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Abstract  
 

Full-length isoform sequencing has advanced our knowledge of isoform 

biology1–11. However, apart from applying full-length isoform sequencing to very few 

single cells12,13, isoform sequencing has been limited to bulk tissue, cell lines, or 

sorted cells. Single splicing events have been described for <=200 single cells with 

great statistical success14,15, but these methods do not describe full-length mRNAs. 

Single cell short-read 3’ sequencing has allowed identification of many cell sub- 

types16–23, but full-length isoforms for these cell types have not been profiled. Using 
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our new method of single-cell-isoform-RNA-sequencing (ScISOr-Seq) we determine 

isoform-expression in thousands of individual cells from a heterogeneous bulk tissue 

(cerebellum), without specific antibody-fluorescence activated cell sorting. We 

elucidate isoform usage in high-level cell types such as neurons, astrocytes and 

microglia and finer sub-types, such as Purkinje cells and Granule cells, including the 

combination patterns of distant splice sites6–9,24,25, which for individual molecules 

requires long reads. We produce an enhanced genome annotation revealing cell-   

type specific expression of known and 16,872 novel (with respect to mouse Gencode 

version 10) isoforms (see isoformatlas.com). 

 

ScISOr-Seq describes isoforms from >1,000 single cells from bulk 

tissue without cell sorting by leveraging two technologies in three steps: In step one, 

we employ microfluidics to produce amplified full-length cDNAs barcoded for their 

cell of origin. This cDNA is split into two pools: one pool for 3’ sequencing to 

measure gene expression (step 2) and another pool for long-read sequencing and 

isoform expression (step 3). In step two, short-read 3’-sequencing provides molecular 

counts for each gene and cell, which allows clustering cells and assigning a cell type 

using cell-type specific markers. In step three, an aliquot of the same cDNAs (each 

barcoded for the individual cell of origin) is sequenced using Pacific Biosciences 

(“PacBio”)1,2,4,5,26 or Oxford Nanopore3. Since these long reads carry the single-cell 

barcodes identified in step two, one can determine the individual cell from which 

each long read originates. Since most single cells are assigned to a named cluster, we 

can also assign the cell’s cluster name (e.g. “Purkinje cell” or “astrocyte”) to the long 

read in question (Fig 1A) – without losing the cell of origin of each long read. 
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Results 
 
Detection of cell types 
 

We apply ScISOr-Seq to describe cell-type specific isoforms in mouse 

cerebellum at postnatal day 1 (P1). We sequence a mean of 17,885 reads per cell (as 

given by 10xGenomics’ summary statistics). After filtering cells and considering 

only reads confidently mapped to genes, we have 3,875 unique molecular identifiers 

(UMIs) and 1,448 genes per cell during 3’end sequencing. In step 2, 6,627 cells were 

clustered into 17 groups (Figs. 1B,D). High expression of well-established cell-type 

specific markers identifies many clusters as cell types: High expression of Pdgfra, 

Olig1 and Olig2 identified a cluster of oligodendrocyte precursors (OPCs, Fig 1B,C). 

Clu and Apoe identified two clusters of astrocytes and Gdf1027,28 identified a cluster 

of Bergmann Glia (BG). We also identified three large clusters of neuronal subtypes: 

namely (i) cells with high expression of Neurod1 and Ccdn2, which we refer to as 

external granular layer (EGL) cells in several stages of differentiation. These give 

rise primarily to granule neurons that migrate into the internal granular layer (IGL) 

over the first weeks of mouse postnatal development; (ii) Purkinje-like (marked by 

Pcp4, Gad1 and Gad2) in the Purkinje cell layer (PCL) and (iii) other neurons known 

to be present in the deep cerebellar nuclei and internal granular layer (collectively 

referred to as “IGL” heareafter), in which cells display high expression of Pnoc, 

Snhg11, Tcf7l2, Gad1, Gad2 and Lhx9. This cluster was clearly composed of at least 

two clusters: One expressing Gad1 and Gad2 and the other expressing Lhx9 and 

Tcf7l2 (Figure 1B). These cell-type specific expression patterns exhibit specific 

anatomical localization within the developing cerebellum (Figure 1C, Allen Brain 

Atlas). Three further clusters expressed genes associated with neural progenitor cells: 

one expressing Ccnd2 (which is highly expressed in the postnatal EGL), another 
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Atoh1 (glutamatergic neuron precursors from the rhombic lip and EGL) and the third 

Ptf1a (GABAergic neuron precursors from the ventricular zone) (Fig 1B). We could 

also identify other cell populations, such as microglia, which highly expressed well-

known myeloid-associated genes (e.g. C1qa, C1qb, C1qc and Tmem119). Alongside 

neuroglial subtypes and progenitors, we furthermore identified clusters expressing 

genes specific to endothelial and circulatory-system cells. In summary, our clustering 

recapitulates a large proportion of cell types classically observed in P1 cerebellum. 

Overall EGL, IGL cells and astrocytic cells were the largest cluster and blood cells 

the smallest. Detected reads, short-read UMIs and genes per cell showed slight 

differences between cell types but were of similar orders of magnitude. Consistent 

with their large size, Purkinje cells had the highest number of read, UMI and gene 

counts, while blood cells had the lowest gene count. 

 

Reliability and replication of cell-type detection 
 

Sequencing of a second replicate (rep2) and within-replicate analysis showed 

that most distinct clusters were highly dissimilar to any other clusters in the same 

replicate. To assess stability of clusters, we tripled Illumina sequencing depth for 

rep2. In all clusters (with one exception) based on shallower sequencing depth, 95-

100% of cells were still attributed to the same cluster, even with three-fold deeper 

sequencing. Analysis of comparability of marker gene between clusters of the two 

replicates using the Jaccard index identified highly similar clusters with one 

exception: The smallest cluster (blood cells) in replicate 1 (rep1), was missing in 

rep2. Cell-type abundance was reproducible between replicates and highly 

correlated (Pearson correlation = 0.91, correlation- test p-value = 4.5 ×10-5). 
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Detection of single-cell barcodes in full-length cDNAs 
 

We then employed 850ng of full-length cDNAs, tagged for their cell of origin, 

for isoform sequencing to generate ~5.2 million PacBio circular consensus reads 

(“CCS”). These CCS showed mean full passes per SMRT cell of 16-34 and thus 

favor a lower error rate compared to earlier ISO-Seq publications1,4. Since cellular 

barcodes are located close to the polyA-tail, we first searched for polyA-tails. 

Aiming at detecting polyT-sequences, even with a hypothetical 10% error rate, we 

located the first nine consecutive Ts (“T9”) in the first 200bp of each read and of its 

reverse complement. 61.6% of CCS contained such a T9, broadly consistent with our 

previous estimation (67%)1,4. Reads with and without T9s showed similar lengths, 

apart from CCS <=200bp accumulating in non-T9 CCS. 1.4% of T9-CCS had a T9 in 

the read start and the complement’s start. These may include chimeras, which were 

removed from further analysis, introduced during reverse transcription, PCR or 

blunt-end PacBio library preparation. In total, for 58.0% (compared to 74.0% for 

10x-3’seq) of the polyA-tail-containing CCS, we identified a perfect-match 16mer 

cellular barcode (each corresponding to one of the 6,627 single cells) and therefore 

the exact single cell, in which the RNA isoform was transcribed. As a theoretical 

foundation, we determined for all 6,627 barcodes, the minimal editing distance to any 

other barcode: For 92.7% of barcodes, this minimal (“Levenshtein”) distance was 3 

or greater, and for the remaining barcodes it was two. This shows that for most 

barcodes, there is one specific error pattern of three errors that would lead to a 

wrongly identified cell. However, in most cases three random errors would only 

discard the read because none of the 6,627 known barcodes is detected. Both 

experiments and simulations show that our single-cell barcode-detection procedure is 

extremely specific. Overall, we detected a median of 270 long reads, 260 UMIs and 
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129 genes per single cell. 3.8% of UMIs are observed twice, with a theoretical 

prediction of 3.4% (Methods). 99.3% (6,581/6,627) of clustered cells were detected 

with CCS (Figure 2A-D). 97.4% (6,459/6,627) of clustered cells had >100 CCS 

(Figure 2D). Detected short-read and long-read UMIs per single cell correlated 

highly (Pearson correlation = 0.95, correlation-test p < 2.2 × 10-16, Figure 2E). Long-

read statistics (reads, UMIs, genes, Figure 2F-H) per cell cluster mirrored those in 

short-reads, with lower long-read numbers. 

 

ScISOr-Seq using Nanopore sequencing 
 

Using 1µg of barcoded cDNA on a Nanopore MinIon, we searched for cellular 

barcodes in 2.3 million Nanopore reads29. We found lower relative numbers of 

Nanopore 1D reads with a T9, supposedly due to problems with homopolymers in 

Nanopore data29. However, ~31.4% (1D) and ~35.2% (passed 1D2) of Nanopore 

reads have a 30bp window with >=25 Ts. Although the variation from the expected 

position in Nanopore reads is larger than for CCS (90bp vs. 3bp), accumulation 

around the expected position is observed and exact barcode matches reveal unique 

barcodes in 6.0% (43,948/732,590, 1D) and 32.7% (9,454/28,931, 1D2). 

Therefore, we can expect ~50,000 cluster-specific long reads per MinIon flow cell. 

With each current MinIon flow cell requiring 1µg of cDNA, further PCR (with 

associated biases) is needed to carry out large-scale ScISOr-Seq on Nanopore, 

whereas the employed 16-cycle PCR is sufficient to run 20- 50 SMRTcells on PacBio 

yielding up to 5 million long reads assigned to single cells. 

 
A cell-type resolved isoform annotation 
 

We aligned PacBio CCS to the mouse genome30 (version mm10) using STAR31  

and carried out mapping quality control as previously performed1,4,6. We analyzed 
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novel isoforms with respect to mouse Gencode version 10, as outlined previously1,6,32 

to produce a long- read enhanced and cell-type resolved annotation. We considered 

10,691 unique novel (with respect to mouse Gencode version 10) isoforms that 

affected 4,859 genes. For these isoforms, we required all splice sites to be known in 

Gencode33 (version 10) and each junction and internal exon to be either annotated    

or observed at least twice in ScISOr-Seq. The unique novel isoforms contain new 

exon-exon junctions linking previously known splice sites, such as the skipping of 

exons annotated as constitutive. Artifacts in next-generation sequencing have been 

demonstrated34. To assess whether the long-range 16-cycle PCR in ScISOr-Seq 

generates chimeric transcripts, we obtained 164 million 150bp-paired-end reads on 

bulk RNA from P1 cerebella only employing a 6-cycle short-range PCR after RNA 

fragmentation. Based on this experiment, we confirmed 91.6-97.6% of the novel 

ScISOr-Seq junctions across different cell types (Figure 3A). To reduce the 

influence of PCR artifacts on the enhanced annotation to a minimum and to allow for 

adding lowly expressed transcripts, we generated a final enhanced cell-type 

resolved annotation with strong 6-cycle-PCR short-read support. In this enhanced 

annotation, for each added isoform, each intron and internal exon was required to 

be annotated in Gencode or to be supported by two or more 6-cycle-PCR short 

reads, resulting in 16,872 isoforms for 6,927 genes (Figure 3B). For each of these 

isoforms we know the single cell of origin and therefore the cell type that 

produced this isoform. 42.8% (7,219/16,872) employed at least one splice site not 

annotated in Gencode. With respect to the UCSC35 and RefSeq36 annotations, 

94.0% and 70.9% respectively of added isoforms were novel We performed 

ScISOr-Seq for rep2, albeit at a lower sequencing depth (6 SMRT cells, 

compared to 23 for rep1). New rep2-isoforms replicated in rep1 in 65.7% 
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(microglia) to 76.2% (NPCs)(Figure 3C) of the cases (irrespectively of the cell 

type they were observed in rep1). Given replication of an isoform in any cell type, 

cell-type specific replication of a rep2-isoform in the same cell type in rep1 

reached 70-80% in larger clusters, but lower percentages in smaller clusters 

with dramatically fewer long reads (Figure 3D). To validate the correct calling of the 

individual cell of origin for each isoform, we performed immunopanning to 

specifically isolate microglia in P1 cerebella followed by short- read RNAseq. This 

data was compared to all isoforms originating from a single microglial cell (and then 

to isoforms of single cells belonging to other cell types). This confirmed the 

microglial origin of long-read junctions exclusively observed in microglial single-cell 

long reads as compared to junctions observed exclusively in non-microglial single-

cell long reads (Figure 3E). Similarly, immunopanning for astrocytes, Bergmann glia 

(both marked by Hepacam) and OPCs (which are known to be enriched in Hepacam-

sorting) and short-read sequencing showed the highest coverage for junctions 

observed exclusively in astrocyte, Bergmann Glia and OPC ScISOr-Seq isoforms 

This was more pronounced for junctions observed three or more times in ScISOr-Seq 

data in one cell type. These data suggest that junctions observed only in astrocytes, 

Bergmann Glia and OPCs are also expressed at a lower level in other cell types 

originating from the same stem cell. 

 

Database of cell-type specific isoform expression in the cerebellum 
 

We first looked at alternative splicing in Tpm1 gene that is expressed across 

multiple cell types and is known to have extensive alternative splicing according to 

Gencode33, UCSC35 and RefSeq36 annotations. This gene contains five alternatively 

spliced blocks of exons namely AS1-AS5 (observable in >=3 reads). AS1 and AS5 
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represent alternatively spliced blocks of single or multiple 5’ and 3’ exons along with 

the associated untranslated regions while AS2-AS4 represent single alternatively 

spliced exons within the coding region of the gene. We observed 4 novel isoforms 

(Figure 4, black and bold) of Tpm1 as compared to the observed 21 isoforms 

according to the Gencode annotation. Out of these “Novel Isoform 4”, where AS4 is 

spliced out while other alternatively spliced exons are included, was the major 

isoform expressed in Astrocytes with 10 UMIs. Out of the annotated transcripts, only 

the OPCs express the ENSMUST00000113685.9 (Figure 4, red) transcript with 15 

UMIs which was also the most abundantly expressed isoform in OPCs. Other 

annotated transcripts ENSMUST00000113686.7 (Figure 4, orange) and 

ENSMUST00000113690.7 (Figure 4, green) were the most abundant isoforms in 

EGL and IGL respectively. In order to make this data accessible to the research 

community, we have created a fully searchable database (see isoformatlas.com) of 

isoforms for every gene showing their cell type of origin (as shown in Figure 4) and 

their single-cell of origin projected onto the TSNE-plot shown in Figure 1B.  

 

Discussion 
 

Brain disorders (e.g. Alzheimer’s disease) are highly associated with risk 

genes including MAPT and APOE. Interestingly, these genes are expressed in 

multiple cell (sub-)types. Therefore, cell-type specific isoform expression is critical 

and may decipher the action of disease-associated SNPs. Here, we (i) describe 

isoform expression across heterogeneous cell types and (ii) enhance genome 

annotation with cell-type specific isoform expression. A drawback is that employing 

multiple deeply sequenced replicates is for now very expensive with long-reads, 

making precise quantification of abundance changes between cell types as outlined 
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in rMATS37  more difficult. However, our full-length RNAs from single cells cover  

all single nucleotide polymorphisms in the coding region of mature RNA and may 

help attributing single cells to a specific individual38 in pooled samples. 
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Figures  
 

Figure 1: (A) Outline of our ScISOr-Seq approach. (B) TSNE-plot depicting cell 
clusters, marker genes and names given to clusters, including: Bergman glia (BG), 
External granule cell layer neurons (EGL), Internal granule cell layer and other 
neurons in the interior of the cerebellum (IGL), two clusters of Purkinje cell layer 
neurons (PCL), oligodendrocyte progenitor cells (OPCs), Atoh1+ neuronal 
progenitors, Ptf1a+ neuronal progenitors and other neuronal progenitors (NPCs) 
(C) In-situ hybridization images from the Allen Brain Atlas depicting expression of 
marker genes in specific layers. (D) Expression patterns of selected marker genes 
across cell types. 
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Figure 2: Long-read statistics. Distribution of (A) long reads (B) long-read UMIs and 
(C) genes per cell. (D) Number of cells >1,>10,>100,>250 long-reads (E) Dotplot and 
correlation between long-read UMIs and short-read UMIs per cell. Distribution of (F) 
long reads (G) long-read UMIs and (H) long-read detected genes per cell. 
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Figure 3: An enhanced and cell-type specific annotation. (A) Percentage of long- read 
derived junctions that could be validated using low-cycle PCR from bulk P1 
cerebellum. (B) Number of isoforms added to the annotation and number of affected 
genes. (C) Percentage of complete unique isoforms from replicate 2 that could also be 
observed in replicate 1 (in any cell type) broken up by cell type of origin from 
replicate 1. (D) Percentage of complete unique replicated isoforms from replicate 2 
that could also be observed in replicate 1 (in the same cell type) broken up by cell type 
of origin from replicate 1 (E) Distributions of coverage with microglial short reads for 
introns in the enhanced annotation that were exclusively observed in one cell type 
(indicated by name under the x-axis). 
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Figure 4: Single gene view for the Tpm1 gene (from isoformatlas.com), Left: 
Isoforms of the gene, where each exon is a rectangular block joined by an intervening 
line representing introns. Alternatively spliced exon blocks identified by AS1-5 are 
enclosed by dashed-lined boxes Right: Table representing the distribution of UMI 
counts per isoform (in rows) and cell type of origin as identified in Figure 1 (in 
columns). Major isoforms in each cell type are colored orange (EGL), red (OPCs) and 
green (IGL). Novel isoforms are colored in black.
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