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Structured environments fundamentally alter dynamics and stability of ecological communities
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ABSTRACT

The dynamics and stability of ecological communities are intimately linked with the specific interactions
—like cooperation or predation — between constituent species. In microbial communities, like those found
in soils or the mammalian gut, physical anisotropies produced by fluid flow and chemical gradients impact
community structure and ecological dynamics, even in structurally isotropic environments. Though
natural communities existing in physically unstructured environments is rare, the role of environmental
structure in determining community dynamics and stability remains poorly studied. To address this gap,
we used modified Lotka-Volterra simulations of competitive microbial communities to characterize the
effects of surface structure on community dynamics. We find that environmental structure has profound
effects on communities, in a manner dependent on the specific pattern of interactions between
community members. For two mutually competing species, eventual extinction of one competitor is
effectively guaranteed in isotropic environments. However, addition of environmental structure enables
long-term coexistence of both species via local ‘pinning’ of competition interfaces, even when one species
has a significant competitive advantage. In contrast, while three species competing in an intransitive loop
(as in a game of rock-paper-scissors) coexist stably in isotropic environments, structural anisotropy
disrupts the spatial patterns on which coexistence depends, causing chaotic population fluctuations and
subsequent extinction cascades. These results indicate that the stability of microbial communities
strongly depends on the structural environment in which they reside. Therefore, a more complete
ecological understanding, including effective manipulation and interventions in natural communities of
interest, must account for the physical structure of the environment.

SIGNIFICANCE

Many microbial communities of ecological and medical importance reside in complex and heterogeneous
environments, such as soils or intestinal tracts. While many studies consider the effects of flow or
chemical gradients in structuring these communities, how the physical structure of the environment
shapes community dynamics and outcomes remains poorly understood. Using simulations of competitive
microbial communities, we show that stability and dynamics qualitatively shift in environments with
complex surface structures compared to open isotropic environments. Therefore, in addition to
biochemical interactions between species, our work suggests that the physical structure of the
environment is an equally important determinant of dynamics and stability in microbial communities, in
a manner dependent on the specific patterns of interactions within that community.

INTRODUCTION

From the scale of large metazoans down to microbes, natural environments are replete with multi-species
communities that compete for resources and space, and in many cases actively predate other species
within their environment. Within complex ecosystems the topology and type of interactions between
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constituent species are thought to be a primary determinants of ecosystem dynamics and stability. Typical
pairwise interactions, like competition, cooperation, or predation, form the building blocks for
constructing multi-species interactions and can be used to predict dynamics and stability in ‘well-mixed’
environments where spatial distributions are uniform (1, 2). Interaction topology plays a particularly
important role in species coexistence. For instance, in three-species intransitive competition (as in the
classic rock-paper-scissors game), extinction of any species results in extinction cascades that favor
dominance of a single species. Microbial systems present a particularly salient manifestation of these
concepts, not only because complex communities of microbes are found in a wide array of industrial- and
health-relevant environments, like soils and the mammalian gut, but also because the ability to genetically
recapitulate and manipulate specific pairwise interactions biochemically makes microbial systems
particularly well-suited for testing our understanding of fundamental mechanisms underlying ecosystem
dynamics.

Characterization of interactions within ecological networks, and their corresponding biochemical
mechanisms, often focuses on microbial communities in which the spatial distribution of actors can
significantly impact the type and magnitude of those interactions, and the resulting population dynamics.
For example, spatially localized clonal domains that result from competition between mutually killing
isolates of Vibrio cholerae may facilitate emergence of cooperative behaviors like public good secretion
(3). Similarly, large clonal domains stabilized three-way intransitive competition within a consortium of E.
coli strains (4); the same consortium was unstable in well-mixed environments. Reversing the causative
arrow, ecological interactions can also dictate spatial arrangements of genotypes: in simulated three-
species intransitive consortia with mobile individuals, lack of a single dominant competitor leads to
population waves that continually migrate throughout the environment (5), thereby ensuring dynamic
and long-term stability in species representation. Conversely, in competition between two mutual killers,
coarsening of clonal domains guarantees the eventual extinction of one of the species (3), unless
additional interaction mechanisms are present (6). Therefore, in contrast to dynamics that play out in
well-mixed environments, it is clear that the spatial distribution of organisms is an important determinant
of community dynamics and long-term ecological outcomes.

A common condition imposed on simulations of spatially explicit ecological systems is environmental
isotropy — defined by the system having the same chemical and physical properties in all directions (for
example, a homogeneous 2D plane (3, 5, 7)). While such simplifications are essential in building
fundamental understanding of system dynamics, they do not reflect salient environmental anisotropies
found in most natural systems, such as chemical gradients, fluid flow, and complex surfaces. Despite
relevance to natural communities, examination of the mechanisms by which environmental anisotropies
affect ecological communities is sparse. In single species populations, colonizing complex environments
can result in drastic changes in spatial distributions. For instance, using microfluidic devices, Drescher et
al. showed that surface morphology and fluid shear forces interact to drive formation of novel biofilm
structures in Pseudomonas aeruginosa (8). Biofilm formation can also disrupt fluid flow in a microfluidic
mimic of soil environments, which in turn allows for coexistence of competing cheater and cooperator
phenotypes of P. aeruginosa that are otherwise unstable under well-mixed conditions (9). Importantly,
these perturbations to population structure are commensurate with length scales at which mixing occurs
for in vivo communities such as the mammalian (10, 11) and fish (12) guts, or in dental plaque (13).
Theoretical investigations indicate that similar environmental perturbations are likely to affect
multispecies communities: for example, turbulent flow can disrupt spatial patterning of intransitive three-
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83 species communities and thus increase the risk of extinction cascades (14), while graph theoretic
84  approaches suggest that random perturbations to spatial lattices result in similar community
85  destabilization (15). Together, these results suggest not only that spatial distributions of organisms
86 influence ecological dynamics, but that the magnitude of these effects depends strongly on the specific
87 nature of anisotropies within the environment.

88 In this work, we systematically characterized the effects of structural anisotropy on multi-species
89 population dynamics and spatial distributions within in silico ecological communities. The structural
90 attributes of these simulations are intended to capture the primary spatial structure found in natural
91 environments, like the packing of steric soil particles or the contents and epithelial structure of the
92 mammalian gut. Using reaction-diffusion models, we simulated asymmetrically competing two-species
93 and intransitively competing three-species ecological networks in the presence of steric barriers arranged
94 in a lattice within the environment. These networks and the corresponding simulations were chosen for
95  direct comparison to previous work (3, 5) which provide clear expectations for spatial distributions and
96 community dynamics in homogeneous environments, and which we discuss in context below. We find
97  that the addition of environmental structure fundamentally alters community dynamics in both two- and
98  three-species competitive systems. In the two-species case, coarsening of genetic domains that would
99 otherwise lead to extinction of one competitor is arrested due to ‘pinning’ of competition interfaces
100  between barriers, resulting in long-term coexistence of both species. This effect is strongly linked to the
101 geometry of the steric barriers, and is robust to asymmetry in competitive fitness. For intransitive three-
102  species competition, steric barriers cause interference between traveling population waves, inducing
103 chaotic fluctuations in the abundances and spatial distributions of species and a concomitant increase in
104  the probability of extinction cascades. Our results affirm that the trajectories, stability, and spatial
105  structure of ecological communities are drastically altered by the structure and length scale of structural
106 perturbations in the environment.

107  RESULTS
108 Competition model

109 We model interspecies interactions using an adapted version of the Lotka-Volterra (LV) competition
110  framework. In the classic LV model, interaction mechanisms and fitness differences are combined into a
111 single parameter, which realizes competition as a reduced effective carrying capacity for the focal species
112 relative to the density of a competitor — hence there is no differentiation between e.g. competition for
113  space and toxin-mediated killing. Here, we extend the classic framework to reflect ‘active competition’,
114  where passive competition for space and nutrients (affecting carrying capacity) is decoupled from active
115 competition mechanisms that directly impact growth rate, such as T6SS mediated killing or bacteriocin
116  production (16, 17), giving the partial differential equation (PDE)

117 = pv2a +ra (1-2) (1- A,
118 Here A; is the local concentration of focal species j, Ax is the active competitor species for A;, and the sum
119 is over all species passively competing for space and nutrients. The primary dispersal mechanism is
120  through diffusion characterized by D, basal growth rate is given by r, and carrying capacity by C. Active
121 competition is characterized by the concentration parameter P, where lower values of P indicate more
122 potent active competition (i.e. lower concentrations of the active competitor are required to cause death).
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123  This framework explicitly models passive fitness differences (through C) and anti-competitor mechanisms
124 (through P), thereby capturing two basal and distinct mechanisms of microbial competition. This model
125 is appropriate for describing local competitive interactions, like contact-mediated killing or local killing by
126 secreted toxins. Additional PDEs would be required to describe highly motile cells, exogenous gradients,
127 or the production, potency, and transport of rapidly diffusing secreted toxins. This set of PDEs establishes
128 a baseline set of assumptions and corresponding phenomena from which to build more complex models.

129 In this work, we focus specifically on the competitive effects, and assume constant growth rates r,
130 diffusion D, and carrying capacities C for all species in the community. This simplification allows the
131 population density to be scaled by carrying capacity and the time to be scaled by the growth rate, which
132 reduces the parameter space of the model leaving the dimensionless version of P (i.e. P/C) as the single
133 free parameter that dictates the strength of active interspecies competition

04; A

135 Here time is in units of r, length is in units of ,/D /r, and organismal concentrations A; (i.e. number per

136  unit area) are in units of C, therefore 0 < A; < 1. The natural length scale A = /D /r is proportional to
137  the root mean squared distance an organism will move over a single doubling time.

138  We used this non-dimensionalized model to simulate communities in a 2D environment into which we
139 introduce structural anisotropy via a lattice of steric pillars (see Figures 1 and 3). Like a grain in soil or
140  tissuein a gut, these pillars do not allow free transport through them, nor microbes to occupy them; their
141 perimeter is a reflecting boundary condition. Structural perturbations were explored by introducing a
142 triangular lattice of steric circular pillars, with each lattice fully characterized by the radii of the pillars R
143 and the center-to-center spacing of the pillars Ax, with each simulation evolving in a square domain of
144  side length L. These parameters (pillar radius R, pillar spacing Ax, and simulation size L) are reported in
145 units of A. We then characterized the impact of these perturbations on the spatial distribution and
146 dynamics of in silico communities across structural length scales by monitoring the distributions and
147 abundances of resident community members as we varied the radius and density of pillars within the
148 simulation environment.

149 Competition between two mutual killers
150 Structured environments arrest genetic phase separation

151 For an actively competing two-species community in an isotropic environment, recent theoretical and
152 experimental work indicates that species phase separate according to genotype, with the eventual
153  extinction of one species via domain coarsening (3). In contrast, we find that when morphological
154  structure is introduced into the environment genetic phase separation is arrested, resulting in stable
155 coexistence of mutually killing genotypes (Figure 1, Supplemental Movie 1). Arrest occurs by ‘pinning’ of
156 competition interfaces between steric barriers (i.e. pillars). In both isotropic and anisotropic
157 environments, coarsening of genetic domains is driven by the curvature of competition interfaces. If
158 competition is symmetric, a flat interface will not move, whereas a curved interface will translate toward
159  the center of the circumscribing circle. In isotropic conditions, stable flat interfaces are the exception,
160 only found in the rare case where a single flat interface bisects the entire environment, which is itself
161 increasingly unlikely in larger environments. Thus, all domains enclosed by a competitor will eventually
162 be consumed and one of the competitors will go extinct. In contrast, we find that flat competition

4
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163 interfaces are stabilized between steric barriers, resulting in the arrest of domain coarsening and
164  subsequent long-term coexistence of both species (Figure 1). Importantly, for symmetric competition we
165  observed that the size and/or density of pillars had little effect on community stabilization (left edge of
166 Figure 2A), suggesting that for well-matched competitors even slight structural perturbations that allow
167  forinterface pinning may be sufficient to foster coexistence.

t=20 t=100 t=360

species A NN BN species B

168 100% 0% 100%

169 Figure 1: Structurally anisotropic environments arrest genetic phase separation in two-species systems, resulting
170 in long term coexistence. Panels depict snapshots from simulations of two-species competition in structurally
171 isotropic (top row) and anisotropic (bottom row) environments, with color intensity reflecting species abundance,
172 and pillars shown in grey. Time is measured in doubling times. Under isotropic conditions, domain coarsening
173 robustly leads to extinction of one of the species. Anisotropic environments, however, allow for local pinning of
174 competition interfaces, resulting in arrest of domain coarsening and thereby sustained coexistence. Simulation
175 parameters are L / (1.29\) =100 and P = 0.1, with R/ (1.29 A) = 2 and Ax = 3.4 R for the anisotropic case.

176
177  Pinning of genetic domain interfaces is robust to asymmetric competition

178  When one species is a more potent competitor (e.g. P4 > Ps), even the symmetry of an environment fully
179  bisected by a linear competition interface will result in extinction of the weaker competitor. While flat
180 interfaces balance symmetric competition, they are not stable when one species has a competitive
181  advantage, and instead will translate through space. Likewise, when competition is asymmetric in an
182  isotropic environment, over an ensemble of random initial conditions the dominant competitor will drive
183  the weaker competitor to extinction in the overwhelming majority of cases. We wanted to know if
184  structural perturbations could stabilize coexistence even when competition was asymmetric. Thus we
185 performed simulations identical to those described above, but varied the ratio of the competition
186 parameters, P4/Ps, while holding their mean constant. We observed that stable coexistence via interface
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187 pinning was robust to asymmetric competition (Figure 2, Supplemental Movie 2) within certain regimes
188 of the lattice parameters. The mechanism, however, was somewhat counterintuitive: for a given degree
189 of competition asymmetry, Pa/Ps, there exists some critical interface curvature that balances the numeric
190 advantage of the weaker species against the competitive advantage of the more potent species (Figure
191 2B, inset). This is true regardless of the presence of environmental structure; however, in isotropic
192 conditions this competitive equilibrium is unstable, and any perturbation of domain curvature will result
193 in interface translation and eventual extinction. We found that structural perturbations stabilize the
194  competitive equilibrium created by curved competitive interfaces if the spatial structure of the
195 environment can support the critical curvature between two steric surfaces (Supplemental Text 1) -- only
196  then will phase separation halt and coexistence be maintained. Otherwise, the dominant competitor will
197  drive the weaker species to extinction (Figure 2A), with slower dynamics than isotropic conditions.

198
199
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201 Figure 2: Coexistence of species with asymmetric competitive fitness is maintained by pinning of competition

202 interfaces. A, Extinction frequency from 30 replicate simulations per coordinate over 2000 doubling times as a
203 function of competition asymmetry and pillar spacing. Here, the ratio Ax / R is held constant at 3, while varying the
204 lattice constant Ax relative to the natural length scale A. Data for isotropic environmental conditions (no pillars) are
205 depicted above the grey line — note that the reason some simulations were not observed to go extinct was due to
206 insufficient simulation duration; with more time, all isotropic simulations would go extinct. Higher pillar density

207 stabilizes coexistence between strains with larger competitive asymmetries, up to the point at which the
208 environment cannot sustain sufficiently large domains to stabilize the competition interface; this produces the
209 increase in extinction frequency at bottom right (see Supplemental Movie 2). Simulation parameters are L / (1.29 )
210 = 100 and the average competition strength (P4 + Pg)/2 is held constant at 0.1. B, Stable interface curvature (k)
211 relative to the maximum possible interface curvature (kp.x) as a function of competitive asymmetry (see
212 Supplemental Text 1). Edge-to-edge pillar spacing is indicated by point color. Pinning and stable coexistence was
213 observed for competitive asymmetries greater than 1.35 (see panel A), but were omitted in B because pillar spacings
214 were too small for reliable curvature estimation. The inset schematically depicts stable curved interfaces, where the
215 numerical advantage of the weaker competitor species (green) balances the advantage of the stronger competitor
216 species (magenta). See methods for description of curvature calculation.

217
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218 Using geometric and scaling arguments (Supplemental Text 1), we predicted that the critical curvature
219  should be an approximately linear function of the competitive asymmetry and confirmed this with our
220  simulations (Figure 2B). Unlike symmetric competition, where coexistence is fully determined by flat
221 competition interfaces, the curved interfaces required to equilibrate asymmetric competition also impose
222 a minimum stable domain size on the competitively disadvantaged species that depends on the lattice
223 parameters. This is because a sufficiently large population of weak competitors is required to compensate
224  for competitive losses at the interface through growth and diffusion (note the increased levels of
225  extinction with the smallest pillar spacings in Figure 2A, and the dissolution of domains in Supplemental
226 Movie 2 that were stable under the symmetric competition of Supplemental Movie 1).

227  Three species intransitive competition
228 Environmental structure disrupts three-species dynamics

229 Previous in silico simulations of an intransitively competing three-species network (i.e. displaying a cyclic
230 competitive hierarchy, as in the game rock-paper-scissors) within an isotropic environment resulted in the
231 formation of striking spiral wave patterns, in which dense waves of species constantly migrate throughout
232 the environment, with each species wave chasing its prey and being followed by its predator (see (5), and
233 recapitulated in our model in Figure 3A). Despite constant flux of species at small length scales, the
234  community exhibited stable coexistence of all three species on ecological time scales (more than 10*
235  generations) when provided with a sufficiently large environment relative to the natural length scale set
236 by diffusion and growth. These findings agree with the earlier experimental results of Kerr et al. (4), albeit
237 at different time and length scales. However, it should be noted that previous theoretical work indicates
238  that fluctuations (18) or finite number effects (19) can force such systems into heteroclinic cycles that
239 eventually lead to extinction cascades.

240  Given the drastic changes in ecological outcomes when structural perturbations were introduced in two
241 species competitive systems, we wanted to characterize how dynamics and outcomes changed in three
242 species competition when we included structural perturbations. We performed simulations using the
243  same set of governing equations as in the two species case, now accounting for the topology a cyclic
244  competitive hierarchy and imposing fully symmetric competition for simplicity. We found that the
245 introduction of spatial structure into the environment significantly destabilizes wave patterns observed
246 under isotropic conditions in a manner that strongly depends on the spacing and size of steric barriers
247 (Figure 3). For example, while densely packed barriers prevent regular pattern formation and result in
248  erratic fluctuations in species abundance (Figure 3C), increasing the space between pillars by a small
249 amount allows the system to re-establish wave patterns that dominate the environment and significantly
250 reduce the magnitude of population fluctuations (Figure 3B). We therefore set out to characterize the
251  complex dynamics arising from intransitive competition in structured environments, with special
252 attention paid to transitions in population dynamics as a function of quantitative changes in
253  environmental structure.


https://doi.org/10.1101/366559
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/366559; this version posted July 10, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

chaotic

limit cycle

o
N

o
w

0.3

0.2

o
=

0.1

F VW bl
[ ]
hv chaotic | limit cycle

200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
254 time (doubling periods) time (doubling periods) time (doubling periods)

system-wide abundance (carrying capacity)
o
N

o

255 Figure 3: Structurally anisotropic environments disrupt spatial patterns and cyclic dynamics in intransitively
256 competing 3-species communities. Top panels show snapshots of spatial distributions from representative
257 simulations, with corresponding abundance dynamics plotted below. A, following a brief ‘grow-in’ period, isotropic
258 conditions result in spiral waves and cyclic abundance dynamics with corresponding stable coexistence. B,
259 introduction of pillars disrupts cyclic pattern formation, leading to irregular spatial distributions and large
260 fluctuations in species abundance. However, in this example the system eventually transitions into a stable cyclic
261 state, indicated by dashed boundaries in top and bottom panels, with arrows in the top panel indicating the direction
262 of the expanding cyclic region. C, more densely packed pillars hinder transition to a limit cycle, resulting in sustained
263 large fluctuations in abundance and irregular species distributions. Simulation parameters are L / A = 158, P = 0.1,
264 and for simulations including pillars R / A = 4.74 and Ax as indicated.

265

266 Introducing structural anisotropy leads to chaotic fluctuations in species abundance and extinction
267 cascades

268 To quantify how structural perturbations destabilize pattern formation and cyclic dynamics in our
269 deterministic simulations, we examined the dynamic trajectories of multiple replicates of the same steric
270  pillar array initialized with controlled, random differences in the initial distributions of the three species.
271  We then compared the correlations in species distributions between replicate simulations as the system
272 evolved. In contrast to limit-cycle dynamics in isotropic environments, we found that increasing pillar
273 density resulted in extreme sensitivity to perturbations of initial conditions with an exponential decay in
274  initial correlations through time (Figure 4), a hallmark of chaotic dynamics (20). Chaotic fluctuations were
275  accompanied by rapid transitions into extinction cascades (evident in Figure 4, where correlation traces
276 are truncated at the first extinction event among replicates).
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278 Figure 4: Ecological dynamics display extreme sensitivity to initial conditions depending on environmental
279 structure. In each panel, 10 replicate simulations were identically initialized, then a small percentage (indicated by
280 line color) of grid locations in each replicate were randomly re-sampled creating correlated initial conditions. Each
281 panel shows the spatial (pixel-by-pixel) correlation over time between replicate simulations, averaged over all 45
282 unique pairwise comparisons. Shaded regions indicate standard error of the mean. As the pillar array becomes
283 denser, rapid decorrelation among replicates results from minute perturbations to initial conditions, a hallmark of
284 chaotic dynamics. In contrast, as pillar spacing increases, some fraction of simulations fall into a limit cycle and thus
285 have non-zero correlations with similar initial conditions. Simulation parameters are L /(1.29 A) =100, P =0.1, and
286 Ax = 4 R, with pillar size R indicated at the top of each panel.

287

288 In initial simulations, we noted that species distributions often exhibited dynamic transitions between
289 patterns of spiral waves and chaotic fluctuations (Figure 3B), and thus we sought to characterize overall
290 system dynamics as a function of environmental structure. We performed simulations with uncorrelated
291 initial conditions across a range of pillar sizes and spacings, and classified system dynamics as ‘limit cycle’
292  or ‘chaotic’ by calculating the temporal autocorrelation of the spatial species distribution. If the
293 spatiotemporal autocorrelation of all three species (minus steric barriers) at time t reached an
294  autocorrelation above a threshold of 0.8 two or more times after t, we defined the dynamic state as cyclic
295  at time t (see Supplemental Figure 8 & Methods). With this definition, we classified the dynamics as a
296  function of R and Ax into pseudo-phase diagrams for fraction of time spent in cyclic dynamics (Figure 5A)
297 and the extinction frequency over the simulation time scale (Figure 5B). Example simulations are provided
298 in Supplemental Movies 3-6. We found that smaller and more densely packed pillars lead to greater
299 destabilization, with less time spent in limit cycle dynamics and higher rates of extinction. Intriguingly,
300 however, with the smallest and most densely packed pillar structures we observed a reduced extinction
301 frequency, reversing the trend seen at larger pillar spacings (Figure 5B, bottom row). This appears to be
302  specific to the mechanisms by which pillars destabilize the system. With large pillars and spacings, spiral
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304 Figure 5: Severity of chaotic disruptions depend on structural characteristics of the environment. Over 1,000
305 doubling times, A shows the fraction of time the system displayed cyclic dynamics and B shows extinction frequency,
306 both as functions of the size and spacing of the pillar array. 10 simulations were performed for each grid point. For
307 each simulation, the amount of time spent in a limit cycle was normalized by the average time that isotropic
308 simulations were classified as cyclic; this adjusts for systematically acyclic periods such as the grow-in phase. Three
309 primary dynamic regimes were identified: (i) stable cycles, with larger and widely-spaced pillars; (ii) a transitory
310 region at intermediate pillar size and spacing, where communities tend to either relax into a limit cycle or collapse;
311 and (iii) when pillars are small and densely packed, unstable chaos with rapid community collapse. Simulation
312 parameters are L / (1.29 A) = 100 and P = 0.1, with pillar size and spacing as indicated in the figure. The simulations
313 atR/(1.29 ) =2 and 4 with Ax/ R = 2.2 were omitted because the pillar spacing did not allow for accurate simulation
314 of diffusion. Black symbols correspond to simulation conditions whose extinction time distributions were analyzed
315 in Figure 6.
316
317  waves develop in open areas and are largely unperturbed by the pillars, resulting in cyclic behavior and
318 few extinctions (Supplemental Movie 3). As pillar spacing decreases, open areas narrow to the point that
319 spiral wave centers are destabilized, migrating erratically and eventually collapsing due to interference
320 from other wave fronts (Supplemental Movie 4). With smaller pillar radii, the pillars themselves often act
321 as wave centers, and appear to be particularly vulnerable to disruption via interference (Supplemental
322 Movie 5). However, when small pillars are so densely packed that a pillar cannot serve as a wave center,
323 the centers again migrate erratically between pillars, but the pillar density is high enough to ‘cage’ the
324 rapidly diffusing wave centers and prolong their existence in a chaotically fluctuating state (Supplemental
325 Movie 6). Thus, the prevalence of extinction cascades is a non-monotonic function of pillar density,
326 suggesting that intermediate scales of spatial structure produce the strongest destabilizing effects on
327  intransitive communities. Finally, to ensure that the observed changes to system dynamics and
328 corresponding destabilizing effects were not dependent on the symmetry of a triangular lattice, we
329 performed a subset of simulations where pillar radii or spacing were independently and randomly
330 perturbed, and no significant changes to system dynamics and ecological outcomes were observed
331 (Supplemental Figure 9).
332  Athree-state kinetic model describes coupling of dynamic transitions and extinction
333 In our three-species simulations we observed transitions from chaotic dynamics to limit cycles and back
334  again, with many simulations ultimately making the transition from chaotic dynamics to the fully
335 absorbing state of extinction. Though the simulations are deterministic, the ensemble of initial conditions
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336 time to extinction (doubling times)

337 Figure 6: A kinetic model of dynamic transitions predicts extinction time distributions for a range of
338 environmental structures. From the lattice structures indicated by overlaid symbols in Figure 5 (indicated here at
339 top left in histogram plots), we performed 1,000 replicate simulations for 10,000 doubling times to measure the
340 distribution of extinction times and compare them to our model predictions. These conditions typify the three
341 observed dynamic regimes (limit cycle, transitory and chaotic), and map to a three-state model of system dynamics
342 with two correlated rate parameters that depend on structural characteristics (Supplemental Text 2). The
343 histograms were constructed from observed extinction times, and grey lines are fits to probability distributions
344 predicted from the three-state model. Fitting was not attempted for the cyclic case (top row), as only 3.5% of
345 simulations were observed to go extinct over the simulation period. The number of extinctions and (where
346 applicable) the fit parameters are shown within the corresponding plots. At left, connections between the dynamical
347 states of limit cycle (L), chaotic (C), and extinction (E) are depicted with relative rates qualitatively indicated by the
348 width of the arrows. Simulation parametersare L /(1.29A) =100 and P = 0.1, with pillar size and spacing as indicated
349 in the figure.

350

351 create statistical variability in system dynamics. Thus, we wanted to characterize how the distribution of
352 extinction times, and hence the time scale of coexistence, depended on environmental structure. We
353  developed a three-state kinetic model to describe transitions between chaotic (C), limit cycle (L), and
354  extinct (E) states, using three positive rate parameters to connect the states (kc, kic, and kce). The closed-
355 form solution to our model (Supplemental Text 2) predicts that all systems with structural perturbations
356  will go extinct in the infinite time limit, which is consistent with previous work (18, 19). It also predicts
357  that the rates of arrival to the extinct state depend on the dynamics fostered by the environmental
358 structure. To test this, we used structural conditions whose initial dynamics were classified as either limit
359 cycle, chaotic, or mixed for the first 1,000 doubling times (marked tiles in Figure 5), and fit the observed
360 distribution of arrival times as a function of environmental structure to those predicted by the model over
361 a period of 10,000 doubling times. We found that our model recapitulated observed distributions of
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362  extinction times (Figure 6), and that indeed, changes in environmental structure had significant effects on
363 the distribution of extinction times. These results indicate that structurally-induced destabilization results
364 from a combination of decreased rates of transition from chaotic fluctuations to limit cycle dynamics
365 and/or increased rates of transition from chaotic dynamics to extinction (see model diagrams in Figure 6).
366  Accordingly, systems that remained largely in a limit cycle had slower rates of extinction. The fitted model
367 parameters were functions of multiple individual transition rates with complex mappings (Supplemental
368  Text 2), hence direct inference of the effects of structural perturbations on individual transition rates (e.g.
369  from limit cycle to chaos) were not possible with this model.

370 Larger systems prolong species coexistence despite chaotic fluctuations

371 Lastly, we sought to characterize the effect of system size on community stability. Holding the structure
372  of the pillar array constant, we observed that the mean time to an extinction cascade increased
373  approximately exponentially with increasing system size (Figure 7A). This suggests that with sufficiently
374 large systems relative to the natural length scale, communities can coexist for long periods despite
375 continual chaotic fluctuations in individual species abundances and distributions. However, consistent
376  with the predictions of our kinetic model (Figure 6), larger systems cannot fully prevent extinctions, as
377 evidenced by observed extinction frequencies when simulation times were extended. In Figure 7B we
378  show that for a given simulation duration there is a system size above which the extinction frequency
379 drops to nearly zero, however, simply extending the simulation time can push the extinction frequency to
380 unity.

381 DISCUSSION

382 Using in silico simulations of ecological communities, we found that addition of structural complexity to
383 the environment results in fundamental changes to community dynamics and outcomes in a manner
384  dependent on the specific interaction network topology. Specifically, we observed that for two mutually
385 competitive species, structurally complex environments allowed for long-term coexistence between
386 species with relatively large differences in competitive fitness, an outcome impossible in well-mixed or
387  isotropic environments. Conversely, for a three-species intransitively competing community, which is
388 expected to be stable under isotropic conditions (5), we found that environmental structure can disrupt
389  the dynamic spatial patterns that stabilize these communities, resulting in chaotic fluctuations in species
390 abundances and spatial distributions, and an increased frequency of extinction cascades. Together, these
391 findings strongly suggest that the physical structure of the environment can interact significantly with the
392  specific nature of interspecies interactions within resident communities to affect stability and dynamics,
393 and more generally indicate that physical attributes of the environment must be considered when
394  assessing the stability of resident communities.

395 Our results extend established findings that spatially structured communities maintain biodiversity by
396 localizing interactions among community members (7, 21, 22). In particular, in the context of simple
397 competition the spatial bottlenecks that structurally complex environments provide impede competitive
398 mechanisms to the point that only a small fraction of a given population is engaged in active competition,
399 and hence fitness differences become less important relative to geometric advantages provided by
400 specific localization within the environment. However, our findings also suggest that intransitive
401 interaction networks are not a robust means of stabilizing communities, as has been theoretically
402 postulated (23, 24). Likewise, if deviation from isotropic conditions (which is found in virtually all natural
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404 Figure 7: Larger system sizes delay but do not prevent extinction cascades. A, plotting time to extinction as a
405 function of system size reveals an approximately exponential relationship, suggesting that large systems can persist
406 in a state of chaotic fluctuation for long time periods. Each point is a single simulation, with 10 replicate simulations
407 per system size L. B, extinction frequency as a function of system size. The black points and fitted grey logistic
408 regression curve suggest a critical system size at which extinctions are no longer observed for the fixed number of
409 simulated doubling times (here, 1,000). However, by increasing simulation duration, the observed extinction
410 frequency saturates to approximately 1 (red points and arrows), indicating that large systems delay but not prevent
411 extinction, consistent with our model which predicts that all anisotropic environments will eventually end with an
412 extinction cascade. Simulation parametersare R/ (1.29A) =4, Ax=4 R, and P = 0.1, with system size L as indicated
413 in the figure.

414

415 environments) only serves to accelerate the frequency of extinction cascades within these networks, this
416  work offers a mechanism as to why such networks are only rarely observed outside of the lab (25-27).
417  We speculate, based on scaling effects, that the increase in surface area-to-volume ratio going from 2D
418 into 3D will only enhance the stabilization of asymmetric competition between two species. Conversely,
419  given the potential augmentation of structural complexity available in higher dimensions, we expect that
420  under similar conditions chaotic fluctuations would be a robust feature of intransitively competing
421 communities. We also expect that the shape of the steric barriers will play a non-trivial role in ecosystem
422 dynamics and stability; we chose circles for simplicity, as they are characterized by a single parameter.
423  The spectrum of available interface curvatures within a particular environmental structure is a function of
424 both overall spatial scale (e.g. here Ax), and the shape of the steric objects themselves. Rationally designed
425  structures could be used to tune the range of competitive asymmetries and/or stochastic fluctuations that
426 an environment can stably support, and to shift system dynamics and stability to favor particular
427  interaction topologies. It is of interest to assess whether our findings are robust when placed in the
428  context of other physical and ecological phenomena. For example, how robust are pinned competition
429 interfaces to stochastic spatial fluctuations caused either by finite organism size or other forms of motility
430 (besides diffusion), tunable interaction strengths, such as with competition sensing (28, 29), or phenotypic
431  differentiation (30)? Are chaotic fluctuations a dominant dynamic state when cells can respond to
432 chemical gradients via chemotaxis? What are the effects of physical structure on species distributions for
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433 larger networks, where specific interaction motifs are embedded within a more complex ecological
434  context? These extensions will pave the way toward future theoretical work, as well as generating specific
435 hypotheses to be tested experimentally.

436 Finally, we note that the reductionist approach we take here is valuable toward unravelling the multitude
437  of forces acting on microbial communities in complex environments. While we focus specifically on
438  environmental structure, and others give similar focus to flow (31, 32) and chemical gradients (33) in
439 structuring communities, all of these environmental features are intimately linked and in combination will
440 modulate impacts on communities in important ways (9). Building a bottom-up understanding of how
441 various features interact to drive community processes is therefore essential in determining the primary
442  forces acting on a community in a given environmental context, paving the way toward the ultimate goals
443 of understanding basal mechanisms of ecosystem dynamics and of targeted and robust interventions in
444 microbial communities.

445  METHODS
446 Two species mutual killer simulations

447  Simulations were randomly seeded with pink noise (34) at an average density of 10% of the carrying
448 capacity, with each species represented by its own field matrix. Pillars were placed in a triangular lattice
449  with the specified radius and spacing. Microbial density that coincided with pillar locations was removed
450  from the simulation. The bounding box and pillar edges were modeled as reflecting boundary conditions.
451 At each simulated time step (At = 0.1t, with t in doubling times), populations diffused via a symmetric
452 Gaussian convolution filter with standard deviation set by the diffusion coefficient, ¢ = vV4DAt. After the
453 diffusion step, changes in population density (growth and death) were calculated using the equations
454  given in the main text, and used to update the density of each species. Hard upper and lower bounds (1
455 and 0.001 in units of carrying capacity, respectively) were enforced to improve numerical stability of
456 simulations; populations densities outside this range were set to 1 and 0, respectively. For each set of
457  lattice constants and competitive asymmetry values, 30 independently initialized replicates were
458 simulated for 2000 doubling times. Mean population abundances and images of the simulation were
459  recorded at an interval of 0.4t for the duration of the simulation. Extinction was defined as the mean
460  population density of either species dropping below a threshold value of ((2R)? — mR?)/4A, where R is
461 the pillar radius and A the area of lattice points not obstructed by pillars, to account for surviving
462 populations ‘trapped’ between a pillar and the corner of the simulation box and therefore not in contact
463 with the rest of the simulation.

464  Calculation of pinned curvature

465 To obtain higher resolution of pinned curvature in asymmetric competition, two pillars of R =12.9 A were
466  put at two opposing edges of a simulation box, and in contact with the simulation boundary leaving a
467 single gap between the pillars. Two competing species were symmetrically and uniformly inoculated at
468 30% of the carrying capacity on either side of this gap, leaving a single flat interface spanning the distance
469 between the two pillars. Simulations were then allowed to evolve as above until dynamics ceased due to
470 either pinning or extinction. All combinations of the indicated competitive asymmetries were sampled,
471  and pillar gap distances were sampled by varying the size of the simulation box. For simulations where
472 pinning was observed, the interface location was defined as the boundary points where species A and B
473 were of equal abundance. The interface curvature was calculated from three points along that boundary
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474 (the midpoint and the two points in contact with the pillars); this method was found to be more robust
475 than other circle-fitting methods, especially for low curvatures and narrow pillar gaps.

476 Intransitive three-species simulations

477  Three species intransitive simulations were carried out similarly to the two-species cases described above,
478  with the competition terms in the model modified to reflect the intransitive interaction network topology.
479 Simulations were inoculated randomly with 10 replicate simulations per structural condition. Unless
480 otherwise indicated, simulations were evolved for 1,000 doubling times, with images written every 0.2t.

481  Aschematic of the classification of simulation dynamics is given in Supplemental Figure 1. Spatiotemporal
482 autocorrelations were calculated for each simulation, where correlations at each time point were
483  calculated from the concatenated vectorized simulation matrix of all non-pillar grid locations for each
484  species, i.e. for the autocorrelation matrix in Supplemental Figure 1, each matrix entry represents the
485 correlation of two 438,000 (3 species multiplied by 146,000 unique non-pillar grid locations) length
486  vectors at the indicated time points. Using the autocorrelation matrix, at every time point (i.e. starting
487  from the matrix diagonal and moving forward in time), that time point was classified as exhibiting limit
488 cycle dynamics if the autocorrelation rose above the threshold value of 0.8 for at least two cycles. This
489  threshold was chosen empirically as the level at which isotropic simulations were reliably classified as limit
490  cycles over the duration of the simulation (excluding grow-in periods and final time points for which future
491 dynamics were not observed). Extinction events were calculated as in the two-species cases.

492  To establish correlated initial conditions (Figure 4), the following procedure was used: for each replicate
493  set of simulations, a random initial inoculum at density 10% of the carrying capacity was generated using
494 the same random seed (i.e. constructing 10 identical initial condition matrices). Then, for each individual
495 replicate, a randomly selected percentage (as indicated in Figure 4) of non-pillar grid locations were
496  randomly resampled between 0 and 10% of the carrying capacity. Simulations were then allowed to evolve
497 as described above. At each time point, each unique pairwise correlation (45 for the 10 replicates used)
498 between vectorized simulation matrices was calculated, and the mean over all pairwise correlations was
499  used to generate Figure 4. Correlation traces were truncated upon the first observed extinction event
500 among the replicates.

501 Kinetic modeling

502 For details on assumptions and analysis of the kinetic state model, and derivation of the closed-form
503 solutions for the time-to-extinction distributions, see Supplemental Text 2. Histograms were generated
504  from randomly initialized simulations as described above, with 1,000 replicates per set of lattice
505  constants, each over 10,000 doubling times. Model parameters K and T were fit by minimizing the squared
506 error between the empirical cumulative distribution function (CDF) from simulated data and the
507 corresponding CDF predicted by the model; global minima in the parameter space were found using grid
508 search. Atemporal offset parameter 7,50t Was also fit to account for grow-in periods, effectively shifting
509  the histogram along the time axis and setting extinction probability for t < T,ftset to zero.

510 Data availability
511  Codeto runsimulations and analyses, as well as processed data from raw images will be posted on Github.
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595  SUPPLEMENTAL MOVIE LEGENDS

596  Supplemental Movie 1: Symmetric two-species competition in structurally isotropic and anisotropic
597  environments. Simulation parametersare L /(1.29A) =100, P=0.1, with R/ (1.29A) =2 and Ax=3.4R
598 for the anisotropic case. The movie depicts system dynamics over 360 doubling times; the anisotropic
599 simulation is pinned after approximately 60 doubling times.

600  Supplemental Movie 2: Pinning and coexistence of species with asymmetric competitive fitness.
601  Simulation parameters are L / (1.29 A) = 100, P, = 0.112, P; = 0.088, R / (1.29 A) =2 and Ax = 3 R. The
602 movie depicts system dynamics over 85 doubling times.

603 Supplemental Movie 3: Large and widely spaces pillars do not significantly perturb intransitive
604 communities. Simulation parameters are L / (1.29A) =100, P=0.1, R/ (1.29A) =8, Ax =5 R. The movie
605 depicts system dynamics over 1,000 doubling times.

606  Supplemental Movie 4: Dense pillars induce wave destabilization and community collapse. Simulation
607  parametersarel/(1.29A)=100,P=0.1,R/(1.297) =10, Ax = 2.6 R. The movie depicts system dynamics
608 over 1,000 doubling times.

609  Supplemental Movie 5: Pillars may serve as unstable wave centers. Simulation parametersare L /(1.29
610 A) =100, P=0.1, R/ (1.29 A) = 6, Ax = 3.4 R. The movie depicts system dynamics over 1,000 doubling
611 times.

612  Supplemental Movie 6: Small dense pillars can ‘cage’ wave centers and prolong community coexistence
613 under chaotic dynamics. Simulation parametersare L /(1.29A)=100,P=0.1,R/(1.29\) =2, Ax=2.4R.
614  The movie depicts system dynamics over 1,000 doubling times.
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