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Abstract Determining the net charge and protonation states populated by a small molecule in an envi-20

ronment of interest—such as solvent, a protein binding site, or a lipid bilayer—or the cost of altering those21

protonation states upon transfer to another environment is a prerequisite for predicting its physicochemical22

and pharmaceutical properties, as well as interactions with biological macromolecules using computational23

models. Incorrectly modeling the dominant protonation state, shifts in dominant protonation state, or the24

population of significant mixtures of protonation states can lead to large modeling errors that degrade the25

accuracy of physical modeling and hinder the ability to use physical modeling approaches for molecular26

design. For small molecules, the acid dissociation constant (pK
a
) is the primary quantity needed to deter-27

mine the ionic states populated by a molecule in an aqueous solution at a given pH. As a part of SAMPL628

community challenge, we organized a blind pK
a
prediction component to assess the accuracy with which29

contemporary pK
a
prediction methods can predict this quantity, with the ultimate aim of assessing the30

expected impact on modeling errors this would induce. While a multitude of approaches for predicting pK
a

31

values currently exist, predicting the pK
a
s of drug-like molecules can be difficult due to challenging properties32

such as multiple titratable sites, heterocycles, and tautomerization. For this challenge, we focused on set33

of 24 small molecules selected to resemble selective kinase inhibitors—an important class of therapeutics34

replete with titratable moieties. Using a Sirius T3 instrument that performs automated acid-base titrations,35

we used UV absorbance-based pK
a
measurements to construct a high-quality experimental reference dataset36

of macroscopic pK
a
s for the evaluation of computational pK

a
prediction methodologies that was utilized in37

the SAMPL6 pK
a
challenge. For several compounds in which the microscopic protonation states associated38

with macroscopic pK
a
s were ambiguous, we performed follow-up NMR experiments to disambiguate the39

microstates involved in the transition. This dataset provides a useful standard benchmark dataset for the40

evaluation of pK
a
prediction methodologies on kinase inhibitor-like compounds.41
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Abbreviations46

SAMPL Statistical Assessment of the Modeling of Proteins and Ligands47

pK
a

–log10 acid dissociation equilibrium constant48

p
s
K
a

–log10 apparent acid dissociation equilibrium constant in cosolvent49

DMSO Dimethyl sulfoxide50

ISA Ionic-strength adjusted51

SEM Standard error of the mean52

TFA Target factor analysis53

LC-MS Liquid chromatography - mass spectrometry54

NMR Nuclear magnetic resonance spectroscopy55

HMBC Heteronuclear Multiple-Bond Correlation56

TFA-d deutero-trifluoroacetic acid57

Introduction58

SAMPL (Statistical Assessment of theModeling of Proteins and Ligands) is a recurring series of blind prediction59

challenges for the computational chemistry community [1, 2]. Through these challenges, SAMPL aims to60

evaluate and advance computational tools for rational drug design. By focusing the community on specific61

phenomena relevant to drug discovery poorly predicted by current models, isolating that phenomenon62

from other confounding factors in well-designed test systems, evaluating tools prospectively, enabling data63

sharing to learn from failures, and releasing the resulting high-quality datasets into the community as64

benchmark sets, SAMPL has driven progress in a number of areas over seven previous rounds of challenge65

cycles [3–7, 7–15].66

As a stepping stone to enabling the accurate prediction of protein-ligand binding affinities, SAMPL67

has focused on evaluating how well physical and empirical modeling methodologies can predict various68

physicochemical properties relevant to binding and drug discovery, such as hydration free energies (which69

model aspects of desolvation in isolation), distribution coefficients (which model transfer from relatively70

homogeneous aqueous to nonpolar environments), and host-guest binding affinities (which model high-71

affinity association without the complication of slow protein dynamics). These physicochemical property72

prediction challenges—in addition to assessing the predictive accuracy of quantities that are useful in various73

stages of drug discovery in their own right—have been helpful in pinpointing deficiencies in computational74

models that can lead to substantial errors in affinity predictions.75

Neglect of protonation state effects can lead to large modeling errors76

As part of the SAMPL5 challenge series, a new cyclohexane-water distribution constant (log D) prediction77

challenge was introduced, where participants predicted the transfer free energy of small drug-like molecules78

between an aqueous buffer phase at pH 7.4 and a nonaqueous cyclohexane phase [16, 17]. While octanol-79

water distribution coefficient measurements are more common, cyclohexane was selected for the simplicity80

of its liquid phase and relative dryness compared to wet octanol phases. While the expectation was that81

this challenge would be relatively straightforward given the lack of complexity of cyclohexane phases,82

analysis of participant performance revealed that multiple factors contributed to significant prediction83

failures: poor conformational sampling of flexible solute molecules, misprediction of relevant protonation84

and tautomeric states (or failure to accommodate shifts in their populations), and force field inaccuracies85

resulting in bias towards the cyclohexane phase. While these findings justified the benefit of future iterations86

of blind distribution or partition coefficient challenges, the most surprising observation from this initial log D87

challenge was that participants almost uniformly neglected to accurately model protonation state effects,88
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and that neglect of these effects led to surprisingly large errors in transfer free energies [16–18]. Careful89

quantum chemical assessments of the magnitude of these protonation state effects found that their neglect90

could introduce errors up to 6–8 kcal/mol for some compounds [18]. This effect stems from the need to91

account for the free energy difference between the major ionization state in cyclohexane (most likely neutral92

state) and in water phase (which could be neutral or charged).93

To isolate these surprisingly large protonation state modeling errors from difficulties related to lipophilic-94

ity (log P and log D) prediction methods, we decided to organize a set of staged physicochemical property95

challenges using a consistent set of molecules that resemble small molecule kinase inhibitors—an important96

drug class replete with multiple titratable moieties. This series of challenges will first evaluate the ability97

of current-generation modeling tools to predict acid dissociation constants (pK
a
). It will be followed by a98

partition/distribution coefficient challenge to evaluate the ability to incorporate experimentally-provided99

pK
a
values into prediction of distribution coefficients to ensure methodologies can correctly incorporate100

protonation state effects into their predictions. A third challenge stage will follow: a new blinded parti-101

tion/distribution coefficient challenge where participants must predict pK
a
values on their own. At the102

conclusion of this series of challenges, we will ensure that modern physical and empirical modeling methods103

have eliminated this large source of spurious errors from modeling both simple and complex phenomena.104

This article reports on the experiments for the first stage of this series of challenges: SAMPL6 pK
a

105

prediction challenge. The selection of a small molecule set and collection of experimental pK
a
data are106

described in detail.107

Conceptualization of a blind pKa challenge108

This is the first time a blind pK
a
prediction challenge has been fielded as part of SAMPL. In this first iteration of109

the challenge, we aimed to assess the performance of current pK
a
prediction methods and isolate potential110

causes of inaccurate pK
a
estimates.111

The prediction of pK
a
values for drug-like molecules can be complicated by several effects: the presence112

of multiple (potentially coupled) titratable sites, the presence of heterocycles, tautomerization, the confor-113

mational flexibility of large molecules, and ability of intramolecular hydrogen bonds to form. We decided114

to focus on the chemical space of small molecule kinase inhibitors in the first iteration of pK
a
prediction115

challenge. A total of 24 small organic molecules (17 fragment-like and 7 drug-like) were selected for their116

similarity to known small molecule kinase inhibitors, while also considering properties predicted to affect the117

experimental tractability of pK
a
and log Pmeasurements such as solubility and predicted pK

a
s. Macroscopic118

pK
a
values were collected experimentally with UV-absorbance spectroscopy-based pK

a
measurements using119

a Sirius T3 instrument, which automates the sample handling, titration, and spectroscopic measurements120

to allow high-quality pK
a
determination. The Sirius T3 is equipped with an autosampler which allowed us121

to run 8–10 measurements per day. Experimental data were kept blinded for three months (25 Oct 2017122

through 23 Jan 2018) to allow participants in the SAMPL6 pK
a
challenge to submit truly blinded computa-123

tional predictions. Eleven research groups participated in this challenge, providing a total of 93 prediction124

submission sets that cover a large variety of contemporary pK
a
prediction methods.125

Our selected experimental approach determines macroscopic pKa values126

Whenever experimental pK
a
measurements are used for evaluating pK

a
predictions, it is important to127

differentiate between microscopic and macroscopic pK
a
values. In molecules containing multiple titratable128

moieties, the protonation state of one group can affect the proton dissociation propensity of another129

functional group. In such cases, the microscopic pK
a
(group pK

a
) refers to the pK

a
of deprotonation of130

a single titratable group while all the other titratable and tautomerizable functional groups of the same131

molecule are held fixed. Different protonation states and tautomer combinations constitute different132

microstates. The macroscopic pK
a
(molecular pK

a
) defines the acid dissociation constant related to the133

observable loss of a proton from a molecule regardless of which functional group the proton is dissociating134

from, so it doesn’t necessarily convey structural information.135

Whether a measured pK
a
is microscopic or macroscopic depends on the experimental method used136

(Figure 2). For a molecule with only one titratable proton, the microscopic pK
a
is equal to the macroscopic137
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Figure 1. Assignment of cysteine and glycine pKa values. pKa1, pKa2, and pKa3 are macroscopic acid dissociation
constants for cysteine and glycine [24]. When pKa values of a polyprotic molecule are very different, such as in the case of
glycine, it is possible to assign the pKas to individual groups since the dissociation of protons is stepwise [19]. However,
stepwise dissociation cannot be assumed for cysteine, because pKa2 and pKa3 are very close in value. Four underlying
microscopic pKas (pKa,S , pKa,N , pKa,S′ , and pKa,N ′ ) for cysteine were measured using UV spectra analysis of cysteine and

derivatives [25]. Notice that the proximity of pKa,S and pKa,N values indicates similar probability of proton dissociation
from these groups. This figure is adopted from [19].

pK
a
. For a molecule with multiple titratable groups, however, throughout a titration from acidic to basic pH,138

the deprotonation of some functional groups can take place almost simultaneously. For these multiprotic139

molecules, the experimentally-measured macroscopic pK
a
will include contributions from multiple micro-140

scopic pK
a
s with similar values (i.e., acid dissociation of multiple microstates). Cysteine provides an example141

of this behavior with its two macroscopic pK
a
s observable by spectrophotometric or potentiometric pK

a
142

measurement experiments [19, 20].143

While four microscopic pK
a
s can be defined for cysteine, experimentally observed pK

a
values cannot be144

assigned to individual functional groups directly (Figure 1, top), and more advanced techniques capable of145

resolving individual protonation sites—such as NMR [21], Raman spectroscopy [22, 23], and the analysis of146

pK
a
s in molecular fragments or derivatives—are required to unambiguously assign the site of protonation147

state changes. On the other hand, when there is a large difference between microscopic pK
a
s in a multiprotic148

molecule, the proton dissociations won’t overlap and macroscopic pK
a
s observed by experiments can be149

assigned to individual titratable groups. The pK
a
values of glycine provide a good example of this scenario150

(Figure 1, bottom) [19, 20, 22]. We recommend the short review on the assignment of pK
a
values authored by151

Ivan G. Darvey [20] for a good introduction to the concepts of macroscopic vsmicroscopic pK
a
values.152

The most common methods for measuring small molecule pK
a
s are UV-absorbance spectroscopy (UV-153

metric titration) [28–30], potentiometry (pH-metric titration) [30, 31], capillary electrophoresis [32, 33],154

and NMR spectroscopy [21], with NMR being the most time-consuming approach. Other, less popular pK
a

155

measurement techniques include conductometry, HPLC, solubility or partition based estimations, calorimetry,156

fluorometry, and polarimetry [34]. UV-metric and pH-metric methods (Figure 3) are limited to measuring157

aqueous pK
a
values between 2 and 12 due to limitations of the pH electrode used in these measurements.158
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Figure 2. Comparison of macroscopic and microscopic pKa measurement methods. Filled circles represent proto-
nated sites and empty circles represent deprotonated sites with the order of carboxylic acid (1), piperazine nitrogen (2),

and piperazine nitrogen (3). Protonation state populations shown for pH-metric and UV-metric pKa measurement methods
are simulations, calculated using NMR-based microscopic pKa values. (A) Cetirizine has n =3 titratable sites, shown in bold.
(B) Left: The 8 microstates (2n) and 12 microscopic pKas (n2n−1) of cetirizine. Right: Relative population of microspecies with
respect to pH. Potentially all microstates can be resolved via NMR. (C) Simulated pH-metric (potentiometric) titration and

macroscopic populations. For a polyprotic molecule, only macroscopic pKas can be measured with pH-metric titration.
Microstates with different total charge (related to the number of protons) can be resolved, but microstates with the

same total charge are observed as one macroscopic population. (D) Simulated microscopic populations for UV-metric

(spectrophotometric) titration of cetirizine. Since only protonation of the titration sites within four heavy atoms of the

UV-chromophore is likely to cause an observable change in the UV-absorbance spectra, microstates that only differ by

protonation of the distal carboxylic acid cannot be differentiated. Moreover, populations that overlap may or may not

be resolvable depending on how much their absorbance spectra in the UV region differ. Both UV-metric and pH-metric

pKa determination methods measure macroscopic pKas for polyprotic molecules, which cannot easily be assigned to
individual titration sites and underlying microstate populations in the absence of other experimental evidence that

provides structural resolution, such as NMR. Note that macroscopic populations observed in these two methods are

composed of different combinations of microstates depending on the principles of measurement technique. Here,

the illustrative diagram style was adopted from [26], and NMR-determined microscopic pKas for cetirizine were taken
from [27].
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The pH-metric method relies on determining the stoichiometry of bound protons with respect to pH,159

calculated from volumetric titration with acid or base solutions. Accurate pH-metric measurements require160

high concentrations of analyte as well as analytically prepared acid/base stocks and analyte solutions.161

By contrast, UV-metric pK
a
measurements rely on the differences in UV absorbance spectra of different162

protonation states, generally permitting lower concentrations of analyte to be used. The pH and UV163

absorbance of the analyte solution are monitored during titration.164

Both UV-metric and pH-metric pK
a
determination methods measure macroscopic pK

a
s for polyprotic165

molecules, which cannot be easily assigned to individual titration sites and underlying microstate popu-166

lations in the absence of other experimental evidence that provides structural information, such as NMR167

(Figure 2). Macroscopic populations observed in these two methods are composed of different combinations168

of microstates depending on the principles of measurement technique. In potentiometric titrations, mi-169

crostates with same total charge will be observed as one macrostate, while in spectrophotometric titrations,170

protonation sites remote from chromophores might be spectroscopically invisible, and macrostates will be171

formed from collections of microstates that manifest similar UV-absorbance spectra.172

Spectrophotometric pK
a
determination is more sensitive than potentiometric determination, requiring173

low analyte concentrations (50–100 µM)—especially advantageous for compounds with low solubilities—174

but is only applicable to titration sites near chromophores. For protonation state changes to affect UV175

absorbance, a useful rule of thumb is that the protonation site should be a maximum of four heavy atoms176

away from the chromophore, which might consist of conjugated double bonds, carbonyl groups, aromatic177

rings, etc. Although potentiometric measurements do not suffer from the same observability limitations,178

higher analyte concentrations (∼5 mM) are necessary for the analyte to provide sufficiently large enough179

buffering capacity signal above water to produce an accurate measurement. The accuracy of pK
a
s fit to180

potentiometric titrations can also be sensitive to errors in the estimated concentration of the analyte in the181

sample solution, while UV-metric titrations are insensitive to concentration errors. We therefore decided to182

adopt spectrophotometric measurements for collecting the experimental pK
a
data for this challenge, and183

selected a compound set to ensure that all potential titration sites are in the vicinity of UV chromophores.184

Here, we report on the selection of SAMPL6 pK
a
challenge compounds, their macroscopic pK

a
values185

measured by UV-metric titrations using a Sirius T3, as well as NMR-based microstate characterization of two186

SAMPL6 compounds with ambiguous protonation states associated with the observed macroscopic pK
a
s187

(SM07 and SM14). We discuss implications of the use of this experimental technique for the interpretation188

of pK
a
data, and provide suggestions for future pK

a
data collection efforts with the goal of evaluating or189

training computational pK
a
predictions.190

Methods191

Compound selection and procurement192

To select a set of small molecules focusing on the chemical space representative of kinase inhibitors for193

physicochemical property prediction challenges (pK
a
and lipophilicity) we started from the kinase-targeted194

subclass of the ZINC15 chemical library [35] and applied a series of filtering and selection rules as depicted195

in Figure 4A. We focused on the availability "now" and reactivity "anodyne" subsets of ZINC15 in the first196

filtering step [http://zinc15.docking.org/subclasses/kinase/substances/subsets/now+anodyne/]. The "now"197

label indicates the compounds were availabile for immediate delivery, while the "anodyne" label excludes198

compounds matching filters that flag compounds with the potential for reactivity or pan-assay interference199

(PAINs) [36, 37].200

Next, we identified resulting molecules that were also available for procurement through eMolecules [38]201

(free version, downloaded 1 June 2017), the supplier that would be used for procurement in this exercise. To202

find the intersection of ZINC15 kinase subset and eMolecules database, we matched molecules using their203

canonical isomeric SMILES strings, as computed via the OpenEye OEChem Toolkit (version 2017.Feb.1) [39].204

To extract availability and price information from eMolecules, we queried using a list of SMILES (as205

reported in eMolecules database) of the intersection set. We further filtered the intersection set (1204206

compounds) based on delivery time (Tier 1 suppliers, two-week delivery) and at least 100 mg availability in207
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Pyridoxine HCl

UV-metric pKa measurement pH-metric pKa measurement

C

D

E

F

A

B
H2A+ HA A-

Figure 3. UV-metric (spectrophotometric) and pH-metric (potentiometric) pKa measurements of pyridoxine HCl
with Sirius T3. Spectrophotometic pKa measurement (panels A, B, C) relies on differences in the UV absorbance spectra
between microscopic protonation states to deconvolute the population of macrostate species as a function of pH. While

highly sensitive (and therefore requiring a very low analyte concentration of ∼ 50 µM), this approach can only resolve
changes in protonation states for titratable sites near chromophores and cannot separate the populations of microstates

that change in the same manner as a function of pH. (A) Multiwavelength UV absorbance vs pH. Purple lines represents

absorbance at distinct wavelengths in UV region. (B) Derivative of multiwavelength absorbance with respect to pH

(dA/dpH) vs pH is plotted with purple lines. In A and B, blue, red, and green triangles represent population of protonation

states (from most protonated to least protonated) as calculated from a global fit to experimental UV absorbances for all

pH values, while thin lines denote model fits that utilize the fitted model pKas to compute populations. pKa values (green
flags) correspond to inflection point of multiwavelength absorbance data where change in absorbance with respect to

pH is maximum. (C) Molar absorption coefficients vs wavelength for each protonation state as resolved by TFA. D, E, F

illustrate potentiometric pKa measurement where molar addition of acid or base is tracked as pH is titrated. (D) Mean
molecular charge vs pH. Mean molecular charge is calculated based on the model provided for the analyte: predicted

number and nature of titratable sites (acid or base type), and number of counter ions present. pKa values are calculated
as inflection points of charge vs pH plot. (E) Predicted macroscopic protonation state populations vs pH calculated based

on pKa values (H2A+: blue, HA: red, and A –
: green) (F) Buffering index vs pH profile of water (grey solid line, theoretical)

and the sample solution (blue triangles represent experimental data points). A higher concentration of analyte (∼5 mM) is
necessary for the potentiometric method than the spectrophotometric method in order to provide large enough buffering

capacity signal above water for an accurate measurement.
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powder form (format: Supplier Standard Vial). We aimed to purchase 100 mg of each compound in powder208

form with at least 90% purity. We calculated 100 mg was enough for optimization and replicate experiments209

to measure pK
a
, log P, and solubility measurements with the Sirius T3. Each UV-metric and pH-metric pK

a
210

measurement requires a minimum of 0.01 mg and 1.00 mg compound (solid or delivered via DMSO stock211

solution), respectively. log P and pH-dependent solubility measurements require around 2 mg and 10 mg of212

solid chemical, respectively.213

Filtering for predicted measurable pKas and lack of experimental data214

The Sirius T3 (Pion) instrument used to collect pK
a
and log P/log Dmeasurements requires a titratable group215

in the pK
a
range of 2–12, so we aimed to select compounds with predicted pK

a
s in the range of 3–11 to allow a216

∼1 pK unit margin of error in pK
a
predictions. pK

a
predictions for compound selection were calculated using217

Epik (Schödinger) sequential pK
a
prediction (scan) [40, 41] with target pH 7.0 and tautomerization allowed218

for generated states. We filtered out all compounds that did not have any predicted pK
a
s between 3–11, as219

well as compounds with two pK
a
values predicted to be less than 1 pK

a
unit apart in the hopes that individual220

pK
a
s of multiprotic compounds could be resolved with spectrophotometric pK

a
measurements. With the221

goal of selecting compounds suitable for subsequent log P measurements, we eliminated compounds222

with OpenEye XlogP [42] values less than -1 or greater than 6. Subsets of compounds with molecular223

weights between 150–350 g/mol and 350–500 g/mol were selected for fragment-like and drug-like categories224

respectively. Compounds without available price or stock quantity information were eliminated. As the goal225

was to provide a blind challenge, compounds with publicly available experimental log Pmeasurements were226

also removed. The sources we checked for publicly available experimental log P values were the following:227

DrugBank [43] (queried with eMolecules SMILES), ChemSpider [44] (queried by canonical isomeric SMILES),228

NCI Open Database August 2006 release [45], Enhanced NCI Database Browser [46] (queried with canonical229

isomeric SMILES), and PubChem [47] (queried with InChIKeys generated from canonical isomeric SMILES230

with NCI CACTUS Chemical Identifier Resolver [48]).231

Filtering for kinase inhibitor-like scaffolds232

In order to include common scaffolds found in kinase inhibitors, we analyzed the frequency of rings233

found in FDA-approved kinase inhibitors via Bemis-Murcko fragmentation using OEMedChem Toolkit of234

OpenEye [49, 50]. Heterocycles found more than once in FDA-approved kinase inhibitors are shown in235

Figure 4B. In selecting 25 compounds for the fragment-like set and 10 compounds for the drug-like set, we236

prioritized including at least one example of each heterocycle, although we failed to find compounds with237

piperazine and indazole that satisfied all other selection criteria. We observed that certain heterocycles238

(shown in Figure 4C) were overrepresented based on our selection criteria; therefore, we limited the number239

of these structures in the SAMPL6 challenge set to at most one in each set. To achieve broad and uniform240

sampling of the measurable log P dynamic range, we segregated the molecules into bins of predicted XlogP241

values and selected compounds from each bin, prioritizing less expensive compounds.242

Filtering for UV chromophores243

The presence of UV chromophores (absorbing in the 200–400 nm range) in close proximity to protonation244

sites is necessary for spectrophotometric pK
a
measurements. To filter for molecules with UV chromophores,245

we looked at the substructure matches to the SMARTS pattern [n,o,c][c,n,o]cc which was considered246

the smallest unit of pi-conjugation that can constitute a UV chromophore. This SMARTS pattern describes247

extended conjugation systems comprised of four heavy atoms and composed of aromatic carbon, nitrogen,248

or oxygen, such as 1.3-butadiene, which possesses an absorption peak at 217 nm. Additionally, the final set249

of selected molecules was manually inspected to makes sure all potentially titratable groups were no more250

than four heavy atoms away from a UV chromophore.251

25 fragment-like and 10 drug-like compounds were selected, out of which procurement of 28 was252

completed in time. pK
a
measurements for 17 (SM01–SM17) and 7 (SM18–SM24) were successful, respectively.253

The resulting set of 24 small molecules constitute the SAMPL6 pK
a
challenge set. For the other four254

compounds, UV-metric pK
a
measurements show no detectable pK

a
s in the range of 2–12, so we decided not255

to include them in the SAMPL6 pK
a
challenge. Experiments for these four compounds are not reported in256
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this publication.257

Python scripts used in the compound selection process are available from GitHub [https://github.com/258

choderalab/sampl6-physicochemical-properties]. Procurement details for each compound can be found259

in Supplementary Table 1. Chemical properties used in the selection of compounds are summarized in260

Supplementary Table 2.261

UV-metric pKa measurements262

Experimental pK
a
measurements were collected using the spectrophotometric pK

a
measurement method263

with a Sirius T3 automated titrator instrument (Pion) at 25°C and constant ionic strength. The Sirius T3264

is equipped with an Ag/AgCl double-junction reference electrode to monitor pH, a dip probe attached to265

UV spectrophotometer, a stirrer, and automated volumetric titration capability. The Sirius T3 UV-metric266

pK
a
measurement protocol measures the change in multi-wavelength absorbance in the UV region of the267

absorbance spectrum while the pH is titrated over pH 1.8–12.2 [28, 29]. UV absorbance data is collected268

from 160–760 nm while the 250–450 nm region is typically used for pK
a
determinations. Subsequent global269

data analysis identifies pH-dependent populations of macrostates and fits one or more pK
a
values to match270

this population with a pH-dependent model.271

DMSO stock solutions of each compound with 10 mg/ml concentration were prepared by weighing 1 mg272

of powder chemical with a Sartorius Analytical Balance (Model: ME235P) and dissolving it in 100 µL DMSO273

(Dimethyl sulfoxide, Fisher Bioreagents, CAT: BP231-100, LOT: 116070, purity ≥ 99.7%). DMSO stock solutions274

were capped immediately to limit water absorption from the atmosphere due to the high hygroscopicity275

of DMSO and sonicated for 5–10 minutes in a water bath sonicator at room temperature to ensure proper276

dissolution. These DMSO stock solutions were stored at room temperature up to two weeks in capped glass277

vials. 10 mg/ml DMSO solutions were used as stock solutions for the preparation of three replicate samples278

for the independent titrations. For each experiment, 1–5 µL of 10 mg/ml DMSO stock solution was delivered279

to a 4 mL Sirius T3 glass sample vial with an electronic micropipette (Rainin EDP3 LTS 1–10 µL). The volume280

of delivered DMSO stock solution, which determines the sample concentration following dilution by the281

Sirius T3, is optimized individually for each compound to achieve sufficient but not saturated absorbance282

signal (targeting 0.5–1.0 AU) in the linear response region. Another limiting factor for sample concentration283

was ensuring that the compound remains soluble throughout the entire pH titration range. An aliquot of284

25 µL of mid-range buffer (14.7 mM K
2
HPO

4
and 0.15 M KCl in H

2
O) was added to each sample, transferred285

with a micropipette (Rainin EDP3 LTS 10–100 µL) to provide enough buffering capacity in middle pH ranges286

so that pH could be controlled incrementally throughout the titration.287

pH is temperature and ionic-strength dependent. A peltier device on the Sirius T3 kept the analyte288

solution at 25.0 ± 0.5 °C throughout the titration. Sample ionic strength was adjusted by dilution in 1.5 mL289

ionic strength-adjusted water (ISA water ≡ 0.15 M KCl in H
2
O) by the Sirius T3. Analyte dilution, mixing,290

acid/base titration, and measurement of UV absorbance was automated by the Sirius T3 UV-metric pK
a

291

measurement protocol. The pH was titrated between pH 1.8 and 12.2 via the addition of acid (0.5 M HCl)292

and base (0.5 M KOH), targeting 0.2 pH steps between UV absorbance spectrum measurements. Titrations293

were performed under argon flow on the surface of the sample solution to limit the absorption of carbon294

dioxide from air, which can alter the sample pH to a measurable degree. To fully capture all sources of295

experimental variability, instead of performing three sequential pH titrations on the same sample solution,296

three replicate samples (prepared from the same DMSO stock solution) were subjected to one round of297

pH titration each. Although this choice reduced throughput and increased analyte consumption, it limited298

the dilution of the analyte during multiple titrations, resulting in stronger absorbance signal for pK
a
fitting.299

Under circumstances where analyte is scarce, it is also possible to do three sequential titrations using the300

same sample to limit consumption when the loss of accuracy is acceptable.301

Visual inspection of the sample solutions after titration and inspection of the pH-dependent absorbance302

shift in the 500–600 nm region of the UV spectra was used to verify no detectable precipitation occurred303

during the course of the measurement. Increased absorbance in the 500–600 nm region of the UV spectra is304

associated with scattering of longer wavelengths of light in the presence of colloidal aggregates. For each305

analyte, we optimized analyte concentration, direction of the titration, and pH titration range in order to306
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         Tier1, 100 mg, powder  

             predicted pKa filter

             Epik Sequencial pKa
- at least one pKa value in range 3-11

- pKa values at least 1 pKa unit apart

    predicted log P filter

  -1 ≤ OpenEye XlogP ≤ 6

molecular weight filter

FRAGMENT-LIKE DRUG-LIKE

`150 ≤ mw < 350 350 < mw ≤ 500

price listed and 100 mg available

filter out molecules with experimental log P

47126

111 40

91 15

 10883

1204

292 

180

178

1. Include at least one molecule for each kinase inhibitor ring fragment 

2. Limit the number of frequently appearing rings to at most one 

3. Target broad and uniform sampling of log P dynamic range

4. Prioritize cheaper molecules

compound selection rules

25 (17) 10 (7)

A B

C

Heterocycles found frequently in 
FDA approved kinase inhibitors

Heterocycles overrepresented in 
fragment libraries

Figure 4. Compound selection for the SAMPL6 pKa challenge, with the goal of running subsequent log P/log D
challenges on the same compound set. (A) Flowchart of filtering steps for the selection of compounds that resemble

kinase inhibitors and their fragments. Numbers next to arrows indicate the number of compounds remaining after

each filtering step. A total of 25 fragment-like and 10 drug-like compounds were selected, out of which procurement

and pKa measurements for 17 fragment-like and 7 drug-like compounds were successful, respectively. (B) Frequent
heterocycles found in FDA approved kinase inhibitors, as determined by Bemis-Murcko fragmentation into rings [49].

Black structures were represented in SAMPL6 set at least once. Compounds with piperazine and indazole (gray structures)

could not be included in the challenge set due to library and selection limitations. (C) Structures of heterocycles that

were overrepresented based on our compound selection workflow. We have limited the number of occurrences of these

heterocycles to at most one.
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maintain solubility over the entire experiment. The titration direction was specified so that each titration307

would start from the pH where the compound is most soluble: low-to-high pH for bases and high-to-low308

pH for acids. While UV-metric pK
a
measurements can be performed with analyte concentrations as low as309

50 µM (although this depends on the absorbance properties of the analyte), some compounds may yet not310

be soluble at these low concentrations throughout the pH range of the titration. As the sample is titrated311

through a wide range of pH values, it is likely that low-solubility ionization states—such as neutral and312

zwitterionic states—will also be populated, limiting the highest analyte concentration that can be titrated313

without encountering solubility issues. For compounds with insufficient solubility to accurately determine a314

pK
a
value directly in a UV-metric titration, a cosolvent protocol was used, as described in the next section315

(UV-metric pK
a
measurement with cosolvent).316

Two Sirius T3 computer programs—Sirius T3 Control v1.1.3.0 and Sirius T3 Refine v1.1.3.0—were used317

to execute measurement protocols and analyze pH-dependent multiwavelength spectra, respectively. Pro-318

tonation state changes at titratable sites near chromophores will modulate the UV-absorbance spectra of319

these chromophores, allowing populations of distinct UV-active species to be resolved as a function of pH.320

To do this, basis spectra are identified and populations extracted via TFA analysis of the pH-dependent321

multi-wavelength absorbance [29]. When fitting the absorbance data to a titratable molecule model to322

estimate pK
a
s, we selected the minimum number of pK

a
s sufficient to provide a high-quality fit between323

experimental and modeled data based on visual inspection of pH-dependent populations.324

This method is capable of measuring pK
a
values between 2–12 when titratable groups are at most 4–5325

heavy atoms away from chromophores such that a change in protonation state alters the absorbance326

spectrum of the chromophore. We selected compounds where titratable groups are close to potential327

chromophores (generally aromatic ring systems), but the possibility exists that our experiments did not328

detect protonation state changes of titratable groups distal from UV chromophores.329

Cosolvent UV-metric pKa measurements of molecules with poor aqueous solubilities330

If analytes are not sufficiently soluble during the titration, pK
a
values cannot be accurately determined via331

aqueous titration directly. If precipitation occurs, the UV-absorbance signal from pH-dependent precipitate332

formation cannot be differentiated from the pH-dependent signal of soluble microstate species. For com-333

pounds with low aqueous solubility, pK
a
values were estimated from multiple apparent pK

a
measurements334

performed in ISA methanol:ISA water cosolvent solutions with various mole fractions, from which the pK
a

335

at 0% methanol (100% ISA water) can be extrapolated. This method is referred to as a UV-metric p
s
K
a

336

measurement in the Sirius T3 Manual [51].337

The cosolvent spectrophotometric pK
a
measurement protocol was very similar to the standard aqueous338

UV-metric pK
a
measurement protocol, with the following differences: titrations were performed in typically339

in 30%, 40%, and 50% mixtures of ISA methanol:ISA water by volume to measure apparent pK
a
values (p

s
K
a
)340

in these mixtures. Yasuda-Shedlovsky extrapolation was subsequently used to estimate the pK
a
value at 0%341

cosolvent (Figure 5) [31, 52, 53].342

psKa + log[H2O] = A∕� + B (1)

Yasuda-Shedlovsky extrapolation relies on the linear correlation between psKa + log[H2O] and the reciprocal343

dielectric constant of the cosolvent mixture (1∕�). In Eq. 1, A and B are the slope and intercept of the line344

fitted to experimental datapoints. Depending on the solubility requirements of the analyte, the methanol345

ratio of the cosolvent mixtures was adjusted. We designed the experiments to have at least 5% cosolvent346

ratio difference between datapoints and no more than 60% methanol content. Calculation of the Yasuda-347

Shedlovsky extrapolation was performed by the Sirius T3 software using at least 3 p
s
K
a
values measured in348

different ratios of methanol:water. Addition of methanol (80%, 0.15 M KCl) was controlled by the instrument349

before each titration. Three consecutive pH titrations at different methanol concentrations were performed350

using the same sample solution. In addition, three replicate measurements with independent samples351

(prepared from the same DMSO stock) were collected.352
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Spectral data by pH in 59.07% methanol  

Spectral data by pH in 49.72% methanol 

Spectral data by pH in 40.08% methanol 

: 2.45
: 7.42

A

B

C

D

Figure 5. Determination of SM22 pKa values with cosolvent method and Yasuda-Shedlovsky extrapolation. A, B,
and C show psKa of SM22 determined at various methanol concentrations: 59.07%, 49.72%, 40.08% by weight. Purple
solid lines indicate the derivative of the absorbance signal with respect to pH vs pH at multiple wavelengths. psKa values
(green flags) were determined by Sirius T3 Refine Software. Blue, red, and green triangles show relative populations

of macroscopic protonation states with respect to pH calculated from the experimental data. Notice that as cosolvent

concentration increases, psKa1 decreases from 1.90 to 1.47 and psKa2 increases from 7.84 to 8.24. D Yasuda-Shedlovsky
extrapolation plot for SM22. Red datapoints correspond to psKa determined at various cosolvent ratios. Based on linear
fitting to psKa + log[H2O] vs 1∕�, pKa1 and pKa2 in 0% cosolvent (aqueous solution) was determined as 2.45 and 7.42,
respectively. R2 values of linear fits are both 0.99. The slope of Yasuda-Shedlovsky extrapolation shows if the observed

titration has acidic (positive slope) or basic (negative slope) character dominantly, although this is an macroscopic

observation and should not be relied on for annotation of pKas to functional groups (microscopic pKas).
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Calculation of uncertainty in pKa measurements353

Experimental uncertainties were reported as the standard error of the mean (SEM) of three replicate pK
a

354

measurements. The standard error of the mean (SEM) was estimated as355

SEM = �
√

N
; � =

√

√

√

√
1
N

N
∑

i=1
(xi − �)2 ; � = 1

N

N
∑

i=1
xi (2)

where � denotes the sample standard deviation and � denotes the sample mean. xi are observations and N356

is the number of observations.357

Since the Sirius T3 software reports pK
a
values to only two decimal places, we have reported the SEM358

as 0.01 in cases where SEM values calculated from 3 replicates were lower than 0.01. SEM calculated from359

replicate measurements were found to be larger than non-linear fit error reported by the Sirius T3 Refine360

Software from UV-absorbance model fit of a single experiment, thus leading us to believe that running361

replicate measurements and reporting mean and SEM of pK
a
measurements is better for capturing all362

sources of experimental uncertainty. Notably, for UV-metric measurements, the measured pK
a
values363

should be insensitive to final analyte concentration and any uncertainty in the exact analyte concentration of364

the original DMSO stock solution, justifying the use of the same stock solution (rather than independently365

prepared stock solutions) for multiple replicates.366

Quality control for chemicals367

Compound purity was assessed by LC-MS using an Agilent HPLC 1200 Series equipped with auto-sampler,368

UV diode array detector, and a Quadrupole MS detector 6140. ChemStation version C01.07SR2 was used369

to analyze LC & LC/MS. An Ascentis Express C18 column (3.0 x 100 mm, 2.7 µm) was used, with column370

temperature set at 45° C.371

• Mobile phase A: 2 mM ammonium formate (pH = 3.5) aqueous372

• Mobile phase B: 2 mM ammonium formate in 90:10 acetonitrile:water (pH = 3.5)373

• Flow rate : 0.75 ml/min374

• Gradient: Starting with 10% B to 95% B in 10 minutes then hold at 95% B for 5 minutes.375

• Post run length: 5 minutes376

• Mass condition: ESI positive and negative mode377

• Capillary voltage: 3000 V378

• Drying gas flow: 12 ml/min379

• Nebulizer pressure: 35 psi380

• Drying temperature: 350°C381

• Mass range: 5-1350 Da; Fragmentor: 70; Threshold: 100382

The percent area for the primary peak is calculated based on the area of the peak divided by the total383

area of all peaks. The percent area of the primary peak is reported as an estimate of sample purity. The384

purity of primary LC peak was checked by ChemStation software with threshold 995, to check that there is385

no significant impurity underneath the main peak.386

NMR determination of protonation microstates387

In general, the chemical shifts of nuclear species observed in nuclear magnetic resonance (NMR) spectra388

report on and are very sensitive to the chemical environment. Consequently, small changes in chemical389

environment, such as the protonation events described in this work, are manifest as changes in the chemical390

shift(s) of the nuclei. If perturbation occurs at a rate which is fast on the NMR timescale (fast exchange),391

an average chemical shift is observed. This phenomena has been exploited and utilized as a probe for392

determining the order of protonation for molecules with more than one titratable site [54]. In some393

cases, direct observation of the titrated nuclei can be difficult, for example nitrogen and oxygen, due to394

sample limitations and/or low natural abundance of the NMR active nuclei (0.37% for 15N and 0.038% for395

17O)—amongst other factors. In these situations, chemical shifts changes of the so-called “reporter” NMR396
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nuclei—1H, 31P, or 13C nuclei, which are directly attached to or are a few bonds away from the titrated397

nuclei—have been utilized as the probe for NMR-pH titrations [21, 55, 56]. This approach is advantageous398

since the sensitive NMR nuclides (1H and 31P) are observed. In addition, 31P and 13C offer large spectral399

widths of ~300 ppm and ~200 ppm, respectively, which minimize peak overlap.400

However, reporter nuclei chemical shifts provide indirect information subject to interpretation. In complex401

systems with multiple titratable groups, such analysis will be complicated due to a cumulative effect of these402

groups on the reporter nuclide due to their close proximity or the resonance observed in aromatic systems.403

In contrast, direct observation of the titratable nuclide where possible, affords a more straight-forward404

approach to studying the protonation events. In this study, the chemical shifts of the titratable nitrogen405

nuclei were observed using the 1H-15N-HMBC (Heteronuclear Multiple-Bond Correlation) experiments— a406

method that affords the observation of 15N chemical shifts while leveraging the sensitivity accrued from the407

high abundance the 1H nuclide.408

The structures of samples SM07 and SM14 were assigned via a suite of NMR experiments, which included409

1H NMR, 13C NMR, homonuclear correlated spectroscopy (1H-1H COSY), heteronuclear single quantum410

coherence (1H-13C HSQC), 13C heteronuclear multiple-bond correlation (1H-13C-HMBC) and 15N heteronuclear411

multiple-bond correlation (1H-15N-HMBC)—see SI. All NMR data used in this analysis were acquired on a412

Bruker 500 MHz spectrometer equipped with a 5 mm TCI CryoProbeTM Prodigy at 298 K. The poor solubility413

of the analytes precluded analysis in water and thus water-d
2
/methanol-d

4
mixture and acetonitrile-d

3
were414

used as solvents. The basic sites were then determined by titration of the appropriate solutions of the415

samples with equivalent amounts of deutero-trifluoroacetic acid (TFA-d) solution.416

SM07417

5.8 mg of SM07 was dissolved in 600 µL of methanol-d
4
:water-d

2
(2:1 v/v ratio). A 9% v/v TFA-d solution in418

water-d2 was prepared, such that each 20 µL volume contained approximately 1 equivalent of TFA-d with419

respect to the base. The SM07 solution was then titrated with the TFA-d solution at 0.5, 1.0, 1.5, and 5.0420

equivalents with 1H-15N HMBC spectra (optimized for 5 Hz) acquired after each TFA addition. A reference421

1H-15N HMBC experiment was first acquired on the SM07 solution prior to commencement of the titration.422

SM14423

5.5 mg of SM14 was dissolved in 600 µL of acetonitrile-d
3
. A 10% v/v TFA-d solution in acetonitrile-d

3
was424

prepared, 20 µL of which corresponds to 1 equivalent of TFA-d with respect to the base. Further 1:10 dilution425

of the TFA-d solution in acetonitrile-d
3
, allowed measurement of 0.1 equivalent of TFA-d per 20 µL of solution.426

The SM14 solution was then titrated with the TFA-d solutions at 0.0, 0.5, 1.0, 1.1, 1.2, 1.3, 1.5, 1.8, 2.0, 2.1, 2.6,427

5.1, and 10.1 equivalents. The chemical shift changes were monitored by the acquisition of 1H-15N HMBC428

spectra (optimized for 5 Hz) after each TFA addition.429

Results430

Spectrophotometric pKa measurements431

Spectrophotometrically-determined pK
a
values for all molecules from the SAMPL6 pK

a
challenge are shown432

in Figure 6 and Table 1. The protocol used—cosolvent or aqueous UV-metric titration—is indicated in433

Table 1 together with SEM of each reported measurement. Out of 24 molecules successfully assayed, five434

molecules have two resolvable pK
a
values, while one has three resolvable pK

a
values within the measurable435

pK
a
range of 2–12. The SEM of reported pK

a
measurements is low, with the largest uncertainty reported436

being 0.04 pK units (pK
a1
of SM06 and pK

a3
of SM18). Individual replicate measurements can be found in437

Supplementary Table 3. Reports generated for each pK
a
measurement by the Sirius T3 Refine software can438

also be found in the Supplementary Information. Experimental pK
a
values for nearly all compounds with439

multiple resolvable pK
a
s are well-separated (more than 3 pK

a
units), except for SM14 and SM18.440

Impact of cosolvent to UV-metric pKa measurements441

For molecules with insufficient aqueous solubilities throughout the titration range (pH 2–12), we resorted442

to cosolvent UV-metric pK
a
measurements, with methanol used as cosolvent. To confirm that cosolvent443
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SM01	  
pKa	  	  9.53	  ±	  0.01	  

	  

SM02	  
pKa	  	  5.03	  ±	  0.01	  

	  

SM03	  
pKa	  	  7.02	  ±	  0.01	  

	  

SM04	  
pKa	  	  6.02	  ±	  0.01	  

	  

SM05	  
pKa	  	  4.59	  ±	  0.01	  

	  

SM06	  
pKa1	  	  	  3.03	  ±	  0.04	  
	  pKa2	  	  11.74	  ±	  0.01	  

	  
	  

SM07	  
pKa	  	  	  6.08	  ±	  0.01	  

	  
	  

SM08	  
pKa	  	  	  4.22	  ±	  0.01	  

	  
	  

SM09	  
pKa	  	  	  5.37	  ±	  0.01	  

SM10	  
pKa	  	  	  9.02	  ±	  0.01	  

SM11	  
pKa	  	  	  3.89	  ±	  0.01	  

SM12	  
pKa	  	  	  5.28	  ±	  0.01	  

SM13	  
pKa	  	  	  5.77	  ±	  0.01	  

SM14	  
pKa1	  	  	  2.58	  ±	  0.01	  
pKa2	  	  	  5.30	  ±	  0.01	  

	  

SM15	  
pKa1	  	  	  4.70	  ±	  0.01	  
pKa2	  	  	  8.94	  ±	  0.01	  

	  

SM16	  
pKa1	  	  	  5.37	  ±	  0.01	  

	  	  	  pKa2	  	  	  10.65	  ±	  0.01	  
	  

SM17	  
pKa	  	  	  3.16	  ±	  0.01	  

	  

SM18	  
pKa1	  	  	  2.15	  ±	  0.02	  
pKa2	  	  	  9.58	  ±	  0.03	  
	  	  pKa3	  	  	  11.02	  ±	  0.04	  

	  
	  
	  

SM19	  
pKa	  	  	  9.56	  ±	  0.02	  

	  

SM20	  
pKa	  	  	  5.70	  ±	  0.03	  

	  

SM21	  
pKa	  	  	  4.10	  ±	  0.01	  

	  

SM22	  
pKa1	  	  	  2.40	  ±	  0.02	  
pKa2	  	  	  7.43	  ±	  0.01	  

	  
	  

SM23	  
pKa	  	  	  5.45	  ±	  0.01	  

	  
	  

SM24	  
pKa	  	  	  2.60	  ±	  0.01	  

	  
	  

Figure 6. Molecules used in the SAMPL6 pKa challenge. Experimental UV-metric pKa measurements were performed
for these 24 molecules and discernable macroscopic pKas are reported. Uncertainties are expressed as the standard
error of the mean (SEM) of three independent measurements. We depicted neutral states of the molecules as sites of

protonation were not determined by UV-metric methods. 2D structures were created with OpenEye OEDepict Toolkit [57]
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Table 1. Experimental pKas of SAMPL6 compounds. Spectrophotometric pKa measurements were
performed with two assay types based on aqueous solubility of analytes. "UV-metric pKa" assay
indicates spectrophotometric pKa measurements done with Sirius T3 in ISA water. "UV-metric pKa
with cosolvent" assay refers to pKa determination by Yasuda-Shedlovsky extrapolation from psKa
measurements in various ratios of ISA methanol:water mixtures. Triplicate measurements were

performed at 25 ± 0.5° C and in the presence of approximately 150 mM KCl to adjust ionic strength.

Molecule ID pK
a1

pK
a2

pK
a3

Assay Type

SM01 9.53 ± 0.01 UV-metric pK
a

SM02 5.03 ± 0.01 UV-metric pK
a
with cosolvent

SM03 7.02 ± 0.01 UV-metric pK
a
with cosolvent

SM04 6.02 ± 0.01 UV-metric pK
a

SM05 4.59 ± 0.01 UV-metric pK
a
with cosolvent

SM06 3.03 ± 0.04 11.74 ± 0.01 UV-metric pK
a

SM07 6.08 ± 0.01 UV-metric pK
a

SM08 4.22 ± 0.01 UV-metric pK
a

SM09 5.37 ± 0.01 UV-metric pK
a
with cosolvent

SM10 9.02 ± 0.01 UV-metric pK
a
with cosolvent

SM11 3.89 ± 0.01 UV-metric pK
a

SM12 5.28 ± 0.01 UV-metric pK
a

SM13 5.77 ± 0.01 UV-metric pK
a

SM14 2.58 ± 0.01 5.30 ± 0.01 UV-metric pK
a

SM15 4.70 ± 0.01 8.94 ± 0.01 UV-metric pK
a

SM16 5.37 ± 0.01 10.65 ± 0.01 UV-metric pK
a

SM17 3.16 ± 0.01 UV-metric pK
a

SM18 2.15 ± 0.02 9.58 ± 0.03 11.02 ± 0.04 UV-metric pK
a
with cosolvent

SM19 9.56 ± 0.02 UV-metric pK
a
with cosolvent

SM20 5.70 ± 0.03 UV-metric pK
a
with cosolvent

SM21 4.10 ± 0.01 UV-metric pK
a
with cosolvent

SM22 2.40 ± 0.02 7.43 ± 0.01 UV-metric pK
a
with cosolvent

SM23 5.45 ± 0.01 UV-metric pK
a
with cosolvent

SM24 2.60 ± 0.01 UV-metric pK
a
with cosolvent

1 pK
a
values are reported as mean ± SEM of three replicates.

UV-metric pK
a
measurements led to indistinguishable results compared to aqueous UV-metric measure-444

ments, we collected pK
a
values of 12 highly soluble SAMPL6 compounds—as well as pyridoxine—using445

both cosolvent and aqueous methods. Correlation analysis of pK
a
values determined with both methods446

demonstrated that using methanol as cosolvent and determining aqueous pK
a
s via Yasuda-Shedlovsky447

extrapolation did not result in significant bias (Figure 7), since 95% CI for mean deviation (MD) between448

two measurements includes zero. Means and standard errors of UV-metric pK
a
measurements with and449

without cosolvent are provided in Supplementary Table 5. pK
a
measurement results of individual replicate450

measurements with and without cosolvent can be found in Supplementary Table 4.451

Purity of SAMPL6 compounds452

LC-MS based purity measurements showed that powder stocks of 23 of the SAMPL6 pK
a
challenge com-453

pounds were >90% pure, while purity of SM22 was 87%—the lowest in the set (Supplementary Table 6). Addi-454

tionally, molecular weights detected by LC-MS method were consistent with those reported in eMolecules,455

as well as supplier-reported molecular weights, when provided. It is recommended by Sirius/Pion technical456

specialists to use compounds with ∼90% purity to minimize the impact on high-accuracy pK
a
measurements.457

Impurities with no UV-chromophore, or elute too late in LC may not be detected with this method, although458

16 of 27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2018. ; https://doi.org/10.1101/368787doi: bioRxiv preprint 

https://doi.org/10.1101/368787
http://creativecommons.org/licenses/by/4.0/


Preprint ahead of submission— July 13, 2018

2 4 6 8 10 12
pKa (UV-metric pKa)

2

4

6

8

10

12

p
K

a
 (

U
V

-m
e
tr

icc p
 p

K
a
 w

it
h
 c

o
so

lv
e
n
t)

Slope    1.01  [0.95, 1.05]
R2        1.00  [0.99, 1.00]
MD      -0.04  [-0.12, 0.03] 
MAD     0.12  [0.07, 0.18]
RMSD  0.17  [0.09, 0.23]

U
V

-m
e

tr
ic

 p
K

a
 w

ith
 c

o
s
o

lv
e

n
t

UV-metric pKa

Figure 7. pKa measurements with UV-metric method with cosolvent and UV-metric method in water show good
correlation. 17 pKa values (blue marks) of 13 chemicals were measured with both UV-metric pKa method in water and
UV-metric pKa method with methanol as cosolvent (Yasuda-Shedlovsky extrapolation to 0% methanol). Dashed black
line has slope of 1, representing perfect correlation. Dark and light green shaded areas indicate ±0.5 and ±1.0 pKa unit
difference regions, respectively. Error bars are plotted as the SEM of replicate measurements, although they are not visible

since the largest SEM is 0.04. MD: Mean difference, MAD: Mean absolute deviation, RMSD: Root-mean-square deviation.

Confidence intervals (reported in brackets) report the 95%ile CI calculated over 10 000 bootstrap samples. Experimental

data used in this plot is reported in Supplementary Table 4.

chances are small. The peak purity check of primary peak can detect the presence of a large impurity459

underneath the main peak, but if the UV spectrum of the impurity is exactly same with analyte in the main460

peak, it may not be resolved. HPLC UV detector’s wavelength inaccuracy is <1%. Mass inaccuracy of MS461

instrument is ~0.13 um within the calibrated mass range in the scan mode.462

Characterization of SM07 microstates with NMR463

15NChemical shifts (ppm, referenced to external liquid ammonia at 0 ppm) for N-8, N-10 and N-12—measured464

from the 1H-15N HMBC experiments—were plotted against the titrated TFA-d equivalents (0.0, 0.5, 1.0, 1.5,465

and 5.0 equivalents) (Figure 8 A). A large upfield shift of ~82 ppm is observed for N-12. The initial linear466

relationship between chemical shift and TFA equivalents, shown in Figure SI 25 for N-12, is expected for467

strong monoprotic bases—as is the case for SM07. The large upfield chemical shift change (82 ppm) is468

consistent with a charge delocalization as shown in the resonance structures inset of Figure SI 25. Further469

evidence for this delocalization is observed for N-8, which exhibited a downfield chemical shift change of ~28470

ppm compared to just ~1.5 ppm for N-10. Titration of SM07 with more than 1 equivalent of TFA-d did not471

result in further significant chemical shift changes—establishing that SM07 is a monoprotic base(Figure 8A).472

Characterization of SM14 microstates with NMR473

Determining the protonation sites for SM14, which has pK
a
values of 2.58 and 5.30 (Table 1), was more474

challenging due to multiple possible resonance structures in the mono- and di-protonated states. We475

noticed that the water/methanol co-solvent exhibited strong solvent effects, which complicated the data476

interpretation for SM14. For instance, titration of SM14 in methanol/water (see SI) showed incomplete477

protonation of N-9 even after 5 equivalents of TFA-d were added. This observation is consistent with UV-478

metric p
s
K
a
measurements done in methanol cosolvent, where both p

s
K
a
values were decreasing as the479

percentage of methanol was increased, making observation of these protonation states more difficult. Thus480

the utilization of an aprotic solvent was necessary for unambiguous interpretation of the data.481
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Due to the problem just delineated for the methanol/water cosolvent, acetonitrile-d
3
was selected as482

our solvent of choice. Titration of SM14 (5.5 mg) with up to 10 equivalents of TFA-d in acetonitrile-d
3
(0.0,483

0.5, 1.0, 1.1, 1.2, 1.3, 1.5, 1.8, 2.0, 2.1, 2.6, 5.1, and 10.1 equivalents), provided a much clearer picture of its484

protonation states (Figure 8 B). N-9, with the large upfield chemical shift change ~72 ppm at 1 equivalent485

of TFA-d, clearly is the site of first protonation. Concurrently, the downfield chemical shift changes were486

observed for N-7 (Δ� ≈ 6.5) and N-16 (Δ� ≈ 5) that can be attributed to electronic effects rather than a487

direct protonation. The large upfield shift for N-9 indicates this to be the site of first protonation; complete488

protonation was attained at roughly 2.5 equivalents of TFA-d, suggesting that SM14 is a weak base under489

these experimental conditions. Following the protonation of N-9, a second protonation event occurs at N-16490

nitrogen as evident by the upfield chemical shift change observed for N-16. However, a continuous change491

in the chemical shift of N-16 even after addition of 10 equivalents of TFA-d indicates that this protonation492

event is incomplete but provides evidence for N-16 being the second protonation site. This observation is493

consistent with N-16 being even a weaker base than N-9, which is expected of the aniline-type amines. Other494

notable observations were the slight downfield chemical shift changes for N-7 and N-9, during the second495

protonation event. These changes were attributed to electronic effects from the protonation of N-16.496

Discussion497

Sample preparation and effect of cosolvents in UV-metric measurements498

Samples for UV-metric pK
a
measurements were prepared by dilution of up to 5 µL DMSO stock solution499

of analyte in 1.5 mL ISA water, which results in the presence of ∼0.3% DMSO during titration, which is500

presumed to have a negligible effect on pK
a
measurements. For UV-metric or pH-metric measurements, it is501

possible to prepare samples without DMSO, but it is difficult to prepare samples by weighing extremely low502

amounts of solid stocks (in the order of 0.01–0.10 mg) to target 50 µM analyte concentrations, even with503

an analytical balance. For experimental throughput, we therefore preferred using DMSO stock solutions.504

Another advantage of starting from DMSO stock solutions is that it helps to overcome kinetic solubility505

problems of analytes.506

In UV-metric measurements, both water and methanol (when used as cosolvent) stock solutions were507

ionic strength adjusted with 150 mM KCl, but acid and base solutions were not. This means that throughout508

pH titration ionic strength slighly fluctuates, but on average ionic strength of samples were staying around509

150–180 mM. By using ISA solutions the effect of salt concentration change on pK
a
measurements was510

minimized.511

If an analyte is soluble enough, UV-metric pK
a
measurements in water should be preferred over cosolvent512

methods, since pK
a
measurement in water is more direct. For pK

a
determination via cosolvent extrapolation513

using methanol, the apparent pK
a
s (p

s
K
a
) in at least three different methanol:water ratios must be measured,514

and the pK
a
in 0% cosolvent computed by Yasuda-Shedlovsky extrapolation. The number and spread of515

p
s
K
a
measurements and error in linear fit extrapolation influences the accuracy of pK

a
s determined by this516

approach. To test that UV-metric methods with or without cosolvent have indistinguishable performance,517

we collected pK
a
values for 17 SAMPL6 compounds and pyridoxine with both methods. Figure 7 shows there518

is good correlation between both methods and the mean absolute deviation between two methods is 0.12519

(95% CI [0.07, 0.18]). The mean deviation between the two sets is -0.04 (95% CI [-0.12, 0.03]), showing there is520

no significant bias in cosolvent measurements as the 95% CI includes zero. The largest absolute deviation521

observed was 0.41 for SM06.522

Impact of impurities to UV-metric pKa measurements523

Precisely how much the presence of small amounts of impurities impact UV-metric pK
a
measurements is524

unpredictable. For an impurity to alter UV-metric pK
a
measurements, it must possess a UV-chromophore and525

a titratable group in the vicinity of the chromophore—otherwise, it would not interfere with absorbance signal526

of the analyte. If a titratable impurity does possess a UV-chromophore, UV multiwavelength absorbance527

from the analyte and impurity will be convoluted. How much the presence of impurity will impact the528

multiwavelength absorbance spectra and pK
a
determination depends on the strength of the impurity’s molar529
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Figure 8. Dominant protonation microstates of SM07 and SM14 characterized by NMR. (A) Sequence of protonation

sites of SM07 were determined by 1H-15N HMBC experiments in 1:2 water:methanol mixture. Left: The plot of 15N chemical
shifts of the N-10, N-12, and N-8 resonances of SM07 vs titrated TFA-d equivalents, showing the mono-protonation of
N-12 as evidenced by its large upfield chemical shifts change. Acidity of the medium increased as more equivalents of

TFA-d were added. Electronic effects due to protonation of N-12 caused downfield chemical shift change of N-10 and
N-8 between 0–1 equivalents of TFA-d. Right: NMR-based model of the order of dominant protonation states for SM07.
The protonation event was only observed at N-12. Microstates shown in the figure are the most likely contributors to the

UV-metric pKa of 6.08 ± 0.01. (B) Sequence of protonation sites of SM14 were determined by 1H-15N HMBC experiments in
acetonitrile. Left: The plot of 15N chemical shifts of N-9, N-7, and N-16 of SM14 vs titrations of TFA-d equivalents, showing
two sequential protonation events. The first protonation occured at N-9; a large upfield chemical shift change of 71.6 ppm

was seen between 0–1 equivalents of TFA-d. Downfield chemical shift changes observed for N-7 and N-19 in this region
were due the electronic effect from the protonation of N-9. N-16 also exhibited a small upfield chemical shift change of

4.4 ppm between 2.5–10 equivalents of TFA-d, which indicated N-16 as the second site of protonation. Right: NMR based
model of the order of dominant protonation states for SM14, showing two sequential protonation events. Also, two pKa
values were detected with UV-metric pKa measurements for SM14. Assuming that the sequence of protonation events will
be conserved between water and acetonitrile solvents, SM140 and SM14+1 microstates shown in the figure are the major

contributors to the UV-metric pKa value 5.30 ± 0.01. SM14+1 and SM14+2 microstates shown in the figure are the major
pair of microstates contributing to the UV-metric pKa value 2.58 ± 0.01. There could be minor microstates with very low
populations that could not be distinguished in these NMR experiments.
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absorption coefficient and concentration, relative to the analyte’s. In the worst case scenario, an impurity530

with high concentration or strong UV absorbance can shift the measured pK
a
value or create the appearance531

of an extra pK
a
. As a result, it is important to use analytes with high purities to obtain high accuracy pK

a
532

measurements. Therefore, we confirmed the purities of SAMPL6 compounds with LC-MS.533

Interpretation of UV-metric pKa measurements534

Multiwavelength absorbance analysis on the Sirius T3 allows for good resolution of pK
a
s based on UV-535

absorbance change with respect to pH, but it is important to note that pK
a
values determined from this536

method are often difficult to assign as either microscopic or macroscopic in nature. This method potentially537

producesmacroscopic pK
a
s for polyprotic compounds. If multiple microscopic pK

a
s have close pK

a
values538

and overlapping changes in UV absorbance spectra associated with protonation/deprotonation, the spectral539

analysis could produce a single macroscopic pK
a
that represents an aggregation of multiple microscopic pK

a
s.540

An extreme example of such case is demonstrated in the simulated macrostate populations of cetirizine that541

would be observed with UV-metric titration (Figure 2).542

If protonation state populations observed via UV-metric titrations (such as in Figure 3B) are composed543

of a single microstate, experimentally measured pK
a
s are indeed microscopic pK

a
s. Unfortunately, judging544

the composition of experimental populations is not possible by just using UV-metric or pH-metric titration.545

Molecules in the SAMPL6 pK
a
challenge dataset with only one pK

a
value measured in the 2–12 range could546

therefore be monoprotic (possessing a single titratable group that changes protonation state by gain or547

loss of a single proton over this pH range) or polyprotic (gaining or losing multiple protons from one or548

more sites with overlapping microscopic pK
a
values). Similarly, titration curves of molecules with multiple549

experimental pK
a
s may show well-separated microscopic pK

a
s or macroscopic experimental pK

a
s that550

are really composites of microscopic pK
a
s with similar values. Therefore, without additional experimental551

evidence, UV-metric pK
a
s should not be assigned to individual titratable groups.552

Sometimes it can be possible to assign pK
a
s to ionizable groups if they produce different UV-absorbance553

shifts upon ionization, but it is not a straight-forward analysis and it is not a part of the analysis pipeline of554

Sirius T3 Refine Software. Such an analysis would require fragmentation of the molecule and determining555

how UV-spectra of each chromophore changes upon ionization in isolation.556

Determination of the exact microstates populated at different pH values via NMR can provide a com-557

plementary means of differentiating between microscopic and macroscopic pK
a
s in cases where there is558

ambiguity. As determination of protonation microstates via NMR is very laborious, we were only able to559

characterize microstates of two molecules: SM07 and SM11.560

In UV-metric pK
a
measurements with cosolvent, the slope of the Yasuda-Shedlovsky extrapolation can561

be interpreted to understand if the pK
a
has dominantly acidic or basic character. As the methanol ratio562

is increased, p
s
K
a
values of acids increase, while p

s
K
a
values for bases decrease. However, it is important563

to remember that if the measured pK
a
is macroscopic, acid/base assignment from cosolvent p

s
K
a
trends564

is also a macroscopic property, and should not be used as a guide for assigning pK
a
values to functional565

groups [58].566

NMRmicrostate characterization567

The goal of NMR characterization was to collect information on microscopic states related to experimental568

pK
a
measurements, i.e., determine exact sites of protonation. pK

a
measurements performed with spec-569

trophotometric method provide macroscopic pK
a
values, but do not provide information on the specific570

site(s) of protonation. Conversely, most computational prediction methods primarily predict microscopic571

pK
a
values. Protonation sites can be determined by NMR methods, although these measurements are572

very laborious in terms of data collection and interpretation compared to pK
a
measurements with the573

automated Sirius T3. Moreover, not all SAMPL6 molecules were suitable for NMR measurements due to574

the high sample concentration requirements (for methods other than proton NMR, such as 13C and 15N575

based 2D experiments) and limiting analyte solubility. Heavy atom spectra that rely on natural isotope576

abundance require high sample concentrations (preferably in the order of 100 mM). It is possible that drug577

or drug-fragment-like compounds, such as the compounds used in this study, have insufficient aqueous578
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solubility, limiting the choice of solvent and pH. It may be necessary to use organic cosolvents to prepare579

these high concentration solutions or only prepare samples at pH values that correspond to high solubility580

states (e.g., when the charged state of the compound is populated).581

We performed NMR based microstate characterization only for SM07 and SM14. We were able to identify582

the order of dominant protonation microstates, as shown in Figure 8. These pairs of microstates and583

the order of microscopic transitions can be associated with experimental pK
a
s determined by UV-metric584

titrations, under the assumption that different organic solvents used in NMR measurements will have585

negligible effect on the sequence of microstates observed as the medium was titrated with acid, although586

shift in pK
a
values is expected. NMR measurements for SM07 and SM14 were done in water:methanol587

(1:2 (v/v)) and acetonitrile solutions, respectively. On the other hand, pK
a
values of these two compounds588

were determined by UV-metric titrations in ISA water. Additional UV-metric pK
a
measurements of these589

compounds with methanol as a cosolvent showed that their p
s
K
a
values decreased as the cosolvent ratio590

increased (i.e., dielectric constant decreased) as expected from base titration sites. Identification of SM07591

and SM14 titratable sites type as base is consistent between NMR based models and UV-metric cosolvent592

titrations. The order of microstates observed in the titration of NMR samples are very likely to corresponds593

to the dominant microstates associated with UV-metric pK
a
measurements. N-12 of SM07 was observed as594

the only protonation site of SM07 during TFA-d titration up to 5 equivalents which supports that SM07 is595

mono-protic and UV-metric pK
a
value 6.08 ± 0.01 corresponds to microscopic protonation of N-12. For SM14,596

two protonation sites were observed (N-16 and N-9, in the order of increasing p
s
K
a
). Microstate pairs shown597

in Figure 8B were determined as dominant contributors to UV-metric pK
a
s 2.58±0.01 and 5.30±0.01, although598

minor microspecies with very low populations (undetected in NMR experiments) could be contributing to599

the macroscopic pK
a
values observed by the UV-metric method.600

In addition to SM07, there were five other 4-aminoquinazoline derivatives in the SAMPL6 set: SM02, SM04.601

SM09, SM12, and SM13. For these series, all the potential titratable sites are located in 4-aminoquinazoline602

scaffold and there are no other additional titratable sites present in these compounds compared to SM07.603

Therefore, based on structural similarity, it is reasonable to predict that N-12 is the microscopic protonation604

site for all of these compounds. We can infer that UV-metric pK
a
values measured for the 4-aminoquinazoline605

series are also microscopic pK
a
s and they are related to the protonation of the same quinazoline nitrogen606

with the same neutral background protonation states as shown for SM07 in Figure 8A.607

Recommendations for future pKa prediction challenges608

Most high-throughput pK
a
measurement methods measure macroscopic pK

a
s. One way to circumvent609

this problem is to confine our interest in future pK
a
challenges to experimental datasets containing only610

monoprotic compounds if UV-metric or pH-metric pK
a
measurements are the method of choice, allowing611

unambiguous assignment of pK
a
values to underlying protonation states. However, it is important to612

consider that multiprotic compounds are common in pharmaceutically interesting molecules, necessitating613

the ability to model them reliably. It might also be interesting to select a series of a polyprotic compounds614

and their monoprotic fragments, to see if they can be used to disambiguate the pK
a
values.615

Although relatively efficient, UV-metric pK
a
measurements with the Sirius T3 do not provide structural616

information about microstates. Even the acid-base assignment based on direction of p
s
K
a
shift with cosolvent617

is not a reliable indicator for assigning experimental pK
a
values to individual functional groups in multiprotic618

compounds. On the other hand, most computational pK
a
prediction methods output microscopic pK

a
s.619

It is therefore difficult to use experimental macroscopic pK
a
values to assess and train microscopic pK

a
620

prediction methods directly without further means of annotating macroscopic-microscopic correspondence.621

It is not straight-forward to infer the underlying microscopic pK
a
values from macroscopic measurements622

of a polyprotic compound without complementary experiments that can provide structural information.623

Therefore, for future data collection efforts for evaluation of pK
a
predictions, if measurement of pK

a
s via624

NMR is not possible, we advise supplementing UV-metric measurements with NMR characterization of625

microstates to show if observed pK
a
s are microscopic (related to a single group) or macroscopic (related to626

dissociation of multiple groups), as performed for SM07 and SM14 in this study.627

Another source of complexity in interpreting macroscopic pK
a
values is how the composition of macro-628
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scopic pK
a
s can change between different experimental methods as illustrated in Figure 2. Different subsets629

of microstates can become indistinguishable based on the type of signal the experimental method is con-630

structed on. In potentiometric titrations, microstates with the same total charge are indistinguishable631

and are observed as one macroscopic population. In spectrophotometric pK
a
measurements, the factor632

that determine if microstates can be resolved is not charge. Instead, microstates whose populations, and633

therefore UV-absorbance spectra, change around the same pH value become indistinguishable.634

The "macroscopic" label is commonly ascribed to transitions between different ionization states of a635

molecule (all microstates that have the same total charge form one macrostate), but this definition only636

applies to potentiometric methods. In UV-absorbance based methods, the principle that determines which637

microstates will be distinguishable is not charge or number of bound protons, but molecular absorbance638

changes, and how closely underlying microscopic pK
a
values overlap. To compare experimental macroscopic639

pK
a
and microscopic computational predictions on common ground, the best solution is to compute "pre-640

dicted" macroscopic pK
a
values from microscopic pK

a
s based on the detection limitations of the experiment.641

A disadvantage of this approach is that experimental data cannot provide direct guidance on microscopic642

pK
a
resolution for improving pK

a
prediction methods.643

Since analyte purity is critical for accuracy, necessary quality control experiments must be performed to644

ensure at least 90% purity for UV-metric pK
a
measurements. Higher purities may be necessary for other645

methods. For potentiometric methods, knowing the stoichiometry of any counterions present in the original646

powder stocks is also necessary. Identity of counterions also needs to be known to incorporate titratable647

counterions, e.g. ammonia in the titration model.648

For the set of SAMPL6 pK
a
challenge compounds, we could not use potentiometric pK

a
measurements649

due to the low aqueous solubility of many of these compounds. The lowest solubility observed somewhere in650

the experimental pH range of titration is the limiting factor, since for accurate measurements the analyte651

must stay in the solution phase throughout the entire titration. Since the titration pH range is determined652

with the goal of capturing all ionization states, the analyte is inevitably exposed to pH values that correspond653

to low solubility. Neutral and zwitterionic species can be orders of magnitude less soluble than ionic species.654

If a compound has a significantly insoluble ionization state, the pH range of titration could be narrowed to655

avoid precipitation, but it would limit the range of pK
a
values that could be accurately measured.656

For future pK
a
challenges with multiprotic compounds, if sufficient time and effort can be spared, it would657

be ideal to construct an experimental pK
a
dataset using experimental methods that canmeasure microscopic658

pK
a
s directly, such as NMR. In the present study, we were only able to perform follow up NMR microstate659

characterization of two compounds because we relied on intrinsically low-sensitivity and time-consuming660

1H-15N HMBC experiment at natural abundance of 15N nuclei. 1H-15N HMBC experiments of SM07 and SM14661

required high analyte concentrations and thus the use of organic solvents for solubility. Alternatively, it662

might be possible to determine microstates with 1H-NMR by analyzing chemical shift changes of reporter663

protons [21] in aqueous solutions with lower analyte concentrations and with much higher throughput than664

15N-based experiments. However, it should be noted that 1H NMR titration data may not always be sufficient665

for unambiguous microstate characterization. In this case, other reporter nuclei such as 13C, 19F and 31P666

can be used where appropriate to supplement 1H data To prepare sample solutions for NMR at specific pH667

conditions, the Sirius T3 can be used to automate the pH adjustment of samples. Another advantage of668

using the Sirius T3 for NMR sample preparation includes preparing ionic strength adjusted NMR samples669

and minimizing consumption of the analyte since small volumes (as low as 1.5 mL) of pH adjusted solutions670

can be prepared.671

In the future pK
a
challenges, it would be especially interesting to expand this exercise to larger and672

more flexible drug-like molecules. pK
a
values are environment dependent and it would be useful to be673

able to predict pK
a
shifts based on on ionic strength, temperature, lipophilic content, with cosolvents or in674

organic solvents. Measuring the pK
a
of molecules in organic solvents would be useful for guiding process675

chemistry. To test such predictions, special pK
a
experiments would need to be designed to measure pK

a
s676

under different conditions.677

The next iteration of the SAMPL log D prediction challenge will include a subset of compounds from pK
a

678

challenge. We therefore envision that the collected dataset of pK
a
measurements will also be of use for679
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this challenge. Experimental pK
a
values will be provided as an input to separate the pK

a
prediction issue680

from other problems related to log D predictions. We expect that the experimental pK
a
s can be used as an681

indication if protonation states need to be taken into account for a log D prediction at a certain pH and for682

the validation of protonation state population predictions in the aqueous phase. Even for compounds for683

which microstates were not experimentally determined, macroscopic pK
a
value can serve as an indicator of684

how likely it is that protonation states will have a significant effect on the log D of a molecule. Additionally, the685

information from NMR experiments in this study provided the site of protonation for six 4-aminoquinazoline686

compounds, which could be incorporated as microstate information for log D predictions. For predicting687

log D we suggest as a rule of thumb to include protonation state effects for pK
a
values at least within 2 units688

of the pH of the log D experiment. pK
a
values of six 4-aminoquinazoline compounds in this study were689

determined to be within 2 pK
a
units from 7.690

Conclusion691

This study reports the collection of experimental data for the SAMPL6 pK
a
prediction challenge. Collection of692

experimental pK
a
data was performed with the goal of evaluating computational pK

a
predictions, therefore693

necessary quality control and uncertainty propagation measures were incorporated. The challenge was694

constructed for a set of fragment-like and drug-like small molecules, selected from kinase-targeted chemical695

libraries, resulting in a set of compounds containing heterocycles frequently found in FDA-approved kinase696

inhibitors. We collected pK
a
values for 24 compounds with the Sirius T3 UV-metric titration method, which697

were then used as the experimental reference dataset for the SAMPL6 pK
a
challenge. For compounds with698

poor aqueous solubilities we were able to use the Yasuda-Shedlovsky extrapolation method to measure pK
a

699

values in the presence of methanol, and extrapolate to a purely aqueous phase.700

In our work, we highlighted the distinction between microscopic and macroscopic pK
a
s which is based701

on the experimental method used, especially how underlying microstate composition can be different for702

macroscopic pK
a
values measured with UV-metric vs pH-metric titration methods. We discuss how macro-703

scopic pK
a
values, determined by UV, introduce an identifiability problem when comparing to microscopic704

computational predictions. For two compounds (SM07 and SM14) we were able to alleviate this problem by705

determining the sequence of microscopic protonation states using 1H-15N HMBC experiments. Microstates706

of five other compounds with 4-aminoquinazoline scaffold were inferred based on the NMR characterization707

of SM07 microstates which showed that it is monoprotic.708

The collected experimental data constitute a potentially useful dataset for future evaluation of small709

molecule pK
a
predictions, even outside of SAMPL challenges. We expect that this data will also be useful for710

participants in the next SAMPL challenge on small molecule lipophilicity predictions.711

Code and data availability712

• SAMPL6 pK
a
challenge instructions, submissions, experimental data and analysis is available at

https://github.com/MobleyLab/SAMPL6

• Python scripts used for compound selection are available at compound_selection directory of

https://github.com/choderalab/sampl6–physicochemical–properties

713

Overview of supplementary information714

Supplementary tables and figures appearing in SI document:715

• TABLE SI 1: Procurement details of SAMPL6 compounds716

• TABLE SI 2: Selection details of SAMPL6 compounds717

• TABLE SI 3: pK
a
results of replicate experiments CSV718

• TABLE SI 4: pK
a
results of water and cosolvent replicate experiments CSV719

• TABLE SI 5: pK
a
mean and SEM results of water and cosolvent replicate experiments720

• TABLE SI 6: Summary of LC-MS purity results721

• FIGURE SI 1 - 24: LC-MS Figures722

• FIGURE SI 25-30: NMR characterization of SM07 microstates723
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• FIGURE SI 31-37: NMR characterization of SM14 microstates724

Additional files:725

• Sirius T3 reports for all measurements: supplementary_files.zip726

Author Contributions727

Conceptualization, MI, JDC, TR, ASR, DLM ; Methodology, MI, DL, IEN ; Software, MI, ASR ; Formal Analysis, MI ;728

Investigation, MI, DL, IEN, HW, XW, MR; Resources, TR, DL; Data Curation, MI ; Writing-Original Draft, MI, JDC,729

IEN; Writing - Review and Editing, MI, DL, ASR, IEN, HW, XW, MR, GEM, DLM, TR, JDC; Visualization, MI, IEN ;730

Supervision, JDC, TR, DLM, GEM, AAM ; Project Administration, MI ; Funding Acquisition, JDC, DLM, TR, MI.731

Acknowledgments732

MI, ASR, and JDC acknowledge support from the Sloan Kettering Institute. JDC acknowledges support733

from NIH grant P30 CA008748. MI acknowledges support from a Doris J. Hutchinson Fellowship. IEN734

acknowledges support from the MRL Postdoctoral Research Program. The authors are extremely grateful735

for the assistance and support from the MRL Preformulations and NMR Structure Elucidation groups for736

materials, expertise, and instrument time, without which this SAMPL challenge would not have been possible.737

MI and DL are grateful to Pion/Sirius Analytical for their technical support in the planning and execution738

of this study. We are especially thankful to Karl Box (Sirius Analytical) for the guidance on optimization739

and interpretation of pK
a
measurements with the Sirius T3, as well as feedback on the manuscript. We740

thank Brad Sherborne (MRL; ORCID: 0000-0002-0037-3427) for his valuable insights at the conception of741

the pK
a
challenge and connecting us with TR and DL who were able to provide resources for experimental742

measurements. We acknowledge Paul Czodrowski (Merck KGaA) who provided feedback on multiple stages743

of this work: challenge construction, purchasable compound selection, and manuscript. We acknowledge744

contributions from Caitlin Bannan who provided feedback on experimental data collection and structure of745

pK
a
challenge from a computational chemist’s perspective. We are also grateful to Marilyn Gunner (CCNY)746

for her feedback on this manuscript. MI, ASR, and JDC are grateful to OpenEye Scientific for providing a free747

academic software license for use in this work.748

Disclosures749

JDC is a member of the Scientific Advisory Board for Schrödinger, LLC. DLM is a member of the Scientific750

Advisory Board of OpenEye Scientific Software.751

References752

[1] Mobley DL, Chodera JD, Isaacs L, Gibb BC. Advancing predictive modeling through focused development of model753

systems to drive new modeling innovations. UC Irvine: Department of Pharmaceutical Sciences, UCI. 2016; https:754

//escholarship.org/uc/item/7cf8c6cr.755

[2] Drug Design Data Resource, SAMPL;. https://drugdesigndata.org/about/sampl.756

[3] Nicholls A, Mobley DL, Guthrie JP, Chodera JD, Bayly CI, Cooper MD, Pande VS. Predicting Small-Molecule Solvation757

Free Energies: An Informal Blind Test for Computational Chemistry. J Med Chem. 2008 Feb; 51(4):769–779. doi:758

10.1021/jm070549+.759

[4] Guthrie JP. A Blind Challenge for Computational Solvation Free Energies: Introduction and Overview. J Phys Chem B.760

2009 Jan; 113(14):4501–4507.761

[5] Skillman AG, Geballe MT, Nicholls A. SAMPL2 Challenge: Prediction of Solvation Energies and Tautomer Ratios. J762

Comput Aided Mol Des. 2010 Apr; 24(4):257–258. doi: 10.1007/s10822-010-9358-0.763

[6] Geballe MT, Skillman AG, Nicholls A, Guthrie JP, Taylor PJ. The SAMPL2 Blind Prediction Challenge: Introduction and764

Overview. J Comput Aided Mol Des. 2010 May; 24(4):259–279. doi: 10.1007/s10822-010-9350-8.765

[7] Skillman AG. SAMPL3: Blinded Prediction of Host–guest Binding Affinities, Hydration Free Energies, and Trypsin766

Inhibitors. J Comput Aided Mol Des. 2012 May; 26(5):473–474. doi: 10.1007/s10822-012-9580-z.767

24 of 27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2018. ; https://doi.org/10.1101/368787doi: bioRxiv preprint 

https://orcid.org/0000-0002-0037-3427 
https://escholarship.org/uc/item/7cf8c6cr
https://escholarship.org/uc/item/7cf8c6cr
https://escholarship.org/uc/item/7cf8c6cr
https://drugdesigndata.org/about/sampl
https://dx.doi.org/10.1021/jm070549+
https://dx.doi.org/10.1021/jm070549+
https://dx.doi.org/10.1021/jm070549+
https://dx.doi.org/10.1007/s10822-010-9358-0
https://dx.doi.org/10.1007/s10822-010-9350-8
https://dx.doi.org/10.1007/s10822-012-9580-z
https://doi.org/10.1101/368787
http://creativecommons.org/licenses/by/4.0/


Preprint ahead of submission— July 13, 2018

[8] Geballe MT, Guthrie JP. The SAMPL3 Blind Prediction Challenge: Transfer Energy Overview. J Comput Aided Mol Des.768

2012 Apr; 26(5):489–496. doi: 10.1007/s10822-012-9568-8.769

[9] Muddana HS, Varnado CD, Bielawski CW, Urbach AR, Isaacs L, Geballe MT, Gilson MK. Blind Prediction of Host–guest770

Binding Affinities: A New SAMPL3 Challenge. J Comput Aided Mol Des. 2012 Feb; 26(5):475–487. doi: 10.1007/s10822-771

012-9554-1.772

[10] Guthrie JP. SAMPL4, a Blind Challenge for Computational Solvation Free Energies: The Compounds Considered. J773

Comput Aided Mol Des. 2014 Apr; 28(3):151–168. doi: 10.1007/s10822-014-9738-y.774

[11] Mobley DL, Wymer KL, Lim NM, Guthrie JP. Blind Prediction of Solvation Free Energies from the SAMPL4 Challenge. J775

Comput Aided Mol Des. 2014 Mar; 28(3):135–150. doi: 10.1007/s10822-014-9718-2.776

[12] Muddana HS, Fenley AT, Mobley DL, Gilson MK. The SAMPL4 Host–guest Blind Prediction Challenge: An Overview. J777

Comput Aided Mol Des. 2014 Mar; 28(4):305–317. doi: 10.1007/s10822-014-9735-1.778

[13] Mobley DL, Liu S, Lim NM, Wymer KL, Perryman AL, Forli S, Deng N, Su J, Branson K, Olson AJ. Blind Prediction779

of HIV Integrase Binding from the SAMPL4 Challenge. J Comput Aided Mol Des. 2014 Mar; 28(4):327–345. doi:780

10.1007/s10822-014-9723-5.781

[14] Yin J, Henriksen NM, Slochower DR, Shirts MR, Chiu MW, Mobley DL, Gilson MK. Overview of the SAMPL5 Host–guest782

Challenge: Are We Doing Better? J Comput Aided Mol Des. 2017; 31(1):1–19. doi: 10.1007/s10822-016-9974-4.783

[15] Bannan CC, Burley KH, Chiu M, Shirts MR, Gilson MK, Mobley DL. Blind Prediction of Cyclohexane–water Distribution784

Coefficients from the SAMPL5 Challenge. J Comput Aided Mol Des. 2016 Sep; 30(11):1–18. doi: 10.1007/s10822-016-785

9954-8.786

[16] Bannan CC, Burley KH, Chiu M, Shirts MR, Gilson MK, Mobley DL. Blind prediction of cyclohexane–water distribution787

coefficients from the SAMPL5 challenge. Journal of Computer-Aided Molecular Design. 2016 Nov; 30(11):927–944.788

http://link.springer.com/10.1007/s10822-016-9954-8, doi: 10.1007/s10822-016-9954-8.789

[17] Rustenburg AS, Dancer J, Lin B, Feng JA, Ortwine DF, Mobley DL, Chodera JD. Measuring experimental cyclohexane-790

water distribution coefficients for the SAMPL5 challenge. Journal of Computer-Aided Molecular Design. 2016 Nov;791

30(11):945–958. http://link.springer.com/10.1007/s10822-016-9971-7, doi: 10.1007/s10822-016-9971-7.792

[18] Pickard FC, König G, Tofoleanu F, Lee J, Simmonett AC, Shao Y, Ponder JW, Brooks BR. Blind prediction of distribution793

in the SAMPL5 challenge with QM based protomer and pK a corrections. Journal of Computer-Aided Molecular Design.794

2016 Nov; 30(11):1087–1100. http://link.springer.com/10.1007/s10822-016-9955-7, doi: 10.1007/s10822-016-9955-7.795

[19] Bodner GM. Assigning the pKa’s of polyprotic acids. J Chem Educ. 1986; 63(3):246.796

[20] Darvey IG. The assignment of pKa values to functional groups in amino acids. Wiley Online Library; 1995.797

[21] Bezençon J, Wittwer MB, Cutting B, Smieško M, Wagner B, Kansy M, Ernst B. pKa determination by 1H NMR798

spectroscopy – An old methodology revisited. Journal of Pharmaceutical and Biomedical Analysis. 2014 May;799

93:147–155. http://linkinghub.elsevier.com/retrieve/pii/S0731708513005992, doi: 10.1016/j.jpba.2013.12.014.800

[22] Elson EL, Edsall JT. Raman spectra and sulfhydryl ionization constants of thioglycolic acid and cysteine. Biochemistry.801

1962; 1(1):1–7.802

[23] Elbagerma MA, Edwards HGM, Azimi G, Scowen IJ. Raman spectroscopic determination of the acidity constants of803

salicylaldoxime in aqueous solution. Journal of Raman Spectroscopy. 2011 Mar; 42(3):505–511. http://doi.wiley.com/804

10.1002/jrs.2716, doi: 10.1002/jrs.2716.805

[24] Sober HA, Company CR. Handbook of Biochemistry: Selected Data for Molecular Biology. Handbook of Biochem-806

istry: Selected Data for Molecular Biology, Chemical Rubber Company; 1970. https://books.google.com/books?id=807

16QRAQAAMAAJ.808

[25] Benesch RE, Benesch R. The Acid Strength of the -SH Group in Cysteine and Related Compounds. Journal of the809

American Chemical Society. 1955; 77(22):5877–5881. https://doi.org/10.1021/ja01627a030, doi: 10.1021/ja01627a030.810

[26] Rupp M, Korner R, V Tetko I. Predicting the pKa of small molecules. Combinatorial chemistry & high throughput811

screening. 2011; 14(5):307–327.812

[27] Marosi A, Kovács Z, Béni S, Kökösi J, Noszál B. Triprotic acid–base microequilibria and pharmacokinetic sequelae of813

cetirizine. European Journal of Pharmaceutical Sciences. 2009 Jun; 37(3-4):321–328. http://linkinghub.elsevier.com/814

retrieve/pii/S0928098709000773, doi: 10.1016/j.ejps.2009.03.001.815

25 of 27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2018. ; https://doi.org/10.1101/368787doi: bioRxiv preprint 

https://dx.doi.org/10.1007/s10822-012-9568-8
https://dx.doi.org/10.1007/s10822-012-9554-1
https://dx.doi.org/10.1007/s10822-012-9554-1
https://dx.doi.org/10.1007/s10822-012-9554-1
https://dx.doi.org/10.1007/s10822-014-9738-y
https://dx.doi.org/10.1007/s10822-014-9718-2
https://dx.doi.org/10.1007/s10822-014-9735-1
https://dx.doi.org/10.1007/s10822-014-9723-5
https://dx.doi.org/10.1007/s10822-014-9723-5
https://dx.doi.org/10.1007/s10822-014-9723-5
https://dx.doi.org/10.1007/s10822-016-9974-4
https://dx.doi.org/10.1007/s10822-016-9954-8
https://dx.doi.org/10.1007/s10822-016-9954-8
https://dx.doi.org/10.1007/s10822-016-9954-8
http://link.springer.com/10.1007/s10822-016-9954-8
https://dx.doi.org/10.1007/s10822-016-9954-8
http://link.springer.com/10.1007/s10822-016-9971-7
https://dx.doi.org/10.1007/s10822-016-9971-7
http://link.springer.com/10.1007/s10822-016-9955-7
https://dx.doi.org/10.1007/s10822-016-9955-7
http://linkinghub.elsevier.com/retrieve/pii/S0731708513005992
https://dx.doi.org/10.1016/j.jpba.2013.12.014
http://doi.wiley.com/10.1002/jrs.2716
http://doi.wiley.com/10.1002/jrs.2716
http://doi.wiley.com/10.1002/jrs.2716
https://dx.doi.org/10.1002/jrs.2716
https://books.google.com/books?id=16QRAQAAMAAJ
https://books.google.com/books?id=16QRAQAAMAAJ
https://books.google.com/books?id=16QRAQAAMAAJ
https://doi.org/10.1021/ja01627a030
https://dx.doi.org/10.1021/ja01627a030
http://linkinghub.elsevier.com/retrieve/pii/S0928098709000773
http://linkinghub.elsevier.com/retrieve/pii/S0928098709000773
http://linkinghub.elsevier.com/retrieve/pii/S0928098709000773
https://dx.doi.org/10.1016/j.ejps.2009.03.001
https://doi.org/10.1101/368787
http://creativecommons.org/licenses/by/4.0/


Preprint ahead of submission— July 13, 2018

[28] Tam KY, Takács-Novák K. Multi-wavelength spectrophotometric determination of acid dissociation constants: a816

validation study. Analytica chimica acta. 2001; 434(1):157–167.817

[29] Allen RI, Box KJ, Comer JEA, Peake C, Tam KY. Multiwavelength spectrophotometric determination of acid dissociation818

constants of ionizable drugs. Journal of pharmaceutical and biomedical analysis. 1998; 17(4):699–712.819

[30] Comer JEA, Manallack D. Ionization Constants and Ionization Profiles. In: Reference Module in Chemistry, Molecular820

Sciences and Chemical Engineering Elsevier; 2014.http://linkinghub.elsevier.com/retrieve/pii/B9780124095472112338,821

doi: 10.1016/B978-0-12-409547-2.11233-8.822

[31] Avdeef A, Box KJ, Comer JEA, Gilges M, Hadley M, Hibbert C, Patterson W, Tam KY. PH-metric logP 11. pK a823

determination of water-insoluble drugs in organic solvent–water mixtures. Journal of pharmaceutical and biomedical824

analysis. 1999; 20(4):631–641.825

[32] Cabot JM, Fuguet E, Rosés M, Smejkal P, Breadmore MC. Novel Instrument for Automated p K a Determination by826

Internal Standard Capillary Electrophoresis. Analytical Chemistry. 2015 Jun; 87(12):6165–6172. http://pubs.acs.org/827

doi/10.1021/acs.analchem.5b00845, doi: 10.1021/acs.analchem.5b00845.828

[33] WanH, Holmén A, N\a ag\a ardM, LindbergW. Rapid screening of pKa values of pharmaceuticals by pressure-assisted829

capillary electrophoresis combined with short-end injection. Journal of Chromatography A. 2002; 979(1-2):369–377.830

[34] Reijenga J, van Hoof A, van Loon A, Teunissen B. Development of Methods for the Determination of pK a Values.831

Analytical Chemistry Insights. 2013 Jan; 8:ACI.S12304. http://journals.sagepub.com/doi/10.4137/ACI.S12304, doi:832

10.4137/ACI.S12304.833

[35] Sterling T, Irwin JJ. ZINC 15 – Ligand Discovery for Everyone. Journal of Chemical Information and Modeling. 2015834

Nov; 55(11):2324–2337. http://pubs.acs.org/doi/10.1021/acs.jcim.5b00559, doi: 10.1021/acs.jcim.5b00559.835

[36] Baell JB, Holloway GA. New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from836

Screening Libraries and for Their Exclusion in Bioassays. Journal of Medicinal Chemistry. 2010 Apr; 53(7):2719–2740.837

http://pubs.acs.org/doi/abs/10.1021/jm901137j, doi: 10.1021/jm901137j.838

[37] Saubern S, Guha R, Baell JB. KNIME Workflow to Assess PAINS Filters in SMARTS Format. Comparison of RDKit and839

Indigo Cheminformatics Libraries. Molecular Informatics. 2011 Oct; 30(10):847–850. http://doi.wiley.com/10.1002/840

minf.201100076, doi: 10.1002/minf.201100076.841

[38] eMolecules Database Free Version;. Accessed: 2017-06-01. https://www.emolecules.com/info/842

products-data-downloads.html.843

[39] OEChem Toolkit 2017.Feb.1;. OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com.844

[40] Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M. Epik: a software program for pK a prediction845

and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design. 2007 Dec;846

21(12):681–691. http://link.springer.com/10.1007/s10822-007-9133-z, doi: 10.1007/s10822-007-9133-z.847

[41] Schrödinger Release 2016-4: Epik Version 3.8;. Schrödinger, LLC, New York, NY, 2016.848

[42] OEMolProp Toolkit 2017.Feb.1;. OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com.849

[43] Wishart DS. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids850

Research. 2006 Jan; 34(90001):D668–D672. https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkj067,851

doi: 10.1093/nar/gkj067.852

[44] Pence HE, Williams A. ChemSpider: An Online Chemical Information Resource. Journal of Chemical Education. 2010853

Nov; 87(11):1123–1124. http://pubs.acs.org/doi/abs/10.1021/ed100697w, doi: 10.1021/ed100697w.854

[45] NCI Open Database, August 2006 Release;. https://cactus.nci.nih.gov/download/nci/.855

[46] Enhanced NCI Database Browser 2.2;. https://cactus.nci.nih.gov/ncidb2.2/.856

[47] Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J,857

Bryant SH. PubChem Substance and Compound databases. Nucleic Acids Research. 2016 Jan; 44(D1):D1202–D1213.858

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkv951, doi: 10.1093/nar/gkv951.859

[48] NCI/CADD Chemical Identifier Resolver;. https://cactus.nci.nih.gov/chemical/structure.860

[49] Bemis GW, Murcko MA. The properties of known drugs. 1. Molecular frameworks. Journal of medicinal chemistry.861

1996; 39(15):2887–2893.862

26 of 27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2018. ; https://doi.org/10.1101/368787doi: bioRxiv preprint 

http://linkinghub.elsevier.com/retrieve/pii/B9780124095472112338
https://dx.doi.org/10.1016/B978-0-12-409547-2.11233-8
http://pubs.acs.org/doi/10.1021/acs.analchem.5b00845
http://pubs.acs.org/doi/10.1021/acs.analchem.5b00845
http://pubs.acs.org/doi/10.1021/acs.analchem.5b00845
https://dx.doi.org/10.1021/acs.analchem.5b00845
http://journals.sagepub.com/doi/10.4137/ACI.S12304
https://dx.doi.org/10.4137/ACI.S12304
https://dx.doi.org/10.4137/ACI.S12304
https://dx.doi.org/10.4137/ACI.S12304
http://pubs.acs.org/doi/10.1021/acs.jcim.5b00559
https://dx.doi.org/10.1021/acs.jcim.5b00559
http://pubs.acs.org/doi/abs/10.1021/jm901137j
https://dx.doi.org/10.1021/jm901137j
http://doi.wiley.com/10.1002/minf.201100076
http://doi.wiley.com/10.1002/minf.201100076
http://doi.wiley.com/10.1002/minf.201100076
https://dx.doi.org/10.1002/minf.201100076
https://www.emolecules.com/info/products-data-downloads.html
https://www.emolecules.com/info/products-data-downloads.html
https://www.emolecules.com/info/products-data-downloads.html
http://www.eyesopen.com.
http://link.springer.com/10.1007/s10822-007-9133-z
https://dx.doi.org/10.1007/s10822-007-9133-z
http://www.eyesopen.com.
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkj067
https://dx.doi.org/10.1093/nar/gkj067
http://pubs.acs.org/doi/abs/10.1021/ed100697w
https://dx.doi.org/10.1021/ed100697w
https://cactus.nci.nih.gov/download/nci/
https://cactus.nci.nih.gov/ncidb2.2/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkv951
https://dx.doi.org/10.1093/nar/gkv951
https://cactus.nci.nih.gov/chemical/structure
https://doi.org/10.1101/368787
http://creativecommons.org/licenses/by/4.0/


Preprint ahead of submission— July 13, 2018

[50] OEMedChem Toolkit 2017.Feb.1;. OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com.863

[51] Sirius T3 User Manual, v1.1. Sirius Analytical Instruments Ltd, East Sussex, UK; 2008.864

[52] Avdeef A, Comer JEA, Thomson SJ. pH-Metric log P. 3. Glass electrode calibration in methanol-water, applied to865

pKa determination of water-insoluble substances. Analytical Chemistry. 1993; 65(1):42–49. https://doi.org/10.1021/866

ac00049a010, doi: 10.1021/ac00049a010.867

[53] Takács-Novák K, Box KJ, Avdeef A. Potentiometric pKa determination of water-insoluble compounds: validation868

study in methanol/water mixtures. International Journal of Pharmaceutics. 1997; 151(2):235 – 248. http://www.869

sciencedirect.com/science/article/pii/S0378517397049077, doi: https://doi.org/10.1016/S0378-5173(97)04907-7.870

[54] Szakacs Z, Beni S, Varga Z, Orfi L, Keri G, Noszal B. Acid-Base Profiling of Imatinib (Gleevec) and Its Fragments. Journal871

of Medicinal Chemistry. 2005; 48(1):249–255. https://doi.org/10.1021/jm049546c, doi: 10.1021/jm049546c, pMID:872

15634018.873

[55] Szakacs Z, Kraszni M, Noszal B. Determination of microscopic acid?base parameters from NMR?pH titrations. Analyt-874

ical and Bioanalytical Chemistry. 2004 Mar; 378(6):1428–1448. http://link.springer.com/10.1007/s00216-003-2390-3,875

doi: 10.1007/s00216-003-2390-3.876

[56] Dozol H, Blum-Held C, Guédat P, Maechling C, Lanners S, Schlewer G, Spiess B. Inframolecular acid–base studies of877

the tris and tetrakis myo-inositol phosphates including the 1, 2, 3-trisphosphate motif. Journal of molecular structure.878

2002; 643(1-3):171–181.879

[57] OEDepict Toolkit 2017.Feb.1;. OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com.880

[58] Fraczkiewicz R. In Silico Prediction of Ionization. In: Reference Module in Chemistry, Molecular Sciences and Chemical881

Engineering Elsevier; 2013.http://linkinghub.elsevier.com/retrieve/pii/B978012409547202610X, doi: 10.1016/B978-0-882

12-409547-2.02610-X.883

27 of 27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2018. ; https://doi.org/10.1101/368787doi: bioRxiv preprint 

http://www.eyesopen.com.
https://doi.org/10.1021/ac00049a010
https://doi.org/10.1021/ac00049a010
https://doi.org/10.1021/ac00049a010
https://dx.doi.org/10.1021/ac00049a010
http://www.sciencedirect.com/science/article/pii/S0378517397049077
http://www.sciencedirect.com/science/article/pii/S0378517397049077
http://www.sciencedirect.com/science/article/pii/S0378517397049077
https://dx.doi.org/https://doi.org/10.1016/S0378-5173(97)04907-7
https://doi.org/10.1021/jm049546c
https://dx.doi.org/10.1021/jm049546c
http://link.springer.com/10.1007/s00216-003-2390-3
https://dx.doi.org/10.1007/s00216-003-2390-3
http://www.eyesopen.com.
http://linkinghub.elsevier.com/retrieve/pii/B978012409547202610X
https://dx.doi.org/10.1016/B978-0-12-409547-2.02610-X
https://dx.doi.org/10.1016/B978-0-12-409547-2.02610-X
https://dx.doi.org/10.1016/B978-0-12-409547-2.02610-X
https://doi.org/10.1101/368787
http://creativecommons.org/licenses/by/4.0/

	Keywords
	Abbreviations
	Introduction
	Methods
	Compound selection and procurement
	UV-metric pKa measurements
	Cosolvent UV-metric pKa measurements of molecules with poor aqueous solubilities
	Calculation of uncertainty in pKa measurements
	Quality control for chemicals
	NMR determination of protonation microstates

	Results
	Spectrophotometric pKa measurements
	Impact of cosolvent to UV-metric pKa measurements
	Purity of SAMPL6 compounds
	Characterization of SM07 microstates with NMR
	Characterization of SM14 microstates with NMR

	Discussion
	Sample preparation and effect of cosolvents in UV-metric measurements
	Impact of impurities to UV-metric pKa measurements
	Interpretation of UV-metric pKa measurements
	NMR microstate characterization
	Recommendations for future pKa prediction challenges

	Conclusion
	Code and data availability
	Overview of supplementary information
	Author Contributions
	Acknowledgments
	Disclosures

