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Almost all animals and plants are inhabited by diverse communities of microorganisms, the micro-
biota. The hosts often pose highly selective environments, which only a subset of the environmentally
available microbes are able to colonize. From the host’s perspective it seems useful to shape the
community composition of these allowed microbes to promote a beneficial host-microbe symbiosis.
In contrast to this, neutral models assume that the structure of the microbiota is entirely shaped by
random population dynamics and dispersal. We here show that microbiota community structure
from a wide range of host organisms, in particular including previously understudied invertebrates,
is in almost all cases consistent with neutral expectations. Moreover, we demonstrate that apparent
discrepancies with the neutral model can be due to transient community states rather than host selec-
tion. In conclusion, even though hosts are often assumed to control microbiota composition to ensure
beneficial interactions, our broad-scale analysis highlights that following colonization, it could rather
be neutral processes that determine microbial community structure.

The microbial communities living in and on animals can affect many important host functions, including
metabolism [1, 2, 3], the immune system [4, 5, 6], and even behaviour [7, 8]. The extent and direction of
this microbe-mediated influence is often linked to the presence or absence of species and their relative
abundances. It is thus paramount to understand how host-associated microbial communities are assembled.

A classical explanation for the emergence of a particular ecological community structure posits that
every species is defined by distinct traits and occupies a specific ecological niche. An implicit hypothesis
underlying much of microbiome research is that hosts have the potential to actively shape their associated
microbial communities by providing niches for useful microbes [9]. This implies that individual hosts could
select for a potentially very specific community structure.

While the assumption that the metaorganism – the host together with its associated microbes [10, 11]
– is an actively shaped symbiotic unit is appealing, it may bias interpretation of microbiota-host analyses.
An example is the widely reported connection between the structure of the human gut microbiota and
obesity, which turns out to be very hard to distinguish from random noise [12]. More recently it has also
been demonstrated that the genetic background of the host does not significantly shape human microbiome
composition [13]. Indeed, it has been argued that selective processes should not form the null hypothesis
for explaining the allegedly cooperative host-microbe symbiosis [14].

Instead, neutral models have been proposed as a valuable tool for finding patterns in the tremendous
complexity of ecological communities that may have a deeper mechanistic cause. Neutral models assume
ecological equivalence between species. Thus, the community structure within a single host is the outcome
of purely stochastic population dynamics, immigration and local extinctions [15]. The Unified Neutral
Theory of Biodiversity [16, 17] extends the neutral framework from a single site to multiple sites, each
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harbouring its own local community (Fig. 1). Diversity within the local communities is maintained by
immigration from a common source community, so that the whole setup resembles a mainland-island struc-
ture [18]. Neutral theory has been applied to numerous ecological systems and sparked a lot of controversy
along the way [19].

source pool of
microorganisms

immigration from
source pool

local communities of microorganisms

environmental filter

Figure 1 Sketch of the setup of the neutral model.
Only a subset of the available microorganisms can
pass through the environmental filter, forming a
common source pool for all hosts. This selective
step is not described by the neutral model. The
microbiota of individual hosts form local commu-
nities and the microbial intra–host population dy-
namics are neutral. Local diversity is maintained
by immigration from the source pool.

Despite these controversies and with the grow-
ing availability of microbial community data, the
neutral theory has been adapted and applied to the
microbial world [20, 21, 22, 23, 24]. In particu-
lar, the local community vs. metacommunity struc-
ture of neutral theory naturally extends to host-
associated microbial communities. Here, the hosts
are viewed as ecosystems and their microbiota are
treated as local communities [25, 11]. This has
led to several recent studies addressing the question
whether the microbiota conform to the patterns pre-
dicted by the neutral theory. The rank-abundance
patterns of the microbiota from three domesticated
vertebrates for example were found to be largely
consistent with the neutral expectation [26, 27], de-
spite a significant non-neutral signal in the genomic
data [26]. A good fit of the neutral model was also
found for the microbiota of young individuals of
the zebrafish Danio rerio [28]. Interestingly, in this
study neutrality decreased as hosts aged, indicat-
ing an increasing influence of selective processes
over developmental time, potentially linked to the
activation of a fully functioning adaptive immune
response. The human microbiota were found to
be predominantly non-neutral across various body
sites [29], and in this study the few neutral commu-
nities were mostly associated with the skin and the
urological tract. Another study, on the other hand,
found the composition of the skin microbiota of healthy human subjects in large Chinese cities to be better
explained by non-neutral processes [30]. Contrasting results can also be obtained depending on the state
of the host, with the healthy human lung microbiota being largely consistent with a neutral model, while
microbes recovered from diseased lungs diverged from neutrality [31]. Neutral assembly processes in in-
vertebrate hosts are understudied, but a recent study shows the microbial communities associated with the
fruit fly Drosophila melanogaster to be consistent with the predictions of a neutral model [32].

While these studies have drawn awareness to the potentially important contribution of neutral processes
in shaping the microbiota, the use of several different neutral models and focus on one or are a few, mostly
vertebrate host organisms, makes it hard to draw more general conclusions. Here, we aim to overcome
these limitations by consistently applying a neutral model to a variety of distinct host systems, including,
but not limited to, a wide range of invertebrate hosts. We included host species from a range of eukaryotic
multicellular organisms with different life styles, ranging from early branching groups such as sponges,
to the house mouse with its fully developed adaptive immune system. The use of a consistent modelling
framework and the diversity of hosts in our study allows us to identify general characteristics of hosts that
are more likely to look neutral. In particular, we hypothesize that for short–lived host species we may
underestimate the level of neutrality, since microbiota analyses commonly take snapshots of community
structure early in the neutralization process. Based on the neutral null hypothesis, we further identified
members of the microbiota which consistently deviate from the neutral expectation, possibly indicating the
action of selection on these particular microbes.

Results
We employ the neutral model presented by Sloan et al. [20], which is particularly suited for large-sized
microbial populations. It describes the stochastic population dynamics within a local community, corre-
sponding to the microbiota of a specific host. To maintain local diversity, which would otherwise reduce
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to a single species through ecological drift, immigration from a fixed source community occurs with rate
m. This source community is not equivalent to the environmental pool of microorganisms, but rather it can
be interpreted as the collection of all microbial species that can pass through the environmental filter of the
host (Fig. 1). Thus, the neutral model does not make any assumptions about the selective processes that
occur before and during colonization of the host and in particular, it is not concerned with any host traits
that may restrict the range of colonizing microbes [33].

This model allows to derive a relatively simple expression for the expected long-term stationary commu-
nity composition. Specifically, it predicts the relationship between the mean relative abundance of a taxon
across all local communities, i.e. the metacommunity, and the probability of actually observing this taxon
in any single community. Using well-established methods from population genetics, it has been shown that
this relationship is determined by a beta distribution [20]. The only free parameter of this model is the
immigration rate m, which can be calibrated by a nonlinear fit. The goodness of the fit then indicates how
well the prediction of the neutral model compares to the empirical data. Concretely, we use the coefficient
of determination R2 as a quantitative measure of how consistent the data is with the neutral model. See the
Material and Methods for details of the neutral model and the fitting procedure.

Neutrality of the microbiota
We fitted the theoretical neutral expectation to the published microbiota composition of eight different host
species across four phyla and, for comparison, three environmental microbial communities (see Table S1
for an overview and references).

With the species Sarcotragus fasciculatus, Ircinia oros and Carteriospongia foliascens, our study in-
cludes examples from the oldest extant sister group to all other animals, the sponges (Porifera) [34]. Despite
their filter-feeding life-style, sponges harbor a very diverse and highly specific microbiota [35], which me-
diates the functional role of the sponges in the ecosystem [36]. This is complemented by the jellyfish
Aurelia aurita, the starlet sea anemone Nematostella vectensis, and the fresh-water polyp Hydra vulgaris.
These hosts are examples from another early branching phylum, the Cnidaria, which comprise a basic
innate immune system thought to play an important role in controlling one of the oldest known symbi-
otic host-microbe relationships [37]. We also included the nematode Caenorhabditis elegans as one of
the best–studied multicellular organisms, whose microbiota has only more recently come into the focus
[38, 39, 40, 41]. Finally, the house mouse Mus musculus with its potent adaptive immune system [42]
offers a well–studied intestinal microbiota [43, 44].

In all cases, community composition was determined by the relative abundances of operational tax-
onomic units (OTUs), obtained by standard high-throughput 16S rRNA sequencing techniques [45]. To
ensure equal sample sizes, all OTU abundance tables were rarified to the same read depth (1000 reads per
sample). We analyzed the effect of the rarefaction on the neutral fit for datasets where more reads were
available and found it to be of little relevance for most communities (Fig. S5). The estimated dispersal
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Figure 2 The relationship between mean relative abundance of taxa across all samples and the frequency
with which they are detected in individual samples for three representative datasets. Each dot represents a
taxon and the solid line is the best-fitting neutral community expectation. The dashed lines and grey area
depict the 95% confidence bands. The left panel shows a microbial community sampled from a compost
as an example of an abiotic environment. The centre panel shows data for the natural microbiota of C.
elegans nematode populations sampled from the same compost. The right panel shows the microbiota
of a wild M. musculus mouse population. Here, the red dots indicate members of the microbial family
Ruminococcaceae, which are predominantly overrepresented compared to the neutral expectation. A genus
that is found in much fewer mice than expected is Shigella, being present in less than a quarter of the hosts
despite a neutral expectation of nearly 100% prevalence.
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parameter m from the neutral best-fits for all host populations showed considerable variation, but there is
no correlation between m and the level of neutrality (Fig. S4A and Tab. S1). Additionally, we found no
correlation between sample size and neutrality, or between microbiota diversity and neutrality (Fig. S4).

A comparison of the theoretical and observed relationship between mean relative abundances and oc-
currence frequencies of OTUs for three illustrative examples is shown in Fig. 2 (see Fig. S1 for an overview
of all datasets). Taxa that lie above the neutral expectation are found more often than would be expected
from their relative abundance in the microbiota metacommunity, implying a possible role of positive selec-
tion. In contrast, taxa below the neutral prediction are found in fewer hosts than expected by their relative
abundance across all hosts, which may be due to negative host-mediated selection.
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Figure 3 Overview of how consistent a range of host-
associated and environmental communities are with
the neutral model. Circles denote natural populations
and diamonds denote laboratory populations. The
data for C. foliascens is from several different nat-
ural populations, while the data for H. vulgaris and
N. vectensis is from different time points. Spread of
points along the x-axis is added to increase visibil-
ity. Phylogeny generated with phyloT based on NCBI
taxonomy. Sponge photographs courtesy of Susanna
López-Legentil (UNC Wilmington).

The composition of microbial communities
derived from compost and seawater are very con-
sistent with the neutral expectation (Fig. 2A and
S1), which aligns with previous studies showing
that random population dynamics and immigra-
tion play a major role in shaping microbial com-
munities in abiotic environments [21, 23, 24].
Interestingly, the sediment community showed
a relatively low consistency with the neutral
model. This dataset is also the only one that
showed a substantial effect of rarefaction, with
neutrality increasing to the same level as the sea-
water community, when more reads are included
(Fig. S5). This may indicate a greater influence
of rare taxa, potentially leading us to underesti-
mate the level of neutrality in the rarefied sedi-
ment dataset.

Biological hosts with their potential for ac-
tive selection of specific taxa, could on the other
hand be expected to have their resident micro-
bial communities under tighter control, reduc-
ing the relative importance of stochastic pro-
cesses after colonization, which would be re-
flected in a worse fit of the neutral expectation.
The nematode C. elegans for example naturally
consumes bacteria as its food source and pos-
sesses an innate immune system, potentially to
defend against the threat of ingested pathogenic
microbes [46]. This suggests that these worms
have some control over their microbiota and indeed, for worms that were sampled at the same locations
where the compost samples were taken, the best fit of the neutral expectation is considerably worse (Fig.
2B). We found a similar level of neutrality for the microbiota of laboratory worm populations grown ex-
clusively on E. coli (Fig. 3), indicating a similar influence of neutral processes under the more controlled
laboratory environments.

Vertebrate hosts with their more sophisticated and complex immune system are expected to diverge
even further from the neutral expectation. However, intriguingly, the neutral model showed a very good
fit to the microbiota of a wild M. musculus mouse population (Fig. 2C). In fact, the best fit was just
as good as for the abiotic compost environment. A notable non-neutral microbe is Shigella, which is
found in significantly fewer mice than expected from the neutral model (Fig. 2C). Invasive Shigella causes
intestinal inflammations in humans, but mice mount an effective defense against it, thereby preventing acute
infections [47]. This illustrates how potentially pathogenic microbes, which are actively selected against by
the host, are typically found below the neutral expectation. The high level of neutrality in the natural mouse
population is corroborated by a laboratory population of M. musculus (Fig. 3).

We found similar high levels of neutrality for sponges which as aquatic filter feeders are exposed to the
full range of marine microbes. Like nematodes, they comprise a basic immune system [48], and especially
for S. fasciculatus and some populations of C. foliascens, the data is in very good agreement with the
neutral expectation (Fig. S1). In contrast, the results for the three aquatic polyps are less consistent. The
two laboratory populations of A. aurita were in very good agreement with the neutral prediction, while the
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neutrality of samples taken at different developmental stages of H. vulgaris and N. vectensis varied from
poor to good (Fig. 3).

Comparing the neutral expectation with data from a wide range of host species showed that a good fit of
the neutral model is in fact the norm rather than the exception (Fig. 3). In particular, there was no substantial
difference in neutrality between microbial communities living in abiotic environments, such as compost and
seawater, and the microbiota from a diverse array of host species. We thus conclude that neutral processes
may play a substantial role in the assembly of microbial communities associated with hosts as different as
mice and marine sponges.

Why then, do in particular the microbiota of C. elegans diverge from the neutral expectation, suggest-
ing a greater influence of selective processes? The most commonly assumed cause of such deviations is
selection by the host, for example through its immune system. However, it seems intriguing that nematodes
with a comparatively simple immune system would be much better at selecting microbes than mice with
their sophisticated immune systems. Therefore, it is important to assess other possible violations of the
underlying model assumptions.

Change of neutrality over time
A crucial aspect of the neutral prediction is that it corresponds to the expected long-term stationary distribu-
tion of the microbial community. If the community is in a transient state, however, it can appear non-neutral
even if it is the product of a purely neutral process. This effect is illustrated in Figure 4, showing a simula-
tion of the population dynamics of 50 neutral communities (Material and Methods). For every community,
only a few random colonisers were picked from the source community, which yields random, but non-
neutral, initial communities. We then compared the neutral expectation to the in-silico communities many
times during the simulation, showing that they become “neutralized” through random population dynamics
and immigration until the community composition reaches its long-term equilibrium, or the host dies.
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Figure 4 Goodness of fit of the neutral long-term
expectation to neutrally simulated communities over
time, where each dot represents the best fit at that
timepoint. The two insets show the best fits of the
neutral model to snapshots of the communities at
an early timepoint (indicated by the red dot) and a
late timepoint (indicated by the blue dot). Scale and
meaning of the axes for the insets are the same as in
Fig. 2. Each community was initialised with a few
random colonizers, which gives a non-neutral initial
community (R2 ≈ 0.4).

Thus, in principle, a bad fit of the neu-
tral expectation may be due to a transient non-
equilibrium state of the community, rather than
actual non-neutral processes. This effect would
be especially pronounced for short-lived host
species such as C. elegans, where initial col-
onization can lead to communities that appear
non-neutral even for ecologically equivalent (i.e.
neutral) colonizers [49]. The microbiota of
such hosts may never effectively converge to the
neutral long-term expectation, even if they are
dominated by stochastic dynamics and immigra-
tion. For longer–lived species with a substan-
tial amount of vertical transmission of the mi-
crobiota, such as sponges and mice, we expect
these transient effects to play a smaller role.

If community assembly is governed by
purely neutral processes, we would expect the fit
of the neutral model to become better over time.
Decreasing neutrality, which has been reported
for the zebrafish Danio rerio [28], would on the
other hand be a good indicator of selective pro-
cesses. A similar increase in the relative impor-
tance of selective processes over stochastic effects has been described for the ecological succession of mi-
crobial communities in salt marshes [50]. However, while the microbiota from the Hydra and Nematostella
populations show clear developmental patterns [51], we found consistency with the neutral model to remain
relatively constant over time (Fig. S3).

Identifying non-neutral taxa
To identify those members from the bulk of the microbiota that diverge from the neutral expectation is of
great practical importance, as this may reveal potential selective processes. In the following, we classified
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all taxa outside of the 95% confidence bands around the neutral prediction as not consistent with the neutral
expectation.

We found that the distribution of non-neutral taxa around the neutral prediction is roughly symmet-
rical in all cases, and no microbial order deviates systematically above or below the neutral expectation
(Fig. S2). In particular, within microbial orders that contain a substantial amount of non-neutral taxa, such
as the Clostridiales and Bacteroidales in the mouse microbiota, genera were roughly evenly over- and under-
represented compared to the neutral null hypothesis. This is consistent with the hypothesis that the observed
deviations from neutrality are at least in part due to transient neutral processes rather than selection.

To further distinguish random deviations from neutrality and actual non-neutral candidates, we also
applied a more conservative definition of non-neutrality. For this, a particular taxon was classified as non-
neutral only when it consistently diverged from the neutral expectation in the same direction in independent
host populations. Applying this definition to the natural and laboratory populations of C. elegans and M.
musculus yields a reduced subset of microbial taxa, which lie above or below the neutral prediction in both
populations.

This reveals that of the C. elegans microbiota, only the genus Ochrobactrum is consistently under-
represented (Tab. S2). It is found in only ca. 40% of the natural isolates and 70% of the laboratory worms,
despite its relatively high mean abundance across all worms and a neutral expectation of 100% prevalence.
This underrepresentation of Ochrobactrum is intriguing, as it had previously been identified as enriched
in worms and able to persist in the nematode’s gut even under starvation conditions [39]. However, this
observation is consistent with a transient community state, where Ochrobactrum has not yet colonized all
worms, despite being very successful once it has entered the worm.

In the M. musculus microbiota of natural and laboratory populations, over a third of the over-represented
taxa were from the bacterial family Ruminococcaceae. Members of this family were never consistently
found below the neutral expectation (Fig. 2C and Tab. S3). This family includes several physiologically
relevant genera involved in the utilization of plant polysaccharides such as starch and cellulose [52], and
high-fat diets low in plant-derived materials have been found to decrease the proportion of the Ruminococ-
caceae in mouse guts [53]. That we were able to consistently identify a bacterial family that had previously
been linked to important metabolic functions as over-represented in the overall neutral mice microbiota,
shows the utility of the neutral model as a null hypothesis and a tool of finding meaningful patterns in the
vast complexity of the microbiota. An objective definition of a core microbiome is not straightforward.
Taxa such as the Ruminococcaceae that are present significantly more often than predicted by chance are
good candidates fulfilling clear objective criteria to be defined as a core taxon.

Comparison with a random community assembly model
The observed high levels of neutrality do not necessarily imply that the microbiota are simply a random
collection of microbes. A good fit of the expected distribution indicates that the simple neutral model is
sufficient to describe the relationship between abundance of a species and its occurrence frequency. But
this can not rule out other processes, niche-related or stochastic, that lead to the same community structure
[54].

A different model is obtained by assembling a local community by simply drawing randomly from the
fixed source community. In this case, the probability of observing a specific species in a local community is
determined by a binomial distribution. Comparing the best fits of the neutral expectation and of a binomial
distribution using the Aikake information criterion (AIC) indicates that the neutral model fits the data better
in all cases (Tab S1). This indicates that the microbiota are not merely random samples of the microbes
present in the metacommunity, and that stochastic population dynamics and dispersal play important roles
in shaping communities.

Discussion
We set out to quantify how consistent the microbiota of a range of different host organisms are with the ex-
pectation from a neutral model. We found that the structures of the host-associated microbial communities
are often in surprisingly good agreement with the neutral expectation. This leads us to conclude that upon
colonization, neutral processes could play a significant role in the assembly of the microbiota. A compar-
ison with environmental microbial communities suggests that biological hosts are not better at structuring
the microbial community than abiotic environments. Taking into account a more complete simulation anal-
ysis of the neutral model further indicates that the divergence from the neutral expectation observed for
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some host species may ultimately be due to transient stages of the communities, rather than being the result
of actual selective processes.

This finding has major implications for practical problems, such as our ability to manipulate the micro-
biota to restore or improve a community structure that is associated with a healthy host. A dominance of
deterministic, niche-related factors would suggest that undesirable community structures may be amenable
to intervention by manipulating certain host traits or the community itself. But if microbiota dynamics
are mostly neutral, intervention strategies to modify microbiota structure might be in vain as there are no
distinguishable states of the microbiota.

However, even a high consistency with the neutral expectation does not rule out the presence of selec-
tive abiotic or biotic processes, as non-neutral models have been shown to yield predictions consistent with
neutral theory under certain conditions [54]. In particular, biological hosts, like any other abiotic environ-
ment, will select for a subset of the environmentally “available” microbes, and yet the resulting microbiota
may still look mostly neutral. In fact, comparing the microbes present in seawater to the species present
in individual sponges reveals that there is almost no overlap (Fig. S6A). This indicates that sponges are a
highly selective environment, yet their microbiota are very consistent with the neutral expectation. A simi-
lar selective filter is found for C. elegans, where only a fraction of the microbes present in the environment
successfully colonize the worms (Fig. S6B). This suggests that there are host traits that act as environmental
filters [33] and they often will do so in a predictable, i.e. deterministic way. In this sense the microbiolog-
ical tenet that “everything is everywhere, but the environment selects” also applies when the environment
happens to be another biological organism. However, our results highlight that the processes that are at play
after the environmental filter has been passed can still be highly consistent with the neutral model. It has
also been suggested that this interplay between selective environments and neutral processes acting on the
allowed species may have contributed to some of the contrasting results found in previous studies [55].

Another factor to consider is that the data analyzed in this study is based on 16S rRNA gene based
taxonomic profiling. Given the known examples of functional redundancy present e.g. in the human gut
microbiota [56], viewing communities from the perspective of functional (e.g. metabolic) categories may
provide an alternative picture. This ties in with recent studies demonstrating that taxonomic and functional
microbial community composition are shaped by largely independent processes [57, 58]. Thus, the dom-
inance of neutral factors which we observe on the taxonomic level may in principle be complemented by
non-neutral selection of functional groups mediated by the host.

Conclusion
The neutral assumption that species do not interact is an anathema to many ecologists, and for the microbiota
in particular it is assumed that the functioning of the community is enhanced by cooperative interactions.
Recent results however suggest that interactions within the mouse gut microbiota are indeed predominantly
competitive and very weak [59]. Together with our finding of the microbiota being highly consistent with
neutral expectations for several different host species, this lends support to taking the neutral null hypoth-
esis as a key component of our understanding of host-microbe interactions. Awareness of the potentially
significant role of neutrality in shaping the microbiota is crucial to avoid being lead astray by randomness in
view of the incredible complexity of host-microbiota symbioses and to be able to uncover general principles
of microbiome assembly.
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Methods

The Neutral Model
Here, we summarize the model presented in [20], considering only the purely neutral special case with
equivalent growth rates for all species. A local community contains a fixed number of N individuals and
changes to the relative abundance of a particular species requires individuals to die. The death rate δ is the
same for all species and a dead individual is replaced by reproduction of a local individual (with probability
1−m), or by immigration from a fixed source community (with probability m). The relative abundance of a
species in this source community is denoted by pi. With this the probabilities that the number of individuals
of species i increases by one, decreases by one or stays the same are given by

P(Ni +1) =
N −Ni

N

(
m pi +(1−m)

Ni

N −1

)
,

P(Ni −1) =
Ni

N

(
m(1− pi)+(1−m)

N −Ni

N −1

)
,

P(Ni) =
Ni

N

(
m pi +(1−m)

Ni −1
N −1

)
+

N −Ni

N

(
m(1− pi)+(1−m)

N −Ni −1
N −1

)
.

(1)

These transition probabilities correspond to Hubbell’s original neutral model, but the following continuous
approximation derived by Sloan et al. [20] can be efficiently applied to very large population sizes and
allows for a relatively simple analytical solution. In particular, this allows for a calibration with the high-
throughput 16S rRNA sequencing data obtained from microbial communities.

If N is large enough, such as in microbial communities, we can assume the relative abundance xi =Ni/N
of species i to be continuous. Applying methods from population genetics [60] this leads to a Fokker-Planck
equation for the probability density function φi(xi, t) of xi,

∂φi

∂ t
=− ∂

∂xi
(Mδx φi)+

1
2

∂ 2

∂x2
i
(Vδx φi), (2)

where Mδx and Vδx are the expected rates of change in frequency and variability, respectively. Assuming
the time intervals between individual death-birth events are short, they can be approximated by

Mδx =
m(pi − xi)

N
(3)

and

Vδx =
2(1− xi)xi +m(pi − xi)(1−2xi)

N2 . (4)

Equation (2) together with (3) and (4) describes the neutral population dynamics of a local microbial com-
munity. This is not in general amenable to analytical treatment, but one can approximate the long-term
equilibrium solution of this equation. Namely, the potential solution to ∂φi/∂ t = 0 leads to Mδx φi −
1
2

∂

∂xi
(Vδx φi) = const. with the solution approximately given by the beta distribution

φi(xi;N, pi,m) = c(1− xi)
N m(1−pi)−1 xN m pi−1

i . (5)

This can be connected to empirical observations by realizing that, for a given detection threshold d, the
probability of actually observing a species in a local community is given by the truncated cumulative prob-
ability density function

P(species i observed) =
∫ 1

d
φi(xi;N, pi,m)dx . (6)

Here, N is given by the number of reads per sample and the relative abundance pi of the focal species in the
source community can be approximated by the mean relative abundance of the species across all samples.
The probability of immigration m is thus the only free parameter and used to fit the predicted long-term
distribution to the observed occurence frequencies of the microbiota.

8

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 19, 2018. ; https://doi.org/10.1101/367243doi: bioRxiv preprint 

https://doi.org/10.1101/367243
http://creativecommons.org/licenses/by/4.0/


Fitting procedure
The fitting process applied to all datasets works as follows. First, the OTU abundance table was rarefied
to the same read depth (1000 reads per sample), which was determined by the lowest available read depth
from all datasets. Rarefaction was performed using the PySurvey package (pypi.org/project/PySurvey). The
expected observation probability (6) and a binomial model were then fitted to the observed mean relative
OTU abundances pi and occurence frequencies fi obtained from this rarefied table using non-linear least
squares minimization with the lmfit package (pypi.org/project/lmfit) [61]. As a measure of the goodness
of fit we then calculated the standard coefficient of determination using the ratio of the sum of squared
residuals and the total sum of squares:

R2 = 1− ∑i( fi −Φi)
2

∑i( fi − fi)2
, (7)

where Φi is the expected ocurrence frequency obtained from the best-fit neutral prediction. Rarefaction and
fitting was repeated 1000 times and the R2 reported throughout is the mean across individual best-fits for
each dataset. Additionally, for comparison of the neutral and binomial model, the mean Aikake information
criterion (AIC) was calculated from all rarefactions.

Neutral model simulations
We simulated the neutral process for 50 local communities, each containing N = 10000 individuals, with a
source community containing 200 species and an immigration probability of m = 0.05.

Code availibility
The Python code for fitting and simulating the neutral model will be made available on github and in the
meantime is available from the authors on request.

Data availibility
All data has been published previously, see Table S1 for the corresponding references.
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Table S1 The datasets included in this study and the results of the model fits. Data is for rarefaction level
of 1000 reads per sample.

Host species #samples #OTUs best-fit m R2 neutral model AIC neutral model AIC binomial model Reference

Caenorhabditis elegans [39]
natural samples 22 193 0.03 ± 0.004 0.44 -673.2 -452.5
lab samples 34 106 0.007 ± 0.001 0.38 -330.0 -208.2

Ircinia oros 11 1121 0.41 ± 0.03 0.6 -5391.47 -4966.26 [35]
Sarcotragus fasciculatus 12 735 0.83 ± 0.08 0.81 -3552.82 -3165.09 [35]
Carteriospongia foliascens [35]

Australia, Davies Reef 15 939 0.36 ± 0.03 0.6 -5435.40 -5007.39
Australia, Fantome Island 14 728 0.81 ± 0.1 0.79 -3740.45 -3336.08
Australia, Orpheus Island 15 750 0.86 ± 0.1 0.8 -3987.01 -3539.84
Australia, Green Island 13 774 0.47 ± 0.05 0.59 -3846.0 -3542.79
Australia, Torres Strait 7 336 0.78 ± 0.15 0.58 -1410.75 -1244.0

Mus musculus [44]
natural samples 69 281 0.11 ± 0.01 0.85 -1217.97 -998.15
lab samples 54 136 0.18 ± 0.02 0.84 -536.30 -452.48

Nematostella vectensis [51]
1 dpf 6 226 0.23 ± 0.02 0.52 -738.68 -655.06
4 dpf 15 149 0.33 ± 0.06 0.67 -521.62 -479.29
40 dpf 12 155 0.09 ± 0.01 0.59 -502.39 -413.96
123 dpf 12 195 0.39 ± 0.06 0.69 -678.72 -623.49
385 dpf 20 225 0.17 ± 0.02 0.58 -766.93 -679.74
401 dpf 8 120 0.7 ± 0.15 0.74 -446.34 -402.59

Hydra vulgaris [62]
0.5 wah 8 699 0.6 ± 0.07 0.5 -2527.91 -2289.35
2.5 wah 8 248 0.28 ± 0.05 0.44 -820.92 -756.19
5 wah 8 242 0.53 ± 0.1 0.43 -1129.85 -1041.28
9 wah 8 257 0.5 ± 0.1 0.44 -833.46 -765.88
15 wah 8 140 0.45 ± 0.12 0.59 -466.20 -432.55

Aurelia aurita submitted
control 5 163 0.91 ± 0.07 0.69 -624.96 -538.45
quorum quenching (QQ) 18 391 0.62 ± 0.06 0.85 -1716.09 -1532.6

Environment
Compost 65 587 0.48 ± 0.03 0.86 -2690.26 -2491.77 [39]
Seawater 16 2518 0.62 ± 0.03 0.7 -12345.33 -11113.17 [35]
Sediment 12 3796 0.77 ± 0.05 0.47 -16658.27 -14665.48 [35]
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Figure S1 The relationship between mean relative abundance of taxa across all samples and the frequency
with which they are detected in individual samples. Each dot represents a taxon and the solid line is the
best-fitting neutral community expectation. The dashed lines and grey area depict the 95% confidence
bands.
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Figure S1 he relationship between mean relative abundance of taxa across all samples and the frequency
with which they are detected in individual samples. Each dot represents a taxon and the solid line is the
best-fitting neutral community expectation. The dashed lines and grey area depict the 95% confidence
bands.
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Figure S2 Bars show the mean relative abundance of the ten most abundant microbial orders in a specific
host population. The colored sections indicate the fractions of OTUs within that order which were found
above the neutral expectation (red), within the neutral expectation (grey) and below the neutral expectiation
(blue).
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Figure S2 Bars show the mean relative abundance of the ten most abundant microbial orders in a specific
host population. The colored sections indicate the fractions of OTUs within that order which were found
above the neutral expectation (red), within the neutral expectation (grey) and below the neutral expectiation
(blue).
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Figure S2 Bars show the mean relative abundance of the ten most abundant microbial orders in a specific
host population. The colored sections indicate the fractions of OTUs within that order which were found
above the neutral expectation (red), within the neutral expectation (grey) and below the neutral expectiation
(blue).
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Table S2 Non-neutral genera found in the C. elegans microbiota

Domain Phylum Class Order Family Genus

Bacteria Bacteroidetes Flavobacteria Flavobacteriales Flavobacteriaceae unclassified

over-represented

Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae Devosia
Bacteria Proteobacteria Alphaproteobacteria unclassified unclassified unclassified
Bacteria Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae unclassified
Bacteria Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae unclassified
Bacteria Proteobacteria Betaproteobacteria Burkholderiales unclassified unclassified
Bacteria Proteobacteria Betaproteobacteria unclassified unclassified unclassified
Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae unclassified
Bacteria Proteobacteria Gammaproteobacteria unclassified unclassified unclassified
Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae unclassified
Bacteria unclassified unclassified unclassified unclassified unclassified

Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Brucellaceae Ochrobactrum under-represented

Table S3 Non-neutral genera found in the M. musculus microbiota

Domain Phylum Class Order Family Genus

Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Acetomicrobium

over-represented

Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Proteiniphilum
Bacteria Bacteroidetes Flavobacteria Flavobacteriales Cryomorphaceae Fluviicola
Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae 4 Caminicella
Bacteria Firmicutes Clostridia Clostridiales Clostridiales_Incertae Sedis XIII Anaerovorax
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Clostridium XlVb
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea
Bacteria Firmicutes Clostridia Clostridiales Peptococcaceae 1 Peptococcus
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Acetanaerobacterium
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Anaerotruncus
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ethanoligenens
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Flavonifractor
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Hydrogenoanaerobacterium
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Sporobacter
Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Anaerospora

Bacteria Bacteroidetes Bacteroidia Bacteroidales Marinilabiaceae Anaerophaga

under-represented

Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Butyricimonas
Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Paludibacter
Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Tannerella
Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Rikenella
Bacteria Bacteroidetes Sphingobacteria Sphingobacteriales Flammeovirgaceae Sediminitomix
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Butyrivibrio
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Catonella
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Marvinbryantia

21

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 19, 2018. ; https://doi.org/10.1101/367243doi: bioRxiv preprint 

https://doi.org/10.1101/367243
http://creativecommons.org/licenses/by/4.0/


0.0

0.2

0.4

0.6

0.8

1.0

 0  2  4  6  8  10  12  14  16

N
e

u
tr

a
lit

y

weeks after hatching

Hydra vulgaris

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400

 

days post-fertilization

Nematostella vectensis

Figure S3 Neutrality of the microbiota of Hydra vulgaris and Nematostella vectensis at different time points
during development and adult life stages. The dashed lines are the best linear fits, slopes are not significantly
different from zero.
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Figure S4 Consistency with the neutral model vs. the estimated dispersal parameter m (top left), the number
of samples (top right), number of identified taxa (bottom left) and the Shannon-Index of diversity (bottom
right). Circles denote natural populations and diamonds laboratory populations.
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Figure S5 Effect of rarefaction on neutrality. Generally, consistency with the neutral model initially de-
creased with increasing read depth, until it leveled off as read depth increased further. For communities
that showed a high consistency with the neutral model, varying read depths did not affect the results much,
ranging from almost no effect at all for A. aurita to a slight drop in neutrality for the seawater samples from
R2 = 0.7 at 1000 reads/sample to R2 ≈ 0.6 at 50000 reads/sample. Only for the communities associated with
the sponge I. oros and two of the C. foliascens populations did read depth show a more pronounced effect,
where in both cases neutrality dropped from R2 ≈ 0.6 at 1000 reads/sample to R2 ≈ 0.45 when read depth
was exceeding 10000 reads/sample. Interestingly, an opposite trend was observed for the sediment sam-
ples, where neutrality increased from R2 ≈ 0.5 at 1000 reads/sample to R2 ≈ 0.7 at 10000 reads/sample.
The minimal to moderate changes in neutrality with increasing read depth for some datasets potentially
reflects the influence of rare, non-neutral taxa, which are only detected with higher read depths.

Figure S6 Overlap of taxa found in hosts and the environment. Left: For two sponge species, there is only
a very small overlap between the sponge microbiota and the taxa found in seawater. Right: For C. elegans,
only a subset of the environmentally available microbes is found in the worms.
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