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Abstract  

Several methods were developed to mine gene-gene relationships from expression 

data. Examples include correlation and mutual information methods for co-expression 

analysis, clustering and undirected graphical models for functional assignments and 

directed graphical models for pathway reconstruction. Using a novel encoding for 

gene expression data, followed by deep neural networks analysis, we present a 

framework that can successfully address all these diverse tasks. We show that our 

method, CNNC, improves upon prior methods in tasks ranging from predicting 

transcription factor targets to identifying disease related genes to causality inference. 

CNNC’s encoding provides insights about some of the decisions it makes and their 

biological basis. CNNC is flexible and can easily be extended to integrate additional 

types of genomics data leading to further improvements in its performance.  

 

Supporting website with software and data: https://github.com/xiaoyeye/CNNC. 
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Introduction 

Several computational methods have been developed to infer relationships between 

genes based on gene expression data. These range from methods for inferring 

co-expression relationships between pairs of genes1 to methods for inferring a 

biological or disease process for a gene based on other genes (either using clustering  

or guilt by association2) to causality inferences3, 4 and pathway reconstruction method5. 

To date, each of these tasks was handled by a different computational framework. For 

example, gene co-expression analysis is usually performed using Pearson correlation 

or mutual information6. Functional assignment of genes is often performed using 

clustering7 or undirected graphical models including Markov random fields8, while 

pathway reconstruction is often based on directed probabilistic graphical models4. 

These methods also serve as an initial step in some of the most widely used tools for 

the analysis of genomics data including network inference and reconstruction 

approaches3, 9, 10, methods for classification based on genes expression11 and many 

more. 

While successful and widely used, these methods also suffer from serious drawbacks. 

First, each relies on (different) manually determined assumptions about the 

distribution of the observed values. Another major issue is overfitting. Most of these 

methods are unsupervised. Given the large number of genes that are profiled, and the 

often relatively small (at least in comparison) number of samples, several genes that 

are determined to be co-expressed or co-functional may only reflect chance or noise 

in the data12. Finally, most of the widely used methods are symmetric which means 

that each pair has only one relationship value. While this is advantageous for some 

applications (for example, clustering) it may be problematic for methods that aim at 

inferring causality (for example, network reconstruction tasks).   

To address these issues we developed a new method, CNNC which provides a 

supervised way (that can be tailored to the condition / question of interest) to perform 

gene relationship inference. CNNC utilizes a novel representation of the input data 

specifically suitable for deep learning. It represents each pair of genes as an (image) 
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histogram and uses convolutional neural networks (CNNs) to infer relationships 

between different expression levels encoded in the image. The network is trained with 

positive and negative examples for the specific domain of interest (for example, 

known targets of a TF, known pathways for a specific biological process, known 

disease genes etc.) and the output can be either binary or multinomial.  

We applied CNNC using a large cohort of single cell expression data and tested it on 

several inference tasks. We show that CNNC outperforms prior methods for inferring 

interactions (including TF-gene and protein-protein interactions), causality inference, 

functional assignments (including biological processes and disease), and as a 

component in algorithms for the reconstruction of known pathways. 
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Results 

We developed CNNC a general computational framework for supervised gene 

relationship inference (Fig. 1). CNNC is based on a CNN which is used to analyze 

summarized co-occurrence histograms from pairs of genes in scRNA-Seq data. Given 

a relatively small labeled set of positive pairs (with either negative or random pairs 

serving as negative) CNNC learns to discriminate between interacting, causal pairs, 

negative pairs or any other gene relationship types that can be defined.  

 

Learning a CNNC model 

CNNC can be trained with any expression dataset, though as with other neural 

network applications the more data the better its performance. Given expression data 

we first generate a normalized empirical probability distribution function (NEPDF) for 

each gene pair (genes a and b) (Fig. 1). For this we calculate normalized 2-dimension 

(2D) histogram of fixed size (32×32), where columns represent gene a expression 

levels and rows represent gene b such that entries in the matrix represent the 

(normalized) co-occurrences of these values. If different data types are combined (for 

example, Bulk and SC) they can be either used separately or concatenated to form a 

combined NEPDF with dimension of 32×64. Next, the distribution matrix is used as 

input to a CNN which is trained using a N-dimension (ND) output label vector, where 

N depends on specific task. For example, for co-expression or interaction prediction N 

is set to 1 (interacting or not) while for causality inference it is set to 3 where label 0 

indicates that genes a and b are not interacting and label 1 (2) indicates that gene a (b) 

regulates gene b (a). In general, our CNN model consists of one 32×32 input layer, 

ten intermediate layers including six convolutional layers, three maxpooling layers, 

one flatten layer, and a final ND ‘softmax’ layer or one scalar ‘Sigmoid’ layer (Methods 

and Supplementary Fig. 1).  

For the analysis presented in this paper we used processed scRNA-Seq data of 

43,261 cells that was collected from over 500 different studies representing a wide 

range of cell types, conditions etc13. All raw data was uniformly processed and 
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assigned to a pre-determined set of more than 20,000 mouse genes (Methods).  

In addition to gene expression data, CNNC can integrate other data types including 

Dnase-seq14, PWM15, etc. For this, we concatenated the additional information as a 

vector to the intermediate output of the gene expression data and continued with the 

standard CNN architecture. See Methods and Supplementary Fig. 1 for complete 

details and Supplementary Table 1 for information on training and run time. 

 

Using CNNC to predict TF-gene interactions 

We first tested the CNNC framework on the task of predicting pairwise interactions 

from gene expression data16. Chromatin immunoprecipitation (ChIP)-seq has been 

widely used as a gold standard for studying cell-specific protein-DNA interactions17. 

We thus evaluated CNNC’s performance using cell-type specific scRNA-seq datasets 

(three for mouse embryonic stem cells (mESC), and one each for bone marrow and 

dendritic cells, Methods) and ChIP-seq data from GTRD18. 

We extracted data from GTRD for 38 TFs for which ChIP-seq experiments were 

performed in mESC, 13 TFs studied in bone marrow cells and 16 TFs for dendritic 

cells. To determine targets for each TF using the ChIP-seq data we followed prior 

work19, 20 and defined a promotor region as 10KB upstream to 1KB downstream from 

the transcription start site (TSS) for each gene. If a TF X has at least one detected 

peak signal in or overlapping the promotor region of gene Y, we say that TF X 

regulates gene Y. For this prediction task we compared CNNC with several popular 

methods for gene-gene co-expression analysis: Pearson correlation (PC) and mutual 

information (MI) that are the two most popular co-expression analysis methods, 

Genie39 which was the best performer in the DREAM4 In Silico networks construction 

challenge and Count statistics21 which relies on local information based on gene 

expression ranks in large heterogeneous samples. Since prior methods used for 

comparison are symmetric, we focused here on the two labels setting (interacting or 

not). We performed leave-one-TF-out cross validation analysis. For each dataset, we 

trained CNNC with all other TFs and used the left-out TF for testing (Methods). 
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Fig. 2 presents the results of these comparisons. As can be seen, CNNC outperforms 

all prior methods for all cell types. We observe significant improvement over all prior 

methods (Fig. 2k). The AUROC achieved by CNNC is around 40% higher than PC 

and close to 25% higher for MI on some datasets (See Supplementary Fig. 2 for 

details). Importantly, as can be seen in Fig. 2a-2e, the difference is even more 

pronounced for the top ranked predictions. For CNNC we see almost no false 

negatives for the top 15% ranked pairs. Such top predictions are often the most 

important since the ability to validate predicted interaction is usually limited to the top 

few predictions.  

  

Data Integration further improves TF target gene prediction 

The above analysis was only based on using expression values. However, as noted 

above, gene relationship inference is often used as a component in more extensive 

procedures that often integrate different types of genomics data. To test how the use 

of the NN-based method can aid such procedures we extended CNNC so that it can 

utilize sequence and DNase hypersensitivity information. For sequence, we used 

PWMs from Jaspar22. Dnase-seq data for mESC was obtained from the mouse 

ENCODE project23. We used a simple strategy for processing the PWM and DNase 

data which resulted in an additional 2D vector as input for each pair which we 

embedded to create a 512D vector (Methods). We next concatenated this vector with 

the NEPDF’s 512D vector in the flatten layer to form a 1024D vector as shown in Fig. 

1 and Supplementary Fig. 1. 

Results, presented in Fig. 2p, show that these additional data sources indeed 

improve the ability to predict TF-gene interactions. As before, a combined framework 

utilizing CNNC outperforms a method that used both MI and PC.  

 

CNNC can predict pathway regulator-target gene pairs 

While TFs usually directly impact the expression of their targets, several methods 

have also utilized RNA-Seq data to infer pathways that combine protein-protein and 
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protein-DNA interactions24. To test whether CNNC can serve as a component in 

pathway inference methods we selected two representative pathway databases, 

KEGG25 and Reactome26 as gold standard and used these, together with a large 

scRNA-Seq dataset13 to train and test our framework. Since we are interested in 

causal relationships we only used directed edges with activation or inhibition edge 

types and filtered out cyclic gene pairs where genes regulate each other mutually (to 

allow for a unique label for each pair). As for the negative data, here we limited the 

negative set to a random set of pairs where both genes appear in pathways in the 

database but do not interact. Given the large number of genes we performed a 

three-fold cross validation where we kept the set of genes for which we predicted 

interactions completely separated (so a gene in the test set does not have any 

interaction in the training set, Methods). Results are presented in Fig. 3. As can be 

seen, CNNC performs very well on the KEGG pathways reaching an AUROC of 0.97 

compared to less than 0.87 for the methods we compared which here also included 

Bayesian Directed Networks (BDN)4 which learn a global directed interaction graph, 

(Fig. 3b) (See Supplementary Fig. 3 for the different folds). CNNC also performs well 

on Reactome pathways (see Supplementary Fig. 3 and 4). We also used the KEGG 

data to test the specific architecture CNNC utilizes and observed that the architecture 

used improves upon two alternative deep NN architectures, fully connected NN and 

CNN without pooling layers (Supplementary Fig. 5).  

 

Using CNNC for causality prediction 

So far we focused on general interaction predictions. However, as discussed above 

CNNC can also be used to infer directionality by changing the output of the NN. We 

next used CNNC to infer causal edges for all the datasets above (TF, KEGG and 

Reactome). For the pathway databases we only analyzed directed edges and so had 

the ground truth for that data as well. As can be seen in Fig. 4, when using the TF 

GTRD dataset, CNNC achieves a median AUROC of 0.9342 (Fig. 4a) on this 

leave-one-TF-out classification task. See Supplementary Fig. 6 for other datasets 
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results on this task. For KEGG, CNNC is very successful achieving a median AUROC 

of 0.9949 (Fig. 4c) (See Supplementary Fig. 6 for the different folds). For Reactome 

(Fig. 4e) we see that the most confident predictions are correct, but beyond the top 

prediction performance levels off (See Supplementary Fig. 6 for the different folds). 

We compared the performance of CNNC to another method developed for learning 

causal relationships from gene expression data, BDN4 which learns a global directed 

interaction graph. Results presented in Supplementary Fig. 7 and 8 show that CNNC 

greatly outperforms BDN on this causality prediction task. We have also tested an 

application of CNNC that in addition to causality can infer the impact of the interaction 

(activation or repression) and determined that it performs well on this multi-label 

classification problem as well (See Supplementary Fig. 9). 

To try to understand the basis for the decisions reached by CNNC we plotted two of 

the NEPDF inputs (Figs. 4g and 4h) which were correctly predicted as two different 

labels (1 for 4g and 2 for 4h). As can be seen, in both inputs the two genes display 

partial correlations and there are places where both are up or down concurrently. 

However, the main difference between the histograms in 4g and 4h are cases where 

one gene is up and the other is not. In 4g gene 2 is up while gene 1 is not indicating 

that the causal relationship is likely g1 -> g2. The opposite holds for 4h and so the 

method infers that g2 -> g1 for that input. While relationships between expression 

values, including the ones mentioned above, can be manually prescribed for an 

algorithm, we also noted that the encoding used for CNNC allows it to look at more 

complicated relationships between genes. In Figure 4i-p we plot the mean, variance 

and coefficient of variance (CV) for gene2 as a function of the expression of gene 1 for 

both prediction directions (1->2, top and 2->1, bottom). As can be seen, the variance 

and CV trends are consistent within category and diverging between categories, 

indicating that CNNC can make use of second order or even higher order distribution 

properties. Similar phenomena has been anecdotally observed in specific cases, for 

example for miRNA regulation27 but the ability of CNNC to learn such relationships on 

its own strongly suggests that it can generalize much better than prior methods for 
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inferring such causal interactions. 

 

Using CNNC for functional assignments 

We next explored the use of CNNC for assigning function or disease relevance for 

genes. We started by using it to identify cell cycle genes. For this, we obtained 682 

cell cycle genes from GSEA28. Since cell cycle expression has been studied for over 

two decades we expect most cell cycle genes to be known and so we can treat these 

genes as ground truth, unlike for several other processes and diseases. We next 

trained CNNC using all expression data on 2/3 of these genes holding the other 1/3 as 

a test set. In this setting the network is trained to predict 1 for a pair of genes that are 

both cell cycle genes and 0 for all other pairs (Methods and supplementary Note). 

When testing on the held out set CNNC achieved a high AUROC of 0.82. Importantly, 

the top 20% predicted genes were all true positives (Fig. 5a and 5b).  

Given its success on a well-studied functional set we next asked if CNNC can be used 

to predict novel disease genes. We focused on two lung diseases, asthma and 

Chronic obstructive pulmonary disease (COPD). We obtained 147 and 44 genes for 

asthma and COPD respectively from ‘Malacards’29. We next trained CNNC with all 

known genes for each of the two diseases and used it to predict additional genes for 

each disease. We evaluated the predicted set both manually and by statistical 

analysis using GO and compared these to prior methods for Guilt By Association 

(GBA)30 analysis. As can be seem in Fig. 5c and 5d, for both diseases, CNNC 

obtained much more significant GO terms when compared to GBA. Manual inspection 

of the top 10 genes for asthma indicated that 7 of them are supported based on recent 

studies (Supplementary Tab. 3) including ‘Lck’ which was recently determined to be 

a potential drug target for asthma therapy31.  

 

Applications of CNNC to pathway reconstruction  

Given the results for KEGG we asked whether we can use CNNC to infer missing 

edges in current pathways. There have been several attempts to utilize expression 
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and other data to further refine known pathways and many of these are based on 

co-expression analysis6, 10, 32-34. Since our method provides both direction and score 

we can extract all predicted directed edges above a certain score and compare the 

resulting pathway to the database pathway to see if any additional edges are 

predicted by our method. For this we focused on the interleukin 17 (IL-17) pathway 

from KEGG database, which plays crucial roles in inflammatory responses. We 

extracted 6 proteins and 4 directed edges from this pathway by only using directed 

edges with activation or inhibition edge types and filtering out cyclic gene pairs (Fig. 

5e). The other 10 edges were not present in KEGG as causal interactions in IL-17 but 

were supported by other pathways. We applied CNNC trained on all database 

pathway edges that do not contain any of these 6 proteins. As can be seen (Fig. 5f), 

CNNC achieved a high AUROC of 0.82 for this task.  

 

Discussion and conclusion 

Several methods for inferring gene-gene relationships from expression data have 

been developed over the last two decades. While these methods perform well in 

some cases, they suffer from a number of drawbacks that often led to overfitting (false 

positives) or missing key relationships (false negatives). The former can be attributed 

to the unsupervised nature of most methods (including methods for co-expression 

and clustering) making it hard to ‘train’ them on a labeled dataset. The latter often 

resulted from the assumptions used by specific methods (for example, distribution 

assumptions for DBNs) which do not always hold.  

To address these issues we presented CNNC, a general framework for gene 

relationship inference which is based on convolutional NN (CNN). The key idea here 

is to convert the input data into a co-occurrence histogram which is very suitable for 

CNNs. Unlike most prior methods our method is supervised which allows the CNN to 

zoom in on subtle differences between positive and negative pairs. Supervision also 

helps fine tune the scoring function based on the different application. For example, 

different features may be important for analyzing TF-gene interactions when 
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compared to inferring proteins in the same pathway. In addition to the supervised 

approach the fact that the network can utilize the large volumes of scRNA-Seq data 

allows it to better overcome masking issues reducing false negative. 

Analysis of several different interaction prediction and functional assignment tasks 

indicates that CNNC can improve upon prior, unsupervised methods. It can also be 

naturally extended to integrate complementary data including epigenetic and 

sequence information. Comparisons to more advanced methods for biological 

network reconstruction further highlight the advantages of CNNC. In addition, CNNC 

can be used as a pre-processing step, or as a component in more advanced network 

reconstruction methods. Finally, CNNC is easy to use either with general data or with 

condition specific data (Supplementary Fig. 10). For the former, users can download 

the data and implementation from the supporting website, provide a list of labels 

(positive and negative pairs for their system of interest) and retrieve the scores for all 

possible gene pairs. These in turn can be used for any downstream application 

including clustering, network analysis, functional gene assignment etc. 

CNNC is implemented in Python and both data and an open source version of the 

software are available from the supporting website.  
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Online methods 

Dataset sources and pre-process pipelines 

We used mouse scRNA-Seq dataset collected by Alavi et al13. The dataset consists of 

uniformly processed 43,261 expression profiles from over 500 different scRNA-Seq 

studies. For each profile, expression values are available for the same set of 20,463 

genes. Among of the 43,261 cells, 2,696 are mESCs, 4,126 are dendritic cells, and 

6,283 are bone marrow cells. mESC-time data which contains 3,456 cells was 

downloaded from GEO with accession number GSE7957835 and mESC-LIF data 

which contains 2,717 cells was downloaded from GEO with accession number 

GSE6552536. Mouse bulk RNA-Seq dataset were downloaded from Mouse Encode 

project23. That data included 249 samples and we only utilized genes that are present 

in the scRNA-Seq dataset leading to the same number of genes for both datasets. 

mESC Dnase data was also downloaded from Mouse Encode project23 

(ENCFF096WRW.bed). Mouse TF motif information is from TRANSFAC database37. 

PWM values were calculated by Python package ‘Biopython’38.  

For the DNase and PWM analysis we followed prior papers and defined the 

transcription start site (TSS) region as 10KB upstream to 1KB downstream from the 

TSS for each gene19, 20. For each TF and gene pair, using Biopython package we 

calculated the score between the TF motif sequence and both the ‘+/-’ sequences at 

all possible positions along the TSS region of the gene, and then selected the 

maximum one as the final PWM score. The maximum Dnase peak signal in the TSS 

region was calculated as the scalar Dnase value for each gene. 

 

Labeled data: 

mESC ChIP-seq peak region data was downloaded from GTRD database, and we 

used peaks with threshold p value < 10-400 for mESC cells and 10-200 for bone marrow 

cells and dendritic cells. If one TF X has at least one ChIP-seq peak signal in or 

partially in the TSS region of gene Y, as defined above, we say that X regulates Y.  

KEGG and Reactome pathway data were downloaded by the R package ‘graphite’39. 
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KEGG contains 290 pathways and Reactome contains 1581 pathways. For both, we 

only select directed edges with either activation or inhibition edge types and filter out 

cyclic gene pairs where genes regulate each other mutually (to allow for a unique 

label for each pair). In total, we have 3,057 proteins with outgoing directed edges in 

KEGG and the total number of directed edges is 33,127. For Reactome the 

corresponding numbers are 2,519 and 33,641. 

 

 

Constructing the input histogram  

For any gene pair a and b, we first log transformed their expression, and then 

uniformly divided the expression range of each gene to 32 bins. Next we created the 

32X32 histogram by assigning each sample to an entry in the matrix and counting the 

number of samples for each entry. Due to the very low expression levels and even 

more so to dropouts in scRNA data, the value in zero-zero position is always very 

large and often dominates the entire matrix. To overcome this, we added 

pseudocounts to all entries. We combined bulk and scRNA-Seq NEPDFs by 

concatenating them as a 32X64 matrix to achieve better performance. 

 

CNN for RPKM data 

We followed VGGnet40 to build our convolutional neural networks (CNN) model 

(Supplementary Fig. 1). The CNN consists of stacked layers of � 3×3 convolutional 

filters (equation (1)) (� is a power of 2, ranging from 32 to 64 to 128) and interleaved 

layers of 2×2 maxpooling (equation (2)). We used the constructed input data as input 

to CNN. Each convolution layer computes the following function: 

Convolution ���,�� � ∑ ∑ ��,�
� ����,���

�
�	


�
�	
           (1) 

Where X is the input from the previous layer, (i,j) is output position, k is convolutional 

filter index and W is the filter matrix of size 3X3. In other words, each convolutional 

layer computes a weighted average of the prior layer values where the weights are 

determined based on training. The maxpooling layer computes the following function: 
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maxpooling ���,�� � max ����,�
� , ���
,�

� , ��,��

� , ���
,��


� ��             (2) 

Where X is input, (i,j) is output position and k is the convolutional filter index. In other 

words, the layer selects one of the values of the previous layer to move forward. 

 

Overall structure of CNNC 

The overall structure of the CNN is presented in Supplementary Fig. 1. The input 

layer of the CNN is either 32×32 or 32×64 as discussed above. In addition, the CNN 

contains 10 intermediate layers and a single one or three-dimension output layer. The 

ten layers include both convolutional and maxpooling layers, and the exact 

dimensions of each layer are shown in Supplementary Fig. 1. Following ref 4141 we 

used rectified linear activation function (ReLU) as the activation function (equation (3)) 

across the whole network, except the final classification layers where ‘sigmoid’ 

function (equation (4)) was used for two categories classification and ‘softmax’ 

function (equation (5)) for multiple categories classification. These functions are 

defined below. 

ReLU �� � ��    ! � " 00   ! � $ 0 %                                       (3) 

Sigmoid�  �� � 1 1 ) *��+                                        (4) 

Softmax� �� � 


∑ �
����

���

-*���*���
…*���.                                   (5) 

 

 

Training and testing strategy 

We evaluated the CNN using cross validation. In these, training and test datasets are 

strictly separated to avoid information leakage. See Supplementary Methods, and 

Supplementary Table 1 for details. For the three labels (causality analysis) we did 

the following: for each gene, we generated (a, b) (label1) and (b, a)’s (label2) NEPDF 

matrices. For the 0 label we generated a (a, N) NEPDF matrices for GTRD where N 

was a random gene among all non-targets and a was the TF. 0 labels for KEGG or 
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Reactome were generated from random (M, N) gene pairs among KEGG or 

Reactome gene sets. After training, we used p1(a, b) + p2(a, b) as the probability that 

a interacts b, p2(a, b) – p2(b, a) as the pseudo probability that b regulates a. 

 

Integrating expression, sequence and DNase data 

To integrate Dnase and PWM data with the processed RNA-Seq data, we first 

computed the max value for a PWM scan and DNase accessibility for each promotor 

region. We next generated a two-value vector from this data for each pair and 

embedded it to a 512D vector using one fully connected layer containing 512 nodes. 

Next these are concatenated with the expression processed data to form a 1024D 

vector which serves as input to a fully connected 512-node plus 128-node layer neural 

network classifier. See Supplementary Fig. 1 for details. Early stopping strategy by 

monitoring validation loss function is used to avoid overfitting. 

 

 

Functional gene assignment  

To assign a function (biological process or disease involvement) we train a CNNC 

model for each known gene g for that function. Similar to all CNNCs, input to each 

model is a pair of genes where one is g and the other is either a positive (known) or 

negative gene. Next we built a two-layer fully connected neural network that take a 

vector of inputs (the 1 value output from each of the trained CNNC models) and 

outputs the final decision.  

 

Known genes for functional assignment testing 

We downloaded 855 (182, 59) human cell cycle (asthma, COPD) genes from GSEA 

(‘Malacards’29 (a human disease website, https://www.malacards.org/)). We obtained 

mouse ontologies for all genes resulting in 682, 147 and 47 genes for cell cycle, 

asthma and COPD, respectively. For training we used all genes for the diseases and 

a randomly selected set of cell cycle genes. See Supplementary Note for details. 
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Selection of edges for the IL-17 pathway analysis 

We performed leave-one-pathway-out validation to evaluate CNNC’s performance for 

predicting edges for individual pathways. We selected a relatively small pathway 

(‘IL-17’ from KEGG) to improve our ability to present it visually. We discuss more 

general results for KEGG as well (Fig. 4). For this analysis we only selected directed 

edges with either activation or inhibition types and filtered out cyclic gene pairs where 

genes regulate each other mutually to purify the edge types. In total, we had 6 nodes 

and 4 directed edges for the IL-17 pathway. Next, we trained CNNC with the entire 

KEGG dataset excluding any interactions for the six ‘IL-17’ pathway proteins.  

 

 

Data availability 

All data, scripts and instruction required to run CNNC in Python can be found in our 

support website. All other public data can be found following the pipelines in “Dataset 

sources and pre-process pipelines” and “Labeled data” parts of Online methods. 
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Figure legends 

 

Figure 1: CNNC input and architecture 

CNNC aims to infer gene-gene relationships using single cell expression data. For 

each gene pair, sc RNA-Seq expression levels are transformed into 32×32 normalized 

empirical probability function (NEPDF) matrices. The NEPDF serves as an input to a 

convolutional neural network (CNN). The intermediate layer of the CNN can be further 

concatenated with input vectors representing Dnase-seq and PWM data. The output 

layer can either have a single, three or more values, depending on the application. For 

example, for causality inference the output layer contains three probability nodes 

where p0 represents the probability that genes a and b are not interacting, p1 

encodes the case that gene a regulates gene b, and p2 is the probability that gene b 

regulates gene a.  

 

Figure 2 GTRD TF-target prediction  

(a-e) ROCs of CNNC, Pearson correlation (PC), Mutual information (MI), Count 

statistics (CS) and Genie3 trained on scRNA-Seq mESC expression data. We 

performed cross validation using 38 TFs that were profiled in the same cell type. Light 

gray lines represent the performance for each TF. Red line represents the median 
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ROC, and light green region represents the 25~75 quantile. (f-k) Result summary for 

the five methods using additional scRNA-Seq expression input sets and TFs, (k) the 

summary for the whole five datasets, where P-value is based on wilcoxon test 

comparing CNNC to all prior methods. (l-q) Percentage of TFs in which CNNC 

improves upon all other methods, (q) the result for the whole five datasets. (r) 

Comparison of TF-target predictions with additional data using mESC expression and 

TFs. Columns 1-3 show median AUROC of PC, MI, and CNNC using scRNA-Seq 

data respectively. 4th and 5th column show performance when only using PWM or 

Dnase. The last two columns show performance of the integration of expression, 

sequence (PWM) and DNase data.  

 

Figure 3 Predicting undirected pathway edges  

(a) Overall ROCs for CNNC performance on KEGG pathway gene interaction 

prediction using a large compendium of scRNA-Seq data and bulk data. (b) The Area 

Under the Receiver Operating Characteristic curve (AUROC) histogram for (a). (c-g) 

Overall ROCs for Pearson correlation, mutual information, count statistics, Bayesian 

directed network (BDN) and Genie3 when tested on the KEGG pathway gene 

interaction prediction task. (h) Comparison of the six methods on the gene interaction 

prediction task. P-values are based on wilcoxon test. Boxplot was shown with median, 

first, third quartile, maximum and minimum. 

 

 

Figure 4 Directed (causal) edge prediction 

(a) Overall ROCs for performance of CNNC on GTRD directed prediction task using 

the mESC-time dataset and mESC TFs. (b) The AUROC histogram for (a). (c) Overall 

ROCs for performance of CNNC on KEGG pathway directed edge prediction using a 

large compendium of scRNA-Seq and bulk data. (d) The AUROC histogram for (c). (e) 

Overall ROCs for performance of CNNC on Reactome pathway directed edge 

prediction. (f) The AUROC histogram for (e). (g) A typical NEPDF sample from a 
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KEGG interaction that is correctly predicted as label 1. (h) A typical NEPDF sample 

that is correctly predicted as label 2. (i-l) Variance (var), mean and coefficient of 

variance (CV) of gene 2 as the expression of gene 1 increases for top correctly 

predicted pairs with label 1. (m-p) Same for top predictions for label 2. (q-r) Average 

and variance of CV for the top prediction groups correctly predicted as label 1 (q, s) 

and label 2 (r,t). 

 

Figure 5 Functional assignment and pathway reconstruction using CNNC  

CNNC can be used as a component in downstream analysis algorithms including for 

pathway analysis and functional assignments.  (a) Performance of CNNC on the 

cell-cycle gene prediction task. (b) Top panel: predicted expression pattern of a 

cell-cycle~cell-cycle gene pair. Bottom panel: predicted expression pattern of a 

cell-cycle~non-cell-cycle gene pair. (c, d) The most significant GO terms of top 300 

predicted COPD (c) and asthma (d) disease genes by CNNC and GBA respectively. 

(e) Directed edges annotated in KEGG for the IL-17 pathway gene nodes. (f) 

Performance for IL-17 pathway prediction task. 
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