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Computational assignment of function to proteins with no known homologs is still an 

unsolved problem. We have created a novel, function-based approach to protein annotation 

and discovery called D-SPACE (Deep Semantic Protein Annotation Classification and 

Exploration), comprised of a multi-task, multi-label deep neural network trained on over 

70 million proteins. Distinct from homology and motif-based methods, D-SPACE encodes 

proteins in high-dimensional representations (embeddings), allowing the accurate 

assignment of over 180,000 labels for 13 distinct tasks. The embedding representation 

enables fast searches for functionally related proteins, including homologs undetectable by 

traditional approaches. D-SPACE annotates all 109 million proteins in UniProt in under 35 

hours on a single computer and searches the entirety of these in seconds. D-SPACE further 

quantifies the relative functional effect of mutations, facilitating rapid in silico mutagenesis 

for protein engineering applications. D-SPACE incorporates protein annotation, search, 

and other exploratory efforts into a single cohesive model.  
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We are witnessing an explosion in biological sequence information1 stored in databases such as 

GenBank2 and UniProt3, largely driven by massive improvements in sequencing technology and 

resulting in the availability of tens of thousands of genomes and metagenomes. The utility of 

each genome depends on high quality annotation and the tools available to analyze it, shifting the 

bottleneck for genomics-based scientific discovery from sequencing capacity to analysis. While 

genome annotation has evolved from a laborious manual process to a largely automated 

endeavor with a proliferation of sophisticated tools and pipelines, many proteins, including some 

essential for life4, still have no known function. To date, the ability to reliably predict protein 

functions directly from amino-acid sequences alone remains a major biological challenge5. 

Since the function of a protein is a direct consequence of its amino acid sequence, 

similarity between primary sequence has been used to systematically infer function for more than 

25 years6. While generally useful, a simple similarity measure is often insufficient to confidently 

assign protein function. Highly divergent natural sequences sometimes have similar functions, 

and even single amino acid changes can completely eliminate the function of a protein. In 

addition, many proteins have no known homologs. More complex statistical models such as 

profile hidden Markov models HMMs (pHMMs) have been developed to address these 

challenges7–12, and while highly beneficial, such approaches often lack generalizability. Each 

pHMM model is typically trained on hand-curated aligned sequences of a given protein family 

without leveraging information from other families or annotation types, which results in very 

high specificity for the trained family without the ability to detect functionally-related but 

sequence-divergent proteins. These models are also computationally intensive to run at scale, 

which can be challenging for annotating large protein databases or metagenomes. More recently, 

databases such as InterPro13 and PROSITE14 have aimed at integrating genomic features such as 
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domain and functional site information from diverse databases into a single searchable user 

interface. To our knowledge there is not one consistent model that is able to learn from all of this 

information to predict all features. 

Making the full connection between sequence and function requires a representation of a 

protein that is closely associated with broad range of functional properties, which is now possible 

due to advances in high-level representations from the field of deep-learning. Several groups 

have deployed machine learning methods to identify specific functions of proteins15–19, however 

there have been only limited attempts to build a single classifier that assigns multiple features to 

a given peptide sequence20–23.  

Our work builds on these ideas with knowledge integration at massive scale, both in the 

number of proteins trained on and in the annotations used. By building the deep and 

comprehensive multi-task model D-SPACE, we created a high-dimensional protein 

representation (‘embedding’) which can be used to improve many sequence-based informatics 

tasks. The D-SPACE model can annotate proteins extremely quickly and combines the most 

relevant features of more than 180,000 smaller models. 

The protein embedding space provides a content-rich representation which enables the 

determination of many aspects of a protein structure and function from a simple Euclidean 

coordinate. This property allows for ultra-fast search for functionally similar proteins, even for 

those with highly divergent sequence. We show evidence that this representation generalizes to 

proteins on which the model was not trained. This approach represents a foundation for 

integrating all existing and future knowledge of protein structure and function into a cohesive 

and generalizable model. A demo of the D-SPACE annotation and search features is available at 

https://dspace.bio. 
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RESULTS 

D-SPACE model training on 70 million unique proteins  

We trained our model using protein sequences from UniProtKB (Swiss-Prot and TrEMBL), 

filtered to exclude any duplicate proteins that are not the representative member of a UniRef100 

cluster3,24. We also included or constructed annotations from 13 sources (Table 1, Methods). In 

total we assembled more than 90 million records of which 80% were used as the training set, 

10% were used for validating the model training, and another 10% were held out as the test set 

for final evaluation of the model’s performance. Our model is based on a deep convolutional 

neural network architecture with more than 100 million trainable parameters (Fig. 1a, 

Supplementary Fig. 1). Part of this model is a convergent affine ‘embedding’ layer consisting 

of 256 floating-point values, from which all classification outputs are derived (Fig. 1b). As an 

additional output, the model includes an autoencoder to compress the 256-dimension protein 

embedding to a non-linear three-dimensional representation (Fig. 1c, 1d). 

The model was trained for nine days and approximately four full passes over the training 

set until the validation loss was relatively stable (Methods). The training step with lowest 

validation loss was saved and used for inference and further analysis. We then annotated the 

entire dataset, including the training, validation, and test sets in less than 35 hours using a single 

computer. There was little evidence of overfitting (training / validation loss = 0.9). We also 

found model performance to be insensitive to most hyperparameter changes and that many 

similar network architectures could produce comparable results. 
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D-SPACE accurately annotates protein sequences 

The D-SPACE model performed well on all 13 of the classification tasks in the previously 

unseen test set (Table 1, Methods). Notably, the D-SPACE model tended to predict fewer class 

labels than might be expected (‘Coverage’ column in Table 1). This was largely due to the 

model’s ability to recognize which labels it could confidently call and which were best omitted. 

The highest performing class labels tended to be the most common, but this was not always the 

case (Supplementary Fig. 2). While further development could improve performance, perfect 

recapitulation of existing tools was not our goal. We found many examples where ‘incorrect’ 

assignments were appropriate when investigated manually. One group of these examples were 

proteins with UniProt records which had not yet been fully annotated in the training or test sets at 

the time of data download but were subsequently updated in later versions of UniProt. The fully 

updated annotations generally matched D-SPACE’s high confidence predictions. One example is 

UniProt A0A2I1C1K8, which was unannotated in our data set, but D-SPACE assigned it to the 

OrthoDB cluster ‘Cytochrome P450’ (score = 0.99) and suggested the keywords ‘4-

monooxygenase’ (score = 0.18) and ‘pisatin’ (score = 0.14). UniProt now annotates this protein 

as ‘Putative cytochrome P450 pisatin demethylase’. That D-SPACE learned to give such cases 

appropriate annotations rather than predict their absence is a sign of useful generalization.  

To assist in visualization of D-SPACE’s organization of the functional protein space, we 

included a three-dimensional (3D) embedding autoencoder in the model. The autoencoder was 

successful in reducing the dimensionality of the functional embedding space from 256 to 3 

dimensions with only modest loss of information (mean-squared error = 0.001). The autoencoder 

also had a strong regularization effect, reducing the mean variance of the embedding layer by 

more than 75-fold as compared to a model trained without it. Visualizing the 3D space gives a 
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partial view of the richness encoded by the model (Fig. 1c, 1d). As expected, similar sequences 

were found to be grouped closely in this representation. 

 

Protein functional embedding space enables fast and sensitive search and discovery 

The key to the D-SPACE model’s success is its ability to map any protein sequence into a 

defined coordinate in a common 256-dimensional functional embedding space. In this 

embedding space, the distance between two proteins is determined by functional similarity rather 

than sequence similarity alone. Previous work has shown that remote homology searches can be 

accelerated when operating in a compressed embedding space learned from known sequence 

similarities25–28. D-SPACE generalizes this concept by learning a functional-based embedding 

space through multi-task29, multi-label training which also enables discovery of novel protein 

relationships beyond sequence homology.  

An additional advantage of searching over the embedding space rather than sequence 

space is the ability to utilize advances in general case k-nearest neighbors (KNN) search tools 

and algorithms30,31. In our implementation, a query against the full UniProtKB database (over 

109 million proteins) returns the 100 nearest neighbors in less than 5 seconds, compared to 

several minutes with a standard BLAST installation. To evaluate the sensitivity of the embedding 

search results, we queried every protein in Swiss-Prot against the other Swiss-Prot proteins 

(552,000) using a sequence similarity-based approach and D-SPACE’s embedding search. 

Random protein pairs, which are not likely to be functionally related, tend to have sequence 

identity lower than 25% and embedding similarity lower than 0.55. There was a significant 

correlation between sequence identity and embedding similarity (R = 0.84, p-value < 2.2e-16) 

and both methods ranked highly similar proteins to the query sequence as their top results (Fig. 
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2a). However, while sequence-based methods could only detect hits with sequence identity 

>25%, embedding search was capable of identifying many functionally related hits below this 

level, in the ‘twilight-zone’ of sequence identity32. On the other hand, there were a few protein 

pairs identifiable by sequence identity-based methods with embedding similarity below the 

significant level of 0.55. In the cases we inspected, these potentially missed pairs were due to 

having only a partial local similarity between two proteins that shared domain similarity but had 

an overall different structure and function. 

To verify that the additional D-SPACE matches are functionally relevant, we compared 

D-SPACE embedding similarity to sequence similarity using an established benchmark for 

detecting orthologous protein pairs developed by Saripella et al.6,33. While sequence similarity 

had a slightly higher sensitivity for top hits (0.8 vs. 0.7 at 99% specificity), embedding similarity 

was more sensitive for other matches (0.92 vs 0.87 at 80% specificity) and had higher overall 

performance (AUC 0.95 vs. 0.92) (Fig. 2b). 

 

Functional embedding search enables novel protein discovery 

As an example of the ability of the functional embedding search to extend into and beyond 

sequence similarity alone and into the twilight-zone of sequence homology, we searched 

UniProtKB using the rare Class 2 Type V CRISPR effector protein Cas12b (T0D7A2) with both 

BLAST and D-SPACE. The BLAST search ran for 3 minutes (using UniProt’s web interface) 

returning 21 significant hits (E-value < 0.1; excluding the self-hit to the query), of which only 7 

aligned globally to the query sequence. All 21 hits are currently annotated as ‘Uncharacterized 

protein’ in UniProt, so they provided little immediate value in assigning function to the query 

sequence beyond the confirmation that they might belong to a related protein family. We also ran 
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PSI-Blast and JackHMMER, which produced similar results34,35. Using the embedding similarity 

search, D-SPACE was able to query Swiss-Prot and TrEMBL (returning the top 50 hits from 

each database) in less than 5 seconds, with all 100 hits having >0.59 embedding similarity to the 

query. In contrast to the BLAST results, D-SPACE’s results were enriched with currently 

annotated CRISPR-associated endonuclease and endoribonuclease proteins, including nine hits 

to Cas9 proteins, three hits to Cas13a proteins, and two hits to Cas12a (Cpf1) proteins, all with 

sequence identity <22% to the query sequence. Performing the same search with Cas12a 

(A0Q7Q2) as the query yielded similar results. Inspecting the three-dimensional representation 

of the embedding space revealed that Cas9 and Cas12a proteins tended to be placed close to each 

other (Fig. 3a). Since many Cas9 and some Cas12a were included in the original training set, one 

might assume that the model learned to associate them based on shared feature labels, such as 

keywords and Gene Ontology (GO) terms. To test this hypothesis, we trained a second D-

SPACE model excluding all annotated Cas12a proteins from the training set and inspected the 

resulting embedding space (Fig. 3b). The results show that even when not presented with 

examples of Cas12a sequences during training, D-SPACE’s model was able to associate Cas12a 

with other Class 2 CRISPR effector proteins during inference, demonstrating the generalizability 

of D-SPACE’s predictions and its ability to identify novel proteins without relying on sequence 

similarity. 

 

Combining D-SPACE annotation and search for protein annotation    

A recent study by Price et al. described new experimental approaches to identifying gene 

function for 33 bacterial organisms36. We used D-SPACE to annotate these same genomes 

computationally in less than an hour. The Price et al. work resulted in a non-trivial (e.g. not 
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‘hypothetical’) descriptions for 75% of the 156,184 proteins (Methods). D-SPACE produced a 

rich multi-label output for every protein. Of these, 84% were assigned an InterPro label (score > 

0.22), 73% had a non-trivial top OrthoDB cluster (top result not ‘None’, score > 0.1), and the 

proteins overall averaged 18 GO terms each (score > 0.16). The search capabilities of D-SPACE 

were also used to annotate the proteins by finding functional homologs. To demonstrate this, we 

searched each of the bacterial proteins against Swiss-Prot. A total of 82% of proteins had a 

strong functional homolog with a non-trivial description (top result and score > 0.55). In all, 95% 

of proteins were assigned either an InterPro label, a non-trivial OrthoDB cluster, or a non-trivial 

functional homolog. This demonstrates a dramatic leap in our capability to assign putative 

functions to currently unknown proteins (75% to 95% of the dataset). 

 

Semantic embedding profiles for protein discovery 

Functional embedding search requires only a coordinate in the high-dimensional embedding 

space as a query, and therefore does not rely on protein sequence information as its input. In 

addition to the enhanced performance of D-SPACE for the basic case of single protein query 

searches compared to sequence-based methods, advanced profile-based searches can be 

supported by D-SPACE by constructing novel semantic embedding profiles and using them as 

input queries. One such approach is to combine multiple embedding vectors using simple 

algebraic operations. 

A common use case in traditional protein discovery workflows involves construction of a 

pHMM for a given protein family, which can then be used to search over protein sequence 

databases. While powerful, they can only reliably be constructed using proteins with similar 

domain structure and with a detectable level of sequence similarity. In contrast, functional 
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embedding profiles can be constructed for any set of input embedding vectors, by calculating a 

profile embedding vector using simple aggregation functions (e.g. mean or median), resulting in 

a new coordinate in the embedding space that can be used as a query. In addition, embedding 

profiles can be combined to enable powerful semantic searches even when their underlying 

protein sequences have no detectable sequence similarity.  

As an example of embedding profile search we calculated the mean embedding profile of 

all proteins in Swiss-Prot (‘p0’), as well as mean embedding profiles of two Type V DNA 

effector Cas12a proteins (‘p1’) and seven Type VI RNA effector Cas13a proteins (‘p2’). We 

then combined the Cas12a and Cas13a profiles into a joint profile ‘p12’ (p12 = p1 + p2 – p0). 

Searching with the joint profile against UniProtKB returned 59 hits (top 50 each from Swiss-Prot 

and TrEMBL filtered by similarity score > 0.55). Of these, 39 had a known function, including 

25 Cas12a proteins, 8 Cas13a proteins, 3 Cas9 proteins, and 3 proteins with unrelated 

annotations. This demonstrates the ability to perform relevant searches using profiles from 

proteins with no sequence similarity. 

 

D-SPACE enables in silico protein mutagenesis analysis 

We used the generalizability of the D-SPACE model to test in silico mutagenesis experiments, 

where each amino acid in a protein is individually replaced with all possible alternatives. Each 

mutated sequence was run through the model, and the resulting embedding vectors were 

compared to the original protein to reveal each mutation’s impact on overall protein function 

(Fig. 4). This processed identified signatures that correspond to key protein features. For one 

example, RecA, the signature coincided with the well-known NTP binding P-loop motif 37. In 

another example, Tpo1, the signature coincided with known transmembrane regions. These are 
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exceptional findings given that no positional information was used in the model training process. 

D-SPACE was capable of identifying the relevant features on its own and can provide insight to 

specific modifications which are likely to impact function. 

 

Discussion 

Deep learning models such as D-SPACE provide dramatic capability improvements to protein 

biology, including rapid annotation, search, and new ways of generalizing knowledge beyond 

single labels. The increase in speed allows for the rapid annotation of large databases such as 

UniProt or GenBank. This has long been a challenge for groups like JGI, NCBI and EBI who 

maintain large, ever-increasing sequence databases that benefit from periodic reannotation with 

new and updated models as they become available. Additionally, it is now possible to generate 

extremely large and complex metagenomes. In our own work (not reported here) we recently 

assembled a 47 GB metagenome and identified more than 80 million protein-coding genes. To 

annotate them with a comprehensive conventional pipeline might take months and cost several 

hundred thousand dollars in compute resources. With D-SPACE we performed the annotations in 

hours and for less than $1000. 

D-SPACE also serves as a prototype for revolutionizing molecular biology by integrating 

knowledge from across the field in a comprehensive and synergistic manner. Without the bias of 

hand-curated rules, the model finds meaningful patterns such as active sites and transmembrane 

regions ab initio. We foresee a future where a model such as D-SPACE serves as an anchor for 

bringing vast amounts of biological information into a single understanding. For starters, D-

SPACE can be extended to include additional knowledge about proteins, including enzyme 

kinetics, thermal stability, three-dimensional structure, etc. The model could also extend 
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upstream to DNA, providing information for coding and non-coding regions alike. With some 

creative deep learning architectures, almost any conceivable experiment can contribute to the 

whole, including interaction networks, gene expression, epigenetics, phenotypic effects, drug 

binding, and clinical outcomes. Each extension of the core model not only adds to its basic 

utility, but also provides synergistic information relevant to each specific domain of study. For 

example, the same patterns found useful for annotating protein function are likely to be useful for 

interpreting drug binding and vice versa. 

 The rapid advancement in the field of artificial intelligence will likely bring even more 

powerful capabilities. Reinforcement learning and generative models are proving to be 

extraordinarily powerful for other fields such as robotics and computer vision38. We are 

approaching a time when artificial intelligences can synthesize imagery, music, and even human 

speech from a list of specifications with uncanny accuracy. Applying the same approaches to a 

framework such as D-SPACE could give biologists unprecedented power to engineer proteins for 

specific tasks or even to create proteins with completely novel functionality. 

 

METHODS 

Data processing 

UniProt data from the February 2018 release was downloaded and parsed into JSON lines format 

containing a single protein per line. To deduplicate the dataset, records were removed if they 

were not representative members of a UniRef100 cluster. OrthoDB assignments were extended 

from a small subset of proteins to the entire dataset with the use of Diamond39. To assign a 

cluster, we required the top hit to have a minimum score of 40 and a minimum of 35% coverage 

for both the query and subject. Keywords were extracted from the protein description field based 
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on a custom string processing function which attempted to account for a myriad of oddities (ex. 

hypothetical proteins). Gene Names were also standardized with a custom function available in 

the code repository. A total of 91 million proteins were randomly split into training (80%), 

validation (10%), and test (10%) groups. These were shuffled to ensure that records were 

processed in a random order. 

Records were filtered from model training if the sequence contained non-canonical amino 

acids (ex. ‘X’), was longer than 2000 amino acids, or contained no multi-hot annotations other 

than keywords. Roughly 3% of records were filtered this way.  

 

Model construction 

The D-SPACE model was built using TensorFlow with Keras (www.tensorflow.org). It consists 

of a convolutional sequence encoder followed by affine layers to produce the 256-value 

embedding. This embedding is attached to a decoder for each output task (Supplemental Fig. 1). 

An affine autoencoder task was also added to produce a three-dimensional representation of the 

embedding layer. The model was trained with the NADAM optimizer with an initial learning 

rate of 0.00140. We chose loss weights for each output to ensure each had a meaningful impact 

on the overall loss. The model was trained using a Tesla P100 GPU for nine days, until the 

validation loss no longer improved. 

The specification of this architecture requires a number of hyperparameters, including the 

number and types of layers, the associated layer parameters, the choice of optimizer, the initial 

learning rate, and the loss weights. These hyperparameters were chosen with a combination of 

intuition from existing literature and targeted hyperparameter scans. For each trial run, the model 

loss for training and validation samples were carefully monitored to prevent overfitting. The test 
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data was never used during this procedure, so it could be used to accurately assess the final 

model’s performance. 

 

Determination of ‘optimal’ task thresholds 

For each task, we determined the scoring threshold (>0.1) at which the F1 score was maximal in 

the validation dataset. 

 

Protein similarity metric 

The embedding similarity metric is based on the Euclidean distance between two embedding 

vectors e1 and e2. 

Esim(e1, e2) = 1 / ( 1 + 2 * ||e1-e2||2 / (||e1||2 + ||e2||2) ) 

 

Defining a ‘non-trivial’ annotation description 

We defined an annotation as being non-trivial if it was not ‘None’ and did not contain any of the 

following text, “hypothetical”, “unknown function”, “uncharacterized protein”, “uncharacterized 

conserved protein”, “uncharacterized protein conserved in bacteria”, “putative”. 

 

Code availability 

All code necessary for building a D-SPACE model and running inference is available on GitHub 

at https://github.com/syntheticgenomics/sgidspace. Several utility scripts are also provided to 

help with constructing the training dataset. This code is available under a GNU Affero General 

Public License v3.0. 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2018. ; https://doi.org/10.1101/365965doi: bioRxiv preprint 

https://doi.org/10.1101/365965
http://creativecommons.org/licenses/by-nd/4.0/


 15

References 

1. Stephens, Z. D. et al. Big Data: Astronomical or Genomical? PLOS Biol. 13, e1002195 

(2015). 

2. Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2012). 

3. UniProt Consortium, T. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 

46, 2699–2699 (2018). 

4. Hutchison, C. A. et al. Design and synthesis of a minimal bacterial genome. Science (80-. 

). (2016). doi:10.1126/science.aad6253 

5. Radivojac, P. et al. A large-scale evaluation of computational protein function prediction. 

Nat. Methods 10, 221–227 (2013). 

6. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment 

search tool. J. Mol. Biol. 215, 403–410 (1990). 

7. Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. (2011). 

doi:10.1371/journal.pcbi.1002195 

8. Punta, M. et al. The Pfam protein families database. Nucleic Acids Res. 40, D290–D301 

(2012). 

9. Haft, D. H., Selengut, J. D. & White, O. The TIGRFAMs database of protein families. 

Nucleic Acids Res. 31, 371–3 (2003). 

10. Pandit, S. B. et al. SUPFAM: A database of sequence superfamilies of protein domains. 

BMC Bioinformatics 5, 28 (2004). 

11. Lees, J., Yeats, C., Redfern, O., Clegg, A. & Orengo, C. Gene3D: merging structure and 

function for a Thousand genomes. Nucleic Acids Res. 38, D296–D300 (2010). 

12. Schultz, J., Milpetz, F., Bork, P. & Ponting, C. P. SMART, a simple modular architecture 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2018. ; https://doi.org/10.1101/365965doi: bioRxiv preprint 

https://doi.org/10.1101/365965
http://creativecommons.org/licenses/by-nd/4.0/


 16

research tool: identification of signaling domains. Proc. Natl. Acad. Sci. U. S. A. 95, 

5857–64 (1998). 

13. Mulder, N. J. et al. InterPro: an integrated documentation resource for protein families, 

domains and functional sites. Brief. Bioinform. 3, 225–35 (2002). 

14. Sigrist, C. J. A. et al. PROSITE, a protein domain database for functional characterization 

and annotation. Nucleic Acids Res. 38, D161-6 (2010). 

15. Jurtz, V. I. et al. An introduction to deep learning on biological sequence data: examples 

and solutions. Bioinformatics 33, 3685–3690 (2017). 

16. Kulmanov, M., Khan, M. A., Hoehndorf, R. & Wren, J. DeepGO: predicting protein 

functions from sequence and interactions using a deep ontology-aware classifier. 

Bioinformatics 34, 660–668 (2018). 

17. Jensen, L. J., Skovgaard, M. & Brunak, S. Prediction of novel archaeal enzymes from 

sequence-derived features. Protein Sci. 11, 2894–8 (2002). 

18. Lee, B. J., Shin, M. S., Oh, Y. J., Oh, H. S. & Ryu, K. H. Identification of protein 

functions using a machine-learning approach based on sequence-derived properties. 

Proteome Sci. 7, 27 (2009). 

19. Arango-Argoty, G. et al. DeepARG: a deep learning approach for predicting antibiotic 

resistance genes from metagenomic data. Microbiome 6, 23 (2018). 

20. Liu, X. L. Deep Recurrent Neural Network for Protein Function Prediction from 

Sequence. arXiv (2017). doi:10.1101/103994 

21. Fa, R., Cozzetto, D., Wan, C. & Jones, D. T. Predicting human protein function with 

multi-task deep neural networks. PLoS One 13, e0198216 (2018). 

22. Nauman, M., Rehman, H. U., Politano, G. & Benso, A. Beyond Homology Transfer: Deep 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2018. ; https://doi.org/10.1101/365965doi: bioRxiv preprint 

https://doi.org/10.1101/365965
http://creativecommons.org/licenses/by-nd/4.0/


 17

Learning for Automated Annotation of Proteins. bioRxiv 168120 (2017). 

doi:10.1101/168120 

23. Qi, Y., Oja, M., Weston, J. & Noble, W. S. A unified multitask architecture for predicting 

local protein properties. PLoS One (2012). doi:10.1371/journal.pone.0032235 

24. Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for 

improving sequence similarity searches. Bioinformatics 31, 926–32 (2015). 

25. Melvin, I., Weston, J., Noble, W. S. & Leslie, C. Detecting remote evolutionary 

relationships among proteins by large-scale semantic embedding. PLoS Comput. Biol. 

(2011). doi:10.1371/journal.pcbi.1001047 

26. Loh, P. R., Baym, M. & Berger, B. Compressive genomics. Nature Biotechnology (2012). 

doi:10.1038/nbt.2241 

27. Daniels, N. M. et al. Compressive genomics for protein databases. in Bioinformatics 

(2013). doi:10.1093/bioinformatics/btt214 

28. Yu, Y. W., Daniels, N. M., Danko, D. C. & Berger, B. Entropy-Scaling Search of Massive 

Biological Data. Cell Syst. 1, 130–140 (2015). 

29. Ruder, S. An Overview of Multi-Task Learning in Deep Neural Networks. arXiv (2017). 

doi:10.1109/CVPR.2015.7299170 

30. Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I. & Schmidt, L. Practical and 

Optimal LSH for Angular Distance. Adv. Neural Inf. Process. Syst. 28 (2015). 

31. Johnson, J., Douze, M. & Jégou, H. Billion-scale similarity search with GPUs. arXiv 

1702.08734 (2017). 

32. Rost, B. Twilight zone of protein sequence alignments. Protein Eng. Des. Sel. (1999). 

doi:10.1093/protein/12.2.85 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2018. ; https://doi.org/10.1101/365965doi: bioRxiv preprint 

https://doi.org/10.1101/365965
http://creativecommons.org/licenses/by-nd/4.0/


 18

33. Saripella, G. V., Sonnhammer, E. L. L. & Forslund, K. Benchmarking the next generation 

of homology inference tools. Bioinformatics 32, 2636–2641 (2016). 

34. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein 

database search programs. Nucleic Acids Res. 25, 3389–402 (1997). 

35. Johnson, L. S., Eddy, S. R. & Portugaly, E. Hidden Markov model speed heuristic and 

iterative HMM search procedure. BMC Bioinformatics 11, 431 (2010). 

36. Price, M. N. et al. Mutant phenotypes for thousands of bacterial genes of unknown 

function. Nature 557, 503–509 (2018). 

37. Saraste, M., Sibbald, P. R. & Wittinghofer, A. The P-loop--a common motif in ATP- and 

GTP-binding proteins. Trends Biochem. Sci. 15, 430–4 (1990). 

38. Karras, T., Aila, T., Laine, S. & Lehtinen, J. Progressive Growing of GANs for Improved 

Quality, Stability, and Variation. arXiv 1710.10196 (2017). 

39. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using 

DIAMOND. Nat. Methods 12, 59–60 (2015). 

40. Dozat, T. Incorporating nesterov momentum into adam. ICLR 2016 (2016). 

 

Acknowledgements 

We would like to thank Todd Peterson and Amir Khosrowshahi for supporting the SGI/Intel 

collaboration. 

 

Author contributions 

A.S.S., T.H.R, A.K.B, led and organized the project. A.S.S, A.R.G, M.E.S, S.A.B processed the 

training and evaluation datasets. G.J.H., Z.R.D, A.S.S, M.E.S, A.R.G, J.M.K, H.E., Y.L, 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2018. ; https://doi.org/10.1101/365965doi: bioRxiv preprint 

https://doi.org/10.1101/365965
http://creativecommons.org/licenses/by-nd/4.0/


 19

developed the model architecture, code, and training parameters. A.S.S., G.J.H., A.R.G, M.C.L, 

S.A.B produced additional analyses. G.J.H, A.S.S., T.H.R, S.A.B, A.R.G wrote the paper. J.R.E, 

M.E.S, A.S.S, G.J.H, produced the associated website. 

 

Corresponding authors 

Correspondence should be addressed to Toby H Richardson 

(TRichardson@SyntheticGenomics.com). 

 

Competing interests 

This work was funded and developed by Synthetic Genomics, Inc. and Intel (work was initiated 

at Nervana Systems Inc.). 

  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2018. ; https://doi.org/10.1101/365965doi: bioRxiv preprint 

https://doi.org/10.1101/365965
http://creativecommons.org/licenses/by-nd/4.0/


 20

Tables 

Table 1: List and performance of D-SPACE annotation tasks. Label Coverage is a measure of 

the representation of positive calls across labels in the test set. It is calculated as the number of 

unique labels with a positive call (Top-5 for one-hot, Score > 0.1 for multi-hot) divided by the 

number of unique true labels in the test set. Accuracy measures for one-hot labels are taken as 

either Top-1 or Top-5, both including and not including the default label ‘None’. Performance 

measures are reported for positive scores at the permissive 0.1 value, the ‘optimal’ value 

(Methods), and the default 0.5 value. 
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Multi-hot  
Task 

Trained 
Labels 

Label 
Coverage 

Positive 
Score 

Precision Recall 
 

F1 

Pfam 16,100 83% 0.10 
0.20 
0.50 

0.76 
0.85 
0.94 

0.88 
0.86 
0.80 

0.82 
0.85 
0.86 

InterPro 32,978 84% 0.10 
0.22 
0.50 

0.78 
0.87 
0.94 

0.90 
0.88 
0.83 

0.84 
0.87 
0.88 

TIGRFAMs 4,444 89% 0.10 
0.30 
0.50 

0.82 
0.91 
0.94 

0.95 
0.92 
0.89 

0.88 
0.91 
0.91 

PROSITE 2,483 96% 0.10 
0.27 
0.50 

0.72 
0.86 
0.89 

0.91 
0.86 
0.81 

0.80 
0.85 
0.85 

SMART 1,263 98% 0.10 
0.24 
0.50 

0.75 
0.86 
0.92 

0.90 
0.86 
0.80 

0.82 
0.86 
0.86 

EC number 5,317 42% 0.10 
0.30 
0.50 

0.62 
0.84 
0.91 

0.87 
0.80 
0.76 

0.73 
0.82 
0.83 

Gene3D 2,259 94% 0.10 
0.24 
0.50 

0.75 
0.87 
0.94 

0.91 
0.88 
0.83 

0.82 
0.87 
0.88 

GO 32,037 56% 0.10 
0.16 
0.50 

0.75 
0.81 
0.91 

0.90 
0.89 
0.82 

0.82 
0.85 
0.86 

SUPFAM 2,583 93% 0.10 
0.25 
0.50 

0.78 
0.89 
0.95 

0.92 
0.89 
0.85 

0.84 
0.89 
0.90 

Keywords Top 25,000 97% 0.10 
0.12 
0.50 

0.44 
0.48 
0.79 

0.64 
0.63 
0.44 

0.52 
0.54 
0.57 

Taxonomy ID 83,310 10% 0.10 
0.10 
0.50 

0.41 
0.41 
0.84 

0.57 
0.57 
0.36 

0.48 
0.48 
0.51 

One-hot  
Task 

Trained 
Labels 

Label 
Coverage 

Top-1  
Accuracy 
 

Top-5  
Accuracy 
 

Top-1 
Accuracy 
(wo. None) 

Top-5 
Accuracy 
(wo. None) 

OrthoDB 271,530 24% 72% 83% 69% 80% 
Gene Name Top 100,000 21% 92% 96% 63% 79% 
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Figures 

Figure 1 D-SPACE encodes a high-dimensional representation of a protein. (a) A broad 

schematic of the D-SPACE model. Protein sequences are encoded with a convolutional neural 

network to produce a 256-dimenstional ‘embedding’ representation. This can be used to infer 

labels for multiple tasks or reduced to three dimensions for visualization. (b) Example 

embedding vectors for: homologous proteins with different degrees of sequence divergence 

(human myoglobin, hemoglobin and fetal hemoglobin); functionally related but sequence 

divergent proteins (Cas9 and Cas12a); and an unrelated protein (bacterial RecA). The colors 

represent the numeric values of the embedding. (c) The three-dimensional representation of more 

than 460,000 proteins from the Swiss-Prot database, colored by the true OrthoDB cluster label. 

Proteins in the same sequence cluster were grouped together. (d) The same three-dimensional 

representation, colored by sequence length. The model finds clear functional separation between 

small (<300 aa, purple) and large (>=300 aa, orange) proteins. 

 

Figure 2 Comparison of sequence and embedding similarity for protein search. (a) Distribution 

of sequence and embedding similarity measures for related protein pairs (blue) and random pairs 

(orange). Related proteins are based on the 2nd, 6th, and 10th, best match using embedding 

similarity (top row) or sequence identity (bottom row). Proteins with high sequence identity (x-

axis) were scored high with both approaches, but only embedding similarity tended to find 

matches below 25% sequence identity. (b) Comparison of sensitivity and specificity tradeoffs 

between sequence and embedding similarity measures for the Saripella et al. ortholog 

benchmark. Sequence similarity was slightly more sensitive at a high specificity threshold, but 

D-SPACE outperformed overall.  
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Figure 3 Cas9 and Cas12a comparison in D-SPACE. (a) Cas9 (red) and Cas12a (blue) proteins 

were mapped to the three-dimensional embedding space with Swiss-Prot proteins shown in gray. 

Despite their low sequence similarity, the proteins tended to cluster together. (b) The process 

was repeated for a D-SPACE model trained without any Cas12a examples. These proteins were 

still represented near each other, indicating functional similarity. 

 

Figure 4 In silico mutagenesis. Two in silico full scans were performed with the D-SPACE 

model. Each residue in the protein was individually changed to each of the other 19 amino acids 

and the embedding was recalculated. The functional impact of each substitution is measured as 

the similarity distance from the original embedding. (a) The average functional impact of a 

substitution at each amino acid for RecA (UniProt P0A7G6). (b) A sequence logo view of the 

peak modifications for RecA. The tallest letters represent amino acids predicted by D-SPACE to 

be the most critical for maintaining protein function, and recapitulate the well-known NTP 

binding P-loop motif 37. Accordingly, UniProt annotates positions 67-74 as the nucleotide 

binding site. (c) The average functional impact of a substitution at each amino acid for Tpo1 

(UniProt Q07824). The UniProt annotated transmembrane regions match the D-SPACE 

functional impact predictions. (d) A sequence logo view of some transmembrane regions for 

Tpo1.  
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Supplemental Figure 1 D-SPACE network architecture 

A visualization of the deep learning model architecture at the heart of D-SPACE. 

 

Supplementary Figure 2 D-SPACE class label performance 

For each multi-hot task label, the F1 statistic observed in our test set is shown in relation to the 

number of protein records for the label that were present in the training set. Trend lines were fit 

with a weighted second-degree LOWESS and are displayed with a 95% confidence interval.  
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