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Abstract:  12 

Obesity is a risk factor for colorectal cancer (CRC), accounting for more than 14% 13 

of CRC incidence. Microbial dysbiosis and chronic inflammation are common 14 

characteristics in both obesity and CRC. Human and murine studies, together, 15 

demonstrate the significant impact of the microbiome on governing energy 16 

metabolism and CRC development; yet, little is understood about the contribution 17 

of the microbiome to development of obesity-associated CRC as compared to non-18 

obese individuals. In this study, we conducted a meta-analysis using five publicly 19 

available stool and tissue-based 16S rRNA and whole genome sequencing (WGS) 20 

data sets of CRC microbiome studies. High-resolution analysis was employed for 21 

16S rRNA data using Resphera Insight, which allowed us to achieve species-level 22 

information to compare with WGS. Characterization of the confounders between 23 
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studies, 16S rRNA variable region, and sequencing method, did not reveal any 1 

significant effect on alpha diversity in CRC prediction. Both 16S rRNA and WGS 2 

were equally variable in their ability to predict CRC. Results from community 3 

structure and composition analysis confirmed lower diversity in obese individuals 4 

without CRC; however, no universal differences were found in diversity between 5 

obese and non-obese individuals with CRC. When examining taxonomic 6 

differences, the probability of being classified as CRC did not change significantly 7 

in obese individuals for all taxa tested. However, random forest classification was 8 

able to distinguish CRC and non-CRC stool when body mass index was added to 9 

the model. Overall, microbial dysbiosis was not a significant factor in explaining the 10 

higher risk of colon cancer among individuals with obesity. 11 

Introduction. The percentage of individuals who are overweight or obese in the 12 

U.S. has reached epidemic proportions, with the prevalence of individuals who are 13 

overweight (32.7%) or obese (34.3%), as defined by body mass index (BMI), in the 14 

United States representing about two thirds of adult Americans. The health risks 15 

associated with overweight and obesity include diabetes, cardiovascular disease, 16 

and cancer. The National Cancer Institute estimates that 3.2% of all new cancers 17 

are due to obesity and that 14% of deaths from cancer in men and 20% in women 18 

are attributed to obesity (1, 2). Colorectal cancer (CRC) accounts for 19 

approximately 142,000 new cancer cases and 50,000 cancer deaths annually, 20 

making it the second most lethal cancer in the U.S. (SEER). Several 21 

epidemiological studies demonstrate that adult obesity increases the risk of colon 22 

cancer 1.2 to 2-fold, with obesity accounting for 14-35% of total colon cancer 23 
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incidence (1, 3-5). Alarmingly, incidence and mortality from CRC is on the rise 1 

among those under the age of 55 (SEER), possibly due to the significant increase 2 

in obesity in women (6). For these reasons, it is imperative to identify new methods 3 

to reduce the burden of obesity on the risk and mortality from colon cancer. Three 4 

areas of inquiry are important for understanding the etiology of CRC: obesity, 5 

inflammation, the microbiome.  6 

Several studies indicate that specific microbial taxa are playing a role in the 7 

etiology of colon cancer. However, whether the microbiome is also contributing to 8 

development of obesity-associated colon cancer in humans is completely 9 

unknown. One method that has shown promise for identifying early stage colon 10 

cancer is through analyzing the microbiome of the gastrointestinal tract (GI). The 11 

structure and function of the bacterial community that makes up the human colon, 12 

in part, determines the function and health of the colonic epithelium, as well as, the 13 

immune system responses. Several studies have found colon cancer-associated 14 

microbiota in pre-cancerous colon tissue (adenomas). Further, the microbiome has 15 

been used to distinguish pre-cancerous adenomas from CRC, though with variable 16 

rates of accuracy (7-9). Several bacteria have been identified as promoters in 17 

colon cancer development, including enterotoxigenic Bacteroides fragilis and 18 

Fusobacterium nucleatum (10-14). Both have also been isolated from patients with 19 

familial adenomatous polyposis (FAP) or inflammatory bowel disease, which are 20 

risk factors for colon cancer (11, 15). Colorectal adenocarcinomas associated with 21 

high abundance of fecal F. nucleatum, specifically, were found to have the highest 22 

number of somatic mutations, suggesting that these mutations create a pathogen- 23 
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friendly environment (16, 17). In animal models of colon cancer, inoculation of 1 

germ-free animals with stool from tumor-bearing animals were found to have more 2 

tumors than mice inoculated with stool from tumor-free animals (18). More 3 

recently, colonic biofilms from individuals with familial adenomatous polyposis 4 

were found to be dominated by E. coli and B. fragilis biofilms and enriched with 5 

genotoxic colibactin and B. fragilis toxin (ETBF) genes (11).  6 

Multiple lines of evidence demonstrate that both diet and obesity can 7 

significantly alter the microbiome (19-25). One of the first seminal studies illustrating 8 

the impact of the microbiome on obesity, transferred the fecal microbiota from 9 

monozygotic twins who were obese or lean to germ-free mice. From this study, they 10 

were able to recapitulate the obesity phenotype in humanized mice (26). When 11 

examining microbiota and subsequent changes in metabolism after fecal transfer from 12 

obese mice to germ-free mice, it was found that this obesogenic microbial community 13 

had an  increased production of SCFAs, which was later shown to abrogate lipid 14 

storage (23, 26). Multiple follow-up studies in obese and lean individuals have linked 15 

the specific shift in the microbiota to the ratio of Bacteroides:Firmicutes (25, 27, 28). 16 

However, a recent meta-analysis of these studies indicate that this ratio is not 17 

sufficient to differentiate obese from lean individuals in separate studies. Thus, more 18 

research is necessary to identify the microbiome- host relationship in individuals with 19 

obesity (29, 30).  20 

Chronic inflammation is a hallmark of both obesity and CRC etiology. Obesity 21 

is characterized by pro-inflammatory adipose tissue macrophages that secrete high 22 

levels of IL-17, a cytokine which is also induced by ETBF in murine models of colon 23 
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cancer (10, 31, 32). Given the reciprocal relationship between the microbiome and 1 

the immune system, it is logical to hypothesize that obesity-associated microbial 2 

dysbiosis, combined with a state of chronic inflammation, contributes to the increased 3 

risk of colon cancer among obese individuals. In support of this hypothesis, animal 4 

models of colon cancer (Apc1638N), have demonstrated that a high fat diet or 5 

genetically (ob/ob) induced obesity can significantly alter the microbiome leading to a 6 

loss of Parabacteroides distasonis and an increase in pro- inflammatory factors (22). 7 

In a separate model of colon cancer (K-rasG12Dint), fecal transfer from high-fat fed mice 8 

with intestinal tumors to genetically susceptible mice on a standard diet replicated the 9 

disease phenotype (33). Thus, it appears that a high fat diet may be sufficient to 10 

change the microbiome into a tumor-promoting community independent of obesity 11 

and glucose response. Intriguingly, Akkermansia muciniphila, which is reduced in 12 

obese individuals and is associated with epithelial barrier function, is paradoxically 13 

higher in CRC (34, 35). This data, together with evidence that A. muciniphila can 14 

modulate glucose metabolism and inflammation in the colon, suggests it may play a 15 

role in obesity-associated CRC (35, 36).  As these data demonstrate, there are a 16 

variety of dysbiotic states that exist in obese individuals, which could further enhance 17 

the inflammatory state of the GI tract leading to an increased risk of CRC. No human 18 

studies to date have addressed the obesity-associated differences in the microbiome 19 

and its relationship to CRC however.     20 

In this study, we utilized multiple publicly available data sets in which either 21 

stool or tissue microbiome sequencing was conducted, and from which body mass 22 

index (BMI) was also available. Using the bioinformatics tools QIIME (16S rRNA) and 23 
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Pathoscope (WGS), we processed the 16S rRNA and WGS reads, and derived a 1 

taxonomic profile from each of the samples. Furthermore, we inferred taxonomic 2 

function to assess potential metabolic differences in obese individuals with CRC. We 3 

used these taxa and the metabolic pathway information to determine if a taxonomic 4 

signature or if specific taxa were associated with both obesity and CRC. From this 5 

analysis, we observed that the dysbiosis associated with obesity was independent 6 

from the dysbiosis associated with CRC.  7 

METHODS 8 

Sample Population 9 

 For this study we identify studies relevant to assess the relationship between 10 

obesity and CRC using the microbiome as the independent variable using the following 11 

search terms in PubMed ((((("humans"[MeSH Terms] AND ("2006"[PDAT] : 12 

"2016"[PDAT])) NOT Review[Publication Type]) AND (obesity[Text Word] OR bmi[Text 13 

Word] OR body mass index[Text Word] OR BMI[Text Word] OR obesity[Text Word])) 14 

AND (bacterial[All Fields] AND ("microbiota"[MeSH Terms] OR "microbiota"[All Fields] 15 

OR "microbiome"[All Fields]))) AND (("colonic neoplasms"[MeSH Terms] OR 16 

("colonic"[All Fields] AND "neoplasms"[All Fields]) OR "colonic neoplasms"[All Fields] 17 

OR ("colon"[All Fields] AND "cancer"[All Fields]) OR "colon cancer"[All Fields]) OR 18 

("colorectal neoplasms"[MeSH Terms] OR ("colorectal"[All Fields] AND "neoplasms"[All 19 

Fields]) OR "colorectal neoplasms"[All Fields] OR ("colorectal"[All Fields] AND 20 

"cancer"[All Fields]) OR "colorectal cancer"[All Fields]) OR CRC[All Fields]) 21 

. From our PubMed search we identified 5 (out of 124) studies that met all of our 22 

criteria: primary research in a human population, colon or colorectal cancer AND 23 
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normal stool or tissue collected, raw sequences available from either 16S rRNA or 1 

WGS sequencing, body mass index available as a variable in the metadata including 2 

age and sex. Together, 5 studies were identified that assessed both BMI and the 3 

microbiome in stool or tissue from individuals with adenomas, carcinomas or 4 

individuals without disease (Table 1). Three of these studies conducted 16S rRNA 5 

sequencing on stool or tissue, and 3 conducted WGS on stool or tissue, with one 6 

utilizing RNA sequencing. One study conducted both 16S rRNA and WGS on tissue 7 

and stool.  8 

Processing of Microbial Reads and Calculation of Diversity 9 

All sequence data were downloaded from the NCBI Sequence Read Archive. In order to 10 

eliminate differences between studies, we processed the reads using the same 11 

methods, either QIIME plus the algorithm Resphera Insight for 16S rRNA sequencing or 12 

Pathoscope (v1.0) for processing WGS or RNA-seq reads. For the studies sequencing 13 

the 16S rRNA gene, the V4 region was used for all stool samples, as well as, tissue, 14 

with the exception of the subsample of tissue from another study used as part of the 15 

Zeller et al. 2014 data set. Details regarding sequencing methods and variable regions 16 

amplified for each data set are listed in Table 1. 17 

Raw paired-end reads reflecting 16S rRNA fragments were merged into consensus 18 

sequences using FLASH (min overlap: 20 bp overlap; 5% max mismatch density), and 19 

trimmed for quality (target error rate < 1%) using Trimmomatic and QIIME. PhiX control 20 

sequences were identified using BLASTN and filtered. Resulting sequences were 21 

evaluated for chimeras with UCLUST (de novo mode) and screened for human DNA 22 

using Bowtie2 against NCBI Homo sapiens Annotation Release 106. Reads assigned to 23 
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chloroplast or mitochondrial contaminants by the RDP classifier with a minimum 1 

confidence of 50% were also removed. High-quality 16S rRNA sequences were 2 

assigned to a high-resolution taxonomic lineage using Resphera Insight (37-39) 3 

Raw paired-end shotgun metagenomics sequence datasets were also trimmed for 4 

quality using Trimmomatic (min final length 75bp) and screened for human genomic 5 

DNA using Bowtie2 (--sensitive setting against GRCh38 reference with alternate 6 

chromosomes). High-quality passing sequences were submitted to Pathoscope v1.0 7 

for species level characterization (40, 41). 8 

 9 

Prediction of Metagenomic Pathways 10 

 We utilized two methods in order to derive abundance of metabolic pathways 11 

from the 16S rRNA or WGS sequences. For the 16S rRNA reads, after obtaining the 12 

OTU tables, we utilized the PICRUSt algorithm. This method obtains the 13 

representative genomes according the nearest neighbor match, and then normalizes 14 

the genome abundance using the 16S rRNA copy number for that genome. Once the 15 

metagenomics content is binned, it is expressed in terms of KEGG representative 16 

ortholog (KO) counts. For the WGS reads, we utilized the HUMAnN algorithm. This 17 

method takes as input short DNA or RNA reads and uses BLAST to identify 18 

orthologous gene families, which are used to identify metabolic pathways. Once 19 

identified, the pathways are then normalized by presence/absence of the taxa, and 20 

additionally by relative abundance of the taxa present in the sample. These data were 21 

used for downstream statistical analysis to compare obese and normal stool samples 22 

from individuals with or without CRC.  23 
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 9 

Statistical Analyses  1 

 Prior to analysis we rarefied the data to the sample with the lowest 2 

number of reads. In order to test the association between BMI and the microbiome, we 3 

grouped our statistical analyses into four subgroups: A) normal stool samples (healthy 4 

controls), B) CRC stool or CRC tissue, and C) pooled samples (healthy controls and 5 

CRC), all of which were adjusted for age and sex. Group C was further adjusted for 6 

disease status.  7 

For alpha diversity measurements, we used both the observed number of OTUs 8 

and the Shannon Index. To determine associations with BMI, we treated it as a 9 

continuous variable (as a covariate) in the main analysis.  For additional analyses, we 10 

also dichotomized the subjects into non-obese (BMI < 30) and obese (BMI >= 30) 11 

according the WHO guidelines.  12 

For beta diversity measurements, we utilized four distance measurements 13 

unweighted UniFrac, weighted UniFrac, generalized UniFrac and Bray-Curtis for 16S 14 

datasets. For WGS/RNA-seq data, where we do not have the phylogenetic tree, we 15 

instead used two non-tree-based distance measurements Jensen-Shannon and Bray-16 

Curtis (42). Different distance measurements represent different views of the microbial 17 

community and multiple distance measurements are used to have a more 18 

comprehensive view. In order to determine the difference in community membership 19 

between BMI categories, we used the PERMANOVA test on single distance 20 

measures, with the omnibus test on the combination of all  distance metrics 21 

(PermanovaG, ‘GUniFrac’ R package) (43).  22 
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In order to compare taxonomic abundance between groups, we used as input OTU 1 

counts. Negative binomial regression was used with BMI as a continuous variable for 2 

analysis of the microbiome while controlling for age and sex. Using multilevel 3 

modeling, the effects of confounders in study designs are examined. In this multilevel 4 

model, the study is defined as level 2 and the individual observations are level 1. At 5 

level 1, the outcome is CRC status (1=has CRC, 0=does not) and is predicted by an 6 

intercept, alpha diversity and BMI. At level 2, the level 1 regression coefficients (i.e. 7 

β0j, β1j, and β2j for the intercept, alpha diversity and BMI regression coefficient, 8 

respectively) are modeled by the study characteristics. In this model, the level 1 9 

regression coefficients vary among studies, which means, for example, that the effect 10 

of alpha diversity to predict CRC status varies by study and study characteristics. For 11 

precisely, we are estimating the following model: 12 

𝑙𝑜𝑔𝑖𝑡(\mu_{ij}) = 𝛽23 + 𝛽53(𝐴𝑙𝑝ℎ𝑎	𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) +	𝛽A3(𝐵𝑀𝐼) + 𝜖F3  13 

Where the regression coefficients are modeled by study characteristics. For 14 

example, 𝛽23 = 	 𝛾22 + 𝛾25(𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑛𝑔	𝑀𝑒𝑡ℎ𝑜𝑑) + 𝛾2A(𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒	𝑅𝑒𝑔𝑖𝑜𝑛) + 𝑢23; which 15 

defines how the model parameter vary by study characteristics. In this model, the 𝛾’s 16 

represent the level two model parameters and u is the study specific error term. 17 

Estimation of this model is employed using the lme4 (linear mixed effects) package in 18 

R (44). Due to the few number of studies included in this meta-analysis, the estimation 19 

of the variance of the level 1 parameters is uncertain and should be interpreted with 20 

caution. 21 

 In order to compare taxonomic abundance between groups, we used as input 22 

OTU counts. Negative binomial regression was used with BMI as a continuous 23 
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variable (obese vs. non-obese) for analysis of the microbiome while controlling for age 1 

and sex. Multiple testing procedure was conducted on these values using BH-based 2 

false discovery rate control.  The criterion to declare significance was q-value <0.2 . 3 

Furthermore, the abundance of Bifidobacterium catenulatum was examined among 4 

groups of obese or non-obese individuals with and without CRC. The standardized 5 

mean differences among studies was calculated using Hedge’s g, a bias corrected 6 

estimate of standardized mean differences. Estimation was employed using the meta 7 

package in R (45). 8 

Mediation analyses were also conducted. The goal of these analyses is to 9 

uncover if the relationship between BMI and CRC status is mediated by bacteria 10 

present. First, bacteria were dummy coded for presence or not for everyone. By 11 

dummy coded solely for whether an individual has a given bacteria or not, these 12 

results are not meant to show mediation among varying levels of each bacterium. 13 

Second, the relationship between BMI and CRC status was estimated by using a 14 

simple logistic regression model. Third, the classic mediation model was estimated by 15 

using the lavaan package in R (46). This model is estimated for the presence of each 16 

bacterium. Lastly, the change in the odd ratio is calculated between models. The 17 

change in the OR is an estimate of the mediation effect that a bacterium has on the 18 

relationship between BMI and CRC status.  19 

Further exploration of whether taxonomic abundance among obese or non-20 

obese individuals is indicative of CRC utilized random forest analyses. Random forest 21 

analysis is a machine learning/predictive modeling algorithm designed to estimate an 22 

ensemble of decision trees that are combined to give an estimate of an output. In this 23 
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study, we employed random forest analyses as a classification of obesity (obese vs. 1 

non-obese) conditional on the status of CRC. Four random forests were grown for 2 

each study dataset when possible; the forests were grown using the relative 3 

abundance of taxa with or without age and sex included at the OTU and genus level 4 

for two subsets of data that were conditioned on CRC status (CRC or adenoma). The 5 

resulting models aimed to classify individuals as obese based on the microbiota 6 

composition, and these classification models were tested with 10-fold cross validation. 7 

The receiver-operating-curve (ROC) of these classifications was also inspected for 8 

how sensitive the models are to detect obese individuals and how specific these 9 

models are to select only individuals that are obese. A measure of model quality is the 10 

area under curve (AUC), or area under the ROC, where an AUC of one is perfect 11 

prediction and an AUC of .5 is pure chance or prediction. Another benefit of using 12 

random forest analyses is that an estimate of the predictive importance of each OTU 13 

or genera is estimated. This estimate of importance is found by the predictive quality of 14 

model conditional of the ensemble trees that do not contain that specific input variable 15 

(OTU or genera in this case). All processed data and code for this analysis has been 16 

deposited at: https://github.com/GreathouseLab/CRC_BMI_meta_analysis. 17 

Results 18 

Database and study selection. We performed a systematic review and meta-analysis 19 

guided search of the literature. Within this search we included studies that analyzed 20 

the microbiome of the stool or tissue from patients with colon cancer, and which also 21 

had clinical information from patients on BMI. From this initial search, we identified 24 22 

studies. After eliminating studies in which BMI information could not be obtained, 5 23 
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studies were included in the final analysis (Table 1). Given that our central hypothesis 1 

is predicated on a difference in microbial structure and composition between obese 2 

and non-obese individuals, we focused our initial analyses on the Baxter et al. study, 3 

which has adequate sample size to detect differences between these two groups (8). 4 

The remaining studies were used as comparators to support or negate any 5 

associations found between the microbiome and obesity.  6 

Characterization of cofounders between studies. A major issue facing microbiome 7 

studies is the lack of standardized methods for collection, storage, nucleotide 8 

extraction, sequencing methodology and bioinformatic analysis. Thus, we began our 9 

analysis by characterizing the effect of 16S rRNA variable region and sequencing 10 

methods (16S rRNA or WGS) on observed OTUs and Shannon diversity on prediction 11 

of CRC. Unfortunately, we could not fully test the effect of nucleotide extraction as the 12 

Feng et al. study did not provide this information.  We chose to focus on alpha 13 

diversity for this analysis given that it is a low-resolution measure, which allows for 14 

comparison across studies. Using multilevel modeling to predict CRC status we 15 

calculated the average log2 OR (logit) for each study when these level 2 predictors 16 

(variable region and sequencing method) are included in the model. The results of this 17 

analysis demonstrated that alpha diversity and obesity vary by study but do not 18 

significantly change the probability of having CRC (Figure 1A-B; Figure S1). 19 

Interestingly, the Feng et al. data set display an unusual inverse relationship between 20 

CRC ad BMI that strongly impacts prediction of CRC, possibly due to geographic and 21 

dietary differences in this population. Since all but one of the studies used the V4 16S 22 

rRNA region, it was difficult to determine if this variable had a significant impact. 23 
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Between the studies that used different extraction techniques, Zeller (GNOME DNA  1 

Isolation  Kit, MP  Biomedical) vs Baxter and Zackular et al.(Power Soil, Mo Bio), we 2 

did not observe an effect of extraction technique on the relationship between alpha 3 

diversity and probability of CRC (Figure 1A-B). Further, the predictive ability of 16S 4 

rRNA data, alpha diversity, to classify CRC varies among studies but using WGS does 5 

not improve this predicative ability nor does variable region choice (Figure 1A-B). 6 

Overall, among the potential confounders we tested, we did not observe a significant 7 

effect on the ability of alpha diversity to classify CRC cases and controls when 8 

controlling for obesity.  9 

Alpha Diversity Analysis. We next sought to validate previous studies showing 10 

differences in alpha diversity between obese and non-obese individuals without CRC. 11 

In order to analyze alpha diversity within each sample study population, we calculated 12 

both richness, observed OTUs, and Shannon diversity, which considers both 13 

evenness and richness. We conducted linear modeling analysis using BMI as a 14 

continuous measurement and calculated the observed OTUs and Shannon diversity 15 

controlling for age and sex. Confirming previous microbial studies of stool from healthy 16 

(non-CRC) individuals (30), we also found significantly lower Shannon diversity in  17 

individuals that are obese without cancer from two of the 16S rRNA data sets (Baxter 18 

and Zeller et al. (WGS)) and lower richness in the Zeller et al. (16S) data; unadjusted 19 

Mann-Whitney U tests did not show this same result comparing individuals with and 20 

without obesity (Fig. 2A; Supplemental Fig S2A and Table 2). Supporting previous 21 

meta-analyses, however, studies with N<100 subjects displayed similar trends but did 22 

not reach statistical significance. When we asked if this same trend of lower Shannon 23 
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diversity was present in obese individuals with CRC, we saw no association, with the 1 

exception of the Feng dataset, which demonstrated a significantly higher alpha 2 

diversity with higher BMI both as continuous and categorical models, but not in the 3 

unadjusted analysis (Fig. 2B; Supplemental Fig S2B and Table 2). These results may 4 

be due to geography and diet of Asian populations.  We chose not to analyze the 5 

Bacteroides/Firmicutes ratio as this has not demonstrated to be a consistent 6 

measurement of predicting obesity in human studies (30).  Together, these data 7 

indicate that while there is an association between community composition and obesity 8 

in those without CRC, this association is not present in those with both obesity and 9 

CRC. 10 

Beta Diversity Analysis. We next asked whether we could detect microbial 11 

community differences in structure between obese and normal weight individuals with 12 

or without CRC. In order to conduct this analysis, we calculated the distance matrix for 13 

each study using UniFrac or Bray-Curtis (BC) for 16S rRNA datasets, and BC or 14 

Jaccard-Sorrensen (JS) distance for WGS datasets. Further, we calculated the 15 

omnibus p-value for comparison of all distance matrices (47). In all of the data sets 16 

analyzed, except Vogtmann et al. (WGS), Zeller et al. (WGS), and Zeller et al. (16S 17 

rRNA/tissue), we observed a significant difference (omnibus p-value <0.05) in 18 

community structure between obese and non-obese individuals without CRC (Table 3; 19 

see Fig. S3A in supplemental materials). This same analysis in individuals with CRC 20 

(obese v non-obese), however, yielded only one significant observation in the Feng et 21 

al. dataset (Table 3; Supplemental Fig. S3B), supporting the observations with 22 
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community composition. Thus, similar to community composition, community structure 1 

is associated with BMI in individuals without CRC but not in those with CRC.  2 

Taxonomic Diversity Analysis. Again, we began our taxonomic analysis comparing 3 

individuals with and without obesity among individuals without CRC as a means of 4 

validating previous studies, using as our reference the largest study dataset, Baxter et 5 

al. (8). From this analysis, controlling for age and sex, a significantly lower relative 6 

abundance of several Ruminiococcus spp. was identified in the two of the datasets 7 

(Zackular et al., Zeller et al. (16S rRNA stool), Zeller et al. (WGS), as well as, 8 

Coprococcus spp. (Baxter et al., Zackular et al., Zeller et al. (16S rRNA stool)), 9 

Bacteroides spp. (Baxter et al., Zackular et al., Feng et al., Vogtmannn et al., Zeller et 10 

al. (WGS)), Bifidobacterium spp. (Zeller et al. (WGS)) and Akkermansia muciniphila 11 

(Zackular et al., Zeller et al. (WGS)) (Supplemental Fig. S4 and Supplemental Table 12 

1). When combining all differentially significant species, those from genus Bacteroides 13 

and Bifidobacteria appeared most often to differentiate individuals with and without 14 

obesity (Supplemental Table 1). While no one genera or species was found to be 15 

differentially abundant (higher or lower) between all 5 datasets comparing individuals 16 

with or without obesity among individuals without CRC, the genus Bacteroides 17 

contained the greatest number of differentially abundant species in individuals with 18 

obesity in all but one dataset (Supplemental Table 1). 19 

 20 

Mediation effect of differentially abundant taxa on obesity-associated CRC 21 

classification.  In order to determine if any taxa were affecting (mediating) the 22 

relationship between BMI and CRC probability, we took two approaches. The first 23 
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approach was a classical mediation test, in which we constructed three tests. First, we 1 

estimated the odds-ratio (OR) of individuals with higher BMI being more likely to be 2 

classified as having CRC. Second, we estimated the same relationship between BMI 3 

and CRC status while controlling for the mediating effect of differentially abundant 4 

bacteria. Meaning, if the bacterium mediates the relationship between BMI and CRC 5 

probability then the OR for BMI will decrease. Third, we calculated how much change 6 

in the OR occurred from the first to second model. Thus, from this change in ORs, we 7 

estimated how much of an effect including each taxa had on increasing or decreasing 8 

the probability of being classified as CRC for each one unit increase in BMI. From this 9 

analysis, we identified several taxa that increased or decreased the probability of CRC 10 

(Supplemental Tables 2-3).  Species from the Bacteriodes, Ruminococcus and 11 

Prevotella genera, as well as, Bifidobacterium catenulatum decreased the probability 12 

of CRC with increasing BMI, except for two species of Prevotella which increased 13 

CRC probability. The mediation effect of these taxa, however, was relatively weak; 14 

less than 1% change in OR (change in probability of CRC, OR range = -9e-05 – -0.01) 15 

(Supplemental Table 2), with the majority showing a negative effect and only 8/34 16 

showing a positive effect; none showed a significant mediation effect (Supplemental 17 

Table 2).  18 

In our second approach, we derived an overall mediation effect using the FDR 19 

adjusted p-values (q-values) from our analysis of the Pooled BMI data (association 20 

between BMI and microbiome using all samples only, adjusting for disease status, sex 21 

and age) and Pooled DS data (association of disease status with microbiome using 22 

CRC and normal samples, adjusting for BMI, sex and age). These overall Q-values 23 
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were approximately based on 1 - (1 - q1)*(1-q2), where q1 and q2 are q values for the 1 

BMI and DS associations on the pooled data set (q value can be interpreted as the 2 

probability of being false positive, 1 - (1 - q1)*(1-q2) is the probability of being false 3 

positive in either of the associations, assuming independence between the two tests). 4 

The q-values were calculated for each data set, and q-values for taxa <20% were 5 

considered to have a significant mediating effect. Using this approach, we looked for 6 

taxa that had a significant mediating effect between studies and identified two, 7 

Phascolarctobacterium succinatutens and Streptococcus salivarius; however, they 8 

were only shared between 2/6 studies each (Supplemental Table 4). Overall, these 9 

results indicate the majority of bacteria associated with CRC and BMI decrease the 10 

odds of CRC in individuals with obesity, but only weakly.  11 

In addition, to determine if previously identified CRC-associated taxa, F. nucleatum, F. 12 

prausnitzii, B. fragilis, or A. muciniphila, were altered in individuals with obesity in their 13 

ability to differentiate CRC from non-CRC, we calculated the log2 odds ratios for each 14 

species. (Supplementary Fig. S5). Overall, among individuals with obesity, F. 15 

nucleatum consistently showed stronger prediction (log2 OR) of CRC. 16 

Ability of the microbiome to classify obesity-associated CRC. Given that previous 17 

studies have demonstrated the predicative capability of the microbiome in generating 18 

classifiers for CRC, we next asked whether a taxonomic consortium could accurately 19 

predict obesity-associated CRC. Using the machine learning method random forest, 20 

we calculated importance scores among obese individuals at the OTU or genus level 21 

using 10-fold cross-validation in individuals with adenomas or CRC. These values 22 

were then used to calculate area under the receiver operator curve using age and sex 23 
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as co-variates or the microbiome alone. Among all obese individuals, the average of 1 

all AUC values predicting CRC cases at the OTU and genus level was 0.66 (0.47-2 

0.84) and 0.68 (0.47-0.94), respectively (Fig. 3B). Similarly, among obese adenoma 3 

cases, average AUC values at the OTU and genus level were 0.61 (0.48-0.86) and 4 

0.60 (0.52-0.73), respectively (Fig. 3A); demonstrating high heterogeneity among 5 

studies in predicting CRC or adenomas in obese individuals. Lastly, we sought to 6 

validate CRC classifiers developed by Baxter et al. and Zeller et al. by agnostic 7 

application of our random forest classifier on each dataset using all genera or OTUs. 8 

While Zeller et al. used a more complex statistical approach to construct their 9 

classifier, we choose to apply the same method (48) to each study for the purposes of 10 

comparison, which was almost identical to Baxter et al. (excluding smoking and 11 

hemoglobin test results). Overall, the microbiome by itself or controlling for BMI, age 12 

and sex, had low and variable AUC values (OTU; AUC=0.53-0.79; Genus; AUC=0.59-13 

0.81) in most studies.  We were able, however, to validate the classifier from the 14 

Baxter et al. and Feng et al. studies; our AUC values were 0.79 (Baxter et al.) and 15 

0.81 as compared to Baxter et al. (AUC=0.84) and Feng et al. (AUC=0.96). Although 16 

we could not approach the classifier values from the Zeller et al. study (AUC=0.84; 17 

without FOBT), this was likely due to the difference in their approach in building the 18 

classifier. In general, these data indicate that the microbiome together with clinical 19 

data, and likely FOBT or similar tests, could have diagnostic utility.  20 

Analysis of Inferred Taxonomic Function. Multiple studies have demonstrated that 21 

taxonomic abundance alone does not accurately reflect the metabolic function of the 22 

entire community. Thus, we interrogated the metabolic potential of the bacterial 23 
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community using the bioinformatics tool PICRUSt in order to obtain predicted 1 

functions. Among individuals without CRC, we identified biotin synthesis and biotin 2 

metabolism inversely correlated with BMI in the Vogtmannn (WGS) stool samples, and 3 

the urea cycle (M0029) inversely correlated with BMI in both Vogtmannn (WGS) and 4 

Feng (WGS) (Figure 4A-B). However, none of these predicted functions differentiated 5 

obese individuals among all studies. When we conducted this analysis in individuals 6 

with CRC, no shared correlations were identified when comparing obese and non-7 

obese.  Predicted functional analysis therefore, did not further distinguish obesity-8 

associated CRC from those with CRC and normal BMI.  9 

Discussion.  10 

Evidence clearly demonstrates an intimate link between inflammation, obesity, and 11 

the microbiome (34, 36, 49-56). In vivo, multiple studies indicate an interaction or 12 

mediating effect of the microbiome in promoting colon tumorigenesis in the presence 13 

of a high-fat diet or genetic-induced obesity (21, 22, 57-59). In this study, using BMI as 14 

a measure of obesity, we were able to initiate the first analysis addressing this 15 

outstanding question in human subjects.  16 

This is the most comprehensive high-resolution study of the microbiome in 17 

individuals with and without obesity among those with CRC, using multiple sequencing 18 

platforms and methods. In this meta-analysis, we describe both obesity- and CRC-19 

associated results. First, we found both community structure and composition in stool 20 

and tissue samples from individuals with CRC are independent of BMI. Second, we 21 

identified a weak effect of the majority of species associated with both BMI and CRC 22 

on risk of CRC. Lastly, we show the microbiome, by itself or modeled with age and 23 
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sex, is insufficient to classify adenomas or CRC from obese controls. However, when 1 

controlling for clinical variables and BMI, we are able to achieve similar levels of CRC 2 

classification to other studies (48). Overall, by combining species-level resolution from 3 

16S rRNA and WGS data, we were able to define the microbial community structure 4 

and function at a high resolution, revealing overall a weak effect of the microbiome on 5 

mediating CRC risk among individuals with obesity as compared to those with normal 6 

BMI.  7 

While this study did not identify any strong universal BMI-associated microbial 8 

biomarkers of CRC, many mechanisms are likely key in driving the increased risk of 9 

CRC in obese individuals that we could not account for in this study. These include 10 

tumor location (left vs right), mutation profile, differentiation, mismatch repair status, 11 

and diet; some of which have shown to differentiate individuals with obesity among 12 

those with CRC (60-63). A high fat diet may be more important than BMI or obesity in 13 

driving the deleterious changes in the microbiome in individuals with obesity. In 14 

support, feeding a high-fat diet to K-rasG12Dint mice is sufficient to drive tumorigenesis 15 

from 30% to 60% (33). Moreover, when feces from high fat fed mice (K-rasG12Dint) are 16 

transferred to healthy (K-rasG12Dint) mice, tumor burden is increased along with 17 

diminished immune cell recruitment (33). This was prevented, however, when 18 

supplemented with butyrate, which also increased Bifidobacterium abundance as 19 

compared to mice not supplemented with butyrate (33). We also found several species 20 

of Bifidobacterium lower in individuals with obesity among those with and without 21 

CRC. Interestingly, butyrate and butyrate producing bacteria were shown to be 22 

increased in African-American men after switching to a traditional high fiber, low-fat 23 
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rural African diet (64). Again, similar to the results of high-fat feeding promoting CRC, 1 

which was abrogated with butyrate treatment, the aforementioned study found that the 2 

high-fat Western diet of African-Americans was associated with higher secondary bile 3 

acids, known promoters of carcinogenesis. Together, these studies indicate that a high 4 

fat diet, specifically from saturated fats, may be interacting with the microbiome to 5 

create a pro-inflammatory environment conducive to colon carcinogenesis. 6 

Other possible mechanisms explaining the increased risk of CRC in individuals with 7 

obesity include a lack of balance in key immune regulatory cells, specifically regulatory 8 

T cells (Tregs) and B lymphocytes. Demonstration that Tregs are important in 9 

promoting colon tumorigenesis, indicates that species that can control their activation 10 

may be important in controlling CRC development. Specifically, when B. 11 

pseudocatenulatum (CECT 7765) was given orally to obese mice, it increased Tregs 12 

and reduced pro-inflammatory cytokines (IL-17A and TNF-a), which further supports 13 

the hypothesis that certain species may protect against chronic inflammation and 14 

development of CRC (51). In reports measuring dietary inflammatory factors (empirical 15 

dietary inflammatory pattern), individuals with higher inflammatory scores had fewer 16 

tumor-associated adaptive anti-tumor immune cells suggesting immune evasion (65). 17 

Moreover, using this same approach, higher inflammatory scores were associated with 18 

higher tumor-associated F. nucleatum in CRC (66). Again, these findings support a 19 

distinct influence of diet on the microbiome in CRC development apart from obesity.  20 

BMI is crude measure of obesity, and other more accurate measures (e.g. waist 21 

circumference, adipokines, etc.) are required to fully explore the relationship between 22 

obesity, inflammation, and the microbiome in development of CRC. An exemplar of 23 
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this relationship is demonstrated for lung cancer, wherein the use of BMI demonstrates 1 

a lower risk of lung cancer is associated with higher BMI but use of waist 2 

circumference or waist to hip ratio demonstrates and increased risk of lung cancer 3 

(67). Thus, this study sets the stage for future research to consider adding measures 4 

of adiposity beyond BMI when studying the etiology and risk of CRC, as well as, other 5 

cancers influenced by obesity.  6 

This study has several strengths, as well as, limitations. One important strength, 7 

was the ability to use multiple peer-reviewed studies that had similar study designs 8 

and sequencing methods. As the Microbiome Quality Control Project demonstrated, 9 

multiple factors (e.g. DNA extraction method) can contribute to differential findings 10 

between studies, and thus our ability to control for these confounding factors reduced 11 

this bias (68-71). Also, the ability to confirm the presence of multiple taxa using 12 

separate sequencing methods, 16S rRNA and WGS methods, further strengthened 13 

the design of this analysis.  The limitations of this study include small sample sizes in 14 

the majority of studies, use of only one anthropometric measurement of obesity and 15 

lack of other informative factors including dietary fat intake, previous weight loss prior 16 

to CRC diagnosis, microbial metabolites and biofilm presence. Sample size is a key 17 

limitation when looking at the relationship between obesity (BMI) and the microbiome 18 

as previously demonstrated (30). Only the Baxter (8) study was sufficiently powered to 19 

detect a significant difference in the microbial community between normal and obese 20 

individuals. While we were able to identify taxa that differentiated obese and normal 21 

individuals with CRC in this study specifically, these taxa were not consistent across 22 

all studies, indicating that other factors such as metabolites, biofilm or the immune 23 
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system are stronger contributors to this relationship. While we were able to derive 1 

inferred function from the microbial sequences, without more intensive direct 2 

measurement of the metabolites (i.e. mass spectrometry), we cannot fully assess 3 

these differences.   Additionally, studies have illustrated this lack of relationship 4 

between specific taxa and CRC, and instead identified a stronger association with the 5 

presence of biofilm formation. Lastly, animal studies demonstrating that CRC 6 

promotion by a high fat diet was independent of obesity supports our findings and 7 

suggests that dietary fat has a greater impact than obesity on the microbiome and its 8 

tumor-promoting capacity in CRC etiology. This will therefore be important to consider 9 

in the obesity-CRC relationship in future research.  10 

Overall, our validation of microbiome-based classifiers indicates this approach, in 11 

combination with FOBT or FIT tests, is well supported for continued development. 12 

More important, these data along with other studies indicate that diet, rather than 13 

obesity, is creating a pro-inflammatory microbial community increasing CRC risk. 14 

Hence, characterizing the role of the diet in addition to the microbiome in CRC etiology 15 

is necessary, which will require more detailed molecular analyses and well-designed 16 

longitudinal human studies to identify early stage dietary and microbial biomarkers 17 

prior to disease. 18 
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Figure Legends 
 
Figure 1:  
Variance in ability of alpha diversity to predict odds (log2) of CRC controlling for obesity 
and study confounders. The Log2 odds ratio of CRC using observed OTUs (left panel) 
or Shannon Index (right panel) as predictors. The multilevel model includes obesity 
(level 1), and sequencing method (16S rRNA or WGS) and variable region (V4 or V3-4) 
(level 2) as coefficients.  
 
Figure 2: 
Alpha diversity in individuals with or without obesity and with or without CRC  
A) Observed OTUs and Shannon diversity in individuals without CRC B) or with 
CRC comparing individuals with or without obesity. Reporting p-values are from Mann-
Whitney U Test comparing the alpha diversity of individuals with or without obesity.  
 
Figure 3: 
Microbial classifiers of CRC and obesity-associated CRC. 
A) Receiver Operating Curve (ROC) for the random forest classification analyses for 
obese vs. non-obese in individuals with CRC for each study. AUC is the 10-fold cross 
validated area under the curve. B) ROC for the random forest classification analyses of 
obese vs. non-obese in individuals with adenomas for each study. Due to a lack of 
cases with adenomas in some studies a random forest was not possible and are 
therefore not shown. C) ROC for the random forest classification analyses of CRC vs 
non-CRC in each dataset adjusted for BMI, age and sex.  
 
Figure 4:  
Pathway abundance analysis in individuals with or without obesity among individuals 
with or without CRC.  
Relative abundance of KEGG metabolic pathways (16S rRNA) or modules (WGS) 
inferred from PICRUSt or HUMAnN, respectively. Significance was calculated using the 
Wilcox test correction for multiple hypothesis testing; asterisks are representative of 
significance at adjusted p-value <0.2.  
 
 
Supplemental Figures 
 
Figure S1: 
Probability of having CRC using alpha diversity as a predictor among individuals with 
obesity. Predicted probability of having CRC using A) observed OTUs or B) Shannon 
Index. 
 
Figure S2: 
Alpha diversity by BMI in individuals with or without CRC 
A) Observed OTUs and Shannon diversity in individuals without CRC comparing BMI 
and alpha diversity metric, observed OTUs or Shannon diversity respectively. B) 
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Observed OTUs and Shannon diversity in individuals with CRC comparing BMI and 
alpha diversity metric, observed OTUs or Shannon diversity respectively. 
 
Figure S3:  
Beta diversity in induvial with or without obesity and with or without CRC 
A) Differences in community composition between individuals with and without obesity 
among those without CRC B) or with CRC. The axes were found using PCoA using 
Bray-Curtis distances among points with the proportion of variance accounted for by 
each axis reported. Points are colored by obesity status.  
 
Figure S4:  
Differential abundance of taxa associated with obesity and CRC taxa.  
OTUs (16S rRNA) or species (WGS) log 10 scale relative abundance of Ruminiococcus 
spp., Coprococcus spp., Bacteroides spp., Bifidobacterium spp. and Akkermansia 
muciniphila. P-values were calculated using negative binomial regression using 
abundance as a count and including age and sex as covariates. Significant differences 
between obese v non-obese with or without CRC are denoted by an asterisk (FDR 
adjusted p-value <0.1) 
 
Figure S5: 
Ability of CRC-associated taxa to predict CRC among individuals with obesity.  
For each species identified from previous CRC microbiome studies, F. nucleatum, F. 
prausnitzii, B. fragilis, or A. muciniphila, the log2 odd ratio was calculated for individuals 
with obesity to determine odds of being classified as having CRC. 
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Database (Study) Sample Type Sequencing Method Primers * Species/OTUs# Sample Source (N) Obese Non-Obese Obese Non-Obese P (obese v non-obese)^
Baxter et al. (2016) Stool 16S rRNA V4 9997 carcinoma(318); control (172) 118 368 34.05 24.93 < .001
Feng et al. (2015) Stool WGS NA 408772 adenoma (42); carcinoma (41); control (55) 43 113 31.98 25.62 < .001
Vogtmann et al. (2016) Stool WGS NA 356748 carcinoma (52); control (52) 13 69 32.57 23.58 < .001
Zackular et al. (2014) Stool 16S rRNA V4 24990 adenoma (30); carcinoma (30); control (30) 26 56 33.84 25.09 0.002
Zeller et al. (2014)a Stool 16S rRNA V4 9969 control (75); CRC (41) 19 108 32.53 24.13 < .001
Zeller et al. (2014)b Tissue 16S rRNA V4/V3-4 9988 carcinoma (48); carcinoma-adjacent (48) 14 80 33.3 24.5 < .001
Zeller et al. (2014)c Stool WGS NA 327491 adenoma (42); carcinoma (53); control (297) 34 160 32.15 24.18 < .001
*1 Primers are NA for WGS
# Average number of observed taxanomonic units (16S rRNA) or species (WGS). Averages were rounded to nearest whole number.
^ Test of the equality of proportion of individuals that are obese vs. non-obese.

Table 1: Summary of obesity, demographic, sequencing, and reads for included data sources
Sample Size by Group Average BMI
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Type Reference (Sample)
Linear (Est.) p-value Linear (Est.) p-value

16S rRNA Baxter et al. (Stool)
Non-CRC - Ob v Non-Ob -22.756 0.064 -0.173 0.046

CRC - Ob v Non-Ob -1.283 0.930 -0.059 0.564
Zackular et al. (Stool)

Non-CRC - Ob v Non-Ob -36.737 0.248 -0.240 0.217
CRC - Ob v Non-Ob 7.006 0.811 0.053 0.794

Zeller et al. (Stool)
Non-CRC - Ob v Non-Ob -86.434 0.049 -0.455 0.051

CRC - Ob v Non-Ob -42.696 0.551 -0.020 0.953
Zeller et al. (Tissue)

Non-CRC - Ob v Non-Ob -14.373 0.682 -0.019 0.949
CRC - Ob v Non-Ob -12.389 0.683 0.140 0.690

WGS Vogtmann et al. (Stool)
Non-CRC - Ob v Non-Ob -25.023 0.399 -0.165 0.372

CRC - Ob v Non-Ob -9.187 0.698 -0.025 8.971
Feng et al. (Stool)

Non-CRC - Ob v Non-Ob -27.211 0.204 -0.327 0.085
CRC - Ob v Non-Ob 21.947 0.348 0.389 0.183

Zeller et al. (Stool)
Non-CRC - Ob v Non-Ob -21.877 0.157 -0.219 0.041

CRC - Ob v Non-Ob 3.592 0.832 -0.031 0.813

Table 2: Summary of Alpha-Diversity Analysis
Observed Shannon
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Type Reference (Sample) UniFrac GUniFrac WUniFrac Bray-Curtis Jaccard Omnibus test
F p-value F p-value F p-value F p-value F p-value p-value

16S rRNA Baxter et al. (Stool)
Non-CRC - Ob v Non-Ob 1.852 0.011 1.871 0.027 1.798 0.111 1.792 0.019 0.024

CRC - Ob v Non-Ob 1.156 0.175 1.221 0.179 0.897 0.422 1.452 0.069 0.136
Zackular et al. (Stool)

Non-CRC - Ob v Non-Ob 1.314 0.088 1.784 0.022 2.824 0.007 1.494 0.054 0.015
CRC - Ob v Non-Ob 1.191 0.166 1.479 0.093 2.183 0.050 1.368 0.094 0.117

Zeller et al. (Stool)
Non-CRC - Ob v Non-Ob 1.691 0.006 1.565 0.040 1.387 0.180 1.393 0.101 0.014

CRC - Ob v Non-Ob 1.132 0.208 1.127 0.280 1.394 0.178 1.142 0.276 0.327
Zeller et al. (Tissue)

Non-CRC - Ob v Non-Ob 1.159 0.189 1.411 0.060 1.596 0.095 1.597 0.027 0.066
CRC - Ob v Non-Ob 1.353 0.056 1.125 0.275 0.880 0.548 1.106 0.307 0.136

WGS Vogtmann et al. (Stool)
Non-CRC - Ob v Non-Ob 0.897 0.485 1.041 0.422 0.508

CRC - Ob v Non-Ob 1.086 0.357 1.068 0.355 0.426
Feng et al. (Stool)

Non-CRC - Ob v Non-Ob 3.129 0.003 4.144 0.008 0.004
CRC - Ob v Non-Ob 2.923 0.019 4.972 0.008 0.010

Zeller et al. (Stool)
Non-CRC - Ob v Non-Ob 1.821 0.081 2.892 0.047 0.065

CRC - Ob v Non-Ob 1.025 0.382 0.972 0.424 0.461

Table 3: Summary of Beta-Diversity Analysis
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Genus Reference (Sample) Genus Reference (Sample)
Pvalue Qvalue BMI 2.50% 97.50% Pvalue Qvalue BMI 2.50% 97.50%

Species Species
Akkermansia Baxter et al. (Stool) Akkermansia Baxter et al. (Stool)

NONE OTUAkkermansia_muciniphila:Verrucomicrobia;Akkermansia 0.008 0.090 -0.069 -0.120 -0.018
Zackular et al. (Stool) Zackular et al. (Stool)
OTUAkkermansia_muciniphila:Verrucomicrobia;Akkermansia 0.001 0.004 -0.240 -0.378 -0.101 NONE
Zeller et al. (Stool) Zeller et al. (Stool)
NONE OTUotu3490:Akkermansia_muciniphila:Verrucomicrobia;Akkermansia 0.000 0.004 -0.104 -0.159 -0.050
Feng et al. (Stool) Feng et al. (Stool)
NONE Akkermansia muciniphila 0.024 0.115 0.183 0.024 0.342
Vogtmannn et al. (Stool) Vogtmannn et al. (Stool)

Ruminococcus Baxter et al. (Stool) Ruminococcus Baxter et al. (Stool)
OTURuminococcus_lactaris:Firmicutes;Ruminococcus 0.001 0.019 0.060 0.024 0.096 NONE
Zackular et al. (Stool) Zackular et al. (Stool)
OTUotu1316:Ruminococcus_flavefaciens:Firmicutes;Ruminococcus 0.000 0.000 -0.151 -0.171 -0.131 OTURuminococcus_callidus:Firmicutes;Ruminococcus 0.000 0.000 -0.110 -0.129 -0.091
OTUotu1473:Clostridium_methylpentosum:Ruminococcus_albus:Firmicutes;unassign
ed 0.000 0.002 -0.453 -0.700 -0.205

OTUotu1072:Ruminococcus_callidus:Ruminococcus_champanellensis:Rumin
ococcus_flavefaciens:Firmicutes;Ruminococcus 0.000 0.000 -0.071 -0.098 -0.044

OTUotu148:Ruminococcus_bromii:Firmicutes;Ruminococcus 0.008 0.033 -0.287 -0.499 -0.075 OTURuminococcus_champanellensis:Firmicutes;Ruminococcus 0.002 0.010 -0.233 -0.381 -0.085
OTUotu1794:Ruminococcus_flavefaciens:Firmicutes;Ruminococcus 0.013 0.050 -0.807 -1.446 -0.169
OTUotu1473:Clostridium_methylpentosum:Ruminococcus_albus:Firmicutes;
unassigned 0.000 0.002 0.337 0.156 0.519

Zeller et al. (Stool) Zeller et al. (Stool)
OTURuminococcus_champanellensis:Firmicutes;Ruminococcus 0.000 0.007 -0.234 -0.358 -0.109 OTURuminococcus_callidus:Firmicutes;Ruminococcus 0.028 0.199 0.175 0.019 0.331
OTUotu1488:Ruminococcus_bromii:Firmicutes;Ruminococcus 0.003 0.042 -0.151 -0.249 -0.052
OTUotu4879:Blautia_faecis:Clostridium_boliviensis:Clostridium_celerecrescens:Clostr
idium_hathewayi:Clostridium_saccharolyticum:Clostridium_sphenoides:Ruminococcu
s_lactaris:Firmicutes;unassigned 0.003 0.043 -0.227 -0.377
OTUotu1:Ruminococcus_bromii:Firmicutes;Ruminococcus 0.004 0.051 -0.419 -0.701 -0.137
OTUotu6413:Ruminococcus_champanellensis:Firmicutes;Ruminococcus 0.005 0.064 -0.197 -0.335 -0.059
Ruminococcus albus 0.017 0.169 -0.053 -0.096 -0.010
Ruminococcus flavefaciens 0.035 0.192 -0.050 -0.096 -0.004
Feng et al. (Stool) Feng et al. (Stool)
NONE NONE
Vogtmannn et al. (Stool) Vogtmannn et al. (Stool)
Ruminococcus sp. 5_1_39BFAA 0.860 0.983 0.004 -0.042 0.050 [Ruminococcus] gnavus 0.308 0.675 0.028 -0.026 0.083

Ruminococcus flavefaciens 0.364 0.713 -0.036 -0.115 0.042
Bifidobacterium Baxter et al. (Stool) Bifidobacterium Baxter et al. (Stool)

NONE NONE
Zackular et al. (Stool) Zackular et al. (Stool)
NONE OTUBifidobacterium_adolescentis:Bifidobacterium_stercoris:Actinobacteria;Bifidobacterium0.000 0.000 0.025 0.019 0.032

OTUBifidobacterium_bifidum:Actinobacteria;Bifidobacterium 0.000 0.000 0.048 0.030 0.066
OTUBifidobacterium_catenulatum:Bifidobacterium_kashiwanohense:Bifidobacterium
_pseudocatenulatum:Actinobacteria;Bifidobacterium 0.656 0.769 0.054 -0.184 0.292

OTUBifidobacterium_catenulatum:Bifidobacterium_kashiwanohense:Bifido
bacterium_pseudocatenulatum:Actinobacteria;Bifidobacterium 0.000 0.002 -0.033 -0.051 -0.015

Zeller et al. (Stool) Zeller et al. (Stool)
OTUBifidobacterium_catenulatum:Bifidobacterium_kashiwanohense:Bifidobacterium
_pseudocatenulatum:Actinobacteria;Bifidobacterium 0.008 0.082 -0.272 -0.472 -0.072 Bifidobacterium catenulatum 0.008 0.096 -0.119 -0.207 -0.032
Bifidobacterium catenulatum 0.005 0.088 -0.166 -0.281 -0.051 Bifidobacterium pseudocatenulatum 0.012 0.129 -0.095 -0.170 -0.021
Bifidobacterium adolescentis 0.028 0.192 -0.140 -0.265 -0.015
Feng et al. (Stool) Feng et al. (Stool)
Bifidobacterium dentium 0.021 0.067 0.144 0.022 0.266 Bifidobacterium catenulatum 0.001 0.005 -0.298 -0.466 -0.130

Bifidobacterium longum 0.037 0.135 0.112 0.007 0.217
Vogtmannn et al. (Stool) Vogtmannn et al. (Stool)
Bifidobacterium adolescentis 0.877 0.985 0.014 -0.163 0.191 Bifidobacterium adolescentis 0.305 0.675 0.100 -0.091 0.291
Bifidobacterium bifidum 0.218 0.581 0.068 -0.040 0.177 Bifidobacterium longum 0.311 0.675 -0.056 -0.163 0.052
Bifidobacterium longum 0.200 0.581 0.075 -0.040 0.190
Bifidobacterium catenulatum 0.009 0.145 0.211 0.052 0.370

Bacteroides Baxter et al. (Stool) Bacteroides Baxter et al. (Stool)
OTUBacteroides_eggerthii:Bacteroidetes;Bacteroides 0.009 0.099 -0.171 -0.300 -0.042 OTUBacteroides_plebeius:Bacteroidetes;Bacteroides 0.000 0.000 0.037 0.023 0.051
OTUBacteroides_fluxus:Bacteroidetes;Bacteroides 0.000 0.000 0.049 0.036 0.063 OTUBacteroides_finegoldii:Bacteroidetes;Bacteroides 0.002 0.045 -0.164 -0.267 -0.061
Zackular et al. (Stool) Zackular et al. (Stool)
OTUBacteroides_salyersiae:Bacteroidetes;Bacteroides 0.000 0.000 0.147 0.114 0.180 OTUBacteroides_nordii:Bacteroidetes;Bacteroides 0.000 0.000 0.079 0.057 0.101
OTUBacteroides_nordii:Bacteroidetes;Bacteroides 0.000 0.001 -0.402 -0.611 -0.194 OTUBacteroides_stercoris:Bacteroidetes;Bacteroides 0.000 0.000 0.431 0.247 0.615
OTUBacteroides_eggerthii:Bacteroidetes;Bacteroides 0.003 0.013 -0.329 -0.545 -0.114
OTUBacteroides_acidifaciens:Bacteroides_xylanisolvens:Bacteroidetes;Bacteroides 0.003 0.015 -0.176 -0.293 -0.059
OTUBacteroides_vulgatus:Bacteroidetes;Bacteroides 0.006 0.026 0.172 0.050 0.295
OTUBacteroides_acidifaciens:Bacteroidetes;Bacteroides 0.006 0.027 -0.103 -0.177 -0.030
Zeller et al. (Stool) Zeller et al. (Stool)
Bacteroides sp. 2_1_16 0.003 0.081 0.106 0.035 0.176 OTUBacteroides_coprocola:Bacteroidetes;Bacteroides 0.000 0.000 0.100 0.065 0.134

OTUBacteroides_vulgatus:Bacteroidetes;Bacteroides 0.014 0.125 -0.112 -0.200 -0.023
OTUBacteroides_oleiciplenus:Bacteroides_stercorirosoris:Bacteroidetes;Bac
teroides 0.021 0.166 -0.245 -0.452 -0.037
OTUotu2597:Bacteroides_eggerthii:Bacteroides_helcogenes:Bacteroidetes;
Bacteroides 0.007 0.073 -0.507 -0.872 -0.142

Feng et al. (Stool) Feng et al. (Stool)
Bacteroides sp. 2_1_16 0.001 0.005 -0.184 -0.289 -0.078 Bacteroides sp. 2_1_16 0.046 0.156 0.113 0.002 0.223
Bacteroides caccae 0.002 0.013 -0.173 -0.285 -0.062
Bacteroides thetaiotaomicron 0.003 0.013 -0.155 -0.256 -0.054
Bacteroides sp. 2_1_22 0.005 0.022 -0.127 -0.215 -0.039
Bacteroides vulgatus 0.013 0.051 -0.135 -0.242 -0.028
Vogtmannn et al. (Stool) Vogtmannn et al. (Stool)
Bacteroides sp. 2_1_16 0.000 0.004 0.199 0.102 0.296 Bacteroides phage B40-8 0.000 0.000 0.107 0.101 0.114
Bacteroides intestinalis 0.003 0.098 -0.089 -0.148 -0.030 Bacteroides caccae 0.012 0.106 -0.117 -0.208 -0.026
Bacteroides fragilis 0.008 0.145 0.087 0.022 0.152 Bacteroides fragilis 0.049 0.328 -0.085 -0.169 0.000

Coprococcus Baxter et al. (Stool) Coprococcus Baxter et al. (Stool)
OTUotu2691:Coprococcus_eutactus:Firmicutes;Coprococcus 0.000 0.000 -0.091 -0.101 -0.081 NONE
Zackular et al. (Stool) Zackular et al. (Stool)
NONE NONE
Zeller et al. (Stool) Zeller et al. (Stool)
OTUotu6965:Coprococcus_eutactus:Firmicutes;Coprococcus 0.000 0.000 -0.084 -0.097 -0.071 NONE
Feng et al. (Stool) Feng et al. (Stool)
NONE NONE
Vogtmannn et al. (Stool) Vogtmannn et al. (Stool)
NONE NONE

Supplemental Table 1: Summary of Species Level Differential Abundance
Non-CRC Obese v Non-Obese CRC - Ob v Non-Ob
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Supplemental Table 2: Mediation analysis among taxa associatied with obesity and CRC. 

Study Taxa
Change in 

Prob.a Est p-value LL (2.5) UL (97.5)
baxter Bacteroides_fluxus -0.00865 0.00562 0.14969 -0.00203 0.01328
baxter Howardella_ureilytica -0.00741 0.00067 0.60715 -0.00188 0.00321
baxter

otu1526:Enterorhabdus_caecimuris:Enterorhabdus_mucosicola
-0.00722

-1.00E-04 0.85142 -0.00117 0.00097
baxter otu2405:Allobaculum_stercoricanis -0.00726 9.00E-05 0.87294 -0.00106 0.00125
baxter otu2695:Eubacterium_coprostanoligenes -0.00865 0.00562 0.30655 -0.00515 0.01639
baxter otu2753:Vallitalea_guaymasensis -0.00785 0.00243 0.64083 -0.00779 0.01266
baxter otu847:Clostridium_aerotolerans:Clostridium_algidixylanolyticu

m:Clostridium_saccharolyticum:Clostridium_xylanolyticum:Grac
ilibacter_thermotolerans -0.00798 0.00296 0.62175 -0.00881 0.01474

baxter otu911:Intestinimonas_butyriciproducens -0.008 0.00304 0.66624 -0.01077 0.01685
feng Haemophilus parainfluenzae 0.00763 -5.00E-05 0.98819 -0.00621 0.00612
feng Lactobacillus casei group 0.00753 0.00037 0.88939 -0.00482 0.00556
feng Prevotella denticola 0.00884 -0.00487 0.7282 -0.03235 0.0226
feng Prevotella ruminicola 0.00878 -0.00464 0.70382 -0.02859 0.0193
zackular Bacteroides_eggerthii -0.01117 -0.00027 0.99158 -0.05084 0.0503
zackular Bacteroides_nordii -0.01306 0.0073 0.50709 -0.01427 0.02887
zackular Bacteroides_salyersiae -0.01058 -0.00262 0.62977 -0.01325 0.00802
zackular Gemmiger_formicilis -0.01153 0.00116 0.72148 -0.0052 0.00751
zackular otu1157:Alistipes_indistinctus -0.01127 0.00014 0.98768 -0.01788 0.01816
zackular otu1202:Clostridium_botulinum:Clostridium_sporogenes -0.01062 -0.00248 0.69992 -0.01512 0.01015
zackular otu1257:Intestinimonas_butyriciproducens -0.01126 9.00E-05 0.98154 -0.00782 0.00801
zackular otu1316:Ruminococcus_flavefaciens -0.01065 -0.00236 0.74719 -0.01668 0.01197
zackular otu1989:Eubacterium_coprostanoligenes -0.01113 -0.00041 0.90967 -0.0075 0.00668
zackular otu2005:Alistipes_finegoldii:Alistipes_massiliensis -0.01097 -0.00108 0.75814 -0.00793 0.00578
zackular otu327:Prevotella_oris -0.01158 0.00136 0.77451 -0.00794 0.01066
zackular otu476:Clostridium_saccharogumia -0.01117 -0.00026 0.96635 -0.01256 0.01203
zackular otu508:Caloramator_fervidus:Trigonala_elaeagnus -0.01108 -0.00064 0.94102 -0.01763 0.01635
zackular Phascolarctobacterium_succinatutens -0.01117 -0.00025 0.92066 -0.00523 0.00473
zeller.Stool Clostridium_bolteae:Clostridium_clostridioforme -0.00063 0.00049 0.87263 -0.00547 0.00644
zeller.Stool Dialister_invisus -0.00037 -0.00052 0.94127 -0.01446 0.01341
zeller.Stool Dialister_succinatiphilus -0.00081 0.00121 0.76375 -0.0067 0.00912
zeller.Stool otu2321:Streptococcus_salivarius:Streptococcus_thermophilus:

Streptococcus_vestibularis 0.00046 -0.00388 0.81746 -0.03681 0.02906
zeller.Stool otu2483:Prevotella_copri -9E-05 -0.00167 0.80792 -0.01516 0.01182
zeller.Stool otu4937:Peptococcus_niger -0.00023 -0.00108 0.76023 -0.00805 0.00588
zeller.Stool otu834:Prevotella_copri:Prevotella_stercorea -0.00049 -5.00E-05 0.97294 -0.00321 0.0031
zeller.Stool Phascolarctobacterium_succinatutens -0.00054 0.00013 0.99755 -0.08285 0.08311
zeller.Stool Streptococcus_porcinus:Streptococcus_seminale:Streptococcus

_uberis
0.00037

-0.00352 0.62505 -0.01762 0.01059
zeller.Stool Streptococcus_salivarius 0.00138 -0.00756 0.28432 -0.02139 0.00628
zeller.WGS Bifidobacterium bifidum -0.00557 0.00212 0.98433 -0.2097 0.21395
zeller.WGS Bifidobacterium catenulatum -0.00443 -0.00244 0.37338 -0.00783 0.00294
zeller.WGS Streptococcus salivarius -0.00694 0.00761 0.41392 -0.01065 0.02588
zeller.WGS Bacteroides sp.  2_1_16 0.05349 1.05494
zeller.WGS Streptococcus salivarius 0.05349 0.0257 1.05494 1.02604 -0.0289
zeller.WGS [Eubacterium] eligens 0.05349 1.05494
zeller.WGS Bifidobacterium bifidum 0.05349 0.0312 1.05494 1.03169 -0.02325
a. qunatificaiton of the change in OR from model 1 to model 2. 
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Study Bacteria CRC_Bact_Present CRC_Bact_NotPresent nonCRC_Bact_Present nonCRC_Bact_NotPresent

baxter otu2695:Eubacterium_coprostanoligenes 102 54 267 63

baxter otu911:Intestinimonas_butyriciproducens 209 87 160 30
baxter otu2405:Allobaculum_stercoricanis 91 32 278 85
baxter Howardella_ureilytica 70 28 299 89
baxter otu1526 83 28 286 89
baxter otu2753:Vallitalea_guaymasensis 181 45 188 72
baxter otu847 237 60 132 57
baxter Bacteroides_fluxus 65 3 304 114

zackular otu508:Caloramator_fervidus 32 13 26 11
zackular Gemmiger_formicilis 52 20 6 4
zackular otu1989:Eubacterium_coprostanoligenes 21 9 37 15
zackular otu2005 9 4 49 20
zackular Phascolarctobacterium_succinatutens 16 6 42 18
zackular otu1257:Intestinimonas_butyriciproducens 30 13 28 11
zackular Bacteroides_salyersiae 6 2 52 22
zackular otu476:Clostridium_saccharogumia 44 17 14 7
zackular Bacteroides_eggerthii 25 5 33 19
zackular otu1157:Alistipes_indistinctus 25 9 33 15
zackular otu1202 10 4 48 20
zackular Bacteroides_nordii 24 6 34 18
zackular otu327:Prevotella_oris 15 8 43 16
zackular otu1316:Ruminococcus_flavefaciens 13 8 45 16

zeller.Stool Phascolarctobacterium_succinatutens 42 21 44 20
zeller.Stool otu4937:Peptococcus_niger 18 11 68 30
zeller.Stool otu2483:Prevotella_copri 29 13 57 28
zeller.Stool otu834 15 6 71 35
zeller.Stool Dialister_invisus 29 10 57 31
zeller.Stool Streptococcus_salivarius 9 1 77 40
zeller.Stool Streptococcus_porcinus 6 2 80 39
zeller.Stool Dialister_succinatiphilus 20 8 66 33
zeller.Stool Clostridium_bolteae 53 26 33 15
zeller.Stool otu2321 58 21 28 20

feng Ruminococcus sp.  5_1_39BFAA 110 46
feng Prevotella denticola 73 40 37 6
feng Lactobacillus casei group 81 36 29 10
feng Haemophilus parainfluenzae 84 36 26 10
feng Prevotella ruminicola 72 39 38 7
feng Coprobacillus sp.  D7 110 46

zeller.WGS Bifidobacterium catenulatum 103 88 2 1
zeller.WGS Bacteroides sp.  2_1_16 105 89
zeller.WGS Streptococcus salivarius 105 88
zeller.WGS [Eubacterium] eligens 105 89
zeller.WGS Bifidobacterium bifidum 105 88

otu1526:Enterorhabdus_caecimuris:Enterorhabdus_mucosicola otu847:Clostridium_aerotolerans:Clostridium_algidixylanolyticum:Clostridium_saccharolyticum:Clostridium_
xylanolyticum:Gracilibacter_thermotolerans otu2005:Alistipes_finegoldii:Alistipes_massiliensis otu1202:Clostridium_botulinum:Clostridium_sporogenes otu2321:Streptococcus_salivarius:Streptococcus_thermophilus:Streptococcus_vestibularis otu508:Caloramator_fervidus:Trigonala_elaeagnus Clostridium_bolteae:Clostridium_clostridioforme Streptococcus_porcinus:Streptococcus_seminale:Streptococcus_uberis

otu834:Prevotella_copri:Prevotella_stercorea

Supplemental Table 3: Mediation Cross Tabulation
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Supplemental Table 4. Taxa with Q values <0.2 after performing mediation analysis between PooledDS and PooledBMI 
Baxter Zackular Zeller (16S) Feng Zeller (WGS) Vogtmann
OTUotu2695 OTUotu508 OTUPhascolarctobacterium_succinatutens Ruminococcus sp. 5_1_39BFAA Bifidobacterium catenulatum None
OTUotu911 OTUGemmiger_formicilis OTUotu4937 Prevotella denticola Bacteroides sp. 2_1_16
OTUotu2405 OTUotu1989 OTUotu2483 Lactobacillus casei group Streptococcus salivarius
OTUHowardella_ureilytica OTUotu2005 OTUotu834 Haemophilus parainfluenzae [Eubacterium] eligens
OTUotu1526 OTUPhascolarctobacterium_succinatutens OTUDialister_invisus Prevotella ruminicola Bifidobacterium bifidum
OTUotu2753 OTUotu1257 OTUStreptococcus_salivarius Coprobacillus sp. D7
OTUotu847 OTUBacteroides_salyersiae OTUStreptococcus_porcinus
OTUBacteroides_fluxus OTUotu476 OTUDialister_succinatiphilus

OTUBacteroides_eggerthii OTUClostridium_bolteae
OTUotu1157 OTUotu2321
OTUotu1202
OTUBacteroides_nordii
OTUotu327
OTUotu1316
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