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 2 

Abstract.  20 

Bacteria and fungi form complex communities (microbiomes) in the phyllosphere and 21 

rhizosphere of plants, contributing to hosts’ growth and survival in various ways. Recent 22 

studies have suggested that host plant genotypes control, at least partly, microbial community 23 

compositions in the phyllosphere. However, we still have limited knowledge of how 24 

microbiome structures are determined in/on grafted crop plants, whose above-ground (scion) 25 

and below-ground (rootstock) genotypes are different with each other. By using eight 26 

varieties of grafted tomato plants, we examined how rootstock genotypes determine 27 

phyllosphere microbial assembly in field conditions. An Illumina sequencing analysis showed 28 

that both bacterial and fungal community structures did not significantly differ among tomato 29 

plants with different rootstock genotypes. Nonetheless, a further statistical analysis targeting 30 

respective microbial taxa suggested that some bacteria and fungi were preferentially 31 

associated with particular rootstock treatments. Specifically, a bacterium in the genus 32 

Deinococcus was found disproportionately from ungrafted tomato individuals. In addition, 33 

yeasts in the genus Hannaella were preferentially associated with the tomato individuals 34 

whose rootstock genotype was “Ganbarune”. Overall, this study suggests to what extent 35 

phyllosphere microbiome structures can be affected/unaffected by rootstock genotypes in 36 

grafted crop plants.  37 

 38 

Keywords: Cladosporium; Dioszegia; forestry; Methylobacterium; microbe–microbe 39 
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INTRODUCTION 43 

In both natural and agricultural ecosystems, bacteria and fungi in diverse taxonomic groups 44 

are associated with plants, positively and/or negatively influencing the survival and growth of 45 

their hosts (Vorholt 2012; Mendes et al. 2013; Bai et al. 2015; Peay et al. 2016). An 46 

increasing number of studies have shown that plant-associated microbes not only improve 47 

nutritional conditions of host plants but also increase plants’ resistance to abiotic stresses (e.g., 48 

high temperature, drought, and soil pollution) and that to pathogens and pests (Arnold et al. 49 

2003; Mendes et al. 2011; Vandenkoornhuyse et al. 2015; Busby et al. 2017). In contrast, 50 

bacterial and fungal communities associated with plants can be regarded as serious risk 51 

factors in agriculture and forestry because they are occasionally dominated by plant 52 

pathogenic species or strains (Anderson et al. 2004; Callaway 2016). Therefore, controlling 53 

plant-associated microbiomes has been recognized as a major challenge towards the 54 

development of stable and sustainable management of crop fields and plantations (Schlaeppi 55 

& Bulgarelli 2015; Agler et al. 2016; Vorholt et al. 2017; Toju et al. 2018).  56 

Host plant genotypes are among the most important factors determining microbiome 57 

structures (Whipps et al. 2008; Bodenhausen et al. 2014; Bulgarelli et al. 2015; Edwards et al. 58 

2015). Developing disease-resistant crop plant varieties has been one of the major goals in 59 

breeding science (Collard & Mackill 2008; Dodds & Rathjen 2010; Dean et al. 2012). 60 

Moreover, recent studies have explored genes and mutations influencing whole microbiome 61 

structures (Hiruma et al. 2016; Castrillo et al. 2017), providing a basis for optimizing 62 

communities of plant-growth-promoting bacteria and/or fungi. Meanwhile, to gain more 63 

insights into mechanisms by which plant microbiomes are controlled, studies using plant 64 

individuals with complex genetic backgrounds have been awaited. Specifically, by using 65 

grafted plants, whose above- and below-ground genotypes are different with each other, we 66 

will be able to examine, for instance, how below-ground genetic factors control above-ground 67 

microbiome structures. Because root genotypes can control not only uptake of water and 68 

nutrients but also transport of phytohormones or signaling molecules (Goldschmidt 2014; 69 

Notaguchi & Okamoto 2015; Takahashi et al. 2018), their effects on leaf physiology 70 

potentially influence community compositions of endophytic and epiphytic microbes in the 71 
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phyllosphere. Although studies focusing on such mechanisms interlinking above- and 72 

below-ground processes can provide essential insights into plants’ microbiome control, few 73 

attempts (Liu et al. 2018), to our knowledge, have been made to conduct experiments using 74 

grafted plants.  75 

Grafting per se is a classic technique but it has been increasingly considered as a 76 

promising method for increasing yield, crop quality, abiotic stress resistance, and pathogen 77 

resistance of various plants (e.g., tomato, melon, grapevine, apple, and citrus) in agriculture 78 

(Khah et al. 2006; Martinez-Rodriguez et al. 2008; Flores et al. 2010; Rivard et al. 2012; 79 

Warschefsky et al. 2016). In general, performance of grafted plants depends greatly on 80 

compatibility between scion and rootstock genotypes (Ruiz & Romero 1999; 81 

Martinez-Ballesta et al. 2010; Schwarz et al. 2010). However, we still have limited 82 

knowledge of how scion–rootstock genotypic combinations determine microbiome structures 83 

in the phyllosphere and rhizosphere (Liu et al. 2018). Moreover, although some pioneering 84 

studies have investigated microbial community compositions of grafted plants (Ling et al. 85 

2015; Song et al. 2015; Marasco et al. 2018), most of them focused on subsets of 86 

microbiomes (i.e., either bacteria or fungi but not both). Therefore, new lines of studies 87 

examining relationships between scion/rootstock genotypes and whole microbiome structures 88 

in roots/leaves have been awaited. 89 

In this study, we evaluated how below-ground genotypes of plants determine bacterial 90 

and fungal community structures in/on leaves under field conditions. After growing grafted 91 

tomato [Solanum lycopersicum (= Lycopersicon lycopersicum)] individuals in a filed 92 

experiment, we analyzed the leaf microbial community compositions of the sampled tomatoes 93 

based on Illumina sequencing. The contributions of below-ground genotypes on the 94 

microbiome structures were then evaluated by comparing the microbial community datasets 95 

of eight tomato rootstock varieties. We also performed randomization-based statistical 96 

analyses to explore bacterial and fungal taxa that had strong signs of preferences for specific 97 

tomato rootstock varieties. Overall, this study suggests to what extent below-ground 98 

genotypes of plants influence above-ground plant–microbe interactions, providing a basis for 99 

managing microbiomes of grafted plants in agriculture and forestry.  100 
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 101 

MATERIALS AND METHODS 102 

Grafted Tomato Seedlings 103 

To prepare rootstocks, seeds of eight tomato varieties (“Chibikko”, “Ganbarune”, “M82”, 104 

“Micro-Tom”, “Regina”, “Spike”, “Triper”, and “Momotaro-Haruka”) were sown in 6-cm 105 

pots filled with potting soil on June 7, 2017 for “Momotaro-Haruka” and June 1, 2017 for the 106 

others, and then the pots were grown in a greenhouse of Togo Field, Nagoya University, 107 

Nagoya, Japan (35.112 ºN; 137.083 ºE). On June 22–23, seedlings for the field experiment 108 

detailed below were produced by grafting “Momotaro-Haruka” scions on each of the eight 109 

varieties of rootstocks: i.e., above-ground parts of the grafted seedlings were all 110 

Momotaro-Haruka, while below-ground parts differed among seedling individuals. Ungrafted 111 

“Momotaro-Haruka” seedlings were also prepared as control samples. The grafted (including 112 

Momotaro-Haruka/Momotaro-Haruka self-grafted seedlings) and ungrafted seedlings (in total, 113 

nine treatments) were grown in a greenhouse of Togo Field and, on July 7, they were 114 

transported to Center for Ecological Research, Kyoto University, Kyoto, Japan (34.972 ºN; 115 

135.958 ºE). Each seedling was then transferred to a 9-cm pot filled with 116 

commercially-available culture soil (Rakuyo Co., Ltd.) on the day and they were kept on the 117 

field nursery shelf of Center for Ecological Research until the field experiment.  118 

 119 

Field Transplantation 120 

On July 13, base fertilizer was provided to the soil in the experimental field of Center for 121 

Ecological Research (N = 13.6 g/m2; P2O5 = 13.6 g/m2; K2O = 13.6 g/m2). On July 25, the 122 

abovementioned seedlings (ca. 50 cm high) were transplanted to the open field at 50 cm 123 

horizontal intervals in three lines in a randomized order (9 seedling treatment × 5 replicates 124 

per line × 3 lines (sets) = 135 individuals; Fig. 1). The tomato individuals were watered twice 125 

(morning and evening) every day. On September 13, a ca. 1-cm2 disc of a mature leaf was 126 

sampled from each tomato individual and placed in a 2-mL microtube. The leaf samples were 127 
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transferred to a laboratory of Center for Ecological Research using a cool box and they were 128 

then preserved at -80 ºC in a freezer until DNA extraction. 129 

 130 

DNA Extraction, PCR, and Sequencing 131 

Each leaf disc was surface-sterilized by immersing them in 1% NaClO for 1 min and it was 132 

subsequently washed in 70% ethanol. DNA extraction was extracted with a 133 

cetyltrimethylammonium bromide (CTAB) method after pulverizing the roots with 4 mm 134 

zirconium balls at 25 Hz for 3 min using a TissueLyser II (Qiagen).  135 

For each leaf disc sample, the 16S rRNA V4 region of the prokaryotes and the internal 136 

transcribed spacer 1 (ITS1) region of fungi were PCR-amplified. The PCR of the 16S rRNA 137 

region was performed with the forward primer 515f (Caporaso et al. 2011) fused with 3–138 

6-mer Ns for improved Illumina sequencing quality (Lundberg et al. 2013) and the forward 139 

Illumina sequencing primer (5’- TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA 140 

CAG- [3–6-mer Ns] – [515f] -3’) and the reverse primer 806rB (Apprill et al. 2015) fused 141 

with 3–6-mer Ns and the reverse sequencing primer (5’- GTC TCG TGG GCT CGG AGA 142 

TGT GTA TAA GAG ACA G [3–6-mer Ns] - [806rB] -3’) (0.2 µM each). To inhibit the 143 

PCR-amplification of mitochondrial and chloroplast 16S rRNA sequences of host plants, 144 

specific peptide nucleic acids [mPNA and pPNA; Lundberg et al. (2013)] (0.25 µM each) 145 

were added to the reaction mix of KOD FX Neo (Toyobo). The temperature profile of the 146 

PCR was 94 ºC for 2 min, followed by 35 cycles at 98 ºC for 10 s, 78 ºC for 10 s, 60 ºC for 30 147 

s, 68 ºC for 50 s, and a final extension at 68 ºC for 5 min. To prevent generation of chimeric 148 

sequences, the ramp rate through the thermal cycles was set to 1 ºC/sec (Stevens et al. 2013). 149 

Illumina sequencing adaptors were then added to respective samples in the supplemental PCR 150 

using the forward fusion primers consisting of the P5 Illumina adaptor, 8-mer indexes for 151 

sample identification (Hamady et al. 2008) and a partial sequence of the sequencing primer 152 

(5’- AAT GAT ACG GCG ACC ACC GAG ATC TAC AC - [8-mer index] - TCG TCG 153 

GCA GCG TC -3’) and the reverse fusion primers consisting of the P7 adaptor, 8-mer indexes, 154 

and a partial sequence of the sequencing primer (5’- CAA GCA GAA GAC GGC ATA CGA 155 
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GAT - [8-mer index] - GTC TCG TGG GCT CGG -3’). KOD FX Neo was used with a 156 

temperature profile of 94 ºC for 2 min, followed by 8 cycles at 98 ºC for 10 s, 55 ºC for 30 s, 157 

68 ºC for 50 s (ramp rate = 1 ºC/s), and a final extension at 68 ºC for 5 min.  158 

The PCR amplicons of the 135 tomato individuals (and negative control samples) were 159 

then pooled after a purification/equalization process with the AMPureXP Kit (Beckman 160 

Coulter). Primer dimers were removed from the pooled library by a supplemental AMpureXp 161 

purification process, in which the ratio of AMPureXP reagent to the pooled library was set to 162 

0.6 (v/v). 163 

The PCR of the fungal ITS1 region was performed with the forward primer ITS1F-KYO1 164 

(Toju et al. 2012) fused with 3–6-mer Ns for improved Illumina sequencing quality 165 

(Lundberg et al. 2013) and the forward Illumina sequencing primer (5’- TCG TCG GCA 166 

GCG TCA GAT GTG TAT AAG AGA CAG- [3–6-mer Ns] – [ITS1F-KYO1] -3’) and the 167 

reverse primer ITS2-KYO2 (Toju et al. 2012) fused with 3–6-mer Ns and the reverse 168 

sequencing primer (5’- GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA G [3–169 

6-mer Ns] - [ITS2-KYO2] -3’). The PCR was performed based on the buffer and polymerase 170 

system of KOD FX Neo with a temperature profile of 94 ºC for 2 min, followed by 35 cycles 171 

at 98 ºC for 10 s, 58 ºC for 30 s, 68 ºC for 50 s, and a final extension at 68 ºC for 5 min. 172 

Illumina sequencing adaptors and 8-mer index sequences were added in the additional PCR 173 

and then the amplicons were purified and pooled as described above. 174 

The sequencing libraries of the prokaryote 16S and fungal ITS regions were processed in 175 

an Illumina MiSeq sequencer (run center: KYOTO-HE; 15% PhiX spike-in). In general, 176 

quality of forward sequence data is generally higher than that of reverse sequence data in 177 

Illumina sequencing. Therefore, we optimized the settings of the Illumina sequencing run by 178 

targeting only forward sequences. Specifically, the numbers of the forward and reverse cycles 179 

were set 271 and 31, respectively: the reverse sequences were used only for discriminating 180 

between 16S and ITS1 sequences in silico based on the sequences of primer positions.  181 

 182 

Bioinformatics 183 
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The raw sequencing data were converted into FASTQ files using the Illumina’s program 184 

bcl2fastq 1.8.4. The obtained FASTQ files were demultiplexed with the program Claident 185 

v0.2.2018.05.29 (Tanabe & Toju 2013; Tanabe 2018), by which sequencing reads whose 186 

8-mer index positions included nucleotides with low (< 30) quality scores were removed. The 187 

sequencing data were deposited to DNA Data Bank of Japan (DDBJ) (BioProject accession: 188 

PRJDB7150). Only forward sequences were used in the following analyses after trimming 189 

low-quality 3’-end sequences using Claident. Noisy reads (Tanabe 2018) were subsequently 190 

discarded and then denoised dataset consisting of 1,201,840 16S and 1,730,457 ITS1 reads 191 

were obtained.  192 

For each region (16S or ITS1), filtered reads were clustered with a cut-off sequencing 193 

similarity of 97% using the program VSEARCH (Rognes et al. 2014) as implemented in 194 

Claident. The operational taxonomic units (OTUs) representing less than 10 sequencing reads 195 

were discarded and then the molecular identification of the remaining OTUs was performed 196 

based on the combination of the query-centric auto-k-nearest neighbor (QCauto) algorithm of 197 

reference database search (Tanabe & Toju 2013) and the lowest common ancestor (LCA) 198 

algorithm of taxonomic assignment (Huson et al. 2007) as implemented in Claident. Note that 199 

taxonomic identification results based on the QCauto-LCA pipeline are comparable to, or 200 

sometimes more accurate than, those with the alternative approaches (Tanabe & Toju 2013; 201 

Toju et al. 2016a; Toju et al. 2016b). In total, 143 prokatyote (bacterial or archaeal) OTUs and 202 

529 fungal OTUs were obtained for the 16S and ITS1 regions, respectively (Supplementary 203 

Data 1). The UNIX codes used in the above bioinformatic pipeline are provided as 204 

Supplementary Data 2. 205 

For each target region (16S or ITS1), we obtained a sample × OTU matrix, in which a 206 

cell entry depicted the number of sequencing reads of an OTU in a sample (Supplementary 207 

Data 3). To minimize effects of PCR/sequencing errors, cell entries whose read counts 208 

represented less than 0.1% of the total read count of each sample were removed [cf. Peay et al. 209 

(2015)]. The filtered matrix was then rarefied to 500 reads per sample using the “rrarefy” 210 

function of the vegan 2.4-5 package (Oksanen et al. 2017) of R 3.4.3 (R-Core-Team 2017). 211 

Samples with less than 500 reads were discarded in this process. In total, the rarefied matrices 212 
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of the 16S and ITS1 regions included 125 and 132 samples, respectively: at least 13 replicate 213 

samples per treatment were retained in both datasets (Supplementary Data 4).  214 

 215 

Community Structure in the phyllosphere 216 

Relationship between the number of sequencing reads and that of prokaryote/fungal OTUs 217 

was examined for each dataset (16S or ITS1) with the vegan “rarecurve” function of R. 218 

Likewise, relationship between the number of samples and that of OTUs was examined with 219 

the vegan “specaccum” function. For each dataset, difference in order- or genus-level 220 

community compositions among seedling treatments (rootstock varieties) was examined by 221 

the permutational analysis of variance [PERMANOVA; Anderson (2001)] with the vegan 222 

“adonis” function (10,000 permutations). To control spatial effects in the field experiment 223 

data, the information of replicate sample sets (Fig. 1) was included as an explanatory variable 224 

in the PERMANOVA. The “Raup-Crick” metric (Chase et al. 2011) was used to calculate 225 

β-diversity based on the order- or genus-level data matrices (Supplementary Data 5). 226 

To explore prokaryote/fungal taxa whose occurrences on tomato individuals were 227 

associated with rootstock varieties, a series of analysis of variance (ANOVA) was performed. 228 

Specifically, based on the genus-level matrix of the 16S or ITS1 dataset (Supplementary Data 229 

5), an ANOVA model was constructed for each prokaryote/fungal genus by including the 230 

proportion of the sequencing reads of the target genus and the rootstock variety information 231 

of host tomatoes as response and explanatory variables, respectively. The information of 232 

replicate samples (i.e., location information) was included as an additional explanatory 233 

variable. Genera that occurred in less than 30 tomato individuals were excluded from the 234 

analysis.  235 

 236 

Randomization Analysis of Preferences for Rootstock Varieties 237 

We further explored prokaryote/fungal taxa showing preferences for specific rootstock 238 

varieties based on a randomization analysis. In the sample × genus matrix of the 16S or ITS1 239 
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dataset (Supplementary Data 5), the labels of rootstock varieties were shuffled (100,000 240 

permutations) and then preference of a prokaryote/fungal genus (i) for a rootstock variety (j) 241 

was evaluated as follows: 242 

Preference (i, j) = [Nobserved (i, j) – Mean (Nranodomized (i, j))] / SD (Nranodomized (i, j)),  243 

where Nobserved (i, j) denoted the mean number of the sequencing reads of genus i across 244 

rootstock variety j tomato samples in the original data, and the Mean (Nranodomized (i, j)) and SD 245 

(Nranodomized (i, j)) were the mean and standard deviation of the number of sequencing reads for 246 

the focal genus–rootstock combination across randomized matrices. Genera that occurred in 247 

30 or more tomato individuals were subjected to the randomization analysis. 248 

For the genera that showed significant preferences for specific tomato rootstock varieties, 249 

we performed an additional analysis to evaluate which bacterial/fungal OTUs in each genus 250 

had strong host-variety preferences. Specifically, the randomization analysis of the above 251 

preference index (100,000 permutations) was applied to rarefied sample × OTU matrix of the 252 

16S or ITS1 dataset (Supplementary Data 4). OTUs that occurred in less than 30 tomato 253 

individuals were excluded from the analysis. 254 

 255 

RESULTS 256 

Community Structure in the phyllosphere 257 

On average, 13.6 (SD = 4.2) prokaryote and 26.3 (SD = 9.4) fungal OTUs per sample were 258 

observed in the rarefied data matrices (Supplementary Fig. 1). The total numbers of 259 

prokaryote and fungal OTUs included in the rarefied datasets were 116 and 413, respectively 260 

(Supplementary Data. 4). All the prokaryote OTUs belonged to Bacteria: no archaeal OTUs 261 

were observed.  262 

In the bacterial community of the tomato phyllosphere, bacteria in the orders 263 

Sphingomonadales and Rhizobiales were dominant (Fig. 2A). Bacteria in the order 264 

Pseudomonadales were frequently observed, too, across the tomato varieties examined. 265 
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Meanwhile, bacteria in the order Deinococcales were abundant only in the ungrafted tomato 266 

individuals (Fig. 2A). At the genus-level, the genera Sphingomonas, Methylobacterium, and 267 

Pseudomonas were frequently observed across the rootstock varieties examined, while 268 

Deinococcus bacteria were abundant only in the ungrafted tomatoes (Fig. 2B). 269 

In the phyllosphere fungal community, ascomycete fungi in the orders Capnodiales and 270 

Plesporales and the basidiomycete fungi in the orders Tremellales and Ustiaginales were 271 

abundant (Fig. 2C). At the genus-level, Cladosporium, Dioszegia, Moesziomyces (anamorph 272 

= Pseudozyma), and Hannaella were frequently observed (Fig. 2D). Among them, Hannaella 273 

fungi dominated the phyllosphere fungal community of the tomato rootstock variety 274 

“Ganbarune” (the proportion of Hannaella reads = 19.0 %), while their proportion was 275 

relatively low on other host varieties (2.3–9.1 %; Fig. 2D). 276 

A statistical test based on PERMANOVA showed that replicate sampling positions, but 277 

not tomato rootstock varieties, significantly explained variation in the whole structure of the 278 

bacterial/fungal community (Table 1). However, further analyses targeting respective genera 279 

(Table 2 and 3) indicated that the proportion of the fungal genus Hannaella varied among 280 

tomato rootstock varieties, although the pattern was non-significant after a Bonferroni 281 

correction of P values. Meanwhile, the proportion of some taxa such as the bacterial genus 282 

Sphingomonas and the fungal genus Cladosporium varied significantly among replicates 283 

(Tables 2 and 3), suggesting that spatial positions in the experimental field affected the 284 

formation of the phyllosphere microbial communities of the tomato plants.  285 

 286 

Randomization Analysis of Preferences for Rootstock Varieties 287 

A randomization analysis indicated that the bacterial genus Deinococcus occurred 288 

preferentially on the ungrafted tomato individuals (Fig. 3A). Likewise, the fungal genus 289 

Hannaella showed preferences for the rootstock variety “Ganbarune” (Fig. 3B). In an 290 

additional randomization analysis, a bacterial OTU phylogenetically allied to Deinococcus 291 

citri (P_040) and fungal OTUs allied to Hannaella oryzae (F_427 and F_428) displayed 292 

statistically significant preferences for ungrafted and “Ganbarune” tomato plants, respectively 293 
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(Table 4). 294 

 295 

DISCUSSION 296 

The field experiment using eight tomato rootstock varieties suggested that below-ground plant 297 

genotypes did not significantly affect the entire structures of the phyllosphere microbiomes 298 

(Table 1). However, detailed analyses indicated the existence of phyllosphere microbial taxa 299 

whose associations with host plants were affected by below-ground plant genotypes (Figs. 2 300 

and 3; Tables 2-4). Thus, this study not only shows to what extent above-ground microbiome 301 

structures of grafted plants are affected/unaffected by below-ground genotypes but also 302 

suggests which phyllosphere microbial taxa can be managed by selecting rootstock varieties 303 

of crop plants.  304 

The phyllosphere bacterial communities of the tomato individuals analyzed in this study 305 

were dominated by Alphaproteobacteria (e.g., Sphingomonas and Methylobacterium) as well 306 

as Gammaproteobacteria (e.g., Pseudomonas) as has been reported in previous studies on 307 

crop and non-crop plants (Lindow & Brandl 2003; Vorholt 2012; Bai et al. 2015) (Fig. 2). 308 

Among the dominant bacteria, Pseudomonas is recognized mainly as plant pathogenic taxon 309 

(Buell et al. 2003; Yu et al. 2013), although some Pseudomonas species are known to 310 

suppress leaf fungal pathogens by producing antibiotics (Flaishman et al. 1996; De Meyer & 311 

Höfte 1997). The genus Sphingomonas is known to involve species that protect host plants 312 

against Pseudomonas pathogens (Innerebner et al. 2011; Vogel et al. 2012) or promote plant 313 

growth by producing phytohormones such as gibberellins and indole acetic acid (Khan et al. 314 

2014). Bacteria in the genus Methylobacterium are often localized around stomatal pores in 315 

the phyllosphere (Abanda-Nkpwatt et al. 2006), using plant-derived methanol as principal 316 

carbon source (Delmotte et al. 2009; Schauer & Kutschera 2011; Knief et al. 2012; Ryffel et 317 

al. 2016). Genomic studies have shown that Methylobacterium genomes involve genes of 318 

metabolic pathways that potentially contribute to host plant growth (e.g., auxin biosysnthesis, 319 

cytokine biosynthesis, and vitamin B12 biosynthesis) (Kwak et al. 2014). Methylobacterium is 320 

also known to induce resistance of plants against fungal pathogens, nominated as prospective 321 
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a biocontrol agent (Madhaiyan et al. 2006). Thus, these dominant bacteria, whose associations 322 

with hosts are likely irrespective of host below-ground genotypes (Fig. 2), may affect growth 323 

of tomato plants both positively and negatively.  324 

Our data also indicated that fungi in the ascomycete genus Cladosporium and the 325 

basidiomycete genera Dioszegia and Moesziomyces (anamorph = Pseudozyma) were abundant 326 

within the tomato phyllosphere (Fig. 2). Among them, Cladosporium involves a 327 

well-characterized pathogenic species, C. fulvum, which causes tomato leaf mold (De Wit & 328 

Spikman 1982; van Kan et al. 1991; Jones et al. 1994; Rivas & Thomas 2005). The 329 

basidiomycete taxa listed above are characterized by their anamorphic yeast forms and they 330 

have been observed in the phyllosphere of various plant species (Inácio et al. 2005; Karlsson 331 

et al. 2014; Sapkota et al. 2015; Kruse et al. 2017). For example, Dioszegia, a basidiomycete 332 

taxon in the order Tremellales, has been reported from cereal and Arabidopsis (Sapkota et al. 333 

2015; Wang et al. 2016), potentially playing key roles within microbe–microbe interaction 334 

webs in the phyllosphere (Agler et al. 2016). The genus Moesziomyces is represented by 335 

plant-pathogenic smut fungi (Diagne-Leye et al. 2013). However, a recent phylogenetic study 336 

of teleomorphic (Moesziomyces) and anamorphic (Pseudozyma) specimens (Kruse et al. 337 

2017) suggested that this Ustilaginaceae taxon could involve not only phytopathogenic 338 

species but also species with antifungal properties against the causal agent of cucumber 339 

powdery mildew (Podosphaera fuliginea) (Avis et al. 2001) or those that can induce 340 

resistance of host plants against fungal pathogens such as Botrytis cinerea (Buxdorf et al. 341 

2013). Thus, the community data, as a whole, suggest that not only dominant bacterial taxa 342 

but also various fungal taxa potentially play complex physiological roles in the phyllosphere 343 

of tomato plants.  344 

While there were bacterial and fungal taxa commonly associated with tomato plants 345 

irrespective of host below-ground genotypes, fungi in the genus Hannaella displayed 346 

preferences for rootstock genotypes (Fig. 3; Tables 3 and 4). Specifically, Hannaella was the 347 

most abundant fungal taxon in the tomato individuals whose rootstock genotype was 348 

“Ganbarune” (Fig. 2). Like other yeast taxa in Tremellaceae (e.g., Derxomyces and 349 

Dioszegia) (Wang & Bai 2008), Hannaella yeasts are frequently observed in the phyllosphere 350 
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of various plant species (Nutaratat et al. 2014; Kaewwichian et al. 2015; Nasanit et al. 2015; 351 

Nasanit et al. 2016). Some Hannaella species are known to produce indol acetic acid 352 

(Nutaratat et al. 2014; Sun et al. 2014), although a study has suggested that the yeasts do not 353 

necessarily promote plant growth (Sun et al. 2014). Therefore, it remains a challenge to 354 

understand how Hannaella yeasts interact with other yeasts and bacterial/fungal species in/on 355 

plant leaves and how they influence plant performance host-genotype specifically.  356 

The randomization analysis performed in this study also indicated that a bacterial OTU 357 

phylogenetically allied to the Deinococcus species isolated from leaf canker lesions of citrus 358 

trees (Ahmed et al. 2014) had a preference for ungrafted tomato individuals (Fig. 3; Tables 2 359 

and 4). Given that this bacterial OTU was rarely observed in self-grafted tomato individuals 360 

(Fig. 2), grafting treatment per se, rather than plant genotypes, could be responsible for the 361 

biased distribution of the bacterium. This finding is of particular interest because Deinococcus 362 

is famous for its high tolerance to desiccation (Mattimore & Battista 1996; Tanaka et al. 363 

2004). Grafting itself has been recognized as a way for increasing plants’ resistance against 364 

drought stress (Schwarz et al. 2010; Warschefsky et al. 2016). Thus, the above-ground parts 365 

of the ungrafted tomato plants might uptake less water than grafted plants, resulting in the 366 

high proportion of the desiccation-tolerant bacteria in the phyllosphere.   367 

Although this study provides some implications for how phyllosphere microbiomes of 368 

grafted plants can be influenced by rootstock genotypes, potential pitfalls of the present 369 

results should be taken into account. First, as our data were based on a snapshot sampling in 370 

the late growing season of tomato, we are unable to infer the timing at which the observed 371 

bacteria and fungi colonized the tomato phyllosphere. Therefore, some of the detected 372 

bacterial and fungal OTUs might colonize the tomato individuals before they were 373 

transplanted into the experimental field. However, given that spatial positions within the field 374 

had significant effects on the microbial community structures (Table 1), colonization of 375 

indigenous (resident) microbes in the field could be a major factor determining the observed 376 

microbiome pattern. Second, we need to acknowledge that microbiome profiling with 377 

high-throughput DNA sequencing per se does not reveal the fine-scale distribution of the 378 

detected microbial OTUs in the phyllosphere. Although we surface-sterilized the leaf samples, 379 
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the microbiome data involved not only possibly endophytic taxa but also bacteria and fungi 380 

that have been regarded as epiphytes (e.g., Methylobacterium) (Omer et al. 2004; 381 

Abanda-Nkpwatt et al. 2006) [but see Jourand et al. (2004)]. Microscopic analyses with 382 

taxon-specific fluorescent probes, for example, will provide essential insights into the 383 

localization of the observed microbes in the phyllosphere. Third, while this study was 384 

designed to examine effects of below-ground genotypes on above-ground parts of grafted 385 

plants, recent studies have shown that genetic materials (i.e., DNA) can be transported 386 

between scion and rootstock tissue, at least at graft junction region, in a grafted plant 387 

(Stegemann & Bock 2009). Thus, contributions of above-/below-ground genotypes to 388 

rhizosphere/phyllosphere microbiomes may be much more complex than had been assumed in 389 

this study.  390 

Overall, this study suggested that majority of phyllosphere microbes can be associated 391 

with grafted tomato plants irrespective of rootstock genotypes of their hosts. Meanwhile, 392 

phyllosphere microbial taxa could display preferences for grafted/ungrafted plants or specific 393 

host rootstock varieties. Both grafting and the use of plant-beneficial microbes have been 394 

regarded as prospective options for securing agricultural/forestry production in the era of 395 

increasing biotic and abiotic environmental stresses (Schwarz et al. 2010; Schlaeppi & 396 

Bulgarelli 2015; Warschefsky et al. 2016; Toju et al. 2018). Further integrative studies will 397 

help us explore best conditions in which grafting and microbiome technologies are merged 398 

into a solid basis of stable and sustainable agricultural practices.  399 
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TABLE 1 | Effects of rootstock varieties and spatial positions on the entire microbial 703 

community structure. A PERMANOVA was conducted for each target community 704 

(prokaryotes or fungi) at each taxonomic level (order or genus). The rootstock varieties of 705 

host tomato and spatial positions in the field (location; Fig. 1A) were considered as 706 

explanatory variables. 707 

 708 

Taxon Taxonomic level Variable df Fmodel R2 P 

Prokaryotes Order Variety 8 1.0 0.061 0.4731 

  

Location 14 1.6 0.173 0.0379 

       

 

Genus Variety 8 1.1 0.064 0.3733 

  

Location 14 2.1 0.207 0.0035 

       Fungi Order Variety 8 0.6 0.033 0.7509 

  

Location 14 2.2 0.213 0.0119 

       

 

Genus Variety 8 0.9 0.050 0.5586 

�  �  Location 14 1.9 0.185 0.0350 

 709 

  710 
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TABLE 2 | Effects of rootstock varieties and spatial positions on the proportion of each 711 

prokaryote genus in the community data. For each prokaryote genus, an ANOVA model of 712 

the mean proportion of sequencing reads was constructed by including the rootstock varieties 713 

of host tomato and spatial positions in the field (location; Fig. 1A) as explanatory variables. 714 

Genera that occurred in 30 or more tomato individuals were subjected to the analysis. 715 

 716 

�  Variety �  �  Location �  �  

Genus df F P df F P 

Curtobacterium 8 0.3 0.9710 14 1.1 0.3260 

Deinococcus 8 1.8 0.0944 14 1.3 0.2386 

Hymenobacter 8 0.5 0.8730 14 1.1 0.3900 

Kineococcus 8 0.7 0.6710 14 0.6 0.8970 

Methylobacterium 8 1.7 0.0986 14 2.0 0.0229 

Pseudomonas 8 1.7 0.1060 14 0.6 0.8490 

Sphingomonas 8 2.0 0.0538 14 3.2 0.0004 

Spirosoma 8 1.0 0.4230 14 1.0 0.4310 

 717 

  718 
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TABLE 3 | Effects of rootstock varieties and spatial positions on the proportion of each 719 

fungal genus in the community data. For each fungal genus, an ANOVA model of the mean 720 

proportion of sequencing reads was constructed by including the rootstock varieties of host 721 

tomato and spatial positions in the field (location; Fig. 1A) as explanatory variables. Genera 722 

that occurred in 30 or more tomato individuals were subjected to the analysis. 723 

 724 

�  Variety �  �  Location �  �  

Genus df F P df F P 

Bullera 8 0.8 0.5740 14 1.0 0.4570 

Cladosporium 8 0.7 0.6752 14 2.4 0.0051 

Cryptococcus 8 1.1 0.3830 14 1.0 0.4620 

Curvularia 8 1.3 0.2640 14 0.8 0.6470 

Dioszegia 8 0.4 0.9390 14 1.1 0.3670 

Hannaella 8 2.3 0.0281 14 0.8 0.7046 

Kondoa 8 1.0 0.4730 14 0.8 0.6720 

Leptosphaeria 8 1.1 0.3660 14 1.4 0.1820 

Moesziomyces 8 1.5 0.1507 14 1.6 0.0833 

Nigrospora 8 0.7 0.7050 14 1.2 0.3240 

Papiliotrema 8 1.5 0.1720 14 0.7 0.7450 

Paraphaeosphaeria 8 0.7 0.6570 14 1.0 0.4990 

Pseudozyma 8 0.5 0.8690 14 0.5 0.9500 

Saitozyma 8 0.2 0.9800 14 1.1 0.3890 

Sporobolomyces 8 0.5 0.8504 14 1.8 0.0475 

 725 
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 1 

TABLE 4 | Prokaryote and fungal OTUs showing statistically significant preferences for tomato rootstock varieties.  1 
 2 
OTU Preferred variety Phylum Class Order Family Genus NCBI Blast top hit Accession Cover Identity 

Prokaryotes 

         P_040 Ungrafted (P = 0.00321) Deinococcus-Thermus Deinococci Deinococcales Deinococcaceae Deinococcus Deinococcus citri LT602922 100% 100% 

           Fungi 

          F_427 Ganbarune (P = 0.00078) Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Hannaella Hannaella oryzae KY103504 89% 99% 

F_428 Ganbarune (P = 0.00099) Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Hannaella Hannaella oryzae KY103504 89% 99% 

 3 
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 1 

FIGURE LEGENDS 1 

 2 

FIGURE 1. Field site. (A) Nine tomato rootstock varieties (treatments) in the field. For each 3 

rootstock variety, 15 replicate samples were transplanted to the field site (15 replicates × 9 4 

varieties = 135 tomato individuals). The above-ground parts of all the 135 tomato individuals 5 

had the genotype of the tomato variety “Momotaro-Haruka”. (B) Transplanted tomato 6 

individuals. 7 

 8 

FIGURE 2. Structure of the phyllosphere microbial communities. The phyllosphere 9 

microbial community compositions were compared among tomato individuals with different 10 

rootstock genotypes. (A) Order-level community structure of prokaryotes. (B) Genus-level 11 

community structure of prokaryotes. (C) Order-level community structure of fungi. (D) 12 

Genus-level community structure of fungi. 13 

 14 

FIGURE 3. Randomization analysis of preferences for rootstock varieties. An asterisk 15 

indicates significant preference index score in a combination of a microbial genus and a host 16 

rootstock variety (Bonferroni correction applied to each genus; α = 0.05). (A) Prokatyote 17 

genera. (B) Fungal genera. 18 
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