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What drives biodiversity and where are the most biodiverse places on Earth? The answer 1 

critically depends on spatial scale (grain), and is obscured by lack of data and mismatches in 2 

their grain. We resolve this with cross-scale models integrating global data on tree species 3 

richness (S) from 1338 local forest surveys and 287 regional checklists, enabling estimation of 4 

drivers and patterns of biodiversity at any desired grain. We uncover grain-dependent effects of 5 

both environment and biogeographic regions on S, with a positive regional effect of Southeast 6 

Asia at coarse grain that disappears at fine grains. We show that, globally, biodiversity cannot 7 

be attributed to purely environmental or regional drivers, since regions are environmentally 8 

distinct. Finally, we predict global maps of biodiversity at two grains, identifying areas of 9 

exceptional species turnover in China, East Africa, and North America. Our cross-scale 10 

approach unifies disparate results from previous studies regarding environmental versus 11 

biogeographic predictors of biodiversity, and enables efficient integration of heterogeneous data. 12 

What drives global variation in the numbers of species that live from place to place? For example, why 13 

are there fewer than 100 species of trees that live in millions of km2 in the boreal forests of Eurasia or 14 

North America 1, while there can be hundreds of species co-occurring in as little as 50 ha in tropical 15 

forests of South America and Asia 2?  16 

The most important obstacle to answering these fundamental questions is a lack of data, especially in 17 

places with the highest biodiversity 3,4. But even in the regions and taxa which have been well-18 

sampled, the data are a heterogeneous mixture of point observations, survey plots, and regional 19 

checklists, all with varying area and sampling protocol 4. For example, for trees, there are hundreds of 20 

0.1 ha Gentry forest plots mostly in the New World 5, hundreds of 1 ha ForestPlots.net plots 21 

throughout tropical forests 6, dozens of > 2 ha CTFS-ForestGEO plots (www.forestgeo.si.edu), 22 

hundreds of published regional checklists 7, and hundreds to thousands of other published surveys and 23 

checklists scattered throughout the published and grey literature. These together hold key information 24 
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on global distribution of tree biodiversity, yet the lack of methods to address differences in sampling 25 

have so far prevented their integration. 26 

Further, as could be said for many problems in ecology, attempts to map global biodiversity and to 27 

assess its potential drivers are severely complicated by the issues of spatial scale 8–11: The most 28 

straightforward issue is the non-linear increase of number of species (S) with area 12, which is why 29 

patterns of biodiversity cannot be readily inferred from sampling locations of varying area. The second 30 

issue concerns sets of sampling locations that do have a constant area (hereafter grain); even then a 31 

spatial pattern of S observed at a small grain may differ from a pattern at large grain 13–15 – an example 32 

is grain-dependence of latitudinal diversity gradient 16 [but see ref 17]. The reason is that beta diversity 33 

(the ratio between fine-grain alpha diversity and coarse-grain gamma diversity) varies over large 34 

geographic extents 18. Finally drivers and predictors of diversity have different associations with S at 35 

different grains 19–22. For example, at global and continental extents, the association of S with 36 

topography increases with grain in Neotropical birds 22 and the association with temperature increases 37 

with grain in global vertebrates 21 and eastern Asian and North American trees 23. Thus, biodiversity 38 

should ideally be studied, mapped, and explained at multiple grains 14. 39 

Although the abovementioned scaling issues are well-known 13,19,24,25, methods are lacking that 40 

explicitly incorporate grain-dependence within a single model, allowing cross-grain inference and 41 

predictions. Furthermore, it is still common to report patterns and drivers of biodiversity at a single 42 

grain, resulting in pronounced mismatches of spatial grain among studies, and hindering synthesis. An 43 

example is the debate over whether biodiversity is more associated with regional proxy variables for 44 

macroevolutionary diversification and historical dispersal limitation, or with ecological drivers that 45 

include climatic and other environmental drivers, as well as biotic interactions 25–29. While climate and 46 

other ecological factors usually play a strong role [but see ref 30], studies differ in whether they view 47 

residual regional forces being weak 31–33 or strong 34–36. Even within the same group of organisms – 48 

trees – there is debate regarding whether environment 23,37–40 or regional history 41–44 drive global 49 

patterns. And yet, these studies are rarely done at a comparable spatial grain, and perhaps not 50 

surprisingly, studies from smaller plot-scale analyses 39,40 typically conclude a strong role for 51 

environmental variation, whereas large-grain analyses 43,45 show a strong role of historical 52 

biogeographic processes. 53 

Here, we propose a cross-grain approach that allows estimation of contemporary environmental and 54 

regional predictors, as well as global patterns, of tree species richness across a continuum of grains, 55 

from plots of 10 x 10 m2 up to the entire continents. Our study has three main goals: (i) by explicitly 56 

considering spatial grain as a modifier of the influence of ecology versus regional biogeography, we 57 

aim to synthesize results among studies, and illustrate how the importance of these processes varies 58 

with grain. Apart from the well-known grain-dependent effects of environment, we also focus on the 59 
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so far overlooked grain-dependent effects of biogeographic regions. (ii) The novelty of the approach is 60 

to model grain-dependence of every predictor (spatial, regional, or ecological) within a single model 61 

as having a statistical interaction with area, which enables integration of an unprecedented volume of 62 

heterogeneous data from local surveys and country-wide checklists – although such interaction has 63 

been occasionally tested 16,17,36, to our knowledge it has not been applied to both spatial and 64 

environmental effects, nor for data integration and cross-grain predictions. (iii) We take the advantage 65 

of being able to predict biodiversity patterns at any arbitrarily chosen grain and we map the estimates 66 

of alpha, beta, and gamma diversity of trees across the entire planet. 67 

Results and Discussion 

Macroecological patterns. To explain the observed global variation of tree diversity (Fig. 1), we 68 

specified two models that predict S by grain-dependent effects of environmental variables 69 

(Supplementary Table 1), but differ in the way they model the grain-dependent regional component of 70 

biodiversity: model REALM attributes residual variation of S to location’s membership within a pre-71 

defined biogeographic realm [as in ref 46], while model SMOOTH estimates the regional imprints in S 72 

directly from the data using smooth autocorrelated surfaces. Both models explain more than 90% of 73 

deviance of the data (Supplementary Table 2) and both predict S that matches the observed S 74 

(Supplementary Fig. 1). This is in line with other studies from large geographical extents, where 70-75 

90% model fits are common even for relatively simple climate-based models 23,40,46–48.  76 

Next, we used model SMOOTH to predict patterns of S and beta diversity over the entire mainland, at 77 

a regular grid of large hexagons of 209,903 km2 and at a grid of local plots of 1 ha (Fig. 2A-C). We 78 

predict latitudinal gradient of S at both grains (Fig. 2A, B, Supplementary Fig. 2), which matches the 79 

traditional narrative in trees 49 and other groups [ref 50, p. 662-667]. However there are also differences 80 

between the patterns at the two grains, particularly in China, East Africa, and southern North America 81 

(Fig. 2C), where the plot-grain S is disproportionally lower than what would be expected from the 82 

coarse-grain S. These are regions with exceptionally high beta diversity and are in the dry tropics and 83 

sub-tropics with high topographic heterogeneity – examples are Ethiopian Highlands and Mexican 84 

Sierra Madre ranges, which have sharp environmental gradients and patchy forests, resulting in 85 

relatively low local alpha diversity but high regional gamma diversity. The exception is the predicted 86 

high beta diversity in China, where the historical component of beta diversity dominates the effect of 87 

environmental gradients (Fig. 2C vs F), as also suggested by refs 23,41,51,52, and as discussed below. 88 

Grain-dependent effects of region. Although model REALM treats the regional biogeographic 89 

effects on S as discrete, while model SMOOTH treats them as continuous, both models reveal similar 90 

grain-dependence of these regional effects. At the coarse grains (i.e. in larger regions), model REALM 91 

shows that the anomaly of S that is independent of environment (and thus attributed to the effect of 92 
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regions) is highest in the Indo-Malay region, followed by parts the Neotropics, Australasia, and 93 

Eastern Palaearctic (Fig. 3). Similar pattern emerges at the coarse grain from model SMOOTH, where 94 

particularly China, and Central America to some degree, are hotspots of environmentally-independent 95 

S (i.e., strong effects of biogeographic regions) (Fig. 2D). This follows the existing narrative 44,46 96 

where tree diversity is typically highest, and anomalous from the climate-driven expectation, in eastern 97 

Asia. However, at the smaller plot grain, a different pattern emerges in both the REALM (Fig. 3) and 98 

SMOOTH (Fig. 2E) models: the regional biogeographic effects are present, but weaker. Further, they 99 

shift away from the Indo-Malay and the Neotropical regions (REALM model) or China and Central 100 

America (SMOOTH model) at the coarse grains towards the equator, particularly to Australasia, at the 101 

plot grain (Fig. 2F, 3). 102 

These results can be viewed through the logic of species-area relationship (SAR), and its link to alpha, 103 

beta, and gamma diversity 12,53: If environmental conditions are constant, or statistically controlled for, 104 

then S depends only on area and on specific regional history. Since these interact, what emerges are 105 

region-dependent SARs (in model REALM; Fig. 3), which are equivalent to grain-dependent effects of 106 

regions (in model SMOOTH; Fig. 2). In both, what geographically varies is the environmentally-107 

independent local (REplot in Fig. 2E) S and regional (REhex, Fig. 2D) S, and their ratio (i.e. difference in 108 

log space in Fig. 3F), which directly links to the slopes of relationships in Fig. 3. We can explain this 109 

through different range dynamics in different parts of the world. Areas with high levels of 110 

environmentally-independent S at large grains, such as China and Central America, could have 111 

historically accumulated species that are spatially segregated with relatively small ranges, for example 112 

due to allopatric speciation 44, climate refugia [as in Europe 54], or due to dispersal barriers and/or 113 

large-scale habitat heterogeneity 44. This would lead to increased regional richness but contribute less 114 

to local richness, leading to stronger regional effects at larger than smaller grains, as we observed. 115 

We also found pronounced autocorrelation in the residuals of the REALM model at the country grain, 116 

but low autocorrelation at both grains in the residuals of model SMOOTH (Supplementary Fig. 5). 117 

Residual autocorrelation in S is the spatial structure that was not accounted for by environmental 118 

predictors; it can emerge as a result of dispersal barriers or particular evolutionary history in a given 119 

location or region 55,56. The autocorrelation in REALM residuals thus indicates that the discrete 120 

biogeographical regions (Fig. 3A) fail to delineate areas with unique effects on S; these are better 121 

derived directly from the data, for example using the splines in model SMOOTH (Fig. 2D, E). As 122 

such, the smoothing not only addresses a prevalent nuisance [i.e. biased parameter estimates due to 123 

autocorrelation 57], but can also be used to delineate the regions relevant for biodiversity more 124 

accurately than the use of á priori defined regions. 125 

Grain-dependent effects of environment. Generally, the signs and magnitudes of the standardized 126 

coefficients of environmental predictors (Fig. 4) at the plot grain are in line with those observed 46. 127 
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However, as far as we are aware, only Kreft & Jetz 36 modelled richness-environment associations as 128 

grain-dependent by using the statistical interactions between an environment and area. In our analyses, 129 

several of these interactions terms were significant in both models REALM and SMOOTH (Fig. 4); 130 

this in line with refs 21–23, but it contrasts with Kreft & Jetz 36 who detected no interaction between area 131 

and environment at the global extent in plants. However, the latter study lacked data from local plots 132 

(i.e. had a limited range of areas). We detected the clearest grain dependence in the effect of Gross 133 

Primary Productivity (GPP, a proxy for energy input) and Tree density (Fig. 4); both effects decrease 134 

with area. The reason is that, as area increases, large parts of barren, arid, and forest-free land are 135 

included in the large countries such as Russia, Mongolia, Saudi Arabia, or Sudan, diluting the 136 

importance of the total tree density at large grains.  137 

Further, we failed to detect an effect of elevation span at fine grain, but it emerged at coarse grains 138 

(Fig. 4). This is in line with other studies 21,22, and it shows that topographic heterogeneity is most 139 

important over large areas where clear barriers (mountain ranges and deep valleys) limit colonization 140 

and promote diversification 58. Also note the wide credible intervals (i.e. high uncertainty) around the 141 

effects of islands and most of the climate-related variables across grains (Fig. 4). A likely source of 142 

this uncertainty is the collinearity between environmental and regional predictors (see below). This 143 

prevented us from detecting grain-dependency of the effect of temperature, although we expected it 144 

based on previous studies 21,23. Finally, we detected a consistently negative effect of islands on S, but 145 

with broad credible intervals across all grains (Fig. 4); this uncertainty is likely caused by our binomial 146 

definition of islands. We suggest that inclusion of proximity to mainland or island history (Britain or 147 

the Sunda Shelf islands used to be mainland), and inclusion of remote oceanic islands, could reduce 148 

the uncertainty.  149 

Regions vs environment. We used deviance partitioning 59,60 to assess the relative importance of 150 

biogeographic regions versus environmental conditions in explaining the variation of S across grains. 151 

At the global extent, the independent effects of biogeographic realms strengthened towards coarse 152 

grain, from 5% at the plot grain to 20% for country grain in model REALM (Fig. 5A). In contrast, the 153 

variation of S explained uniquely by environmental conditions (around 14%, Fig. 5A) showed little 154 

grain dependence. However and importantly, at both grains, roughly 50% of the variation of S is 155 

explained by an overlap between biogeographic realms and environment, and it is impossible to tease 156 

these apart due to the collinearity between them. In other words, biogeographic realms also tend to be 157 

environmentally distinct (Supplementary Figs. 6-7), i.e. they are not environmentally similar replicates 158 

in different parts of the world [see also ref 46 for similar conclusion]. The same problem prevails when 159 

the World is split into two halves and when the partitioning is done in each half separately (Fig. 5B, 160 

C). This climate-realm collinearity at the global extent weakens our ability to draw conclusions about 161 

the relative importance of contemporary environment versus historical biogeography, since by 162 

accounting for environment, we inevitably throw away a large portion of the regional signal, and vice 163 
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versa. Thus, we caution interpretations of analyses such as ours and others 30,31,33,46,61 inferring the 164 

relative magnitude biogeographic versus environmental effects merely from contemporary 165 

observational data. 166 

Given this covariation, we cannot clearly say whether environment or regional effect are more 167 

important in driving patterns of richness. We can, however, make statements about the grain 168 

dependence of both environment and region, as above. The climate-realm collinearity is likely 169 

responsible for the inflated uncertainty [as expected from ref 62] around the effects of environmental 170 

predictors (Fig. 4) and biogeographic realms (Fig. 3), but there remains enough certainty about the 171 

effects of some predictors, such as tree density or GPP (Fig. 4), which are more orthogonal to climate 172 

and regions. 173 

To overcome the global collinearity problem and to better answer the classical question of whether 174 

diversity is more influenced by historical or contemporary processes, we suggest the following 175 

alternative strategies: (i) analyze smaller subsets of data where environmental and regional data are 176 

less collinear, e.g. across islands 63 or biogeographic boundaries 44,64 with similar environment but 177 

different history, (ii) use historical data from fossil or pollen records 65, (iii) use long-term range 178 

dynamics or other patterns reconstructed from phylogenies 66,67, and (iv) use historical data on past 179 

environmental conditions 68. Finally, (v) we see a promise in the emerging use of process-based and 180 

mechanistic models in macroecology 69,70 which can predict multiple patterns, ideally at multiple 181 

grains, and as such can offer a strong tests 71 of the relative importance of historical biogeography 182 

versus contemporary environment in generating biodiversity, irrespectively on the mutual arrangement 183 

of geography and environment. 184 

Implications. We have compiled a global dataset on tree species richness, and used it to integrate 185 

highly heterogeneous data in a model that contains grain-dependence as well as spatial autocorrelation, 186 

and predicts hotspots of biodiversity across grains that span 11 orders of magnitude, from local plots 187 

to the entire continents. This is an improvement of data, methods, and concepts, and importantly, we 188 

reveal a critical grain-dependence in the both regional and environmental predictors. We propose that 189 

this grain-dependence, together with the confounding collinearity between environment and 190 

geography, is the reason why studies comparing the importance of environmental versus historical 191 

biogeographic predictors of global diversity patterns have come to disparate conclusions. Studies using 192 

smaller-grained data tend to find strong influence of environment 39,40, whereas those that use larger-193 

grained data find strong effect historical biogeography 43,45. We reconcile this with a grain-explicit 194 

analysis and show that smaller-grain (alpha-diversity) patterns are less strongly influenced by regional 195 

biogeography than larger-grained (gamma-diversity) patterns. Finally, we suggest that the advantages 196 

of having a formal statistical way to directly embrace grain dependence are twofold: Not only it will 197 

allow ecologists to test grain-explicit theories, but it is precisely the same grain dependence that will 198 
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also allow integration of heterogeneous, messy, and haphazard data from various taxonomic groups, 199 

especially the data deficient ones. This is desperately needed in the field that has restricted its global 200 

focus to a small number of well-surveyed taxa. 201 

Methods 

The complete data and R codes used for all analyses are available under CC-BY license in a GitHub 202 

repository at https://github.com/petrkeil/global_tree_S. Extended description of methods is in SI Text.  203 

Data on S at the plot grain. We compiled a global database of tree species richness in 1932 forest 204 

plots, from which we selected only plots with unique coordinates, and with data on number of 205 

individual trees, minimum diameter at breast height (DBH), and area of the plot. We included only 206 

plots that covered a contiguous area and in which all trees within the plot above the minimum DBH 207 

were determined. In case there were several plots with the exactly same geographic coordinates, we 208 

chose one plot with the largest area. If areas were the same, we chose one plot randomly. This left us 209 

with 1338 forest plots for our main analyses. Although all of these plots are in forests, the authors of 210 

the primary studies still differ in which individuals are actually determined. For instance, authors may 211 

include or exclude lianas. Thus, in the main analyses we included all plots that have the following 212 

morphological scope: “trees”, “woody species”, “trees and palms”, “trees and shrubs”, “trees and 213 

lianas”, “all living stems”. In a parallel sensitivity analysis we used a more stringent selection criteria 214 

to create a subset of the data (see below). The data are available at 215 

https://github.com/petrkeil/global_tree_S. The list of references used for data extraction is in 216 

Supplementary Information. 217 

Data on S at the country grain. We compiled data on tree species richness of 287 countries and other 218 

administrative units (US and Brazilian states, Chinese provinces). We downloaded the data from 219 

BONAP taxonomic data center at http://bonap.net/tdc for the United States 72, from 73 for the provinces 220 

of China, from Flora do Brasil 2020 at http://floradobrasil.jbrj.gov.br 74, and from Botanic Gardens 221 

Conservation International database GlobalTreeSearch 7 (accessed 18 Aug 2017) for the rest of the 222 

world. To download the data from GlobalTreeSearch we used Selenium software interfaced through a 223 

custom R script. 224 

Predictors of species richness. For each plot and each country we calculated its latitude, longitude, 225 

and area, and we extracted environmental variables (Supplementary Table 1) related to energy 226 

availability, climate seasonality, climatic limits, topographic heterogeneity, insularity, tree density, and 227 

productivity, all of which are known to predict plant and tree species richness 36,38,40,46,75 228 

(Supplementary Table 1). For each plot we also noted minimum DBH that was used as a criterion to 229 
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include tree individuals in a study. All continuous predictors were standardized to 0 mean and unit 230 

variance prior to the statistical modelling. 231 

Cross-grain models. Our core approach is that ‘grain dependence’ of an effect of a predictor can be 232 

modelled as a statistical interaction between the predictor and area. For example, imagine a linear 233 

relationship between species richness 𝑆 and temperature 𝑇, defined as 𝑆 = 𝑎 + 𝑏𝑇. Now let us assume 234 

that the coefficient 𝑏 also depends linearly on area (grain) 𝐴 as 𝑏 = 𝛼 + 𝛽𝐴; by substitution we get 235 

𝑆 = 𝑎 + 𝛼 + 𝛽𝐴𝑇, where 𝛽𝐴𝑇 is the interaction term. Following this logic, we built statistical models 236 

that treat environmental and historical predictors of S as grain-dependent. Specifically, we built two 237 

models (REALM and SMOOTH) representing the same general idea of grain-dependency, but each 238 

implementing it in a somewhat different way. These models are not mutually exclusive, but are 239 

complementary approaches to the same problem.  240 

Model REALM. This model follows the traditional approach to assess regional effects on S, that is, 241 

variation of S that is not accounted for by environmental predictors can be accounted for by 242 

membership in pre-defined discrete geographic regions [as in 46], a.k.a. realms. We extend this idea by 243 

assuming that the effect of biogeographic regions interacts with area (i.e. grain), i.e. there is a different 244 

species-area relationship at work in each region. Formally, species richness 𝑆𝑖 in 𝑖th plot or country is 245 

a negative binomial random variable 𝑆𝑖 ∼ 𝑁𝑒𝑔𝐵𝑖𝑛(𝜇𝑖 , 𝛩), where 246 

log 𝜇𝑖 = 𝛼𝑗 + ∑ 𝐴𝑖
𝑘𝛽𝑗,𝑘 + 𝑋𝑖𝛾 + 𝐴𝑖𝑋𝑖𝛿

3
𝑘=1 , (1) 247 

and where 𝛼𝑗 are the intercepts for each 𝑗th region, ∑ 𝐴𝑖
𝑘𝛽𝑗,𝑘

3
𝑘=1  is the interaction between a third-248 

order polynomial of area A and the 𝑗th region; we have chosen the third-order polynomial to ensure an 249 

ability to produce a tri-phasic effect of area 12 in each region. 𝑋𝑖𝛾 is the term for area-independent 250 

effects of environmental predictors in a matrix 𝑋, and 𝐴𝑖𝑋𝑖𝛿 is the interaction term between area 𝐴 251 

and 𝑋. Parameters to be estimated are the vectors 𝛼, 𝛽, 𝛾, 𝛿, and the constant 𝜃. The model can be 252 

specified in R package mgcv 76 as gam(S ∼ REALM + poly(A,3):REALM + X + X:A, family=’nb’), 253 

where REALM is a factor identifying the regions. 254 

Model SMOOTH. In this model we avoid using discrete biogeographic regions; instead, we use thin-255 

plate spline functions (a.k.a. splines) 76 of geographic coordinates. This allows us (i) to identify the 256 

areas of historically accumulated 𝑆 directly from the data, and (ii) to account for spatial 257 

autocorrelation in model residuals 57 at the same time. As above, 𝑆𝑖 ∼ 𝑁𝑒𝑔𝐵𝑖𝑛(𝜇𝑖 , 𝛩), but  258 

log 𝜇𝑖 = 𝛼 + ∑ 𝐴𝑖
𝑘𝛽𝑘 + 𝑋𝑖𝛾 + 𝐴𝑖𝑋𝑖𝛿 + 𝑠1(𝐿𝑎𝑡, 𝐿𝑜𝑛)𝑃𝑙𝑡𝑖 +

3
𝑘=1 𝑠2(𝐿𝑎𝑡, 𝐿𝑜𝑛)𝐶𝑛𝑡𝑟𝑖. (2) 259 

The notation is the same as in the previous model, with the exception of 𝛼 and 𝛽 now being constant, 260 

and with the spline functions 𝑠1 and 𝑠2 (each with 14 spline bases), and with 𝑃𝑙𝑡𝑖 and 𝐶𝑛𝑡𝑟𝑖 as binary 261 
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(0 or 1) variables specifying if an observation 𝑖is a country or a plot. In R package mgcv the model 262 

writes as gam(S ∼ s(Lat, Lon, by=Plt.or.Cntr, bs=’sos’, k=14) + poly(A, 3) + X + X:A, family=’nb’), 263 

where Plt.or.Cntr is a factor identifying if an observation is a plot or a country. 264 

Model fitting, inference, predictions, and sensitivity analysis. We used a combination of maximum 265 

likelihood (fast, easy to work with) and Hamiltonian Monte Carlo (slow, but handles uncertainty well) 266 

to optimize and fit the models. To compare the effects of contemporary environment vs biogeographic 267 

regions, we used partitioning of deviance. We used model SMOOTH to generate the global 268 

predictions (Fig. 2) in a set of artificially generated plots (each with an area of 1 ha) and hexagons 269 

(each with an area of 209,903 km2). We additionally tested if our results are sensitive to data sources 270 

and definition of what a ‘tree’ is. All these steps are described in detail in SI Text. 271 
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Figures 

 

 

 

Figure 1 | Raw data on observed tree species richness S (log10 scale) (A) at the country/states grain 432 

with 287 spatial units, and (B) at the plot grain with 1338 plots. Maps use Mollweide projection. 433 
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Figure 2 | Predicted patterns of species richness, beta diversity, and continuous region effects from 434 

model SMOOTH at two spatial grains. Species richness Shex is regional gamma diversity (A), Splot is 435 

alpha diversity (B), and their ratio is beta diversity (C). Regional effects RE (D-E) are smooth splines 436 

representing anomaly of S (on natural log scale) from expectation based purely on environmental 437 

conditions. White mainland areas are those for which we lacked data on at least one predictor. Panels 438 

A-C use log10 scale. 439 
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Figure 3 | Grain-dependent effects of discrete biogeographic regions on species richness, estimated by 440 

model REALM across a continuum of areas (grains). A region effect is what remains after accounting 441 

for effects of all other predictors at a given area. Vertical bars show 2.5, 25, 50, 75 and 95.5 442 

percentiles of posterior densities. 443 

 

 

 

 

 

Figure 4 | Grain-dependent standardized model coefficients for environmental predictors. The y-axis 444 

is the value of model coefficient, not S -- although the lines for tree density are declining, its effect on 445 

S is positive at all values of area. Lines and shadings are 2.5, 25, 50, 75 and 95.5 percentiles of 446 

posterior densities. 447 
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Figure 5 | Partitioning of deviance of species richness (S) to components explained by environment vs 448 

biogeographic regions, at two spatial grains, using the REALM model. In panel A the extent is the 449 

whole World, panel B uses data from the Palearctic and Nearctic regions. Panel C uses data from the 450 

Neotropic, Afrotropic, Indo-Malay and Australasian regions. Red lines are the total deviance explained 451 

by the full model with both the environment and regions. 452 
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