates obtained before 1997) were 

retrieved from [19, 20]. Quinolone-gyrase affinities were obtained from [19-22]. Linear regression was performed with 

the software package R. 

 

Predicting antibiotic concentrations at which resistance is selected 

Finally, our model can be used to explore how the molecular mechanisms of resistance mutations 

affect antibiotic concentrations at which resistance can emerge, i.e. the resistance selection 

quinolones by affinity
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Ofloxacin = 2.46e-06 [M]
Pefloxacin = 9.00e-06 [M]

Oxolinic acid = 1.00e-05 [M]
Pipemidic acid = 1.02e-04 [M]
Nalidixic acid = 2.24e-04 [M]
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window. Here, we return to our fit of the experimental data on ampicillin to determine whether 

our model reflects the dynamics of a susceptible bacterial population. We compare predicted net 

growth rates depending on ampicillin concentration between a wild-type strain and an arbitrary 

resistant strain. We assume here that this resistant strain has a 50-fold slower drug-target binding 

rate, and the maximum growth rate is the 85% of the maximum growth rate of the wild type. We 

then predict the antibiotic concentrations at which resistance is selected. In this case, the 

“competitive resistance selection window”, i.e. the concentration range below the MIC for both 

strains where the resistant is fitter than the wild type, would start at 0.66 mg/l and end at 3.32 

mg/l. The “resistance selection window”, i.e. the concentration range above MIC for the wild-

type but below the MIC for the resistant strain, would start at 3.32 mg/l and end at 154.5 mg/l. 

 

Figure 5: Resistance selection windows. Antibiotic concentration windows at which resistance is selected. The blue 

line is the wild type behavior, the red line is the resistant type. We predict a “competitive resistance selection window” 

between 0.66 mg/l and 3.32 mg/l. A “resistance selection window” between 3.32 mg/l and 154.5 mg/l. For a 

concentration, higher than 154.5 mg/l we observe both strains suppressed. 
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Discussion  

The importance of the MIC of both wild-type and resistant strains in identifying optimal dosing 

strategies to minimize the risk of resistance is widely appreciated [9]. It is advisable to avoid drug 

concentrations above the MIC for the wild type but below MIC for the resistant strain because 

these concentrations allow only the resistant strain to grow. In addition, selection for resistance 

may also occur below the MIC of the wild type in if antibacterial concentrations are in the so-called 

“competitive resistance selection window”, where resistant strain may outcompete the wild type 

[8]. However, we do not know a priori how a given resistance mutation affects bacterial growth at 

a given antibiotic concentration. Here, we present a mathematical model that allows in silico 

predictions of ranges of antibiotic concentrations that should be avoided, and how this range 

depends on the molecular mechanism of resistance.  

 

To validate our model, we fitted it to three published time-kill curves of E. coli exposed to 

ampicillin. All physicochemical characteristics needed to parametrize our model were determined 

experimentally for ampicillin. While it was shown experimentally that at MIC, 84-99% of the target 

molecules are bound, we do not know how bacterial death rates depend on target occupancy. 

Therefore, we parameterized our model with all other known characteristics and fitted the death 

rate as a function of occupied target, δ(x), to the data. Our model fits the experimental data very 

well (R2=0.93-0.98). Our model suggests that the death rate may have a sigmoidal-shaped 

dependence on target occupancy. This death rate function δ(x) predicts that at MIC, 89% of the 

target is occupied, which is in excellent agreement with the experimental data. We then went on to 

predict bacterial net growth rates across a wide range of concentrations and predict an MIC of 3.32 

[mg/l]. The dataset we worked with was used previously to obtain more accurate MIC estimates 

than those obtained with classical methods. The previous estimate for the MIC based on 7 time-

kill curves was 3.4 [mg/l], which is very close to our estimate even though we used only three time-
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kill curves. We therefore conclude that our model is able to describe bacterial time-kill curves 

quantitatively based on chemical reaction kinetics. 

 

Our next goal was to investigate how different physicochemical characteristics shape bacterial 

susceptibility depending on antibiotic concentrations. To this end, we performed a uni-dimensional 

sensitivity analysis. Surprisingly, we find that the binding (kf) and unbinding rates (kr), and not only 

the binding affinity (KD = kr / kf) has a profound effect on bacterial susceptibility. When keeping 

KD constant, drugs that bind more quickly are more effective because they prevent bacterial 

replication before the target molecules are reproduced. From a bacterial perspective, resistance 

mutations that slow down drug-target binding are more beneficial than those that speed drug-target 

dissociation. We then investigated whether our model can reproduce known effects of changes in 

target molecule content. We used strains overexpressing the target of the antibiotic ciprofloxacin, 

gyrase, and exposed them to a large range of ciprofloxacin concentrations. As previously shown, 

bacterial susceptibility increases with increasing target molecule content; our mathematical model 

is consistent with this finding [18]. This increases our confidence that our model is able to describe 

antibiotic efficacy when the intracellular reaction kinetics of drug-target binding changes. However, 

in our experiments we also observe an increased kill rate at very high concentrations of 

ciprofloxacin. This may be due to increasing DNA damage when ciprofloxacin binds gyrase, a 

mechanism not explicitly incorporated in our model. 

 

For many antibiotics only the drug-target affinity and not the actual binding rates have been 

published. While it is difficult to fit our model to time-kill curves in this case, we can simplify the 

model and make qualitative predictions about expected changes in MIC. Our model predicts that 

the MIC should be proportional to drug-target affinity. The antibiotic class of quinolones contains 

drugs with a wide range of drug target affinities (KD ~ 10-4 - 10-7) with similar molecular size and 

similar modes of action, and we hypothesize that the MIC of different quinolones should be 
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proportional to their gyrase affinity. We verified this hypothesis with data from a meta-analysis on 

the MICs of various quinolones in clinical enterobacteriaceae isolates collected before the 

widespread use of quinolones. This means that even in absence of measured binding rates, our 

model can be employed to understand qualitatively e.g. how much antibiotic to give to prevent 

resistance mutations that lead to a given change in drug-target affinity. It can also serve as a tool in 

drug development to predict how much drug-target binding has to be improved to achieve efficacy 

at a certain antibiotic concentration. 

 
Finally, we demonstrate how our model could be used to predict resistance selection windows, 

thereby allowing designing drug dosing strategies that avoid exposures to antibiotic concentrations 

that select for resistance. Our model does not consider host immune responses to infection, which 

may further modify our expectations regarding treatment success [23-25]. Nevertheless, given the 

urgent need to preserve the efficacy of existing antibiotics and the need to develop new agents 

[26], we see a promising role for mechanistic models that can suggest the most promising dosing 

strategies based on the physicochemical and biochemical characteristics of drug-target interactions. 

Taken together, our model offers a novel in silico platform that may aid in finding antibiotic 

treatment strategies that minimize the emergence of resistance. 
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