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Abstract 

Identifying driver genes is a central problem in cancer biology and has received great 

attentions from researchers. However, existing methods for detecting driver genes from somatic 

mutation data struggle to distinguish positive selection signals from highly heterogeneous 

background mutational processes. Here, we present a powerful statistical approach, driverMAPS 

(Model-based Analysis of Positive Selection) for driver gene identification. The key feature of 

driverMAPS is its modeling of mutation rates at the base-level, reflecting both background 

mutational processes and positive selection. Its selection model captures elevated mutation rates 

in functionally important sites using multiple external annotations, as well as spatial clustering of 

mutations. Its background mutation model accounts for both known covariates and local, gene-

specific, variation caused by unknown factors. Applying driverMAPS to TCGA data across 20 

tumor types identified 159 new potential driver genes. Cross-referencing this list with data from 

external sources strongly supports these findings. The novel genes include the mRNA 

methytransferases METTL3-METTL14, and we experimentally validated the functional 

importance of somatic mutations in METTL3, confirming it as a potential tumor suppressor gene 

in bladder cancer.  
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Introduction 

Cancer is caused by somatic mutations that confer a selective advantage to cells. 

Analyses of somatic mutation data from tumors can therefore help identify cancer-related 

(“driver”) genes, and this is a major motivation for recent large-scale cancer cohort sequencing 

projects1. Indeed, such analyses have already identified hundreds of driver genes across many 

cancer types1,2. Nonetheless, many important driver genes likely remain undiscovered3, 

especially in cancers with low sample sizes. Here we develop and apply new, more powerful, 

statistical methods to address this problem. 

The basic idea underlying somatic mutation analyses is that genes exhibiting a high rate 

of somatic mutations are potential driver genes. However, mutation and repair processes are 

often significantly perturbed in cancer, so somatic mutations may also occur at a high rate in 

non-driver genes. Furthermore, somatic mutation rates vary substantially across genomic regions 

and across tumors. The challenge is to accurately distinguish driver genes against this complex 

background.   

Several ideas have been developed to help address this challenge. One idea is to carefully 

model the background somatic mutation process. For example, the widely used method 

MutSigCV4 models this background by using features that correlate with somatic mutation rate, 

such as replication timing. Another idea is to model distinctive features of somatic mutations in 

driver genes. For example, driver genes may show an excess of nonsynonymous to synonymous 

mutations due to positive selection5, and mutations in driver genes tend to be more deleterious 

(“function bias”). Finally, somatic mutations in driver genes sometimes show a distinctive spatial 

pattern, tending to cluster together (e.g. in substrate binding sites). Methods that leverage one or 

more of these ideas include MuSiC6, MADGiC7, the OncoDrive suite8–10 and TUSON11.  

Here we refine and combine these key ideas to create a new integrated statistical 

framework for detecting cancer driver genes. Our model-based approach improves on existing 

methods in several ways. We improve the MutSigCV model for the background mutation 

process by accounting for local variation not captured by known genomic features. Our method 

also carefully models function bias at the base level, allowing the bias to depend on measures of 

functional importance such as conservation scores, SiFT12 and PolyPhen13. And we use a Hidden 

Markov Model to capture potential spatial clustering of somatic mutations into “hotspots”.  

Finally, we exploit Bayesian hierarchical modelling to combine information across cancer types 
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and hence improve parameter estimates. We call our method driverMAPS (Model-based 

Analysis of Pattern of Selection).  

We applied driverMAPS to TCGA exome sequencing data from 20 cancer types. The 

results suggest that driverMAPS is better able to detect previously known driver genes than 

existing methods, without excessive false positives. In addition, driverMAPS identified 159 new 

potential driver genes not identified by other methods. Both literature survey and extensive 

computational validation suggest that many of these genes are likely to be true driver genes. The 

novel potential driver genes included both METTL3 and METTL14, which together form a key 

enzyme for RNA methylation. We experimentally validated the functional relevance of somatic 

mutations in METTL3, providing further support for both the effectiveness of our method, and 

for the potential importance of RNA methylation in cancer. We believe that our methods and 

results will facilitate the future discovery and validation of many more driver genes from cancer 

sequencing data. 

Results 

driverMAPS: a probabilistic model of somatic mutation selection patterns 

Our approach is outlined in Figure 1. In brief, we model aggregated exonic somatic 

mutation counts from many tumor samples (e.g. as obtained from a normal-tumor paired 

sequencing cohort). Let Yg denote the mutation count data in gene g. We develop models for Yg 

under three different hypotheses: that the gene is a “non- driver gene” (H0), an “oncogene” (HOG) 

or a “tumor suppressor gene” (HTSG). Each model has two parts, a background mutation model 

(BMM), which models the background mutation process, and a selection mutation model 

(SMM), which models how selection acts on functional mutations.  The BMM parameters are 

shared by all three hypotheses, reflecting the assumption that background mutation processes are 

the same for cancer driver and non-driver genes. In contrast the SMM parameters are hypothesis-

specific, to capture the different selection pressures in oncogenes vs tumor suppressor genes vs 

non-driver genes. We fit the hypothesis-specific parameters using training sets of known 

oncogenes1 (HOG), known TSGs1 (HTSG), and all other genes (H0). (This last set will contain 

some -- as yet unidentified -- driver genes, which will tend to make our methods conservative in 

terms of identifying new driver genes.) To combine information across tumor types we first 
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estimate parameters separately in each tumor type, and then stabilize these estimates using 

Empirical Bayes shrinkage14.  

Having fit these models, we use them to identify genes whose mutation data are most 

consistent with the driver genes models (HOG and HTSG). Specifically, for each gene g, we 

measure the overall evidence for g to be a driver gene by the Bayes Factor (likelihood ratio), 

BFg, defined as: 

BFg := 0.5 [Pr(Yg | HOG) + Pr(Yg | HTSG)] / Pr(Yg | H0). 

Large values of BFg indicate strong evidence for g being a driver gene, and at any given 

threshold we can estimate the Bayesian FDR. For results reported here we chose the threshold by 

requiring FDR<0.1. 

 

driverMAPS effectively captures factors influencing somatic mutations 

We used a total of 734,754 somatic mutations from 20 tumor types in the TCGA project 

as our input data15. We focused on single nucleotide somatic variations and extensively filtered 

input mutation lists to ensure data quality (see Methods). Figure S1 summarizes mutation counts 

and cohort sizes.  

The first step of our method is to estimate parameters of the Background Mutation Model 

(BMM) using data on synonymous mutations. These parameters capture how mutation rates 

depend on various “background features” (Table S1), which include mutation type (C>T, A>G, 

etc), CpG dinucleotide context, expression level, replication timing and chromatin conformation 

(HiC sequencing)4. The signs and values of estimated parameters were generally similar across 

tumor types, and consistent with previous evidence for each feature’s effect on somatic mutation 

rate. For example, the estimated effect of the feature “expression level” was negative for almost 

all tumors, consistent with transcriptional coupled repair mechanisms effectively reducing 

mutation rate (Figure S2).  

Our BMM also estimates gene-specific effects, using synonymous mutations of a gene, to 

allow for variation in somatic mutation rate not captured by any measured feature. Intuitively, 

the gene-specific effect adjusts a gene’s estimated mutation rate downward if the gene has fewer 

synonymous mutations than expected based on its known features, and upwards if it has more 

synonymous mutations than expected. A challenge here is that the small number of mutations per 

gene (particularly in small genes) could make these estimates inaccurate. Here we address this 
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using Empirical Bayes methods to improve accuracy, and avoid outlying estimates at short genes 

that have few potential synonymous mutations (Figure 2a). Effectively, this adjusts a gene’s rate 

only when the gene provides sufficient information to do so reliably (sufficiently many potential 

synonymous mutations). To demonstrate the reliability of the resulting estimates we use a 

procedure similar to cross-validation: we estimated each gene’s gene-specific effect using its 

synonymous mutations, and then test the accuracy of the estimate (compared to no gene-specific 

effect) in predicting the number of nonsynonymous mutations. Figure 2b shows results for 

SKCM tumors: without gene-specific effect the correlation of observed and expected number of 

nonsynonymous mutations across genes was 0.56; with gene-specific adjustment the correlation 

increased to 0.88. Similar improvements were seen for other tumors (Figure S3).  

The next step is to estimate parameters of the Selection Mutation Models (SMM), using 

data on non-synonymous mutations. These parameters capture how the rate of non-synonymous 

somatic mutations depend on various “functional features” (Table S2-S4), including if loss-of-

function (LoF), conservation scores, etc. Signs and values of estimated parameters were 

generally similar across tumor types, and consistent with their expected impact on gene function 

(Figure 2c). For example, the estimated effect of the “LoF” feature was positive for HTSG and 

negative for HOG, indicating that loss-of-function mutations are enriched in TSGs and depleted in 

OGs, as expected from their respective roles in cancer. The intercept terms for both TSG and OG 

are positive, suggesting that somatic mutations are enriched in both types of cancer driver genes.  

The final step is to estimate parameters of the spatial model (HMM, Figure 1), which are 

designed to capture how somatic mutations may cluster together in “hotspots” in driver genes. 

Preliminary investigations showed that spatial clustering is generally stronger in known OGs 

than in known TSGs, and so we fit the spatial model separately for OGs and TSGs in each tumor 

type (Table S5). Our model identified some tumor types (e.g. BLCA and LUSC, Figure 2d) with 

strong spatial clustering. In BLCA, the estimated hotspots are very short (mean 1.4bp) and are 

primarily capturing an excess in recurrent mutations (independent mutations at the same base) 

compared with expectations (Figure 2d). In LUSC, the clustering extends over slightly longer 

regions (mean 5.6bp), but still the primary signal is an excess of recurrent mutations (Figure 2d). 

 

driverMAPS improves detection of driver genes  
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We compared results from driverMAPS with four existing algorithms for predicting 

driver genes: MutSigCV, OncodriveFML9, OncodriveFM10 and OncodriveCLUST8 (see 

Methods). Besides the full implementation of driverMAPS, we also tried a “basic” version that 

looks only for an excess of nonsynonymous somatic mutations (without any functional features 

or spatial model), and a “+feature” version with functional features but not the spatial model. We 

applied all methods to the same somatic mutation data and compared the genes they identified 

with a list of “known driver genes” (713 genes) compiled as the union of COSMIC CGC list 

(version 76)16, Pan-Cancer project driver gene list2 and list from Vogelstein B (2013)1 (see 

Supplementary Note).  To avoid overfitting of driverMAPS to the training data, we trained 

driverMAPS with a leave-one-out strategy in these assessments. (It is possible that previously-

published methods are biased towards detecting previously-known driver genes; if so then our 

assessment will artificially favor previously-published methods over driverMAPS). 

For each method we computed both the total number of genes detected (at FDR=0.1) 

(Figure 3a) and the “precision” -- the fraction that are on the list of known driver genes (Figure 

3b). All versions of driverMAPS identified more driver genes than either MutSigCV or 

OncodriveFML, while maintaining a similarly high precision. The full version of driverMAPS 

(with the spatial and functional features) identified the most genes, and without sacrificing 

precision. Furthermore, this higher detection rate of driverMAPS was consistent across tumor 

types (Figure 3c). The other two methods, OncodriveFM and OncodriveCLUST, behaved quite 

differently, identifying thousands of driver genes but with much lower precision, possibly 

resulting from poor FDR control. Indeed, the lowest precision was in the tumor types with the 

highest mutation rates (e.g. BLCA, LUSC, LUAD), suggesting the accuracy of these methods 

may be affected by mutation rates (Figure S4). While precision of OncodriveFM and 

OncodriveCLUST showed a negative correlation with mutation rate (Pearson r = -0.44 and -

0.56), the precision of driverMAPS showed negligible correlation (Pearson r = 0.05).  

 

Evaluation of potential novel drivers identified by driverMAPS 

Summing across all 20 tumor types, at FDR 0.1, driverMAPS identified 255 known 

driver genes and 170 putatively novel driver genes (159 unique genes across the 20 tumor types; 

70 classified as TSGs and 100 as OGs; Figure 4a, Table S7). Almost half of these putative novel 

genes were not called by MutsigCV or OncodriveFML. Ten novel genes were found 
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independently in at least two tumor types (Table 1). This is unlikely to happen by chance 

(permutation test, p < 1e-4), so these genes seem especially good candidates for being genuine 

driver genes.  

Since it is impractical to functionally validate all 170 putative novel genes, we sought 

other data to support these genes likely being involved in cancer. We first selected three common 

cancers -- breast, lung and prostate -- and conducted an extensive literature survey for each novel 

gene identified in these tumor types. Among a total of 22 novel genes, we found clear support in 

the literature for 20 being involved with cancer biology, either directly implicated as oncogenes 

or tumor suppressor genes (but not in the list of “known driver genes”) or linked to well-

established cancer pathways (Table S8).   

We next assessed whether the novel genes were enriched for features often associated 

with driver genes. Previous studies reported that driver genes tend to be highly expressed4 

compared with other genes, and indeed we found that, collectively, the novel genes showed 

significantly higher expression than randomly sampled genes in the corresponding tissues15 

(p<1e-4) (Figure 4b).  

Previous studies have also reported that driver genes tend to show enrichment and 

depletion for different copy-number-variation (CNV) events, depending on their role in cancer. 

Specifically, OGs are enriched for CNV gains and depleted for CNV loss, whereas TSGs show 

enrichment for loss and depletion for gains. Consistent with this, we found novel genes identified 

as OGs are enriched for CNV gain events (p<1e-4) while novel TSGs are depleted (p=3e-3). CNV 

loss events for novel OGs are depleted compared to novel TSGs and to other genes (p= 0.04) 

(Figure 4c).  

We also compared our novel genes with a “cancer dependency map” of 769 genes 

identified from a large-scale RNAi screening study across 501 human cancer cell lines17. These 

are genes whose knockdown affects cell growth differently across cancer cell lines, thus likely 

representing genes that are critical for tumorigenesis, but not universally essential genes. We 

found 16 novel driver genes overlapped with this gene list, a significant enrichment compared 

with random sampling (odds ratio 2.9, p=3.7e-4) (Figure 4d and Table S9).  

To test whether our novel genes are functionally related to known cancer driver genes we 

examined the connectivity of these two sets of genes in the HumanNet18 gene network, which is 

built from multiple data sources including protein-protein interactions and gene co-expression. 
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On average, each novel gene is connected to 3.8 known driver genes, significantly higher than 

expected by chance (p = 0.001). We obtained a similarly significant result using a different gene 

network, GeneMania19, which is constructed primarily from co-expression (p = 0.008) (Figure 

4e).  

Finally, we identified enriched functional categories in our novel genes using GO 

enrichment20,21 analysis (by geneSCF22). Significant GO terms (FDR < 0.1, Figure 4f) include 

many molecular processes directly implicated in cancer, such as transcription initiation and 

regulation. The significant terms also include several that have not been previously implicated in 

cancer. Genes NAA25, NAA16 and NAA30 (GO: 0004596) are peptide N-terminal amino acid 

acetyltransferases23. NATs are dysregulated in many types of cancer, and knockdown of the 

NatC complex (NAA12-NAA30) leads to p53-dependent apoptosis in colon and uterine cell 

lines24.  OGDH and OGDHL (GO:0004591) have oxoglutarate dehydrogenase activities and part 

of the tricarboxylic acid (TCA) cycle25. METTL3 and METTL14 (GO: 0016422) form the 

heterodimer N6-methyltransferase complex, and are responsible for methylation of mRNA (m6A 

modification)26. This form of RNA modification may influence RNA stability, export and 

translation, and has been shown to be important for important biological processes such as stem 

cell differentiation. Our results suggest that this RNA methylation pathway may also play a key 

role in tumorigenesis, and so we examined the results for these genes in more detail. 

 

METTL3 is a potential TSG in bladder cancer 

driverMAPS identified the genes METTL3 and METTL14 as driver genes in the cohorts 

BLCA (bladder cancer) and UCEC (uterine cancer) respectively. These two genes had relatively 

low mutation frequencies (4% and 2%) and were not detected by MutSigCV or OncodriveFML. 

Inspecting the mutations in these two genes, we found many to be “functional” as predicted by 

annotations, and showed spatial clustering patterns in the MTase domain (Figure 5a). 

Furthermore METTL3 contained a single synonymous mutation, and METTL14 contained none, 

suggesting low baseline mutation rates at the two genes. While this manuscript was in 

preparation, METTL14 was independently identified as a novel TSG in endometrial cancer 

(Chuan He, unpublished data). We thus focused on METTL3 in bladder cancer.  

To gain further insights into the potential impact of the somatic mutations in METTL3, 

we performed structural analysis. By mapping mutations in the MTase domain of METTL3 to its 
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crystal structure27, we found them to be concentrated in two regions: one close to the binding site 

of S-Adenosyl methionine (AdoMet, donor of the methyl group) and the other in the putative 

RNA binding groove at the interface between METTL3 and METTL14 (Figure 5b). The region 

close to the AdoMet binding site contains seven mutations: E532K, E532Q, E516K, D515Y, 

P514T, H512Q and E506K. Position E532 has been reported to form direct water-mediated 

interactions with AdoMet27. The other mutations map to gate loop 2 (E506K and E516K map to 

the start and end; the other three mutations are inside the loop) which is known to undergo 

significant conformational change before and after AdoMet binding. Thus all these mutations are 

good candidates for affecting adenosine recognition. The second region, in the METTL3-

METTL14 interface, contains mutations R471H, R468Q and E454K, and so these mutations are 

good candidates for disrupting METTL3-METTL14 interaction. In further support of this, the 

highly recurrent R298P mutation in METTL14 lies in the binding groove of the METTL14 gene.  

We performed functional experiments to test whether mutations (n=7) in the first region 

affect METTL3 function. In an in vitro assay, most mutations reduced methyltransferase activity 

of METTL3 (Figure S5, see methods) and we chose four mutations (at three positions) for 

further cell line experiments. In two bladder cell lines (“5637” and “T24”), knock down of 

METTL3 by siRNA significantly reduced m6A methyltransferase activity (Figure 5c for “5637”, 

Figure S6a for “T24”). When we tried to rescue this phenotype by transfection of METTL3 

mutants, all of the mutations, E532K/Q, E516K and P514T failed to restore methyltransferase 

activity to original levels (Figure 5c, Figure S6a), suggesting that they are loss-of-function 

mutations.  

We next examined whether disruption of METTL3 is associated with tumor progression. 

Indeed, knockdown of METTL3 significantly increased cell proliferation. Wild type METTL3 

successfully restored the cells to their normal growth rate but none of the mutants could (Figure 

5d, Figure S6b).  

These results show that somatic mutations in METTL3 may promote cancer cell growth 

by disrupting the RNA methylation process, and invite further characterization of the role of 

METTL3 and RNA methylation in tumorigenesis by in vivo experiments. 

Discussion  
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We have developed an integrated statistical model-based method, driverMAPS, to 

identify driver genes from patterns of somatic mutation. By applying this method to data from 

multiple tumor types from TCGA, we detected 159 novel potential driver genes. We 

experimentally validated the function of mutations in one gene, METTL3. The remaining genes 

(Table 1, Table S8-9) are enriched for many biological features relevant to cancer, and appear 

promising candidates for further investigation. 

Compared with previous methods for detecting driver genes, a key feature of 

driverMAPS is that it models mutation rates at the base-pair level. In particular, it models how 

these mutation rates vary based on both site-level functional annotations (e.g. synonymous/non-

synonymous; conservation; loss-of-function status) as well as unmeasured spatial factors. This 

model-based approach can be thought of as a powerful extension of methods that detect driver 

genes by testing for an excess of non-synonymous vs synonymous somatic mutations (e.g. Nik-

Zainal et al28, Martincorena et al5), similar to the standard dN/dS test in comparative genomics. 

Indeed, the stripped-down version of driverMAPS that uses no functional annotation or spatial 

model is conceptually similar to a dN/dS test: it will identify genes as drivers if they show an 

excess of non-synonymous mutations, treating all non-synonymous mutations equally. The full 

version of driverMAPS, by incorporating additional functional annotations, allows that some 

non-synonymous mutations may be more informative than others in identifying driver genes. 

Furthermore, by estimating parameters in a single integrated model, our approach learns how to 

weight and combine the many different sources of information. The results in Figure 3 

demonstrate the increased power that comes from these extensions.  

Our statistical and experimental results for the mRNA methyltransferase METTL3 add to 

the growing evidence of links between mRNA methylation and cancer. Indeed, a recent study in 

myeloid leukemia cell lines29, found that depletion of METTL3 also leads to a cancer-related 

phenotype. And extensive functional studies of METTL14 in uterine cancer (Chuan He, 

unpublished data) support a role for this gene in cancer etiology. However, intriguingly, our 

results on METTL3 in bladder cancer, and the METTL14 results in uterine cancer suggest that 

they act as tumor suppressor genes, whereas the data on METTL3 in myeloid leukemia cell lines 

are more consistent with an oncogenic role, with depletion inducing cell differentiation and 

apoptosis29. Further studies in multiple tumor types therefore seem necessary to properly 

characterize the role of mRNA methylation in cancer.  
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Although our model incorporates many features not considered by existing methods, it 

would likely benefit from incorporating still more features. For example, it may be useful to 

incorporate data on protein structure, which affects the functional importance of amino acid 

residues. Further, whereas we currently use the same mutation model for all individuals, it could 

be helpful to incorporate individual-specific effects such as smoking-induced mutational 

signatures. Finally, it could be useful to extend the model to incorporate information on non-

coding variation, which has been shown to be important for many human diseases including 

cancer. Although identifying functional non-coding variation remains a major general challenge, 

extending our model to incorporate features from studies of epigenetic factors such as 

methylation or open chromatin, has the potential to detect novel driver genes affected by non-

coding functional somatic mutations.  
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Data preparation 

We downloaded somatic single-nucleotide mutations identified in whole exome 

sequencing (WES) studies for 20 tumor types from TCGA GDAC Firehose 

(https://gdac.broadinstitute.org/). We obtained the MAF files using firehose_get (version 0.4.6) 

(https://confluence.broadinstitute.org/display/GDAC/Download) and extracted position and 

nucleotide change information for all single-nucleotide somatic mutations. See Supplementary 

notes for the 20 tumor types and abbreviations. 

We excluded mutations from hypermutated tumors as they likely reflect distinct 

underlying mutational processes. We also performed extensive filtering to exclude likely false 

positive mutations. For each tumor type we then generated a mutation count file that contains 

mutation counts (aggregated across all individuals in the tumor cohort) of all possible mutations 

at all sufficiently sequenced positions (see Supplementary notes). For a tumor type with 30 

million bases sequenced this produces 90 million possible mutations in the mutation count file 

(since each nucleotide can mutate to 3 other nucleotides). The majority of counts for these 

possible mutations are 0s.  

For each possible mutation, we annotated it with type and gene information, mutational 

features and functional features. We defined 9 mutation types based on nucleotide change type 

(such as A>T, G>A , etc) and genomic context (such as if inside CpG) (see Supplementary notes 

for definitions). We categorized mutations as Synonymous (S) or non-synonymous (NS) as 

described in “parameter estimation” section below. The mutational features we used include 

gene expression, replication timing and HiC sequencing downloaded from 

http://archive.broadinstitute.org/cancer/cga/mutsig. We selected 5 functional features describing 

mutation impact. See Supplementary notes for feature details. The features were added to the 

mutation count file by ANNOVAR31. 

Model description 

We model each tumor type separately, so here we describe the model for a single tumor 

type. Let  Yit  denote the number of mutations of type  t  (defined by base substitution) at 

sequenced position  i , across all samples in a cohort. Let  NS  denote the set of non-synonymous 

mutations. That is,  NS  is the set of pairs 
  
i,t( )  such that a mutation of type  t  at sequence 

position  i  would be non-synonymous. (We also include synonymous mutation with a high 
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splicing impact score in  NS ; see Supplementary notes.) Similarly, let  S  denote the remaining 

(synonymous) 
  
i,t( )  pairs. 

Background Mutation model 

For synonymous mutations we assume the following “background mutation model”: 

 
  
Yit | Hm ∼ Poisson µitλg i( )( )  for i,t( )∈S⎡⎣ ⎤⎦ ,   (1) 

where  µit  represents a background mutation rate (BMR) for mutation type  t  at position  i , and 

 
λg i( )  represents a gene-specific effect for the gene  

g i( )  that contains sequence position  i . Note 

that the parameters of this BMM do not depend on the model  m , so   P(Y Sg | Hm )  is the same for 

all  m . 

We allow the BMRs to depend on mutational features (e.g. the expression level of the 

gene) using a log-linear model: 

 
  
logµit = β0t

b +
j
∑xij

bβ j
b ,   (2) 

where 
 
xij

b  denotes the  j -th background feature of position  i  (not dependent on mutation type), 

  β0t
b  controls the baseline mutation rate of type  t , and  

β j
b  is the coefficient of the  j -th feature. 

The values 
 
xij

b  are observed, and the parameters  β
b  are to be estimated. To indicate the 

dependence of  µit  on parameters  β
b  we write 

 
µit β b( ) . 

We assume that the gene-specific effects 
 
λg  have a gamma distribution across genes: 

 
  
λg ∼ Gamma α ,α( ),   (3) 

where α  is a hyperparameter to be estimated. 

Selection Mutation model 

For non-synonymous mutations we introduce additional model-specific parameters:  γ it
m  

representing a selection effect (SE) for mutation type  t  at position  i  under model  m  and  θ i
m  

representing a spatial effect for position  i  under model  m : 

 
  
Yit | Hm ∼ Poisson µitλg i( )γ it

mθ i
m( )  for i,t( )∈NS⎡⎣ ⎤⎦.   (4) 

For the null model,   H0 , we assume no selection or spatial effect:   γ it
0 = θ i

0 = 1 . 
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For other models,   m = OG,TSG , we allow the selection effect to depend on functional features 

(e.g. the assessed deleteriousness of the mutation), using a log-linear model: 

 
  
logγ it

m = β0
f ,m +

j
∑xijt

f β j
f ,m ,   (5) 

where 
 
xijt

f  denotes the  j -th functional feature of position  i  (this depends on mutation type; 

e.g. at the same position, some mutations may be more deleterious than others), 
  
β j

f ,m  is the 

coefficient of the  j -th functional feature and the intercept   β0
f ,m  captures the overall change of 

mutation rate at NS sites regardless of functional impact. To indicate the dependence of  γ it
m  on 

parameters   β
f ,m  we write 

  
γ it β f ,m( ) . 

To model the spatial effects, we use a Hidden Markov Model (HMM) with parameters 

 Θ
m , 

 
  
θ m ∼ fHMM ⋅;Θm( ),   (6) 

In brief, this HMM allows for the presence of mutation “hotspots” -- contiguous base-pairs with 

a higher rate of mutation -- and the parameters include the average hotspot length and intensity 

of selection (ρ). See Supplementary note for details. 

Parameter estimation 

Background mutation model 

To simplify inference we took a sequential approach to parameter estimation. First we 

infer parameters   β
b ,α  of the BMM using the synonymous mutation data at all genes. Let 

 
Sg  

denote the subset of synonymous mutations  S  in gene  g , and  Y
Sg  denote the corresponding 

observed counts: 

 
  
Y Sg = Yit : i,t( )∈Sg{ }.   (7) 

Based on the synonymous mutation data, the likelihood for gene  g  is: 

 
  
P(Y Sg |β b ,α ) = ∫

i,t∈Sg

∏P(Yit |µit β b( ),λg ) p(λg |α )dλg ,   (8) 

which has a closed form (see Supplementary note). Assuming independence across genes yields 

the likelihood for synonymous mutations: 
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LS β b ,α( ) :=

g
∏P(Y Sg |β b ,α ).   (9) 

We maximize this likelihood, using numerical optimization, to obtain estimates    β
b! ,α̂  for   β

b ,α . 

By ignoring the non-synonymous mutation data when fitting the BMM we may lose some 

efficiency in principle, but we gain considerable simplification in practice. 

Selection mutation model 

We next estimate the model-specific parameters   β
f ,m . For   m = OG,TSG . During this 

step we ignore the HMM model (i.e. we set   θ i
m = 1), motivated by the fact that spatially-

clustered mutations are relatively rare and so should not significantly impact the estimates of 

  β
f ,m  

For  m = OG  we estimate   β
f ,m  using the non-synonymous mutation data from a curated 

list  GOG  of 53 OGs. Estimation for   β
f ,TSG  is identical except that we replace this list with a 

curated list  GTSG  of 71 TSGs. Let  Gm  denote these sets of training genes. Let  Y
NSg  denote the 

counts of non-synonymous mutations in gene  g . 

Assuming independence across genes, the likelihood for   β
f ,m  is: 

 
  
L β f ,m( ) =

g∈Gm

∏P(Y NSg ,Y Sg |β f ,m ) ∝
g∈Gm

∏P(Y NSg |β f ,m ,Y Sg )   (10) 

where the second line follows because   P(Y Sg |β f ,m )  does not depend on   β
f ,m . The term in this 

likelihood for gene  g  is given by: 

 
   
P(Y NSg |β f ,m ,Y Sg ) = ∫

i,t∈NSg

∏ P(Yit |µit β b!( ),γ it β f ,m( ),λg )P(λg |Y Sg ,α̂ )dλg .   (11) 

It can be shown that 

 
  
λg |Y Sg ,α̂ ∼ Gamma α̂ + yg

S ,α̂ + µg
S( ),   (12) 

where  
µg

S  and  
yg

S  are, respectively, the expected (considering only mutational features) and 

observed number of synonymous mutations in gene  g  (see Supplementary notes). The 

conditional mean of this distribution is 
  

α̂ + yg
S

α̂ + µg
S , so if  

yg
S > µg

S , then 
  
E(λg |Y Sg ,α̂ ) >1. 

We obtained the MLE of   β
f ,m  by maximizing the likelihood (Equation 10) numerically, 

and obtain corresponding estimated standard errors using the curvature of the likelihood (see 

Supplementary notes). In tumor types with low mutation rates or sample sizes, these standard 
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errors can be relatively large, so we borrow information from other tumor types to ‘’stabilize’’ 

these estimates. Specifically we use the adaptive shrinkage method14  to “shrink” estimated 

values of   β
f ,m  in each tumor type towards the mean across all tumor types . This shrinkage 

effect is strongest for tumor types with large standard errors (Figure S7). 

HMM parameters 

Having estimated   β
b ,α  and   β

f ,m , we fix their values and estimate the HMM parameters 

 Θ
m  for   m = OG,TSG . The likelihood function involves marginalization of the hidden states of 

the Markov chain, which can be performed efficiently using standard methods for HMMs. We 

estimate  Θ
m  by maximizing this likelihood numerically. See Supplementary note for details. 

Gene classification 

Having estimated the model parameters as above, for each gene  g , we compute its Bayes 

Factor for being a driver gene as: 

 
  
BF :=

0.5P(Yg
NS ,Y Sg | HOG )+ 0.5P(Y NSg ,Y Sg | HTSG )

P(Y NSg ,Y Sg | H0 )
.   (13) 

The equal weights in the numerator of this BF assume that OGs and TSGs are equally common. 

This BF simplifies to 

 
  
BF =

0.5P(Yg
NS |Y Sg , HOG )+ 0.5P(Y NSg |Y Sg , HTSG )

P(Y NSg |Y Sg , H0 )
,   (14) 

because   P(Y Sg | Hm )  is the same for every  m . Computing the terms 
  
P(Yg

NS |Y Sg , Hm )  is 

performed using (Equation 11) above, substituting the estimated model parameters for each 

model  m  (see Supplementary notes). 

After obtaining the BFs, we can compute the posterior probability of being a driver gene 

(either  OG  or  TSG ) for every gene, and estimate the Bayesian FDR32 for any given BF 

threshold. This step requires estimation of the proportion of driver genes, which we do by 

maximum likelihood (see Supplementary notes). 

Comparison of gene prediction results from different methods 

When comparing methods, we used the same mutation data (after filtering) and the same 

nominal FDR threshold (0.1) for each method. Because driverMAPS used 124 known cancer 

genes as a training set, to avoid bias towards this subset of genes when computing precision or 

power for driverMAPS, we ran MAPs using a leave-one-out strategy. We perform 124 runs, each 
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time omitting one TSG/OG from the training set and estimating model parameters from the 

remaining genes, and then count the omitted gene as “significant” only if this TSG/OG is 

significant (FDR<0.1) in this run. We then calculate precision as the percentage of significant 

known cancer genes of all significant genes. All data related to driverMAPS (basic, +feature and 

full version) presented in Figure 3 were obtained in this way. In fact, estimated model parameters 

are quite stable across runs, and so the overall result is similar to a single run not using this 

“leave-one-out” strategy. 

Cell lines, siRNA knockdown and plasmid transfection 

The T24 cells used in this study were purchased from ATCC (HTB-4) and grown in 

McCoy’s 5A medium (Gibco, 16600) supplemented with 10% FBS (Gibco), and 1% Penicillin-

Streptomycin (Gibco, 15140). The 5637 cells used in this study were purchased from ATCC 

(HTB-9) and grown in RPMI-1640 medium (Gibco, 11875) supplemented with 10% FBS and 

1% Penicillin-Streptomycin. Construction of the pcDNA3 plasmids for the expression of 

METTL3 in mammalian cells was described previously. All siRNAs were ordered from 

QIAGEN. Allstars negative control siRNA (1027281) was used as siRNA control. Sequences 

METTL3 is 5’-CGTCAGTATCTTGGGCAAGTT-3’. Transfection was achieved by using 

Lipofectamine RNAiMAX (Invitrogen) for siRNA, or Lipofectamine 2000 (Invitrogen) for the 

plasmids following manufacturer’s protocols. 

In vitro assay for m6A methyltransferase activity 

The recombinant, His-tagged proteins METTL14 with wildtype or mutant METTL3 were 

expressed in 1 LB Ecoli expression system and purified through Ni-NTA affinity column 

according to a previously published procedure33. Protein purity was assessed by SDS-PAGE, and 

protein concentration was determined by UV absorbance at 280 nm. We performed an in vitro 

methyltransferase activity assay in a 50 µL reaction mixture containing the following 

components: 0.15 nmol RNA probe, 0.15 nmol each fresh recombinant protein (METTL14 

combination with an equimolar ratio of METTL3 or mutant METTL3), 0.8 mM d3-SAM, 80 

mM KCl, 1.5 mM MgCl2, 0.2 U µL-1 RNasin, 10 mM DTT, 4% glycerol and 15 mM HEPES 

(pH 7.9). The reaction was incubated for 12 h at 16 °C, RNA was recovered by 

phenol/chloroform (low pH) extraction followed by ethanol precipitation and was digested by 
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nuclease P1 and alkaline phosphatase for LC-MS/MS detection. The nucleosides were quantified 

by using the nucleoside-to-base ion mass transitions of 285 to 153 (d3-m6A) and 284 to 152 (G). 

RNA isolation 

Total RNA was isolated with TRIZOL reagent (Invitrogen). mRNA was extracted from 

the total RNA using the Dynabeads® mRNA Purification Kit (Invitrogen), followed by removal 

of contaminating rRNA with the RiboMinus transcriptome isolation kit (Invitrogen). mRNA 

concentration was measured by UV absorbance at 260 nm. 

LC-MS/MS quantification of m6A in poly(A)-mRNA 

100-200 ng of mRNA was digested by nuclease P1 (2 U) in 25 µL of buffer containing 

25 mM of NaCl, and 2.5 mM of ZnCl2 at 42 ºC for 2 h, followed by the addition of NH4HCO3 (1 

M, 3 µL) and alkaline phosphatase (0.5 U) and incubation at 37 ºC for 2 h. The sample was then 

filtered (0.22 m pore size, 4 mm diameter, Millipore), and 5 µL of the solution was injected into 

the LC-MS/MS. The nucleosides were separated by reverse phase ultra-performance liquid 

chromatography on a C18 column with online mass spectrometry detection using Agilent 6410 

QQQ triple-quadrupole LC mass spectrometer in positive electrospray ionization mode. The 

nucleosides were quantified by using the nucleoside to base ion mass transitions of 282 to 150 

(m6A), and 268 to 136 (A). Quantification was performed by comparison with a standard curve 

obtained from pure nucleoside standards run with the same batch of samples. The ratio of m6A to 

A was calculated based on the calibrated concentrations. 

Cell proliferation assay.  

5000 cells were seeded per well in a 96-well plate. The cell proliferation was assessed by 

assaying the cells at various time points using the CellTiter 96® Aqueous One Solution Cell 

Proliferation Assay (Promega) following the manufacturer’s protocols. For each cell line tested, 

the signal from the MTS assay was normalized to the value observed ~24 hours after seeding. 
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	1	
Figure	1	Overview	of	the	model-based	framework	driverMAPS	for	cancer	driver	gene	discovery	2	
(a)	Base-level	Bayesian	statistical	modeling	of	mutation	count	data	in	driverMAPS.	For	positions	without	3	
selection,	 the	observed	mutation	 rate	 is	modeled	by	Background	Mutation	Model	 (BMM).	Under	BMM,	4	
the	Background	Mutation	Rate	(BMR)(𝜇!)	is	determined	by	the	log-linear	model	that	takes	into	account	5	
known	mutational	 features	 and	 further	 adjusted	 by	 gene-specific	 effect	 (𝜆!)	 to	 get	 gene-specific	 BMR	6	
(𝜇!𝜆!).	 For	 positions	 under	 selection,	 the	 observed	 mutation	 rate	 is	 modeled	 as	 gene-specific	 BMR	7	
adjusted	by	selection	effect	(Selection	Mutation	Model,	SMM).	The	selection	effect	has	two	components:	8	
functional	 effect	 (𝛾!)	 takes	 into	account	 functional	 features	of	 the	position	by	 the	 log-linear	model	 and	9	
spatial	effect	(𝜃!)	takes	into	account	the	spatial	pattern	of	mutations	by	Hidden	Markov	Model.	For	both	10	
BMM	 and	 SMM,	 given	 the	 mutation	 rate,	 the	 observed	 mutation	 count	 data	 is	 modeled	 by	 Poisson	11	
distribution.	Note:	we	simplify	the	model	to	only	show	mutation	rate	at	position	𝑖,	ignoring	allele	specific	12	
effect	for	illustration	purposes.	See	Methods	for	full	parameterization.	(b)	Gene	classification	workflow.	13	
Parameters	in	BMM	are	estimated	using	synonymous	mutations	from	all	genes.	This	set	of	parameters	is	14	
fixed	when	inferring	parameters	in	SMM.	To	infer	parameters	in	SMM,	we	use	nonsynonymous	mutations	15	
from	 known	 OGs	 or	 TSGs.	 driverMAPS	 then	 performs	model	 selection	 by	 computing	 gene-level	 Bayes	16	
Factors	to	prioritize	cancer	genes.		17	
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	18	
Figure	2	Parameter	estimation	results	for	gene-specific,	functional	and	spatial	effects	19	
(a)	Schematic	representation	of	how	fitting	synonymous	mutation	data	affects	estimation	of	gene-specific	20	
effect	(𝜆!).	Note	the	difference	between	the	prior	and	posterior	distributions	of	𝜆!.	𝛼	is	a	hyperparameter,		21	
𝑦!!	 and	 µ!

! 	 	 are	 the	 observed	 and	 expected	 number	 of	 synonymous	mutations	 in	 gene	𝑔,	 respectively.	 (b)	22	
Improved	 fitting	 of	 observed	 number	 of	 nonsynonymous	 mutations	 in	 genes	 with	 gene-specific	 effect	23	
adjustment.	Data	 from	tumor	 type	SKCM	was	used.	The	adjustment	here	 is	 the	posterior	mean	of	𝜆!	 fitting	24	
synonymous	 mutation	 data	 (! ! !!!  

! ! !!!
).	 	 Each	 dot	 represents	 one	 gene.	 Grey	 lines	 indicate	 upper	 and	 lower	25	

bounds	of	99%	confidence	 interval	 from	Poisson	 test.	The	diagonal	 line	has	 slope	=1	and	R2	was	calculated	26	
using	this	as	the	regression	line.	(c)	Effect	sizes	for	five	functional	features	and	average	increased	mutation	27	
rate	for	TSGs	(top),	OGs	(middle)	and	non-driver	genes	(bottom).	Each	dot	represents	an	estimate	from	28	
one	tumor	type.	Horizontal	bars	represent	mean	values	after	shrinkage.	All	 features	are	binarily	coded.	29	
LoF,	 loss-of-function	 (nonsense	 or	 splice	 site)	mutations	 or	 not.	 CONS.,	 amino	 acid	 conservation;	 SiFT,	30	
PhyloP	 and	 MA,	 predictions	 from	 software	 SiFT12,	 PhyloP34	 and	 MutationAssessor35,	 respectively;	31	
intercept,	 average	 increased	 mutation	 rate.	 (d)	 Fraction	 of	 mutations	 that	 has	 the	 nearest	 mutation	32	
0,1,2,..	bp	away,	where	0bp	means	recurrent	mutations.	Data	from	tumor	type	BLCA	and	LUSC	was	used.	33	
The	test	statistics	𝜒!	and	p	values	were	obtained	in	the	spatial	model	selection	procedure	(see	method,	34	
Table	S6).	Inferred	parameters	related	to	the	spatial	model	are	shown	on	the	right.		35	
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	37	
																													38	

Figure	3	driverMAPS	predicts	cancer	genes	with	high	accuracy	and	increased	power	39	
(a)	 Total	 number	 of	 predicted	 driver	 genes	 aggregating	 across	 all	 cancer	 types.	 driverMAPS	 (Basic),	40	
driverMAPS	with	no	functional	features	information	and	no	modeling	of	spatial	pattern;	driverMAPS	(+	41	
feature),	 driverMAPS	 with	 all	 five	 functional	 features	 in	 Figure	 2,	 no	 modeling	 of	 spatial	 pattern;	42	
driverMAPS	 (+feature	 +	 HMM),	 complete	 version	 of	 driverMAPS	 with	 all	 five	 functional	 features	 and	43	
spatial	pattern.	(b)	Percentage	of	known	cancer	genes	among	predicted	driver	genes	aggregating	across	44	
all	cancer	types.	(c)	Number	of	significant	genes	at	FDR=0.1	stratified	by	tumor	type.	For	all	“Unknown”	45	
genes	included	here,	we	verified	mutations	by	visual	inspection	of	aligned	reads	using	files	from	Genomic	46	
Data	 Commons	 (see	 Supplementary	 notes).	 Total	 numbers	 of	 known	 and	 unknown	 significant	 genes	47	
aggregating	across	all	cancer	types	are	summarized	in	the	table	on	the	topright	side.		48	
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	50	
	51	
Figure	4	Evaluation	of	novel	cancer	genes	predicted	by	driverMAPS	52	
(a)	Overview	of	predicted	novel	cancer	genes.	Top,	number	of	novel	genes	in	each	cancer	type.	Bottom,	53	
heatmap	of	Bayes	factors	(BF)	for	recurrent	novel	genes	across	tumor	types.	Significant	Bayes	factors	are	54	
highlighted	by	red	boxes.	(b-d)	Predicted	novel	cancer	genes	show	known	cancer	gene	features.	For	each	55	
feature,	quantification	of	the	feature	level	 in	the	novel	cancer	gene	set	was	compared	to	the	non-driver	56	
(neither	 known	 or	 predicted)	 gene	 set.	 The	 features	 are	 gene	 expression	 levels15	 stratified	 by	 tumor	57	
types	the	novel	genes	were	identified	from	(b),	similarly	stratified	copy	number	gain/loss	frequencies15	58	
(c)	and	fraction	of	genes	identified	in	a	siRNA	screen	study17	(d).	In	(b)	and	(c),	the	center	line,	median;	59	
box	 limits,	 upper	 and	 lower	 quartiles.	 (e)	 Enriched	 connectivity	 of	 a	 predicted	 gene	with	 713	 known	60	
cancer	genes	(Y-axis)	compared	to	with	all	genes	(n=19,512,	X-axis).	Connectivity	of	a	selected	gene	with	61	
a	gene	set	 is	defined	as	 the	number	of	 connections	between	 the	gene	and	gene	set	 found	 in	a	network	62	
database	divided	by	the	size	of	the	gene	set.	Each	dot	represents	one	of	the	159	novel	genes	with	10	most	63	
enriched	 ones	 labeled.	 Color	 of	 dots	 indicates	 two-sided	 Fisher	 exact	 p	 value	 for	 enrichment.	 (f)	64	
Significantly	 enriched	 GO-term	 gene	 sets	 (FDR	 <	 0.1,	 “molecular	 function”	 domain)	 in	 predicted	 novel	65	
cancer	 genes.	 GO-term20,21	 gene	 sets	 are	 indicated	 by	 distinct	 background	 colors.	 Links	 among	 genes	66	
represent	 interaction	 based	 on	 STRING	 network	 database36	 with	 darker	 color	 indicating	 stronger	67	
evidence.	68	
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Figure	5	Functional	validation	of	METTL3	as	a	TSG	in	bladder	cancer	70	
(a)	Features	of	mutations	in	METTL3	and	its	heterodimerization	partner	METTL14.	We	show	schematic	71	
representations	 of	 protein	 domain	 information	 and	mark	mutation	 positions	 by	 “lollipops”.	 Recurrent	72	
mutations	 are	 labeled	 above.	 Start	 and	 end	 of	 domain	 residues	 are	 labeled	 below.	 	 Dark	 blue	 bars	 in	73	
aligned	 annotation	 tracks	 indicate	 the	 mutation	 is	 predicted	 as	 “functional”.	 Track	 “Hotspot”	 is	 the	74	
indicator	 of	 whether	 the	 mutation	 is	 in	 hotspot	 or	 not	 in	 driverMAPS’s	 spatial	 effect	 model	 (See	75	
supplementary	note).	(b)	Structural	context	of	METTL3	mutations	revealed	two	regional	clusters.	 	Top,	76	
structure	of	METTL3	(residues	369–570)	and	METTL14	(residues	117–402)	complex	(PDB	ID:	5IL0)	with	77	
mutated	residues	in	stick	presentation.	Bottom,	zoom-in	views	of	the	two	regions	with	mutated	residues	78	
labeled.	(c)	Impaired	m6A	RNA	methyltransferase	activity	of	mutant	METTL3	in	bladder	cancer	cell	line	79	
“5637”.	 	 LC-MS/MS	quantification	 of	 the	m6A/A	 ratio	 in	 polyA-RNA	 in	METTL3	or	 Control	 knockdown	80	
cells,	 rescued	 by	 overexpression	 of	 wildtype	 or	 mutant	 METTL3	 is	 shown.	 (d)	 Mutant	 METTL3	81	
decreased	proliferation	of	“5637”	cells.	Proliferation	of	METTL3	or	Control	knockdown	cells,	rescued	82	
by	 overexpression	 of	 wildtype	 or	 mutant	 METTL3	 in	 MTS	 assays	 is	 shown.	 Cell	 proliferation	 is	83	
calculated	as	the	MTS	signal	at	the	tested	time	point	normalized	to	the	MTS	signal	~	24	hours	after	84	
cell	seeding.	For	all	experiments	in	(c-d),	number	of	biological	replicates	is	3	and	error	bars	indicate	85	
mean	±	s.e.m.	*,	p	<	0.05;	**,	p	<	0.01	by	two	sided	t-test.	Legend	is	shared	between	(c)	and	(d).	86	
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	88	
Table 1 Novel significant drivers found in at least two tissue types 89	

Gene #Missense #LoF #Silent log10BF Tumor Function 

C3orf70 14/3 1/1 0/0 9.3/3.8 BLCA/CESC Unknown 
COL11A1 7/13 4/2 0/0 2.2/2.2 KIRC/PRAD Collagen formation, expression associated 

with colorectal, ovarian cancers, etc 
(23934190,	11375892) 

CUL3 15/8/4 5/4/0 1/0/0 3.5/3.8/
2.6 

HNSC/KIRP/ 
PRAD 

Core component of E3 ubiquitin ligase 
complex, with many downstream targets 
affecting carcinogenesis, like NRF2 
(24142871) 

LZTR1 9/10 0/1 0/2 2.9/2.1 GBM/UCEC Adaptor of CUL3-containing E3 ligase 
complexes, inactivation drives glioma self 
renewal and growth (23917401) 

MAPK1 9/7 0/1 0/0 15.1/ 
12.8 

CESC/HNSC MAP kinase. The MAPK/ERK cascade has 
important well characterized and important 
roles in cancer (17496922) 

MGA 35/11 16/5 5/3 3.8/2.7 LUAD/UCEC Dual-specificity transcription factor, can 
inhibit MYC-dependent cell transformation 
(10601024) 

SOS1 12/7 1/0 3/0 3.5/7.0 LUAD/UCEC Guanine nucleotide exchange factor for RAS 
proteins, which are well-known for roles in 
cell proliferation (17486115) 

ZBTB7B 11/5 1/1 0/0 6.2/2.3 BLCA/UCS Transcriptional regulator of lineage 
commitment of immature T-cell precursors 
(17878336) 

ZFP36L1 12/11 4/3 1/0 3.4/5.2 BLCA/LUAD Involved in mRNA degradation. Deletion 
leads to T lymphoblastic leukemia (20622884) 

ZNF750 17/13 3/7 2/1 3.4/5.1 BLCA/HNSC An essential regulator of epidermal 
differentiation. Depletion promotes cell 
proliferation in ESCA (24686850) 

We use “/” to separate data obtained from different tumor types as indicated in the “Tumor” column. 90	
A brief description of the gene’s function and its known role in cancer is provided in the “Function” 91	
column. Reference PMIDs are given in parentheses. 92	
 93	
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