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Highlights

 We present three formalized hypotheses on how young children generate predictive 

models of others’ sampling actions. 

 We measured pupillary responses of children as a behavioral marker of prediction errors 

as described in the predictive processing framework.

 Results showed that young children integrated information about current observations, 

prior probabilities and agents to generate predictive models about others’ actions.

 A computational model based on the causal Bayesian network formalization of predictive 

processing can explain this process.
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Abstract

From early on in life, children are able to use information from their environment to form 

predictions about events. For instance, they can use statistical information about a population to 

predict the sample drawn from that population and infer an agent’s preferences from systematic 

violations of random sampling. We investigated how young children build and update models of 

an agent’s sampling actions over time, and whether a computational model based on the causal 

Bayesian network formalization of predictive processing can explain this process.  

We formalized three hypotheses about how different explanatory variables (i.e., prior 

probabilities, current observations, and agent characteristics) are used to build predictive models 

of others’ actions. We measured pupillary responses as a behavioral marker of ‘prediction errors’ 

(i.e., the perceived mismatch between what one’s model of an agent predicts and what the agent 

actually does), as described in the predictive processing framework. Pupillary responses of 24-

month-olds, but not 18-month-olds, showed that young children integrated information about 

current observations, priors and agents to generate predictive models of agents and their actions. 

These findings shed light on the mechanisms behind toddlers’ inferences about agent-

caused events. To our knowledge, this is the first study in which young children's pupillary 

responses are used as markers of prediction errors, and explained by a computational model 

based on the causal Bayesian network formalization of predictive processing. We argue that the 

predictive processing framework provides a promising explanation of the way in which young 

children process other persons’ actions.

Keywords: predictive models, development, pupil dilation, prediction error, causal Bayesian 

networks.
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Introduction

From a very young age, children are able to infer that some events are more probable 

than others. They use these inferences to form expectations about future events and show 

surprise when these events unfold differently. When 12-month-old infants see a container in 

which three identical objects and a single object move around before one of them exits the 

container, they look longer when the single object leaves the container rather than one of the 

majority objects (Téglás, Girotto, Gonzalez, & Bonatti, 2007). A similar situation occurs when 

young children observe more or less probable actions of another person. Xu and Garcia (2008) 

showed that infants as young as eight months of age look longer at a sample of colored balls if it 

is picked from a population of balls with mostly other colors, suggesting that they were 

expecting a different sample given the population. In other words, if a population contains 

mainly red balls, infants expect sampling from the population to be random, resulting in a sample 

of mainly red balls. If this expectation is violated, this is reflected in an increased looking time. 

If, however, an agent consistently picks the same items from a population in a non-random way 

(e.g., all white balls from a predominantly red population), the observer might interpret this as an 

indication of a preference for a certain item. In a study by Kushnir, Xu, and Wellman (2010), 20-

month-old children observed an agent picking five toys of the same type from a population box 

that held mostly toys from a different type. When the toddlers were then asked to give the agent 

the toy he liked best, they often chose the toy that the agent picked before. If, on the other hand, 

the agent had picked the same toys from a population box in which the two types of toys were 

more evenly distributed, they picked this toy less often. These results suggest that infants infer 

preferences of others based on violation of random sampling. 
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Previous research has also shown that infants use probabilistic information to inform their 

predictions about others’ actions. For example, Henrichs and colleagues (2014) investigated 

whether goal certainty modulated action prediction patterns of 12-month-old infants.  In an eye-

tracking paradigm, infants observed hands reaching towards one of three objects on the table, 

grasping the objects and placing them in a bowl. Infants performed earlier gaze shifts in the 

frequent condition when the hand reached for the same object in all trials as compared to the 

non-frequent condition, in which the hand reached for different objects across trials. These 

findings indicate that infants use probabilistic data to make predictions about others’ actions.

The idea that inferences about the probability of events are used to generate predictions 

about these events is in line with the predictive processing framework. According to this 

framework, we build generative models to predict incoming information (Clark, 2013; Friston, 

2005). This predicted input is compared to the actual input, and the difference (i.e., the prediction 

error) is used to update the predictive models. Previous studies have showed neural markers of 

prediction errors (e.g., Egner, Monti, & Summerfield, 2010; den Ouden, Daunizeau, Roiser, 

Friston, & Stephan, 2010; Phillips, Blenkmann, Hughes, Bekinschtein, & Rowe, 2015; van Pelt 

et al., 2016; Wacongne et al., 2011). Other studies suggest that prediction errors can also be 

assessed through measurements of pupillary responses, as these have been shown to correlate 

with prediction errors in a predictive-inference task (Nassar et al., 2012) and with reward 

prediction errors (Preuschoff, ‘t Hart, & Einhäuser, 2011) in adults. 

Because pupillary responses occur involuntarily without explicit instructions, the method 

has also been valuable to unravel perceptual and cognitive processes in preverbal infants 

(Hepach & Westerman, 2016; Laeng, Sirois & Gredebäck, 2012). Particularly, pupil dilation has 

been assumed to represent infants’ violations of expectations (Gredebäck & Melinder, 2011; 
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Jackson & Sirois, 2009) For example, Addyman, Rocha, and Mareschal (2014) investigated time 

perception in infants by using a paradigm in which recurring targets were omitted. Results of this 

study showed that 4- to 14–month-old infants showed increased pupil dilation to the absence of 

the targets at anticipated time intervals indicating a violation of their expectations of interval 

timing. In the present study, we take this approach one-step further and use infants’ pupillary 

responses as indirect behavioral markers of prediction errors in young children. 

If young children build a predictive model of other people’s actions in which the 

probability of events is represented, then we would expect to see increased pupil dilation when 

children observe improbable events. Looking times may be expected to increase in a similar way. 

Although they are indeed the most widely used measure of prediction violations (Aslin, 2007), 

they are often measured over relatively long periods after stimulus presentation (e.g., > 12 sec in 

Wellman et al. (2016); > 5 sec in Xu & Garcia, 2008; > 6 sec in Xu & Denison, 2009). As such, 

it is difficult to distinguish between initial time-locked responses to the violation of predictions 

and cumulative responses that might reflect post-hoc processes (Jackson & Sirois, 2009). The 

shorter time scale at which pupillary responses occur may provide unique insights into how 

different explanatory variables are used to form predictions over time. In order to explain the 

mechanism behind infants’ responses, we compared the qualitative pattern of pupillary responses 

to prediction error patterns as generated by a predictive processing model. 

In the current study, we investigated how 18-month-old infants and 24-month-old 

toddlers build predictive models of others’ actions. Do they, as suggested by previous studies, 

integrate information about prior probabilities and current observations to predict a subsequent 

event? Moreover, is the fact that the agent performing the action might have a bias also taken 

into account? In an experiment in which young children observed an agent performing a series of 
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more or less probable sampling actions, we analyzed the changes in pupillary responses over 

trials to examine in a fine-grained manner how infants and toddlers build a model about an 

agent’s sampling actions. Here it is important to note that differently from previous studies (e.g. 

Xu & Garcia, 2008; Xu & Denison; 2009) we measured the pupillary responses after each 

sampled outcome separately. This unique feature of our design allowed us to monitor how 

infants’ predictions and the resulting prediction errors evolved over time. 

We created an experimental setting in which children observed a puppet drawing balls 

from a population box and placing them in a row in an open container one by one. The 

population box contained balls of two colors, with a ratio of 1:4. In the Minority-first condition, 

the puppet first performed a series of improbable actions by picking four colored balls of the 

minority color, before picking a ball in the majority color. In the Majority-first condition, the 

puppet performed a series of more probable actions by drawing four balls of the majority color, 

followed by one minority color ball. 

Our computational approach allowed us to generate distinct hypotheses prior to data 

collection. We formalized three hypotheses to explain how young children build predictive 

models of others’ sampling actions. These formalized hypotheses (of which the precise 

computational characterization is presented in the Appendix) provided us with a predicted 

pattern of prediction errors in all trials and conditions. We assume that in our experimental setup, 

there are three variables that are used to model the environment: (1) the previous observations 

(i.e. the balls that were sampled before), (2) the prior probabilities of an event (i.e. the 

probability of balls of a certain color being picked given the relative number of balls in a 

population), (3) the agent’s biases (i.e. tendency to pick a certain color). These variables increase 

in terms of level of complexity: whereas the first one is dependent on change detection, the 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2018. ; https://doi.org/10.1101/365361doi: bioRxiv preprint 

https://doi.org/10.1101/365361
http://creativecommons.org/licenses/by/4.0/


RUNNING HEAD: PREDICTIVE PROCESSING IN DEVELOPMENT 8                                                               

second one relies on statistical inference, and the third one is based on processing of 

unobservable agent information. The hypotheses differ with respect to whether and how these 

variables are taken into account. 

According to the first hypothesis, children build a predictive model solely based on the 

sample drawn so far. In other words, if a green ball were drawn from the population before, the 

best prediction of the next event would be that another green ball would be drawn. As evidence 

builds up, this prediction gets stronger, resulting in decreasing prediction errors over the course 

of trials. However, when the last ball differs from the previous ones, this should lead to an 

increase in prediction errors. As a result, over time, one would observe a decrease in pupillary 

responses in both the Minority-first and Majority-first conditions, as several balls of the same 

color are being picked repeatedly (see Figure 1A). However, when the last ball differs from the 

previous ones, one would expect the pupillary response to increase for the last sampling event as 

compared to the previous event in both conditions. In the first hypothesis, information about the 

fact that the ball was sampled from a population with a specific distribution or sampled by an 

agent who may have certain biases is assumed not to be taken into account.

The second hypothesis predicts that children do take probabilistic information about the 

population into account, but still ignore the information about the agent. This hypothesis entails 

that children use both prior probability and current observations to predict the next sampling 

event: a green ball picked from a mostly yellow population is improbable, but becomes slightly 

more probable after it happened a few times. Based on this hypothesis, one would expect the 

pupillary response for the first two trials to be large for the Minority-first condition. However, 

when balls of the same color are picked repeatedly, the pupillary responses should decrease in 

the subsequent trials. Yet, when the last ball differs from the previous observations but it is more 
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probable given the distribution of colors in the population box, we expected the pupillary 

responses to increase only slightly from the fourth to the fifth sampling event. In the Majority-

first condition, on the other hand, one would expect the pupillary responses to be lower in the 

initial trials, as compared to the Minority-first condition, given that it is more probable to pick 

yellow balls from the given population box. However, because the last ball is different from the 

previous ones and it is less probable given the ratio of balls in the population box, we predicted a 

larger increase in the pupillary responses from the fourth to the fifth sampling event in Majority-

first condition as compared to the Minority-first condition (see Figure 1B).

According to the third hypothesis, children do not only process the sampling actions as 

probabilistic events, but they also consider unobservable variables such as an agent’s bias while 

doing so. They integrate the prior probability and current observations in a way that includes 

agent characteristics as an explanatory variable that predicts observed actions. If an agent 

consistently performs an improbable action, then sampling might not be random but driven by 

some characteristics of the agent (e.g., a bias for picking a certain color). In terms of 

experimental findings, this hypothesis predicts that children show larger pupillary responses in 

the Minority-first condition, as compared to the Majority-first condition, during the first trials, 

because it is less probable to pick the minority balls repeatedly from the population box. Then, as 

several minority balls are selected in a row in the Minority-first condition, the joint probability of 

the events as a whole becomes so low that children will update their models. As a result, pupil 

dilation should decrease after the first few trials, as they will then assume that the agent 

deliberately selects balls in minority colors because of a picking bias and will expect the agent to 

keep doing this, consistent with this picking bias. However, as the last ball differs from the first 

four, their predictions based on the updated model will be violated and there will be a large 
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increase in the pupillary responses again in this condition. On the other hand, in the Majority-

first condition, there is no reason to reject the assumption that the agent samples randomly. 

Therefore, neither the fact that majority colors are being picked in a row nor the color of the last 

ball deviates from the previous ones is too surprising: the distribution of colors in the sample is 

consistent with the distribution in the population. If this is the case, the pupillary responses in the 

first few trials in Majority-first condition will be lower than in the Minority-first condition and 

they will only slightly increase in the last trial as compared to the previous trial, as the last balls 

differs from the previous observations (see Figure 1C).  
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Figure 1: The estimated size of the prediction error (and pupil dilation thereof) for the two 

experimental conditions as predicted by the computational models, based on Hypothesis 1 (A), 

Hypothesis 2 (B), and Hypothesis 3 (C).
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Children’s predictive models of other’s actions may become more precise over the course 

of development. For example, they might get more precise in representing statistical information, 

as they get older. It could also be that given the increased amount of social experience, they 

might become more proficient in recognizing others’ preferences. Indeed, developmental 

research on social cognition suggests that children’s attributions in social situations change as 

they accumulate more statistical evidence about agents in different situations through experience 

(Meltzoff & Gopnik, 2013; Gopnik & Wellman, 2012). For example, Ma and Xu (2011) 

investigated whether 24-month-old toddlers and 16-month-old infants use statistical information 

to infer that others might have preferences different from their own. Although 24-month-olds 

first assumed that the experimenter would share their preference for a certain object, they were 

able to revise this assumption when the experimenter repeatedly chose another object, only if 

sampling appeared to be non-random. Whereas 24-month-old children were able to infer that the 

experimenter had a preference different from their own, 16-month-old infants showed weaker 

evidence for such an inference. As Ma and Xu (2011) argue, these findings suggest that the 

ability to reason about the subjective nature of preferences develops between 16 months and 2 

years of age. Given the previous literature, we included two age groups (24- and 18-month-olds) 

in the current experiment to investigate if the use of probabilistic and agent information in 

generating predictive models changes between 18 and 24 months. 

The hypotheses described earlier were formalized based on the Predictive processing 

framework. Their computational elaboration can be found in the Appendix. These formalizations 

provide us with an estimation of prediction errors in different trials and conditions. We compared 

these predicted patterns of results to the actual changes in pupil dilation for both age groups. 

With this, we provide more insight into the way in which children use prior probabilities, current 
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observations and agent information to build predictive models of others’ actions, and how they 

revise their models over time.    

Method

Participants

We tested 48 18-month-old infants (M = 18 months 2 days; range 17 months 11 days–18 

months 13 days) and 57 24-month-infants (M = 24 months 1 day; range 23 months 4 days–24 

months 15 days) for the study. Ten 18-month-olds and six 24-month-olds did not complete the 

testing session due to fussiness. Participants were recruited from a database of volunteer 

families. The local Social Science Faculty’s ethical committee approved the study. All children 

were born full-term and had no reported developmental delays. Participating families received a 

book or 10 Euros in return.

Stimuli

We created familiarization and test movies that showed animal hand puppets sampling 

colored balls from a population box and placing them one by one in an open container. The 

population box was transparent in front and had a white opaque cover on top in order to hide the 

sampling action. This part also served as an occluder to keep the puppets out of sight when they 

left the scene each time after they had drawn a ball from the population box. An opaque tube that 

was attached to the box led to the container on the left side of the box (see Figure 2 A-C).

Familiarization movie

In the familiarization movie (Figure 2A), a frog puppet popped up from behind the 

occluded part of the population box and started an introductory talk dubbed by a female voice. 

The puppet introduced itself and presented the population box, the tube and the container to the 

child. It then popped down to pick a ball from a population box filled with only blue balls before 
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appearing again and moving towards the tube. The puppet’s hands and the ball were hidden 

behind the opaque part on top of the box until it put the ball into the tube. The puppet then 

quickly left the scene so that distraction was minimized during the measurement of the pupillary 

response in test trials. Immediately after the puppet disappeared, a rolling sound was played and 

the ball appeared on the left side of the container. The rolling ball was not shown to the viewer in 

order to ensure that participants did not see its color until it appeared in the container. The puppet 

then popped up again and explained that the balls roll all the way down to the end, in order to 

familiarize the child with the sudden appearance of the balls in the container. This process was 

repeated for five times and took 2.07 minutes in total.

Test movies

Four different animal hand puppets, dubbed by two male and two female voices, were 

used to depict the different sampling events. We filmed each puppet for the Majority-first as well 

as for the Minority-first condition to counterbalance the sampling events and the associated 

agents across participants. Test movies (see Figure 2 B-C) were similar to the familiarization 

movie in terms of the set-up. However, the population box was now filled with balls in two 

different colors. In all movies, there was a 1:4 ratio of green and yellow balls.

 As in the familiarization movie, the puppet gave a short introduction in which it told the 

participants its name, explored the set-up and explained that it would now pick a ball. Then, it 

popped down behind the white opaque part to pick a ball. At this point, the agent was not visible 

but a rumbling sound was presented while the balls moved inside the population box in order to 

indicate that the agent was picking a ball. Because the puppet was not visible during this 

sampling event, it was not obvious from the way in which the sampling action was performed 

whether it was random or not. The puppet then popped up from behind the opaque part, carried 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2018. ; https://doi.org/10.1101/365361doi: bioRxiv preprint 

https://doi.org/10.1101/365361
http://creativecommons.org/licenses/by/4.0/


RUNNING HEAD: PREDICTIVE PROCESSING IN DEVELOPMENT 15                                                               

the ball, and put the ball into the tube. During this period, the ball that the puppet picked was still 

not visible to the participants. Immediately after the puppet left the scene, a rolling sound started 

lasting for 1400 milliseconds until the ball appeared on the left side of the container. The display 

of the sampled ball was shown for 4000 milliseconds. The puppet repeated the same process five 

times, picking balls one by one from the box. In the Minority-first condition, children observed 

the puppet drawing the minority color balls from the population box four times in a row before 

picking one majority color ball (see Figure 2B). In the Majority-first condition, the puppet drew 

four majority color balls followed by a minority color ball (see Figure 2C). We measured 

changes in pupil dilation after each sampling event. Majority-first and Minority-first conditions 

were shown twice to all participants. However, as most participants got distracted quickly after 

observing the first entire sampling event, only data for this first sampling event were included in 

the analyses. In this way, we also ensured that carry-over effects that might occur due to the 

repetition of sampling sequences would not influence our data. One test movie lasted for 1.48 

minutes and the entire stimulus presentation lasted for 8 minutes.

The stimulus material was edited in post-production using Final Cut Studio 3 (Apple 

Inc.). The movies were further edited using open source video editor software Kdenlive (version 

0.9.6) to match the timing and the durations of each movie. As pupillary responses are sensitive 

to light effects, we paid utmost attention to luminance factors. In order to ensure that the movies 

had similar luminance values, we color-corrected the movies using Color software (version 1.5, 

Apple Inc.). The audio material for the movies was recorded and edited to match the pitch and 

speed of the audio material between movies using Audacity software (version 2.0.5).
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A

B

C

Figure 2: Snapshots from stimulus movies of the (A) Familiarization, (B) Minority-first 

condition, and (C) Majority-first condition
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Experimental set-up and Procedure

The testing procedure was identical for both age groups. Eye movements were recorded 

with a corneal reflection eye-tracker (Tobii 120, Tobii Technology, Danderyd, Sweden) 

recording gaze data at 60 Hz using a 9-point calibration procedure. The procedure was repeated 

if seven or fewer calibration points were detected until data for at least eight calibration points 

was acquired.

To control for the external luminance effects, the natural lighting was entirely blocked 

and the room lights were on during the calibration and testing. In order to make sure that the 

environmental luminance was at a certain range during the measurements, we recorded the 

environmental luminance during each testing using a custom-made device attached to the eye-

tracker (Atlas Scientific ENV-RGB Color Detector Probe, version 1.6, combined with Arduino 

hardware), and the luminance values were extracted via Arduino software (version 1.0.5). The 

external luminance values were between 187-195 lux across testings. Participants were seated on 

their parent’s lap. All participants viewed the testing material at approximately 60 cm distance.

Measures

We measured the pupillary responses for each sampling event during the first 2000 ms 

after the sampled ball was visible in the container. Pupil data were analyzed using custom-made 

MATLAB scripts (MathWorks, Friedrichsdorf, Germany). The data were cleaned via several 

preprocessing steps. First, we screened for missing data points. If pupil dilation values were 

available for both eyes, then these were averaged in order to obtain one value per sample. In case 

of a missing value for one of the eyes, only the value from the other eye was used for the 

analyses. If the difference between the left and the right eye was larger than 1 (which is 

considered an indication of anisocoria: a condition characterized by unequal pupil sizes) or if 
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average values were higher than two standard deviations from the mean, the data point was 

considered unreliable and registered as missing. Missing data points due to blinks were corrected 

using a linear interpolation algorithm, in which the maximum sample gap was set to 5. Following 

interpolation, the data were smoothed using median and moving average filtering in order to 

reduce the noise in the signal. If there were more than 60 missing samples in one trial of 2000 

ms, the entire trial was excluded from the analyses. Pupil diameter changes were obtained by 

subtracting the average pupil diameter for each sampling trial from a fixed baseline period 

defined as the first 1000 ms from the start of each movie before the puppet appeared for the first 

time. Finally, in case a value for one trial deviated more than two standard deviations from the 

overall trial average, it was considered an outlier and removed from further analyses. Before 

computing further statistical analyses on the data, we first conducted one sample t-tests against 

zero for each age group to ensure that there were indeed significant changes in pupillary 

responses as compared to the baseline level (cf. Gredebäck & Melinder, 2011). These analyses 

were informative as they provided a validation check for further statistical analyses testing the 

effects of task manipulations on pupillary responses. 

Results

Measuring the pupillary responses after each sampled outcome separately allowed us to 

monitor how the children’s predictive models evolved over time. One sample t-tests for 18-

month-olds showed that overall, there was no significant change in pupillary responses as 

compared to the baseline level (t (34) = 1.11, p = .27). On the other hand, 24-month-olds showed 

significant increases in their pupillary responses as compared to baseline level (t (50) = 4.18, p 

< .01). Pupillary responses of the 24-month-olds and the 18-month-olds are illustrated in Figure 

3 and Figure 4, respectively.
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Figure 3: Average change in pupil size as compared to a fixed baseline period in Minority-first 

(black line) and Majority-first (gray line) conditions over the course of trials in 24-month-olds. 

Error bars represent SEMs. 
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Figure 4: Average change in pupil size as compared to a fixed baseline period in Minority-first 

(black line) and Majority-first (gray line) conditions over the course of trials in 18-month-olds. 

Error bars represent SEMs.  

Because there was no difference in pupil response as compared to the baseline level in 

18-month-olds, we did not compute further analyses for this age group. We reasoned that further 

analyses with this age group would be uninformative if not misleading given that there were no 

changes in pupillary responses as compared to the baseline level, which nullify interpretations of 

the changes in pupil dilation as a function of different trials and conditions. As we did find a 

significant change in overall pupillary responses as compared to the baseline level in 24-month-

olds, we focused our further analyses on this age group. 

As we predicted differential response patterns for different combinations of trials given 

the differences in sampled outcomes, we examined the first two and last two trials separately. To 

examine participants’ initial responses to the probability of the outcomes, we first ran a repeated 

measures ANOVA with condition (Minority-first vs. Majority-first) as a between-subjects factor 

and first two trials (1 and 2) as a within-subjects factor. This analysis revealed a significant trial 

by condition interaction (F (1, 42) = 4.80, p = .03, 2 = 0.10). As shown in Figure 3, this 𝜂

interaction was mostly driven by the larger difference in pupil dilation between conditions in the 

second trial. Still, follow-up t-tests showed that in the first trial, pupillary responses significantly 

differed between the Minority-first condition (M = .22, SD = .20) and the Majority-first condition 

(M = .08, SD = .22), t (46) = 2.15, p = .04. Similarly, in the second trial, the difference in 

pupillary responses between the Minority-first condition (M = .25, SD = .18) and the Majority-

first condition (M = .01, SD = .29) was significant, t (40.61) = 3.47, p < .01. These results show 

that in both trials, 24-month-old toddlers’ pupil dilation was larger when they observed an 
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improbable sampling action as compared to a probable action. This finding supports the sub 

hypothesis of both the second and the third hypothesis: toddlers initially expected the samples to 

represent the distribution in the population box, thereby assuming that the agent samples from 

the box randomly. Moreover, as the joint probability of sampled outcomes became less probable 

with each sample in the Minority-first condition, the difference between the conditions became 

larger in the second trial. 

When toddlers observed the agent consistently performing an improbable action (i.e., 

selecting minority color balls repeatedly), our third hypothesis would assume that this led them 

to revise their predictions: sampling might not be random, but biased towards a certain color 

because of some characteristics of the agent (e.g., the agent deliberately selects a certain color). 

After such a revision of the predictive model, children would start predicting the agent to pick 

the minority color ball (which was previously considered improbable) and now would be 

surprised to see the majority color ball appear. On the other hand, when toddlers observed the 

agent consistently performing a more probable action (i.e., picking majority color balls), there 

would be no reason to revise the predictive model. In order to test this assumption, we analyzed 

the differences in pupillary responses right before and after observing a change in the agent’s 

picking behavior. Using a repeated measures ANOVA with condition (Minority-first and 

Majority-first) as a between-subjects factor and trials (4 and 5) as a within-subjects factor, we 

analyzed the pupillary responses of the 24-month-olds in different conditions on the last two 

trials. As predicted according to the third hypothesis, data revealed a significant interaction 

between condition and trials (F (1, 39) = 4.46, p = .04, 2 = 0.09). Follow-up t-test analyses 𝜂

showed that in the fourth trial, there was no significant difference in pupillary responses between 

the Minority-first condition (M = .16, SD = .20) and the Majority-first condition (M = .07, SD 
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= .28), t (43) = 1.21, p = .23. However, in the fifth trial, pupil dilation in the Minority-first 

condition (M = .27, SD = .16) increased significantly, whereas this was not the case for the 

Majority-first condition (M = .09, SD = .22), t (38.65) = 3.01, p < .01. This finding is crucial, as 

it shows that toddlers combined observed outcomes and the information about the prior 

probability of an event with unobserved agent characteristics to revise their predictive models of 

the agent’s sampling actions over time. They thus showed increased response when this 

prediction was violated, which was assumed in the third hypothesis, but not in the other two 

hypotheses (see Figure 1C and Figure 3). 

Discussion

In this study, we investigated how 18-month-old infants and 24-month-old toddlers build 

predictive models of others’ actions. We defined three explanatory variables that one might use 

when predicting the actions of another person: (1) previously observed events, (2) the prior 

probability of certain events, and (3) the characteristics of an agent. These three variables can be 

ordered with respect to their complexity. The first one only involves simple change detection, the 

second one uses statistical inference and the third one requires processing of unobservable agent 

information. Accordingly, we developed three hypotheses each including one relevant variable 

more than the previous, thus building up in their level of processing complexity. We tested these 

hypotheses in an experiment in which young children observed a puppet picking colored balls 

one by one from a population box. Their pupillary responses were measured after each sampling 

event and were assumed to be an index of prediction errors. 

Our findings showed that 24-month-old toddlers integrate the prior probability and 

current observations as well as an agent’s biases to build predictive models of an agent’s 

sampling actions, and thereby supported the third hypothesis. Because we measured the pupillary 
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responses after each sampled outcome separately, we were able to monitor how these models and 

the resulting prediction errors evolved over time. Toddlers showed significantly larger pupillary 

responses when they observed an improbable as compared to a probable sampling action in the 

first two trials. This finding is in line with the assumption that young children form predictions 

based on the available statistical information: they predict that the distribution in a sample will 

reflect the distribution in the population from which they are drawn (Xu & Denison, 2009; Xu & 

Garcia, 2008) and are thus surprised when this prediction is violated.

Moreover, our findings suggest that repeated observations of the improbable outcome 

allowed toddlers to revise their predictions. They no longer assumed that the agent’s actions 

were random, but rather that they reflected a picking bias. As the agent consistently performed 

an improbable action, they expected the agent to keep showing this picking bias. However, when 

they observed that the last pick differed from the previous ones, this prediction was violated. The 

resulting prediction error caused a larger increase in their pupillary responses in the last trial in 

the Minority-first condition, as compared to the Majority-first condition. In the Majority-first 

condition, the overall sample resembled the distribution in the population box. Because this 

outcome was highly probable, the fact that the last ball had a different color did not lead to a 

strong increase in the pupillary response. These findings show that young children combined 

information about the prior probability of an event, observed outcomes and agent characteristics 

to form predictive models of the agent’s sampling actions.

We conclude that 24-month-olds integrate agent information into their predictive models. 

When a sample becomes highly improbable given the distribution in the population, they no 

longer assume that the sampling is random. Rather, they assume that the sampling is driven by 

specific characteristics of the agent: for some reason, the agent deliberately selects one color. For 
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example, this reason could be a preference for one color over the other or a task that has been 

given to this agent.

Whereas the 24-month-olds in our study showed clear indications of integrating 

previously observed events, prior probability information and the agent characteristics, pupillary 

responses of 18-month-olds were inconclusive. It is likely that 18-month-old infants lack the 

sophisticated generative models that would allow them to perform on this task the way the older 

age group did. For example, in a functional near infrared spectroscopy (fNIRS) study, Emberson, 

Richards, and Aslin (2015) observed neural responses to violation of expectations in 6-month-

olds, which suggests that the basic neural mechanisms for the generation of predictions are 

already in place early on in life. However, the authors also suggest that the internal models on 

which these predictions are based are not as sophisticated as those of adults. Similarly, this might 

explain the differences between 16-month-old infants and 24-month-old toddlers in reasoning 

about the subjective nature of preferences in the study by Ma and Xu (2011). Overall, predictive 

models of the environment may get more mature over the course of development allowing 

children to predict current input and upcoming events better. 

If we apply this idea to our experiment, the 18-month-old infants’ models might not be 

advanced enough to integrate all three explanatory variables and the interactions between them. 

Alternatively, even if their internal models were advanced, they may not have generated very 

precise predictions resulting in low weighting on the prediction errors. For example, based on 

their internal model, infants may have a vague idea that what happened before is likely to happen 

again (cf. Hypothesis 1), but this idea might have been too weak to generate a prediction with 

high precision. Therefore, no or only a very weak prediction error would arise if this prediction is 

violated. Furthermore, it could even be the case that their internal models did not incorporate the 
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causal link between the agent and the appearance of the balls, potentially preventing them from 

encoding the relevance of the color of the balls. Therefore, because of immature internal models, 

infants could have had weaker predictions, incorrect predictions or no predictions at all, all of 

which could explain the lack of overlap between their pupil response data and our hypotheses.   

Predictive models of the environment might get more mature over the course of 

development, allowing children to make precise or detailed predictions about events. In daily 

life, children experience many events and most of the time there is a structure in these events. 

Certain events follow each other, which enables them to learn the regularities in the environment, 

and eventually the causal structure behind events (Gopnik, 2012). Repeated experiences of 

certain events might allow them to improve their model of the world to make more precise or 

detailed predictions. With many of these experiences, a general model of the world develops. As 

children gather evidence on many different occasions involving a variety of agents and objects 

they choose, they collect more and more world knowledge. For example, they might see a friend 

repeatedly picking strawberries rather than pears or their father taking coffee rather than tea. All 

these experiences together might allow them to integrate new information in their world model 

efficiently. In other words, as their world knowledge improves, they become better at inferring 

the causes of others’ behavior without observing many occurrences. As a result, toddlers might 

need less information to form a certain prediction about other agents’ choices. Potentially, 24-

month-olds have gathered the world knowledge necessary to be able to use the three explanatory 

variables in our experiment in the way specified in the third hypothesis. These findings shed light 

upon the mechanisms behind toddlers’ inferences about agent-caused events. They suggest that 

from 24 months of age relevant information from the environment is used to form predictions 

about the causes of these events. Moreover, these findings show that predictive processing, 
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which has been suggested to be a general framework explaining brain functioning, provides 

promising explanations for the way in which young children process another person’s actions.

Conclusions

We investigated the computational mechanism behind young children’s inferences about 

an agent’s biases. We presented formalized hypotheses of how they combine perceptual, 

statistical and agent-related information to form predictive models of others’ actions. Our 

findings support the hypothesis that 24-month-old toddlers are able to integrate information 

about individual agents with information about previous events and prior probabilities to 

generate predictive models of others’ actions. Moreover, we present an innovative approach in 

which young children's pupillary responses are used as indirect behavioral markers of prediction 

errors, as described in the predictive processing framework. The pattern of pupillary responses in 

24-month-olds, but not 18-month-olds, showed strong similarities with the prediction error 

patterns formalized by a predictive processing model. Our findings suggest that predictive 

processing framework provides promising explanations of the way in which young children 

process another person’s actions.
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Appendix

Computational Model

We formalized the three hypotheses described in the introduction of this paper in a set of 

computational models. These computational models, based on the causal Bayesian network 

formalization of predictive processing as proposed in Kwisthout, Bekkering, and van Rooij 

(2017), compute posterior probability distributions that represent the expectation or prediction of 

the infant prior to each ball drawn. This prediction is compared to the actually observed event, 

yielding the prediction error. The size of this prediction error, quantified as the Kullback-Leibler 

divergence between the observed and predicted probability distributions (Kullback & Leibler, 

1951), is a qualitative proxy for the pupil dilation. The prediction error is instrumental in 

updating the current beliefs that give rise to future predictions. These sub-processes in predictive 

processing (prediction, observation, prediction error computation, and belief updating) are 

graphically depicted in the context of the experimental paradigm in Figure 5.

Figure 5: Sub-processes in predictive processing: prediction, observation, prediction error 

computation, and belief updating. Green and yellow bars represent probability distributions.
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In the predictive processing account, the brain continuously predicts its inputs using 

generative models that represent the causal structure of the world (Clark, 2013). In our 

computational characterization, these generative models take the form of causal Bayesian 

networks (Pearl, 2000) with hypothesis nodes (representing the potential causes of the 

phenomena observed), prediction nodes (representing the observable information), and 

intermediate nodes (representing contextual information). The attributed preference of the agent 

is represented as a hypothesis node, the predicted outcome of the draw is represented as a 

prediction node, and the container distribution and the previous draws are represented as 

intermediate nodes. In the model representing Hypothesis 1, the container distribution and the 

preference of the agent is absent, and predictions are solely made based on the previous balls 

drawn. In the model representing Hypothesis 2, the container distribution is included, but the 

preference of the agent is still absent. In the model representing Hypothesis 3, finally, all three 

aspects are included. Figure 6 graphically depicts the structure of these three models prior to 

drawing one of the balls.

Figure 6: In the left panel, the model for H1 is depicted. Preceding every ball that is drawn from 

the box, the prediction (represented by the prediction variable Pred) is based on the previous ball 

(intermediate variable Prev) only; a uniform distribution is assumed for the first ball. There are 

no hypotheses regarding picking bias; also, the content of the container is not modeled, as it is 
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ignored in H1. The model for H2 is depicted in the middle panel. Here, in addition to the 

information regarding the previous ball, the contents of the container form a contextual influence 

that modulates the prediction; here modeled as an additional intermediate variable, that is, Box 

distribution. In the right panel, the model for H3 is depicted, in which in addition to the available 

contextual information also the attributed agent preference is included. As this preference is a 

causal explanation for the ball drawn – rather than a contextual influence –, which can be 

updated in the light of prediction errors, we model this variable as a hypothesis variable Hyp.

With respect to the conditional probability distributions, we assume that the Box 

distribution variable represents the statistics of the container, that is, P (majority color) = 0.8 and 

P (minority color) = 0.2. We ignore the (relatively minimal) changes in the container over time 

and keep these prior probabilities constant. In the model corresponding with H1, we define P 

(Pred = C | Prev = C) = 0.8 for both the minority and majority color C; with P (Pred = minority 

color) = P (Pred = majority color) = 0.5 before any ball is drawn. In H2, we condition on the Box 

distribution variable as well and have P (Pred = C | Prev = C, Box = C) = 0.8, P (Pred = C | Prev 

= C, box = ¬C) = 0.2, and P (Pred = C | Box = C) = 1; here, ¬C denotes the opposite color, that 

is, if C is the minority color, ¬C is the majority color and vice versa. Note that in our model the 

previous color is always observed and that P (Pred = ¬C) = 1 – P (Pred = C), i.e., this fully 

defines the conditional probability distribution. In H3, this model still holds for the majority 

case, but we also condition on the attributed preference as well. We define P (Pred | Prevt = P, 

Box = B, Hyp = H), where Prevt [with t = 1...4] denotes the t-th ball drawn, as follows: 
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Pred Box Hyp P(P | B,H) P(P | C1,B,H) P(P | C2,B,H) P(P | C3,B,H) P(P | C4,B,H)
C C C 1 1 1 1 1

C C -C 1 1 0.1 0.05 0.01

C -C C 1 1 1 1 1

C -C -C 1 1 0.1 0.05 0.01

Again note that P (Pred = ¬C) = 1 – P(Pred = C) such that this table fully describes the 

probability distribution for the situation where C1 = C2 = C3 = C4 is the minority color. Given 

these computational models, we can compute the prediction error for each condition (Minority-

first/Majority-first) and for each of the three hypotheses before every ball drawn. These 

prediction errors are depicted in Figure 1 in the introduction.
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Figure 1: The estimated size of the prediction error (and pupil dilation thereof) for the two 

experimental conditions as predicted by the computational models, based on Hypothesis 1 (A), 

Hypothesis 2 (B), and Hypothesis 3 (C).
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Figure 2: Snapshots from stimulus movies of the (A) Familiarization, (B) Minority-first 

condition, and (C) Majority-first condition
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Figure 3: Average change in pupil size as compared to a fixed baseline period in Minority-first 

(black line) and Majority-first (gray line) conditions over the course of trials in 24-month-olds. 

Error bars represent SEMs. 
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Figure 4: Average change in pupil size as compared to a fixed baseline period in Minority-first 

(black line) and Majority-first (gray line) conditions over the course of trials in 18-month-olds. 

Error bars represent SEMs.  
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Figure 5: Sub-processes in predictive processing: prediction, observation, prediction error 

computation, and belief updating. Green and yellow bars represent probability distributions.
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Figure 6: In the left panel, the model for H1 is depicted. Preceding every ball that is drawn from 

the box, the prediction (represented by the prediction variable Pred) is based on the previous ball 

(intermediate variable Prev) only; a uniform distribution is assumed for the first ball. There are 

no hypotheses regarding picking bias; also, the content of the container is not modeled as it is 

ignored in H1. The model for H2 is depicted in the middle panel. Here, in addition to the 

information regarding the previous ball, the contents of the container form a contextual influence 

that modulates the prediction; here modeled as an additional intermediate variable Box 

distribution. In the right panel, the model for H3 is depicted, in which in addition to the available 

contextual information also the attributed agent preference is included. As this preference is a 

causal explanation for the ball drawn – rather than a contextual influence – which can be updated 

in the light of prediction errors, we model this variable as a hypothesis variable Hyp.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2018. ; https://doi.org/10.1101/365361doi: bioRxiv preprint 

https://doi.org/10.1101/365361
http://creativecommons.org/licenses/by/4.0/

